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Abstract—Commodity many-core hardware is now main-
stream, driven in particular by the evolution of general purpose
graphics programming units (GPGPUs), but parallel programming
models are lagging behind in effectively exploiting the available
application parallelism. There are two principal reasons. First,
real-world applications often exhibit a rich composition of nested
parallelism, whose statical extraction requires a set of (compiler)
transformations that are tedious to do by hand and may be
beyond the capability of the common user. Second, the best
optimization strategy, with respect to what to parallelize and
what to sequentialize, is often sensitive to the input dataset, and
as such, it may require several code versions, maintained and
optimized differently for different classes of datasets.

This paper studies three such array-based applications from
the financial domain, which are suitable for GPGPU execution.
For each application, we (i) describe all available parallelism
via nested map-reduce functional combinators, (ii) describe
the invariants and code transformations that govern the main
trade-offs of a rich, dataset-sensitive optimizations space, and (iii)
report target CPU and GPGPU code together with an evaluation
that demonstrates optimization trade-offs and other difficulties.
Finally, we believe this work provides useful insight into the
language constructs and compiler infrastructure capable of ex-
pressing and optimizing such applications, and we report in-
progress work in this direction.

I. INTRODUCTION

With the mainstream emergence of many-cores architec-
ture, e.g., GPGPUs and Xeon Phi, massive parallelism has
become a focus area of industrial application development.
However, parallel-programming models are legging behind the
advance in hardware: parallelism extraction and optimization
is still tedious and often requires specialized users.

Proposed solutions span a wide range of language and com-
piler techniques. On one end of the spectrum, we find the paral-
lel assembly of our time, low-level APIs like CUDA, OPENCL,
and OPENACC. On the opposite end are compilation tech-
niques to automatically extract and optimize parallelism—
usually within a language context, such as flattening [2]
(NESL), polyhedral frameworks [3] (C), or inter-procedural
summarization of array subscripts [4], [5] (Fortran). The use
of domain-specific languages (DSLs) for parallel computation
represents a middle-ground (with blurred boundaries), provid-
ing high-level operations with parallel implementations, and
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targeting data-parallel applications on arrays or graphs [6]–
[10].

The HIPERFIT research center [1] set out to better exploit
potential parallelism in one of the most computationally chal-
lenging domains: financial computations. The conjecture of the
center is that domain-specific invariants should be exploited
and encapsulated in suitable DSLs for best performance, re-
quiring exploration of real-world applications. In this context,
we have worked specifically on software to price financial
derivatives, which we propose as a suite of benchmarks for
parallelizing compilers and DSLs for parallelism.

The benchmark suite comprises three large-scale modeling
components of a financial modeling engine, based on sequen-
tial source code provided by HIPERFIT partners. It includes (i)
a pricing engine for financial contracts, (ii) a local-volatility
calibration that reduces to solving many independent PDE
systems via Crank-Nicolson’s finite differences method [11],
and (iii) an interest-rate calibration based on a set of known
swaption prices, whose results are input to the pricing engine.

The benchmark suite provides sequential (original) source
code, ranging from hundreds to (couple of) thousands of lines
of compact code, and different parallel versions for CPUs and
GPGPUs1. For example, the sequential code can be used to test
auto-parallelization solutions, with the parallel versions provid-
ing the comparison baseline. In addition, we believe it is useful
also to provide other material, including (i) simple code in
a functional programming language, which fully specifies the
available parallelism in terms of nested map-reduce operations
on lists/arrays, (ii) documentation of important trade-offs that
govern the optimization space, and (iii) customizable data sets
to demonstrate these trade-offs. The rationale is that (parallel)
application benchmarks are often heavily optimized towards
specific hardware setups and generations, and are often run
on friendly data sets, obfuscating sub-optimal generality and
potential opportunities to further optimization.

The provided benchmark programs can be described as
a deeply-nested composition of data-parallel array operators
(map, reduce, scan, and filter), within non-trivial con-
trol flows, such as dependent loops in which the optimal
parallelization strategy is sensitive to the input data set. Such
programs provide a compelling application for optimizing
compilers and many-core hardware, including GPGPUs, albeit
they present two major challenges to current solutions.

1 On commodity hardware, the data-parallel GPGPU execution is several
tens to several thousands of times faster than the sequential CPU execution.



First, supporting nested parallelism is important because,
while companies are eager to reap the benefits of many-
core architectures, they are typically not willing to rewrite
their (sequential) code base more than once, and only if the
resulting code structure still resembles the original algorithm.
Furthermore, static extraction and optimization of parallelism
(e.g., for GPGPU computations) requires the application of a set
of compiler transformations, such as flattening, fusion, fission,
loop interchange, and tiling, which are tedious, often beyond
the capabilities of the common user, and typically result in an
unmaintainable code base.

Second, at least to some extent, all solutions employ a
“one size fits all” technique that results in one target program
for all datasets. For example, (i) in an OPENCL program the
user explicitly specifies what is to be executed in parallel
and what sequentially, (ii) in a purely-functional context, the
flattening transformation exploits all available parallelism and
offers work-depth asymptotic guarantees but does not optimize
memory-usage or locality of reference, while (iii) imperative
solutions typically optimize the common case (maps and local-
ity of reference) but without providing asymptotic guarantees.

The provided benchmark suite uses (realistic) customizable
datasets to better explore the entire optimization space and re-
veal opportunities for combining the benefits of functional and
imperative approaches. For instance, the dataset determines the
parallelism degree of each level of a loop nest and effective
hardware utilization may require either full parallelization or
efficient sequentialization of that level (i.e., moderate flatten-
ing). This aspect requires solutions that generate specialized
optimized code for the different cases and guard the different
versions, ensuring sufficient parallelism and load-balancing.

As an important example, the scan operation, a well-
known basic block of parallel programming [12], appears
rarely (if at all) in the parallel version of SPEC programs.
While difficult to recognize, and not always efficient to exploit,
we found that instances of (segmented) scan are predomi-
nant in our benchmark. For example, the tridiagonal solver
(TRIDAG) appears as a fully dependent loop, but it can be
rewritten (via compiler techniques) into scans in which the
associative operator is linear-function composition and 2 × 2
matrix multiplication, respectively. These scan instances are
expensive to parallelize, yielding ∼ 6× instructional overhead
and log n depth, but are necessary for two out of three data
sets in order to fully utilize hardware and increase the speedup.

Finally, this work is an example of “the journey being more
important than the destination”: Systematic parallelization of
the original sequential programs, written in languages such as
C and OCaml, has required us to (i) fully understand and ex-
press the available parallelism and (ii) execute a tedious, step-
by-step transformation of the code bases in order to statically
extract parallelism and to perform various (memory-related)
optimizations. This process has provided important insights
into identifying (i) the most useful language constructs that can
express particular program patterns and (ii) a useful sequence
of compiler transformations that can exploit the rich, dataset-
sensitive optimizations space (i.e., efficient optimization of the
common case, but within work-depth asymptotic guarantees.)
Work is in progress for developing such a language (Futhark)
and compiler infrastructure [13]–[16].

In conclusion, this work presents an application benchmark
suite that constitutes a challenging and compelling application
for optimizing compilers because a systematic hand-based
implementation is simply too tedious. Main contributions are:

• A complete description of the available parallelism in
three big-compute applications, suitable for GPGPUs.

• A detailed analysis of the invariants and (two-way) pro-
gram transformations that implement the main tradeoffs of
a rich, data-set-sensitive optimization space. Examples in-
clude moderate flattening, fusion vs. fission, and strength-
reduction vs. independent computation.

• Insight into the language constructs and compiler infras-
tructure capable of effectively expressing and optimizing
parallelism (deeply nested in non-trivial control flow),

• Parallel target CPU/GPU code, together with an empirical
evaluation that demonstrates the tradeoffs and difficulties.

We hope that our financial real-world benchmarks complement
common benchmark practice in the compiler community, and
especially that the additional documentation and code prove
useful for performance comparison across boundaries of lan-
guage and programming model.

II. PRELIMINARIES

This section presents the motivation for studying the three
financial application, together with a brief characterization of
each, and briefly introduces Futhark, the functional language
used to describe the available application parallelism and
code transformations; a detailed description of Futhark and
its compiler infrastructure is found elsewhere [13]–[16].

A. Financial Motivation

The financial system is facing fundamental computational
challenges lead by an increase in complexity, interconnected-
ness, and speed of interaction between participants. Financial
institutions relocate capital across economic sectors, and are
instrumental in providing stable growth. Should a large insti-
tution face liquidity shortage, a set of cascade effects may
negatively impact the whole system. The impact of capital
allocation across a large number of forecasted scenarios is
estimated via large-scale simulations. For regulatory purposes,
some of these scenarios involve critical conditions, which
further increase computational demands.

These big-compute problems however, present a com-
pelling and challenging application for commodity many-core
hardware (e.g., GPGPUs), albeit they transcend the domain of
embarrassingly parallel computing. For example, Monte Carlo
simulations, originally developed to investigate the stochastic
behavior of physical systems in complex, multidimensional
spaces, have emerged as tool of choice in critical financial
applications like risk modeling and contract pricing.

At top level, gains and risks can be described by means
of a probabilistic formulation of possible market scenarios,
estimated and aggregated with a Monte Carlo method, and
evaluated at present time by a discount function.

