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Abstract

Repositioning of empty containers pose a significant cost in the shipping industry due
to the large difference in export and import between some parts of the world, e.g., North
America and Asia. Dejax and Crainic [9] estimate, that movement of empty containers
comprise up to 40% of all container movements. This paper presents a revenue manage-
ment model for a liner shipping company where the repositioning of empty containers
is taken into account. The aim is to maximize the profit of transported cargo in a net-
work, subject to the cost and availability of empty containers. The model is an augmented
multi-commodity flow problem with additional inter-balancing constraints to control repo-
sitioning of empty containers. An arc flow formulation is Dantzig-Wolfe decomposed to
a path flow formulation, where the LP relaxation is solved with a delayed column gen-
eration algorithm. A feasible IP solution is hereafter found by rounding down the LP
solution and adjusting flow balance constraints with leased containers. Computational
results are reported for eight instances based on real-life shipping networks. Solving the
LP relaxed path flow model with a column generation algorithm outperforms solving the
LP relaxed arc flow model with the CPLEX barrier solver even for very small instances.
The proposed algorithm is able to solve instances with 234 ports, and 293 vessels for 9
time periods in 34 minutes. The integer solutions found by rounding are computed in less
than 5 seconds and the gap is within 0.01% of the LP upper bound, which is assumed
to be below the level of uncertainty of the input data. The solved instances are quite
large compared to computational results in the reviewed literature on models for empty
container repositioning.

1 Introduction

This paper presents a revenue management model for strategic planning within a liner ship-
ping company. A revenue management model is a strategic tool, that given a schedule and
a fleet over time decides which orders are profitable to transport with the planed capac-
ity. A mathematical model is presented for maximizing the profit of cargo transportation
while considering the possible cost of repositioning empty containers. The model is denoted
revenue management with repositioning of empty containers (RMREC). Empty containers
tend to accumulate at import intensive regions due to a significant imbalance in world trade.
Therefore, repositioning empty containers to export intensive regions impose a large cost on
liner shippers. RMREC incorporates the potential repositioning cost such that the profit of



an order takes into account the derived demand for empty containers. As opposed to most
models RMREC permits load rejection, since we believe, that an unprofitable order may be
rejected due to capacity constraints in the liner shipping network.

A liner shipping company is a shipping operator with a public itinerary and schedule
visiting certain ports at a given service frequency. The objective is to maximize profit for
freighting optional cargo between ports. A liner shipping company differs from industrial
shipping, where the objective is to minimize the transportation cost of delivering all cargo,
and from tramp shipping, where the objective is to maximize the profit of optional cargo
while delivering obligated cargo. Current practice with regards to empty containers is to have
conservative stock policies and empty deadweight on vessels to ensure sufficient availability
of empty containers. With RMREC, we hope to reduce deadweight on board vessels and
to minimize stock of empty containers. Furthermore, the model may be used to investigate
alternative leasing policies for liner shippers.

The strategic booking decision of a liner shipper considering empty container reposition-
ing can be described as a specialized multi-commodity flow problem with inter-balancing
constraints to control the flow of empty containers. A commodity in logistic terms is a pair
(O, D), where O is the origin and D is the destination of a container demand. The set of
commodities is denoted K. The network is represented by a graph G = (N, A), where the
node set N represents the ports and the arc set A represent the scheduled itineraries. The
capacity associated with each arc is determined by the assignment of vessels to the schedule.
The objective is to find a set of feasible paths in the network such that the profit of routing
cargo between the (O, D) port pairs is maximized.

The classical formulation of the standard multi-commodity flow problem is the arc flow
formulation with |K||A| variables and |A| + |K||N| constraints due to flow conservation at
every node. Although the number of variables is polynomially bounded, it will be huge for a
global shipping network. In addition, a large constraint set results in poor performance for
the simplex method. Dantzig-Wolfe decomposition can be applied to generate a path flow
formulation with only |A|+| K| constraints. However, the number of variables in the path flow
formulation may exponential. To circumvent this problem we use delayed column generation,
as it can be proven that at most | K|+ |A| paths carry positive flow [1]. The pricing problem
is a shortest path problem, where the cost of a path represents the reduced cost of a path
variable.

RMREC is an augmented multi-commodity flow problem where the extra constraints stem
from the inter-balancing constraints which ensure repositioning or leasing of empty containers
at nodes with a positive net flow. Due to the structure of the dual problem, the arc costs
of the pricing problem for the path flow model are positive which results in a polynomially
solvable pricing problem when considering column generation. As containers cannot be split,
RMREC is an integer multi-commodity flow problem which is AM/P-hard. A nice property of
the path flow formulation is, that flow conservations constraints are implicitly satisfied on
a path. Hence, a feasible integer solution can be obtained by rounding down all fractional
variables and supplying empty containers through a leasing variable at nodes with violated
inter-balancing constraints.

Solving both standard and augmented integer multi-commodity flow problems is a well-
studied area within airline management, e.g., crew scheduling [10] and fleet assignment [11, 3]
where a branch-and-price algorithm on the path flow formulation is used to find an integer
solution. The integer variables of these known problems are mostly binary. However, the
integer variables of the arc flow model of RMREC are large integer numbers because demands



are expressed in containers as the total demand between any two (O, D) port pair. Because
the number of containers transported in a global shipping network is huge, rounding down the
fractional part of demands may be considered insignificant. This is confirmed by experimental
results in this paper. Therefore, we consider the LP relaxation of path model of RMREC and
obtain a heuristic integer solution by rounding down the LP solution of the path flow model.