This paper presents three components used in practice to
implement such a financial mechanism:



Type Syntax

Types 3 τ ::= bool | char | int | real // basic types

| (τ1, . . . , τn) | [τ ] // tuples and regular arrays

SOAC Types

⊕ :: (α, α)→ α // binary associative operator

replicate :: (int, α)→ [α]

iota :: int→ [int]

zip :: ([α1], . . . , [αn])→ [(α1, . . . , αn)]

unzip :: [(α1, . . . , αn)]→ ([α1], . . . , [αn])

map :: ((α→ β), [α])→ [β]

zipWith :: (((α1, . . . , αn)→ β), [α1], . . . , [αn])→ [β]

filter :: ((α, bool), [α])→ [α]

reduce :: (((α, α)→ α), α, [α])→ α

scan :: (((α, α)→ α), α, [α])→ [α]

SOAC Semantics

replicate(n, a) ≡ {a, . . . , a} // array of outer size n

iota(n) ≡ {0, . . . , n− 1}

zip(a1, . . . , an) ≡ {(a1[0], . . . , an[0]), (a1[1], . . . , an[1]), . . . }

unzip ≡ zip−1

map(f, a) ≡ {f(a[0]), f(a[1]), . . . }

zipWith(f, a1, . . . , an) ≡ {f(a1[0], . . . , an[0]), f(a1[1], . . . , an[1]), . . . }

filter(f, a) ≡ {a[i]|f(a[i]) = True}

reduce(⊕, ne, a) ≡ ( . . . ((ne ⊕ a[0])⊕ a[1]) . . .⊕ a[n])

scan(⊕, ne, a) ≡ {ne ⊕ a[0], ((ne ⊕ a[0])⊕ a[1]), . . . }

Fig. 1. Types & Semantics of array constructors & second-order combinators.

• Section III presents a pricing engine for a set of vanilla
and exotic options in scenarios with constant volatility.

• Section IV presents a local-volatility calibration, in which
market volatility is modeled as a parameter of the option-
call price. The volatility is calibrated by solving a system
of continuous partial differential equations, using Crank-
Nicolson’s finite differences method [17].

• Section V presents a calibration of the parameters of an
interest-rate model, based on a set of available swaption
prices. The interest rate will be used to discount other
financial products.

B. Futhark Language

Futhark is a mostly-monomorphic, statically typed, strictly
evaluated, purely functional language that is primarily in-
tended as a compiler intermediate representation (IL). It uses
a syntax resembling SML [18]. It supports let bindings for
local variables, but unlike SML, user-defined functions are
monomorphic and their return and parameter types must be
specified explicitly. Figure 1 presents the types and semantics
of (some of) the built-in polymorphic, higher-order functions
(SOACs) that can be used to construct and combine arrays:

• types include char,bool,int,real, tuples, and multi-
dimensional regular arrays, i.e., all (sub-array) elements
have identical shapes. An array of tuples is invalid if its
translation to tuple of arrays results in an irregular array.

• iota and replicate are array constructors, and are
typically used to create a normalized iteration space or
to initialize an array. transpose is a special case of
a more general operator that can interchange any two
dimensions of an array (specified as int values).

loop (x = a) =
for i < n do
g(x)

in body

⇒
fun t f(int i, int n, t x) =
if i >= n then x else f(i+1, n, g(x))

let x = f(0, n, a)
in body

Fig. 2. A do loop has the semantics of a tail-recursive function call.

• zip,unzip,map,reduce,filter,scan are the array
operators of the Bird-Meertens Formalism (BMF) [19] and
have inherently parallel semantics. Anonymous (and cur-
ried) functions are syntactically permitted only as SOAC
function arguments, as for instance in let t =.. in
map( fn int(int x) => x+t, iota(t) ).

An important Futhark feature is that zip and zipWith
accept an arbitrary number of (n-ary) array arguments that
must have the same outer-dimension size. The zip and
zipWith constructs represent syntactic sugar: Arrays-of-
tuples are compiled to a tuple-of-array representation with the
SOAC operators (i.e., map, reduce, filter, and scan)
becoming n-ary operators.

Finally, Futhark supports two imperative-like constructs:
do loops and let-with bindings, which are useful for
expressing sequential computation that updates in place the
array’s elements, e.g., loops exhibiting cross-iteration depen-
dencies on arrays. A let-with binding uses the syntax

let b = a with [i1,..,ik] <- v in body
and has the semantics that body is evaluated with b bound
to the value of a, except that the element at position
(i1,..,ik) is updated to the value of v. Such an update
passes the type-checker if, intuitively, it can be proven that a
(and its aliases) are not used on any execution path following
the update, and is supported without losing referential trans-
parency via a mechanism resembling uniqueness types [13],
[14], [20]. It follows that an in-place update takes time propor-
tional to the total size of v, rather than of a. When the source
and destination array share the same name, we provide the syn-
tactic sugar notation: let a[i1,..,ik] = v in body.

The do-loop is essentially syntactic sugar for a certain form
of tail-recursive function call: for example, denoting by t the
type of x, the loop in Figure 2 has the semantics of the function
call on the right side. It is used by the user to express certain
sequential computations that would be awkward to write func-
tionally, and it enables several key lower-level optimisations,
such as loop interchange and dependency analysis.

III. OPTION PRICING BENCHMARK

The presentation is organized as follows: Section III-A
presents the main components of option pricing and shows
that the benchmark translates directly to a nested map-reduce
function composition, which expresses well both the algo-
rithmic structure and the available parallelism. Section III-B
investigates some of the high-level invariants and tradeoffs
that govern the optimization space such as fusion and strength
reduction.

Section III-C compares against an imperative setting. First,
it identifies several key imperative-code patterns, such as
scans, that would seriously hinder parallelism detection.
Second, it validates the Futhark design, as it seems capable



fun [real] mcPricing( //Rm

int n, int d, int u, int m, int contract, int sob_bits,
[[int ]] sob_dirs, ([[int ]], [[real]]) bb_data,
[( [[real]], [[real]], [[real]], [real] )] md_blsch,
[( [real], [real] )] md_payof) =

let prices = map ( //Rn×m

fn [int] (int sn) => //N→ Rm

let num = sn + 1 in
in let sob=sobolIndR(sob_bits,sob_dirs,num)//Z→ [0, 1)u·d

in let gau=ugaussian(sob) //[0, 1)u·d → Ru·d

in let bbr=brownBridge(u,d,bb_data,gau)//Ru·d → Ru×d

in let bsh=map(blackScholes(u, bbr),md_blsch)//Rm×u×d

in let pay=zipWith(payoff(contract),bsh,md_payof)//Rm

in map( op /(toReal(n)), pay) //Rm

, iota(n) ) //{0. . .n-1}∈ Zn

in reduce(zipWith(op+),replicate(m,0.0),prices)//Rn×m → Rm

Fig. 3. Pricing Engine: Functional Basic Blocks and Types.

to describe all available parallelism implicitly and to ex-
press dependent loops with in-place updates (which would be
challenging in Haskell for example). Finally, Section III-D
presents the empirical evaluation: (i) the sequential, multi-
core, and GPGPU running times and (ii) the impact of various
high- and low-level optimizations, such as fusion and memory
coalescing.

A. Functional Basic Blocks of the Pricing Engine

Option contracts are one of the most common instruments
exchanged between two financial actors. They are formulated
in terms of a set of: (i) trigger conditions on market events,
(ii) mathematical dependencies over a set of assets, named
underlyings of the contract, and (iii) exercise dates, at which
time the insuring actor will reward the option holder with a
payoff, whose value depends on the temporal evolution of
the underlyings. Two key components are necessary for the
appreciation, at the current time, of the future value of the
contract:

• a stochastic description of the underlyings, which allows
exploring the space of possible trigger events and payoff
values, at the specified exercise dates. The parts of this
component are described in more details in the remainder
of this section.

• a technique to efficiently estimate the expected payoff by
aggregating over the stochastic exploration. This compo-
nent uses the quasi-random Monte Carlo method [21],
which, in simple terms, averages over a population of
prices obtained by regular, equi-distant sampling.

The function mcPricing, shown in Figure 3, represents a
map-reduce implementation of the algorithm, the types of the
main components and the manner in which they are composed.
Its first four arguments2 correspond to the number of Monte
Carlo iterations (n), the number of trigger dates (d), the num-
ber of underlyings (u), and the number of (different) market
scenarios (m). The result of mcPricing is (semantically) a
vector of size m (in Rm) containing the presently-estimated
prices for the current contract in each of the m market
scenarios.

2 The other (array) arguments of mcPricing are invariant to the stochastic
exploration and are used in various stages of the algorithm. For example,
sob_bits and sob_dir_vcts are the number of bits of a Sobol integer
and Sobol’s direction vectors, bb_data are parameters of the Brownian
Bridge, and md_blsch and md_payof are the parameters of m market
scenarious, such as volatility, discount, and so on.

The implementation of mcPricing translates directly
to a nest of mathematical function compositions. The out-
ermost level is a reduce ◦ map composition applied to
[1..n]∈ Zn. The map corresponds to the stochastic explo-
ration and results in a matrix of prices (i.e., in Rn×m), in
which the n rows and m columns correspond to the Monte
Carlo iteration and the market scenarios, respectively. The
reduce implements the Monte Carlo aggregation by adding
componentwise (zipWith(op+)) the n price vectors pro-
duced by the map. The neutral element is a vector of m zeros
(replicate(m,0.0)), and the result belongs to Rm.

The middle level corresponds to the implementation of
the outermost map function parameter, and is (semantically)
the composition of five functions: First, the stochastic explo-
ration proceeds by drawing samples from an equi-probable,
homogeneous distribution implemented via the Sobol mul-
tidimensional quasi-random generator [22]. This step corre-
sponds to the sobolIndR call, which produces a pseudo-
random sequence of size u · d when applied to an integer
num∈[1..n]. Second, the resulted uniform samples are
mapped by quantile-probability inversion [23] to Normally
distributed values, later used to model the value of each
underlying at the exercise dates. This mapping is performed by
the function ugaussian, which has type [0, 1)u·d → Ru·d.
Third, since the market is assumed to present good liquidity
and no discontinuities, the probability distributions of the
underlyings are independently modeled, with good approx-
imation, as Brownian motions [24], continuous stochastic
processes whose increments follow Normal distributions. The
Brownian Bridge, denoted brownBridge, scales the resulted
samples along the date dimension, independently for each
underlying, in order to impose, also on non-observed dates,
the properties of the stochastic processes [25]. It follows that
the input vectors and the result are reshaped to u×d matrices
in which correlation is performed among dates (within each
row).

Finally, the innermost three maps estimate the contract
price for each of the m market scenarios (the result is in Rm):

1. To express the expected correlation among underlyings,
blackScholes scales once again the input samples
via Cholesky composition by means of a positive-definite
correlation matrix [26], which is part of md_blsch.

2. The obtained samples now mimic a (particular) market
scenario and are provided as input to the payoff func-
tion that (i) computes the future gain from the contract in
the current scenario and (ii) estimates the impact of the
aggregated future payoff at present time via a suitable
market discount model [25].

3. The obtained prices are divided by n (the Monte-Carlo
space size) such that the average will result by summation.

We conclude with two remarks: First, while in Figure 3
array sizes are just provided as comments, Futhark infers
(optimized) code that computes precise shapes at array creation
points [16], whose runtime overhead is negligible in most
cases. Second, Futhark borrows the expressiveness of Bird-
Marteen’s formalism for specifying parallelism and high-level
invariants, which are the subject of the next section.



B. High-Level Invariants: Fusion and Strength Reduction

One important performance tradeoff refers to fusion vs. fission,
and corresponds to two well-known invariants [19]: Map-map
fusion (fission) states that mapping the elements of an array
with a function and then the result with another function is
equivalent to mapping the original array with the composition
of the two functions: (map g) ◦ (map f) ≡ map (g ◦ f).
The second invariant states that a map-reduce composition can
be rewritten to an equivalent form in which the input array is
split into number-of-processors arrays of equal sizes, on which
each processor performs the original computation sequentially,
and finally, the local results are reduced in parallel:

(red ⊕ e)◦(map f) ≡ (red � e)◦(map ((red � e)◦(map f)))◦distp
(1)

For option pricing, the direction in which these invariants
should be applied to maximize performance is sensitive to the
input dataset. For example, the outermost map and reduce
in Figure 3, corresponding to the Monte Carlo exploration and
aggregation, respectively, can be fused via equation 1:

If the memory footprint of map iterations, proportional
with u·d·m, fits in the GPGPU’s fast memory and the outermost
degree of parallelism is sufficient to fully utilize the GPGPU
then (i) slow (global) memory accesses are eliminated from
the critical path, hence (ii) the execution behavior becomes
compute rather than memory bound, and (iii) the memory
consumption is reduced asymptotically (not proportional to n).

Otherwise, it is better to execute map and reduce as
separate parallel operations and furthermore to distribute the
outer map across the composed functions (map fission). On the
one hand, this strategy allows for exploiting more parallelism,
for instance, the inner maps of degree m in Figure 3 and the
inner parallelism of each component (function). On the other
hand, the distributed kernels are simpler, which relaxes the
register pressure and increases the hardware utilization.

We note that Futhark supports both kinds of fusion at every
level in the nest, even when the produced array is consumed
in several places, without duplicating computation. This is
achieved via a T2 graph-reduction technique [14], which is
semantically applied to the program data-dependency graph,
and which fuses map, filter, and reduce sequences into
a parallel, more general construct named redomap.

The second important tradeoff refers to a closed form vs.
strength reduction invariant that appears in the computation
of Sobol sequences. We first explain the Sobol algorithm
that translates directly to expressive Futhark code, and finally
discuss the tradeoff.

A Sobol sequence [22] is an example of a quasi-random3

sequence of values [x0, x1, . . . , xn, . . .] from the unit hyper-
cube [0, 1)s. Intuitively, this means that any prefix of the
sequence is guaranteed to contain a representative number of
values from any hyperbox

∏s
j=1[aj , bj), so the prefixes of

the sequence can be used as successive better-representative
uniform samples of the unit hypercube. Sobol sequences
achieve a low discrepancy O( logs n

n ). The Sobol algorithm for
s = 1 starts by choosing a primitive polynomial p over a Galois
Field and by computing a number of direction vectors mk by

3 The nomenclature is somewhat misleading since a quasi-random sequence
is not truly pseudorandom: it makes no claim of being hard to predict.

1. fun int grayCode(int x) = (x >> 1) ^ x // ^ denotes xor
2. fun bool testBit(int n, int ind) =
3. let t = (1 << ind) in (n & t) == t // & is bitwise And

// Sobol Independent Formula; sob_dirs ∈ N(u·d)×num_bits

4. fun [int] sobolInd(int bits_num,[[int]] sob_dirs,int i)=
5. let inds = filter(testBit(grayCode(i)), iota(num_bits))
6. in map( fn int ([int] dir_vct) =>
7. let row = map(fn int(int i)=>dir_vct[i], inds )
8. in reduce( op ^, 0, row )
9. , sob_dirs )

//the first n Sobol numbers can be computed with:
//map( sobolInd(num_bits,sob_dirs), [0..n-1] )

// Sobol Strength-Reduced (Recurrent) Formula
10.fun [int] sobolRec([[int]] sob_dirs, [int] prev, int i)=
11. let col = recM(sob_dirs, i) in zipWith(op^,prev,col)

12.fun [int] recM( [[int]] sob_dirs, int i ) =
13. let bit= index_of_least_significant_0(i) in
14. map( fn int([int] row) => row[bit], sob_dirs )

//the first n Sobol numbers can be computed with:
//(scan(zipWith(op^), [0..0], map(recM(sobol_dirs),[1..n]))

Fig. 4. Futhark Code for Computing Pseudo-Random Sobol Sequences.

a recurrent formula that uses p’s coefficients4. Each mk is a
positive integer and there are as many ks as bits in the integer
representation (num_bits).

The i’th Sobol number xi can be computed independently
of the others with the formula xi =

⊕
k≥0B(i)k ·mk, where

B(i)k denotes the value of the k’th bit of the canonical bit
representation of the positive integer i, and ⊕ denotes the
exclusive-or operator. In the above formula, one can use the re-
flected binary Gray code of i (instead of i), which is computed
by taking the exclusive or of i with itself shifted one bit to the
right. This modification to the algorithm changes the sequence
of numbers produced but does not affect their asymptotic
discrepancy. Using Gray codes enables a strength reduction
opportunity, which results in a recurrent, more efficient formula
xi+1 = xi ⊕mc for Sobol numbers, where c is the position
of the least significant zero bit of B(i). The integer results
are transformed to real numbers in [0, 1) by division with
2num_bits−1.

Finally, a Sobol sequence for s-dimensional values can
be constructed by s-ary zipping of Sobol sequences for 1-
dimensional values, but it requires s sets of direction vectors
(i.e., mi,k, where 0 ≤ i < s and 0 ≤ k < num_bits− 1).

Figure 4 shows Futhark code that expressively translates
the independent and recurrent formulas, named sobolInd
and sobolRec, respectively. The former filters the in-
dices in 0. . .num_bits-1 that correspond to the set bits
of the Gray code of i, then maps each of the s = u*d
sets of direction vectors with a map-reduce function: the
direction vector’s values corresponding to the filtered indices
are retrieved and then reduced with the exclusive-or (xor)
operator, denoted op ^. The index filtering can be seen as
an optimization that reduces the number of xor operations on
average by a factor of 2 ·s, albeit at the cost of irregular nested
parallelism and additional branches. This might be ill-advised
on GPGPUs due to branch divergence overhead, and especially
if we would like to exploit this inner level of parallelism.
Fortunately this optimization can be easily reverted (by user or
compiler) by fusing the filter producer on line 5 with the

4 We do not explain this step because this computation is not on the critical
path, that is, direction vectors are computed once and used many times.



// (i) C(++) Sobol Independent Formula
1. int inds[num_bits], sobol[u*d], sob_dirs[u*d,num_bits];
2. for(i=0; i<n; i++) { // outermost loop
3. int len = 0, gcode = grayCode(i);
4. for (j=0; j<num_bits; j++) {
5. if ( testBit(gcode, j) ){inds[len] = j; len++;}
6. }
7. for (j=0; j<u*d; j++) {
8. sobol[j] = 0;
9. for (k=0; k<len; k++) {
10. sobol[j] = sobol[j] ^ sob_dirs[j,inds[k]];
11. } } // ... rest of fused code
12. } // array inds (sobol): difficult (simple) to privatize

13. //(ii) C(++) Sobol Strength-Reduced (Recurrent) Formula
14. int sobol[u*d], sob_dirsT [num_bits,u*d];
15. for(i=1; i<=n; i++) { // outermost map
16. int bit = index_of_least_significant_0(i);
17. for (j=0; j<u*d; j++) {
18. sobol[j] = sobol[j] ^ sob_dirsT [bit,j];
19. }
20. ... code using array named sobol ...
21. } // parallelizable via map-scan: difficult to recognize

Fig. 5. C-like Pseudocode for Computing Sobol Sequences.

map-reduce consumer on lines 7-8. Such fusion would result
in a GPU-efficient segmented reduce operation, because all
segments have constant (warp) size num_bits=32.

The recurrent formula is implemented by sobolRec in
Figure 4: (i) the call to recM selects for each direction vector
the element at the index of the least significant zero of i, and
(ii) the result is xored component-wise (zipWith(op ^))
with the previous Sobol sequence (received as parameter).

The tradeoff refers to which formula to use for computing
n consecutive Sobol numbers: The independent formula can
simply be mapped, hence it enables efficient parallelization
of depth O(1), but requires up to 32× more work than
the recurrent formula. The latter depends on the previous
Sobol sequence, hence its parallelization requires first to map
array [1..n] with function recM, then to scan the result
with vectorized xor, which exhibits less-efficient parallelism
of O(log n) depth. Our solution combines the advantages
by efficiently sequentializing the excess of application paral-
lelism: the iteration space 1. . .n is strip-mined and chunks
are processed in parallel, but the work inside a chunk is
sequentialized. This is achieved by using the work-expensive
independent formula for the first element of the chunk, thus
enabling O(1)-depth parallelism, and amortizing this overhead
by using the efficient strength-reduced formula for the re-
mainder of the chunk. Here the data-sensitive input is n, the
Monte-Carlo space size, which determines (i) the excess of
parallelism (chunk size) and thus (ii) how well the overhead
can be amortized.

C. Comparison with the Imperative Setting

Figure 5 shows the original, imperative pseudocode that
computes n Sobol sequences under the (i) independent and
(ii) recurrent formulas. Both versions exhibit significant hin-
drances for automatic or user identification of parallelism.

The loop using the independent formula (lines 2-12) can
be parallelized by privatizing the arrays sobol and inds,
which corresponds to proving that each potential read from
an array is covered by a previous, same-iteration write into
the same array. For sobol this is “easy” to prove by both
user and compiler, because all its elements are first set to

// C(++) Black Scholes // formula?
1. real res[n,d,u], ...;
2. for(i=1; i<=n; i++) { // outermost map
3. res = res + (i-1)*d*u;
4. for(int k=0; k<d; k++) {
5. for(int j=0; j<u; j++) {
6. real tmp = 0.0;
7. for (l=0; l<=j; l++){ tmp += md_cs[j,l]*deltas[k,l]; }
8. tmp = exp( tmp*md_vols[k,j] + md_drifts[k,j] );
9. res[k,j] = res[k-1,j] * tmp;
10. // map (scan (zipWith (*)))

} } }

Fig. 6. C-like Pseudocode for Cholesky-Composition Scaling (Black-
Scholes).

fun [[real]] brownBridge ( int u, int d, ([[int ]],[[real]])
bb_data, [real] gauss ) =

bb_inds ∈ N3×d, bb_coef ∈ R3×d, gauss ∈ Rd·u

let (bb_inds,bb_coef) = bb_data in
let (bi, li, ri) = (bb_inds[0], bb_inds[1], bb_inds[2]) in
let (sd, lw, rw) = (bb_coef[0], bb_coef[1], bb_coef[2]) in

map( fn [real] ([real] gau) => // λ ∈ Rd → Rd

let res = copy( replicate(d, 0.0) ) in
let res[ bi[0] - 1 ] = sd[0] * gau[0] in
loop(res) = for i < d-1 do
let (j,k,l) = (li[i+1]-1, ri[i+1]-1,bi[i+1]-1) in
let tmp = res[k]*rw[i+1] + sd[i+1]*gau[i+1] in

let res[l] = if( (j + 1) == 0) then tmp
else tmp + lw[i+1] * res[j]

in res
in res

, transpose( reshape((d,u), gauss)) )//map result ∈ Ru×d

Fig. 7. Futhark “Imperative”-like Code for the Brownian Bridge.

0 at line 8 and then repeatedly read-written in the loop at
lines 9-11. At least for the compiler, however, privatization
of inds is anything but easy, because dependency analysis
on arrays typically requires subscripts to be affine formulas
in the loop indices, but the array update inds[len]=j at
line 5 does not comply with this restriction, that is, len
cannot possibly be expressed as an affine formula in j because
it is conditionally incremented inside the loop at lines 4-6.
While techniques to parallelize such loops exist [27], [28], they
require complex analysis, which is frustrating given that the
outer and inner loops at lines 2-12 and 4-6 are the imperative
implementations of a map and a filter, which both have
inherently parallel semantics.

The loop5 using the recurrent formula (line 15-21 in
Figure 5) shows one of the many forms in which the scan
primitive hides in imperative dependent loops: Here, memory
use is optimized by recording only the current element of
the scan, which is updated in a reduction pattern a=a⊕b,
except that in the rest of the code, a is used outside reduction
statements, which results in very sequential code. Another code
pattern for scan is for(..k..) res[k]=res[k-1]⊕b,
which has a cross-iteration dependency of distance 1. This
pattern appears in Figure 6 (line 9) and corresponds to a
scan(zipWith(op*)). In particular the first loop is a
map, but the parallelism of the rest of the four-level nest is
significantly more difficult to understand than its functional
counterpart, which is fully described by nested map-reduce
parallel operators and translates naturally to the Black Scholes
formula.

There are however code patterns and code transformations

5Please remember that this loop corresponds to a map-scan composition,
shown in Figure 4 and discussed in the (previous) section III-B.



Dataset/Machine Small Medium Large
Seq CPU Runtime on H1 0.8 sec 1.28 sec 11.23 sec
Seq CPU Runtime on H2 1.54 sec 2.14 sec 16.06 sec

TABLE I. SEQUENTIAL CPU RUNTIMES ON SYSTEMS H1 AND H2.

that are more suitably expressed or reasoned about in imper-
ative rather than functional notation. The first example refers
to loops in which an array’s elements are produced (updated)
and consumed across iterations. These loops are not infrequent,
but are typically awkward to express functionally in a way that
complies with the expected (in-place update) cost guarantees,
and have motivated Futhark’s “imperative” constructs. Figure 7
shows such Futhark code that maps a normally-distributed
sequence of size d·u to Brownian bridge samples of dimension
u×d. Since this step introduces dependencies between the col-
umn of the sample matrix, gauss is transposed and mapped
with an unnamed (λ) function that uses a loop with in-place
updates to model the cross-iteration dependencies on res,
which is declared as the only loop-variant variable (other than
loop counter i). The loop uses three indirect arrays and each
new element of res uses two other elements, of statically-
unknown indices, produced in previous iterations. Still the
parallel (map) and sequential (loop) code compose naturally.

The second case refers to low-level optimizations that rely
on subscript analysis. In this context, Futhark’s imperative
constructs makes it possible to represent, within the same lan-
guage, lower-level representations of a program. For example,
the outer map in Figure 7 can be turned into the parallel loop
shown below, where all indices are now explicit and the result
array, initialized with zeros, is computed inside the loop in
transposed form d×u:

let resT = copy( replicate(d, replicate(u, 0.0)) ) in
let gauss = reshape( (d,u), gauss ) in //res, gauss ∈ Rd×u

loop(res) = for p < u doall
let resT [bi[0]-1, p] = sd[0] * gauss[0, p] in
loop(res) = for i < d-1 do

let resT [bi[i+1]-1, p] = ... resT [ li[i+1]-1, p ] ...
... gauss[ i+1, p ] ...

in res in res

Assuming GPGPU execution of the outer loop, and intra-thread
(sequential) execution of the inner loop, the transposition
of res is an optimization that ensures coalesced access to
GPGPU global memory: Previously, each GPGPU thread was
computing a whole row of res, and as such, a number of
consecutive threads were accessing in one SIMD instruction
elements of res with a stride d. Transposition has moved the
thread index p in the innermost subscript position, such that
now consecutive threads access consecutive global-memory
locations in each SIMD. Our experiments show that coalescing
global accesses via transposition (or loop interchange) is one
of the most impactful optimizations.

D. Empirical Evaluation

The evaluation uses three datasets: The small dataset uses
n = 8388608 Monte Carlo iterations to evaluate a vanilla-
European call option: a contract with one exercise date, in
which the payoff is the difference, if positive, between the
value of a single underlying (Dj Euro Stoxx 50) at exercise
date and a constant strike, which was set at issue date.

Options with multiple exercise dates may also force the
holder to exercise the contract before maturity, in case the
underlyings crossed specific barrier levels before one of the
exercise dates. The medium dataset uses 1048576 iterations to
evaluate a discrete barrier contract over 3 underlyings, namely
the area indexes Dj Euro Stoxx 50, Nikkei 225, and S&P 500,
where a fixed payoff is a function of 5 trigger dates.

Finally, the large dataset uses 1048576 iterations to evalu-
ate a barrier option that is monitored daily, that is, 367 trigger
dates, and in which the payoff is conditioned on the barrier
event and the market values of the underlying at exercise time.
The underlyings are the area indexes Dj Euro Stoxx 50, Nikkei
225, and S&P 500. The option pricing is run on two systems:

H1 is an Intel(R) system, using 16 Xeon(R) cores, model
E5-2650 v2, each supporting 2-way hardware multi-
threading and running at 2.60 GHz. H1 is also equipped
with a GeForce GTX 780 Ti NVIDIA GPGPU which uses
3 Gbytes of global memory, 2880 CUDA cores running at
1.08 GHz, and 1.5 Mbytes of L2 cache.

H2 is an AMD Opteron system, using 32 cores, model 6274,
and running at 2.2 GHz. H2 is also equipped with a
GeForce GTX 680 NVIDIA GPGPU, which uses 2 Gbytes
of global memory, 1536 CUDA cores running at 1.02 GHz,
and 512 Kbytes of L2 cache.

While for presentation purposes our evaluation reports
parallel speedups, rather than runtime, Table I shows the
sequential-CPU runtime for each of the two systems H1 and
H2, and each of the three datasets, so that parallel runtimes can
be determined. Figure 8 shows the speedup results obtained on
H1 (left) and H2 (right) for each of the three datasets: CPU
32 refers to the speedup of the parallel multi-core execution.
GPU FUSE refers to the GPGPU execution of the fused
version of the code, which executes in parallel only the Monte-
Carlo iteration and aggregation, and does not accesses global
memory on the critical path. As long as the local arrays are
small, this strategy yields significant speedup in comparison to
GPU VECT, which corresponds to the distributed version of
the code. As the size of the local arrays increases, each core
consumes more of the sparse fast memory to the result that
GPU utilization decreases. The medium dataset seem to capture
the sweet point: from there on, GPU VECT is winning,
because its kernels are smaller, hence use less registers, and
can be better optimized, e.g., inner parallelism. Furthermore,
the fused version cannot execute the large dataset, because
there is not enough fast memory for each each thread to hold
365× 3 real numbers.

Finally, GPU WO SR and GPU WO MC measure the
impact of strength-reduction and memory coalescing optimiza-
tions, respectively, by presenting the speedup obtained without
their application. Strength reduction tends to be important
when the number of dates and underlyings is small because in
such cases the weight of the Sobol component in the total pro-
gram work is high. Also, as the degree of parallelism decreases,
so does the size of the chunk that amortizes an independent
formula against the execution of chunk-size recurrent formulas;
it follows that the large dataset is better of without strength
reduction. Finally, memory coalescing achieves a speedup
factor in the 10 × −20× range and is the most impactful
optimization that we have observed.
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Fig. 8. Option Pricing Speedup with respect to Sequential Execution on Systems H1 (left) and H2 (right).
CPU32: execution on 32 (multicore) hardware threads.
GPU FUSE and GPU VECT denote the fused and distributed GPU code with all other optimizations ON, respectively.
GPU WO SR and GPU WO MC denote the speedup in the absence of strength reduction and memory coalescing, respectively.

IV. LOCAL VOLATILITY CALIBRATION

The presentation is organized as follows: Section IV-A
briefly states the financial problem to be addressed and
sketches its mathematical solution. Section IV-B presents the
code structure and the sequence of imperative code transfor-
mations that are necessary to disambiguate and to extract the
algorithmic parallelism under a form that can be efficiently
exploited by the GPGPU hardware. At this stage we identify
several recurrences that can be parallelized but are (i) be-
yond the knowledge of the common user and (ii) introduce
(constant but) significant work overhead in comparison to the
sequential code. Finally, Section IV-C shows parallel CPU
and GPGPU runtimes and demonstrates the tradeoff between
efficient sequentialization and aggressive parallelization that
provides asymptotic guarantees.

A. Financial & Mathematical Description

The pricing engine presented in (previous) Section III uses
a Black-Scholes model, and as such is most suitable for in-the-
money “vanilla” options, for which volatility can be assumed
constant. Options where the relation between market price and
behavior of underlyins is more complex, for example because
they may have several payoff triggers, are more appropriately
modeled by imposing their (local) volatility as a function of
both time and current level of underlyings: σ(t, S(t)). In the
following, we will focus on the case where the underlying is
an equity stock. When the stock pays no dividends, the stock
can be modeled as a stochastic differential equation of form:6

dS(t) = r(t)S(t)dt+ σ(t, S(t))S(t)dW (t) (2)

where r(t) is the risk-free rate, W (t) is a Wiener process rep-
resenting the inflow of randomness, and the instant volatility
σ(t, S(t)) measures the randomness amplitude. This reduces

6 The standard market practice is to express the local volatility in a more
direct way using the Dupire Formula, which may result in a faster and more
accurate solution.

to solving numerically the partial differential equation (PDE)

∂f

∂t
(x, t)+r(t)x

∂f

∂x
(x, t)+

1

2
σ(x, t)2x2

∂2f

∂2x
(x, t)−r(t)f(x, t) = 0

(3)
for many instances of a generic σ function and selecting the

one that best matches the evolution of prices. This section uses
the material and notation from [17] to briefly recount the main
steps involved in solving such an equation by the the Crank-
Nicolson’s finite differences method [11]. The problem is to
find f : S × [0, T ]→ R, which solves the (generic) PDE:

∂f

∂t
(x, t)+µ(x, t)

∂f

∂x
(x, t)+

1

2
σ(x, t)2

∂2f

∂2x
(x, t)−r(x, t)f(x, t) = 0

(4)

f(x, T ) = F (x), where (x, t) ∈ S × [0, T ) and F : S → R (5)

with some terminal condition expressed in terms of a known
function F . In essence, volatility calibration reduces to solve
the above equation for many instances of µ, σ, r. For simplicity
we discuss the case when S = R, but the benchmark uses a
two-dimensional discretization of the space, hence S = R2.

The system of partial differential equations is solved by
approximating the solution with a sequence of difference
equations, which are solved by sequentially iterating over
the time discretization, where the starting point is the known
terminal condition 5. Figure 9 shows two methods that use the
same difference formula to approximate the space derivatives,
but differ in how the time-partial derivative is chosen, and this
results in very different algorithmic (work-depth) properties:

The explicit method, shown in Figure 9(a), uses a
backward-looking difference approximation of the time deriva-
tive D−t fj,n = (fj,n − fj,n−1)/∆t, where n ∈ 1..N and
j ∈ 1..J correspond to the discretized time and space. This
results in equation fj,n−1 = αj,nfj−1,n+βj,nfj,n+γj,nfj+1,n

that computes directly the unknown values at time n − 1
from the values at time n. The latter are known since we
move backward in time: from terminal condition T towards
0. While the space discretization can be efficiently, map-like



∆x = (xJ − x1)/J, ∆t = (tN − t1)/N

Dxfj,n =
fj+1,n−fj−1,n

2∆ x , D2
xfj,n =

fj+1,n−2fj,n+fj−1,n
(∆ x)ˆ2

D−
t fj,n =

fj,n − fj,n−1
∆ t

↓

fj,n−1 = αj,nfj−1,n +
βj,nfj,n +
γj,nfj+1,n

where fj,n known ∀j ∈ {1 . . . J}
and we aim to find fj,n−1, ∀j

↓

Space discretization trivially parallel:

depth O(N), work O(J ·N),

Requires fine-grained time discretization,

N � J ⇒ deep depth O(N)!

D+
t fj,n =

fj,n+1 − fj,n
∆ t

↓

fj,n+1 = aj,nfj−1,n +
bj,nfj,n +
cj,nfj+1,n

where fj,n+1 known ∀j ∈ {1 . . . J}
and we aim to find fj,n, ∀j

↓

Requires solving TRIDAG every time iter:

non-trivial scan parallelism,

Allows coarse-grain time discretization,

N ∼ J⇒ reduced depthO(J log J)!
(a) (b)

Fig. 9. (a) Explicit and (b) Implicit Finite Difference Methods.

float res[U], tmpRes[M,N];
int indX=..., indY=...;
for(int k=0;k<U;k++){ //seq

for(int i=0;i<M;i++) //par
for(int j=0;j<N;j++)//par
tmpRes[i,j] = ...;

for(int t=T-1;t>=0;t--){//seq
// explicit method
for(int j=0;j<N;j++) //par
for(int i=0;i<M;i++)//par

...=...tmpRes[i,j]..;
// implicit method
for(int i=0; i<M; i++)//par
tridag(tmpRes[i],...);

} // time series ends
res[k]=tmpRes[indX,indY];

} // market scenarios ends
(a)

=⇒

float res[U], tmpRes[U,M,N];
int indX=..., indY=...;
for(int k=0;k<U;k++){ //par

for(int i=0;i<M;i++) //par
for(int j=0;j<N;j++)//par

tmpRes[k,i,j] = ...;

for(int t=T-1;t>=0;t--){//seq
// explicit method
for(int j=0;j<N;j++) //par

for(int i=0;i<M;i++)//par
..=..tmpRes[k,i,j]..;

// implicit method
for(int i=0; i<M; i++)//par

tridag(tmpRes[k,i],...);
} // time series ends
res[k]=tmpRes[k,indX,indY];

} // market scenarios ends
(b)

Fig. 10. (a) Original Code & (b) After Privatization/Array Expansion.

parallelized, the time series is inherently sequential by nature
and results into deep algorithmic depth because numerical
stability requires a fine discretization of the time (N � J).

The implicit method, shown in Figure 9(b), uses a forward
difference approximation for the time derivative, which results
in equation fj,n+1 = aj,nfj−1,n + bj,nfj,n + cj,nfj+1,n, in
which a linear combination of unknown values at time n result
in the known value at time n+ 1, hence it reduces to solving
a tridiagonal system of equations (TRIDAG). The advantage
of the implicit method is that it does not require particularly
small time steps, but the parallelization of the tridiagonal
solver is beyond the knowledge of the common user, albeit
it is possible via scans with linear-function composition and
two-by-two matrix multiplication (associative) operators (see
next section). While the scan parallelism has depth O(log J)
for one time iteration, the time and space discretization have
comparable sizes, and as such, the total depth may improve
asymptotically to O(J log J) in comparison to O(N), N � J ,
of the explicit method. Finally, Crank-Nicolson combines the
two approaches, does not require particularly small time steps,
converges faster, and is more accurate than the implicit method,
albeit it still results in a tridiagonal system of equations.

B. Code Structure and Transformations

Figure 10(a) shows in C-like pseudocode the original

structure of the code that implements volatility calibration:
The outermost loop of index k=0. . .U-1 solves equation 4
in a number of market scenarios characterized by different
parameters µ, σ, r. Here, the space is considered two dimen-
sional, S = R2, and we denote the space discretization with
i=0. . .M-1 and j=0. . .N-1, on the y and x axes, respectively.

The body of the loop is the implementation of the Crank
Nicolson finite-difference method, and is formed by two loop
nests: The first nest initializes array tmpRes in all the points
of the space discretization. The second nest corresponds to
the time series that starts from the terminal condition 5 and
moves towards time 0 (i.e., t=T-1. . .0). At each time point
t, both the explicit and implicit method are combined to
compute a new result based on the values obtained at previous
time t+1. In the code, this is represented by reading all the
data in tmpRes corresponding to time t+1 and later on
updating tmpRes to the new result of current time t. This
read-write pattern creates a cross-iteration flow dependency
carried by the loop of index t, which shows the inherently-
sequential semantics of the time series. As a final step, after
time 0 was reached, some of the points of interest of the
space discretization are saved in array res (for each of the U
different market scenarios).

The remainder of this section describes the sequence of
transformations that prepares the code for efficient GPGPU
execution. The first difficulty corresponds to the outermost
loop of Figure 10(a), which is annotated as sequential, albeit
the scenario exploration stage is semantically parallel. The
reason is that the space for array tmpRes[M,N], declared
as two-dimensional, is reused across the iterations of the
outer loop, and as such, it generates frequent dependencies
of all kinds. (Note how easily imperative code may obfuscate
parallelism.) In such cases parallelism can be recovered by
privatization, a code transformation that semantically moves
the declaration of a variable inside the target loop, thus
eliminating all dependencies, whenever it can be proven that
any read from the variable is covered by a previous write in
the same iteration. In our case all elements of tmpRes are
first written in the first nest, and then read and written in the
time series (second nest). It follows that it is safe to move the
declaration of tmpRes inside the outermost loop, and to mark
the latter as parallel. However, working with local arrays is
inconvenient (if not impossible) when aiming at GPGPU code
generation, and this is when array expansion comes to the
rescue. The declaration of tmpRes is moved outside the loop
(to global memory) but it receives an extra dimension of size
equal to U , the outermost loop count. The array expansion
preserves parallelism because each outer iteration k uses now
its own M×N subarray, recorded in tmpRes[k]; the resulted
code is shown in Figure 10(b).

The second difficulty relates to the GPGPU programming
model being thought to exploit static, rather than dynamic par-
allelism. In our context, static parallelism would correspond to
the structure of a perfect nest in which consecutive outer loops
are parallel. For example, the code in Figure 10(b) exhibits
significant nested parallelism, but for example the outermost
and any of the inner loops cannot both be executed in parallel;
while parallelism exist, it cannot be exploited! Perfect nests
can be manufactured with two (important) transformations,
namely loop interchange and loop distribution. While in gen-



float res[U], tmpRes[U,M,N];
int indX=..., indY=...;
for(int k=0;k<U;k++) //par
for(int i=0;i<M;i++) //par
for(int j=0;j<N;j++)//par
tmpRes[k,i,j] = ...;

for(int k=0;k<U;k++){ //par
for(int t=T-1;t>=0;t--){//seq
// explicit method
for(int j=0;j<N;j++) //par
for(int i=0;i<M;i++)//par

..=..tmpRes[k,i,j]..;

// implicit method
for(int i=0; i<M; i++)//par
tridag(tmpRes[k,i],...);

} // time series ends
} // market scenarios ends

for(int k=0;k<U;k++) //par
res[k]=tmpRes[k,indX,indY];

(a)

=⇒

float res[U], tmpRes[U,M,N];
int indX=..., indY=...;
for(int k=0;k<U;k++) //par
for(int i=0;i<M;i++) //par

for(int j=0;j<N;j++)//par
tmpRes[k,i,j] = ...;

for(int t=T-1;t>=0;t--){//seq
// explicit method
for(int k=0;k<U;k++) //par

for(int j=0;j<N;j++) //par
for(int i=0;i<M;i++)//par
..=..tmpRes[k,i,j]..;

// implicit method
for(int k=0;k<U;k++) //par

for(int i=0; i<M;i++)//par
tridag(tmpRes[k,i],...);

} // time series ends

for(int k=0;k<U;k++) //par
res[k]=tmpRes[k,indX,indY];

(b)

Fig. 11. After (a) Outer-Loop Distribution & (b) Interchange & Distribution.

eral determining the legality of the transformations is non-
trivial (e.g., using direction-vector based dependence analysis),
matters are simple for parallel loops; a parallel loop (i) can
be safely interchanged inward in a nest, and (ii) can be
safely distributed across its statements. Figure 11(a) shows
the code resulting after the distribution of the outer loop. The
initialization part is now an order-three perfect-loop nest that
exhibits U×M×N degree of parallelism, and leads to efficient
GPGPU utilization. However, for the second nest, the degree
of exploitable parallelism has not yet been improved because
the sequential time-series loop separates the outer and several
inner parallel loops. Interchanging the outer and time-series
loops, and then distributing again the (former) outer loop of
index k results in the code shown in Figure 11(b), for which
every iteration of the time series executes two GPGPU kernels
with degree of parallelism U×M×N and U×M, respectively.

The third difficulty corresponds to memory coalescing.
For example, the global access tmpRes[k,i,j] in the
second nest in Figure 11(b) is uncoalesced; consecutive GPGPU
threads correspond to the fastest-changing loop of index i,
but they access, in the SIMD instruction tmpRes[k,i,j],
array elements with a stride N (rather than 1). The simplest
solution is to interchange the loops of indices i and j. While
this interchange is effective for the shown code, it would not
resolve a case where two accesses x[k,i,j] and y[k,j,i]
happen in the same instruction, because the loop interchange
will coalesce one access but uncoalesce the other. In such
cases, array transposition has proven to be an effective solution,
because the penalty of uncoalesced accesses is typically much
higher than the (non-negligible) overhead of transposition.

Finally, one can observe in Figure 11(b) that the third
kernel, which implements the tridiagonal solver (tridag),
offers only two parallel dimensions (of depth O(1)): the
loops of indices k and i. This combine to a U×M degree of
parallelism that might be too small to efficiently utilize the
hardware on some datasets. In such cases, the parallelization
of the tridiagonal solver, which is discussed in the remainder
of this section, might significantly improve matters.

Figure 12(a) shows the pseudocode that typically imple-
ments a tridiagonal solver. Both loops are sequential because

// INPUT: a,b,c,r ∈ Rn

// OUTPUT: x, y ∈ Rn

x[0] = r[0]; y[0] = b[0];
// Forward Recurrences
// identification requires
// forward substitution
// and loop distribution
for(i=1; i<n; i++) {
float beta = a[i]/y[i-1];
y[i] = b[i] - beta*c[i-1];
x[i] = r[i] - beta*x[i-1];

}
// Backward Recurrence
x[n-1] = x[n-1] / y[n-1];
for(i=n-2; i>=0; i--)
x[i] = x[i]/y[i] -

c[i]*x[i+1])/y[i];
(a)

=⇒

// INPUT: a,b,c,r ∈ Rn

// OUTPUT: x, y ∈ Rn

x[0] = r[0]; y[0] = b[0];

// forward recurrences
for(i=1; i<n; i++)
y[i]=b[i]-a[i]*c[i-1]/y[i-1];

// forward recurrence
for(i=1; i<n; i++)
x[i]=r[i]-a[i]/y[i-1]*x[i-1];

// backward recurrence
x[n-1] = x[n-1] / y[n-1];
for(i=n-2; i>=0; i--)
x[i] = x[i]/y[i] -

c[i]*x[i+1])/y[i];
(b)

Fig. 12. After (a) Outer-Loop Distribution & (b) Interchange & Distribution.

the values of x[i] and y[i] in iteration i depends on the re-
sult of iteration i-1, that is, x[i-1] and y[i-1]. However,
this awfully sequential loop can be automatically transformed
to parallel code in four steps: (i) the local variable beta
is forward substituted in both recurrences of the first loop,
then (ii) the first loop is distributed across its two remaining
statements7 and (iii) the resulting one-statement recurrences,
shown in Figure 12(a), are recognized as belonging to one of
the “known” patterns: xi = ai+bi ·xi−1 or yi = ai+bi/yi−1,
and finally, (iv) the loops are replaced with parallel code.

For example, the recurrence yi = ai + bi/yi−1 can be
brought to a parallel form by (i) first performing the change
of variable yi ← qi+1/qi, then (ii) normalizing the obtained
equation resulting in qi+1 = ai · qi−1 + bi · qi, then (iii) adding
a trivial equation to form a system of two equations with two
unknowns, which can be computed for all [qi+1, qi] vectors as a
scan with a 2×2 matrix-multiplication (associative) operator:[

qi+1

qi

]
=

[
ai bi
1.0 0.0

] [
qi
qi−1

]
=[

ai bi
1.0 0.0

]
∗

[
ai−1 bi−1

1.0 0.0

]
∗ . . .∗

[
a1 b1
1.0 0.0

] [
x0

1.0

]
Similarly, recurrence xi = ai + bi ∗ xi−1 can be com-
puted by a scan with a linear-function composition operator
(which is clearly associative). However, exploiting TRIDAG’s
parallelism comes at a cost: it requires six map operations
and three scans, which, in comparison to the sequential
algorithm, exhibits significant (constant-factor) work overhead,
both in execution time and in terms of memory pressure. This
overhead strongly hints that it is preferable to sequentialize
tridag efficiently if there exists enough parallelism at outer
levels.

C. Empirical Evaluation

The evaluation uses three contrived datasets: (i) small has
U×M×N×T= 16 × 32 × 256 × 256 and is intended to be
friendly with the aggressive approach that parallelizes TRIDAG,
(ii) medium has U×M×N×T= 128 × 32 × 256 × 256 and
is intended to be a midpoint, and (iii) the large dataset has

7 The legality of loop distribution in this case can be proven by relatively
simple direction-vector dependence analysis.



Dataset/Machine Large Medium Small
Seq CPU Runtime on H1 73.8 sec 8.5 sec 4.3 sec
Seq CPU Runtime on H2 141.4 sec 20.2 sec 10.1 sec

TABLE II. SEQUENTIAL CPU RUNTIMES ON SYSTEMS H1 AND H2.
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Fig. 13. Speedup with respect to Sequential Execution on Systems H1 & H2
CPU32: execution on 32 (multicore) hardware threads.
GPU Out denotes GPGPU execution exploiting only outer (map) parallelism.
GPU All denotes GPGPU execution exploiting all parallelism (also TRIDAG)

U×M×N×T= 128 × 256 × 256 × 256 and contains enough
parallelism in the two outer loops to utilize the hardware, while
enabling efficient sequentialization of TRIDAG.

Similar to section III-D, which also describes the H1 and
H2 hardware used for testing, we report parallel speedups,
rather than runtime, but specify in Table II the sequential-
CPU runtime for each of the two systems, and each of the
three datasets, so that parallel runtimes can always be de-
termined. Figure 13 shows the speedup results obtained on
the two systems by three different code versions: (i) CPU32
refers to parallel execution on 32 hardware threads, (ii) GPU
OUT refers to a version of code that executes on GPU and
parallelizes the outermost loops, but efficiently sequentializes
TRIDAG and (iii) GPU ALL refers to the version of code
that takes advantage of all parallelism, including the one of
TRIDAG. Note however that GPU ALL is relatively efficient
in itself, in the sense that the current implementation restricts
the values of M and N to multiples of 2 less or equal to 256.
The consequence is that a scanned segment never crosses the
kernel’s block boundaries, which means that scan can execute
entirely in local memory and can be fused with the rest of the
code, i.e., it does not need to exit to the CPU.

As expected, (i) GPU OUT is significantly faster than
GPU ALL when enough outer parallelism is available, because
it efficiently sequentializes TRIDAG, and (ii) GPU ALL is
performing much better on small datasets, where the other
method utilizes the hardware parallelism poorly.

V. INTEREST RATE MODEL BENCHMARK

The presentation is organized as follows. Section V-A gives
motivation for the importance of interest rate modeling and

motivation for calculating results quickly on large input data
sets using big computations, based on Monte Carlo Simulation
techniques. Section V-B presents the main parts of a two-factor
mean-reversion interest-rate model that includes both a pricing
component and a calibration component, which in essential
ways make use of the associated pricing component. For this
benchmark, we shall not describe the code fragments in details
as for the first two benchmarks, but, in Section V-C, we
present an empirical evaluation of the benchmark by providing
sequential, multi-core, and GPGPU running times.

A. Financial Motivation

The interest rate is the premium paid by a borrower to
a lender. It incorporates and measures the market consensus
on risk-free cost of capital, inflationary expectations, cost of
transactions, and the level of risk in the investment. The inter-
est rate is a function of time, market and financial instrument,
and can be used to valuate at present time the future value
of the assets under scrutiny. Financial derivatives based on
interest rates (such as swaps) are among the largest groups of
derivatives exchanged on the global markets [25].

The important role of interest-rate models in financial com-
putations has become even more central with recent regulatory
dispositions like Basel III [29], requiring financial institutions
to report financial portfolios in different market scenarios.
Some of these scenarios may include credit events linked to
the solidity of major counterparties. These requirements, by
not necessarily assuming both counterparties as solvable for
the entire lifetime of a contract, may induce discontinuities
in the contract obligations. The consequence of these events
has to be estimated at the future time of discontinuity, and
correctly priced at present time for it to be reported to auditing
authorities.

Before being employed, an interest-rate model has to be
calibrated. Its independent parameters have to be estimated on
the current market conditions, so that future scenarios evolve
from an observed market state. It is therefore paramount for
financial institutions to choose an interest-rate model that is
fast to compute, and a calibration process that is robust to
market noise.

B. Financial Description

The next paragraphs describe the interest-rate model and
the calibration process, which requires (i) an interest-rate
model, (ii) a reference dataset, with data observed in the
market, (iii) a bounded parameter space, (iv) an error function
measuring the divergence between the reference dataset and
the output of a model based on a specific set of parameters,
and (v) a search strategy for the identification of the optimal
parameter set.

The interest rate model object of this benchmark is the
short-term two-additive-factor Gaussian model (G2++), devel-
oped by Brigo and Mercurio [30], to whom we refer for a more
detailed exposition. This model, while of speed comparable to
a single-factor model like Hull-White [25], is more robust and
has been shown to react quickly to market volatilities.

The G2++ model describes the interest rate curve as a
composition of two correlated stochastic processes. The model



is a function of five independent parameters, which, once
calibrated according to the present market consensus, can
be employed in valuations. Each process is a random walk
(Brownian motion) described by a mean reversion constant
(a, b) and two volatility terms (σ and η). The two Brownian
motions are correlated by a constant factor ρ. At time t, the
interest rate rt can be expressed as rt = xt+yt+φt, with the
stochastic processes

dxt = −axtdt+ σdW 1
t dyt = −bytdt+ ηdW 2

t

correlated by ρdt = dW 1
t dW

2
t . The third term, φt, is deter-

ministic in time t and is defined by the following equation:

φt =
fM (0, T ) + σ2

2a2

(
1− e−aT

)2
+

η2

2b2

(
1− e−bT

)2
+ ρσηab

(
1− e−aT

) (
1− e−bT

)
with offset fM (0, T ) depending on the instantaneous forward
rate at time 0 for the maturity M .

The five independent parameters param = (α, β, σ, η, ρ) of
the G2++ model influence the individual behavior of its two
stochastic processes, and their correlation. With the param tu-
ple describing the current market, an interest rate profile can be
constructed for the most likely future scenarios. Additionally,
an interest rate model calibrated on a portion of a market can
be used to price other instruments in the same market.

A European interest-rate swaption is a contract granting
its owner the right, but not the obligation, to enter into an
underlying swap with the issuer [25]. This right is dependent
on the level of the interest rate at the expiration date of the
swaption. A swap is a contract in which two counterparties
exchange a proportion of the cash flows of one party’s financial
instrument (e.g., a fixed-rate loan) for those of the other party’s
financial instrument (e.g., a floating-rate loan, or a fixed-rate
loan in a different currency). The contract allows the one party
to access advantageous loan conditions in its own market and
hedge monetary fluctuations by sharing its risk with another
party’s comparative advantage in a different capital market.

Our reference dataset, capturing the market consensus on
the interest rate, consists of 196 European swaption quotes,
with constant swap frequency of 6 months and maturity dates
and swap terms ranging from 1 to 30 years. The calibration
process identifies a set of param tuples most likely to describe
the current market (concretely, the swaption quotes). Since an
inverse analytical relation between param and market contracts
is not available, the calibration is a search over a continuous 5-
dimensional parameter space. The parameter space is rugged,
so that minor updates in the param tuple would produce quite
different interest-rate scenarios. For the search to be efficient,
an effective exploration of the parameter space is necessary,
as well as a quick relation between some market contracts and
the param tuple. Brigo and Mercurio [30] have indicated a
numerical relation between the price of European swaption
contracts and the G2++ parameters. From an algorithmic
perspective, a set p of proposals of candidate param values
is generated. Subsequently, with a Markov Chain Monte Carlo
variation of the Differential Evolution search, a portion of the
population p is discarded, and replaced with new computed
elements.

Dataset/Machine Dataset
Seq CPU Runtime on H1 510 sec
Seq CPU Runtime on H2 660 sec

TABLE III. SEQUENTIAL CPU RUNTIMES ON SYSTEMS H1 AND H2.
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Fig. 14. Speedup with respect to Sequential Execution on System H1 & H2
CPU 32: 32 CPU hardware threads. GPU ALL: GPGPU’s speedup.

The Markov Chain Monte Carlo Differential Evolu-
tion (DE-MCMC) is an heuristic search over a continuous
space [31]. It is a kind of genetic algorithm, where a population
of solution vectors x is measured by a fitness function π (·).
At each step of the algorithm, a portion of the population
is discarded, and the discarded elements are replaced with a
recombination (cross-over) depending on an algebraic combi-
nation of two surviving candidates. The speed of the search and
the coverage of the space can be tuned with the choice of the
ratio between the surviving and discarded subpopulations. DE-
MCMC is a population MCMC algorithm, in which multiple
chains are run in parallel, and DE suggests appropriate scale
and orientation for the transitions in the chain. In a statistical
context, it is important to estimate both an uncertainty over an
optimal solution returned by DE, and the amount of clusters of
optimal solutions. Both goals can be obtained by a Bayesian
analysis using a Markov Chain Monte Carlo (MCMC) simu-
lation.

For each candidate param, all swaptions are priced accord-
ing to the G2++ model, as described by Brigo and Mercu-
rio [30, Chapter 4]. An error function Err (param) summarizes
the differences between the observed marked prices and the
param-modeled prices for the proposed model p, which can
be accepted or rejected according to the quality of Err (param).
We shall not describe the swaption pricing and the Err function
in more detail here, but mention that the heart of the pricer
involves the use of Brent’s root-finding method [32, Chapter
4] and the computation of an integral using the Gauss–Hermite
quadrature technique [33].

C. Empirical Evaluation

The evaluation uses currently only one dataset. Sequential
CPU timings are presented in Table III. The results for the



parallel speedup on the two systems H1 and H2 are shown in
Figure 14. This application is quite challenging and tedious to
parallelize: First it exhibits irregular parallelism, with frequent
segmented reduce operators on irregular arrays, nested inside
convergence loops. If the irregular parallelism is not exploited,
for example via a moderate flattening-like transformation, it
leads to significant load imbalance, thread divergence, etc. Our
technique has been to “pad” the irregular arrays such that seg-
ments do not cross local blocks, which allows the segmented
reduce to be fused with the rest of the kernel. While in this case
the GPU execution is couple of times faster than the parallel
CPU execution, the speedup is significantly lower than the one
achieved by volatility calibration and nowhere near the ones
achieved for generic pricing. These results seem to indicate
that real-world applications have different characteristics and
that some are more suited to parallel execution then others.

VI. RELATED WORK

There are several strands of related work. First, a consid-
erable amount of work has targeted the parallelization of fi-
nancial computations on many-core hardware, such as GPGPUs,
resulting in impressive speedups [34]–[36]. A related strand of
research has focused on production integration in large banks’
IT infrastructure: for example (i) for efficient, end-to-end
pricing of exotic options [37], or (ii) for integrating a contract-
specification language [38] and dynamical graphical user in-
terfaces [39] within a language-heterogeneous financial frame-
work using type-oriented techniques. Such difficulties have
been experienced also in other compute-intensive areas, for
example in inter-operating across computer-algebra systems,
and have lead to point-to-point, but ultimately non-scalable
solutions [40], [41]. Our work differs in that we seek to
express parallel patterns in the provided benchmarks as high-
level functional constructs, with the aim of systematically (and
automatically) generating efficient parallel code. Futhark [13]–
[16] is an ongoing effort at providing an intermediate-language
tool chain, to which production-level (functional) languages,
e.g., APL, could be compiled to.

Second, a large body of related work is concerned with
auto-parallelization of imperative code. Such work includes
idiom-recognition [27] and static dependency analyses [3],
[42] for recognizing and extracting loop-level parallelism, but
also for characterizing/improving memory access patterns [43].
Alternatively, more dynamic techniques can be applied, for
example a variety of algorithms and transformations [44]–[47]
aimed at enhancing the locality of reference/communication
by restructuring the data or the order in which the data
is processed. Other techniques may track dependencies at
runtime and may extract partial parallelism [48], [49], but such
techniques have not been evaluated (yet) on GPGPUs.

A third strand of related work covers techniques for achiev-
ing GPGPU high-performance [50], which involves (i) achiev-
ing memory coalescing via block-tiling, (ii) optimizing register
usage via loop unrolling, and (iii) performing data prefetching
for hiding memory latency. These techniques form the ba-
sis for application-specific hand-optimized high-performance
GPGPU code, written in language frameworks such as CUDA
or OPENCL, and for establishing high-performance GPGPU li-
braries, such as Thrust [51]. Implementation of these principles
as compiler optimizations ranges from (i) heuristics based on

pattern matching [52]–[54], over (ii) more formal modeling of
affine transformations via the polyhedral model [55], [56], to
(iii) aggresive techniques, such as loop collapsing, that may be
applicable even for irregular control-flow and irregular memory
access patterns [57].

A large body of related work includes the work on em-
bedded domain specific languages (DSLs) for programming
massively parallel architectures, such as GPGPUs. Initial ex-
amples of such libraries include Nikola [58], a Haskell library
for targeting CUDA. Later work includes the Accelerate [59]
and Obsidian [60] Haskell libraries that, with different sets
of fusion and optimization techniques, targets OPENCL and
CUDA. An example of a more specialized language is SPL [10],
which specifies and efficiently computes stochastic processes.

Probably most related to the work on Futhark is the work
on SAC [61], which seeks to provide a common ground
between functional and imperative domains for targeting paral-
lel architectures, including both multi-processor architectures
[62] and massively data-parallel architectures [63]. SAC uses
with and for loops to express map-reduce style parallelism
and sequential computation, respectively. More complex array
constructs can be compiled into with and for loops, as
demonstrated, for instance, by the compilation of the APL
programming language [64] into SAC [65]. Compared to SAC,
Futhark holds on to the SOAC combinators also in the interme-
diate representations in order to perform critical optimizations,
such as fusion, even in cases involving filtering and scans,
which are not straightforward constructs for SAC to cope with.

Also related to the present work is the work on array
languages in general (including APL [64] and its derivatives)
and the work on capturing the essential mathematical algebraic
aspects of array programming [66] and list programming [19]
for functional parallelization. Compilers for array languages
also depend on inferring shape information either dynamically
or statically [67], although they can often assume that the
arrays operated on are regular, which is not the case for Futhark
programs. Another piece of related work is the work on the
FISH [68] programming language, which uses partial evaluation
and program specialization for resolving shape information at
compile time.

A scalable technique for targeting parallel architectures
in the presence of nested parallelism is to apply Blelloch’s
flattening transformation [69]. Blelloch’s technique has also
been applied in the context of compiling NESL [70], but is
sometimes incurring a drastic memory overhead. In an attempt
at coping with this issue and for processing large data streams,
while still making use of all available parallelism, a streaming
version of NESL, called SNESL has been developed [71], which
supports a stream datatype for which data can be processed in
chunks and for which the cost-model is explicit.

A final strand of related work is the work on benchmark
suites, in particular for testing and verifying performance
of hardware components and software tools. An important
benchmark suite for testing accelerated hardware, such as
GPGPUs and their related software tool chains is the SPEC
ACCEL benchmark [72] provided by the Standard Performance
Evaluation Committee (SPEC). Compared to the present work,
the SPEC ACCEL benchmark contains few, if any, applications
related to the financial domain and, further, the goal of the



SPEC ACCEL benchmark is not to demonstrate that different
utilization of parallism can be appropriate for different input
data sets.

VII. CONCLUSION AND FUTURE WORK

We have presented three real-life financial benchmarks,
based on sequential source code provided by HIPERFIT part-
ners [1]. The benchmarks include (i) a generic option pricing
benchmark, (ii) a volatility calibration benchmark, and (iii)
an interest rate pricing and calibration benchmark. For the
first two benchmarks, concrete code is presented and we have
demonstrated opportunities for parallelization by presenting
how the benchmarks can be expressed and transformed in
Futhark, a parallel array language that integrates functional
second-order array combinators with support for imperative-
like array-update constructs. Empirical measurements demon-
strate the feasibility of the proposed transformations and show
that important optimizations applicable for some input data
may not be applicable to other input data sets that are perhaps
larger in size and do not fit appropriately in, for instance,
GPGPU memory. Finally, we believe that the technique pre-
sented in this paper can be applied outside the finance domain,
and future work will aim at integrating them in the Futhark
compiler tool chain, which would ultimately result in efficient
GPGPU code generation.
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