The contribution of this paper is to present an augmented multi-commodity flow formu-
lation of the container transportation problem considering repositioning of empty containers
(RMREC). A basic arc flow model of RMREC is decomposed into a path flow model. The LP
relaxation of RMREC is solved with a delayed column generation algorithm. Computational
results are reported for eight instances based on real life shipping networks. The results show
that the delayed column generation algorithm for the path flow model clearly outperforms
solving the arc flow model with the CPLEX barrier solver. Instances with up to 234 ports
and 293 vessels for 9 time periods were solved in less than 34 minutes with the column gener-
ation algorithm. The largest instance solved for 12 time periods contains 151 ports and 222
vessels and was solved in less than 75 minutes. It is shown, that high quality integer solutions
within 0.01% from the LP upper bound of the path flow formulation can be found by a simple
rounding heuristic.

The following section describes related work. Section 3 describes the network representa-
tion used throughout this paper. Section 4 presents the arc flow model, and Section 5 presents
the decomposed path flow model and the pricing problem used in the delayed column genera-
tion algorithm. Section 6 reports our computational results on eight generated test instances.
Section 7 provides some concluding remarks and future work of RMREC.

2 Literature Overview

According to Ronen et al. [16] papers on optimization based decision support systems within
shipping are scarce. There is an increasing interest in operations research within the area
of shipping, but most papers concern scheduling and routing of vessels. Furthermore, most
papers are concerned with industrial and tramp shipping. Within the area of liner shipping
only a few references are found and they concern deployment of vessels [16]. Christiansen
et al. [5] describe models for designing shipping networks for a traditional liner operation as
well as for a hub-and-spoke liner network. According to the paper, a booking is accepted if
there is space available on a vessel. This may lead to non-optimal decisions since the space
may be used more profitably by demands in subsequent ports on the route. However, the
issue of empty container availability is not regarded as a component of cargo profitability,
although the connection to profit is evident. The paper encourages research into the area of
revenue management and booking models, but very little work has been published on this
subject as mentioned by, e.g., Ronen et al. [16], Christiansen et al. [5].

The airline industry holds several similarities with the booking models and flow con-
straints encountered in the maritime industry. Especially with regard to the relation of the
underlying network structure. RMREC was originally inspired by Bartodziej and Derigs
[2] who presented a revenue management model for Cargo Airlines. The model is a special
multi-commodity flow problem which is solved by column generation.

Hane et al. [11] solve an airline fleet assignment problem as a multi-commodity problem,
where air-crafts need repositioning and where aggregation of the graph is considered. De-
saulniers et al. [10] solve a crew scheduling problem using multi-commodity flows, where the



problem of repositioning crew is mentioned, but not thoroughly treated. Bélanger et al. [3]
solve a fleet assignment problem with time windows as a multi-commodity flow problem.

Empty container repositioning can be regarded as empty flow in a network. Empty flows
have been studied within all areas of the transportation sector because they represent a
significant cost. In a survey on empty flows, Dejax and Crainic [9] estimate that up to 40% of
all movements for rail cars and containers are empty. The need for models considering empty
and loaded movements simultaneously is emphasized. Crainic et al. [7] present a multi mode
multi-commodity location-distribution problem with inter-depot balancing requirements. The
model is primarily a location problem deciding the number and locations of inland depots for
empty vehicles. However, it also determines the empty flows between depots according to the
inter-balancing constraints. The model has been tested on data from a European company,
which operated 23 major European ports at the time. A large reduction in the number of
inland depots is reported, which along with management of the empty flows represent a 47%
annual saving for the company. An international liner shipping company of today will span
the globe and service hundreds of ports. Furthermore, container vessels have increased from
5,9% to 9% of the world fleets total deadweight capacity [16] from 1995 to 2001.

Crainic et al. [8] present a dynamic and stochastic model for the empty container allocation
problem. The context is an international shipping company with focus on the land operations,
i.e., movements between customers and depots. The paper gives a very thorough description
of the container trade with regards to the space and time of events along with the complex
issue of asymmetric substitution between container-types. A single- and a multi-commodity
model with containers as commodities are presented using a time-space network in a rolling
horizon manner.

Shen and Khoong [17] present a decision support system for empty container distribution
planning for a shipping company at port level. The paper describes a network optimization
model and a heuristic to solve the problem but actual implementation and results are not
reported.

Cheung and Chen [4] have developed a two stage stochastic network model for the dynamic
empty container allocation problem. The model minimizes the total cost of repositioning or
leasing containers at deficit ports and is highly related to Crainic et al. [8].

Li et al. [13] present the empty container problem as a non standard inventory model at
a port to reduce holding of redundant empty containers. The paper also explores finite and
infinite horizon methods.

The above papers all assume no load rejection as competition in the trade is fierce. Hence
simultaneous optimization of loaded movements is irrelevant. Shintani et al. [18] are the first
to discuss the possibility of rejecting unprofitable cargo within the context of designing con-
tainer ship networks with regard to empty container repositioning. The model is a knapsack
formulation choosing the ports to call, with an underlying model choosing the optimal port
calling sequence under the assumption that all demand is satisfied in ports called. Reposi-
tioning of empty containers is only allowed in case of excess capacity making the cost of the
repositioning negligible. The incurred cost is the penalty cost of storing or leasing empty
containers. Using a genetic algorithm, results are reported for a model with 20 ports in Asia.

None of the above papers solve problems of a size corresponding to present shipping
networks. Cheung and Chen [4] perform experiments for 3 randomly generated networks,
where the largest instance has 10 ports, 6 voyages/vessels and 42 time periods. Shintani et al.
[18] solve test instances for 5-8 ports out of 20 potential ports. The number of voyages/vessels
is not declared. The number of time periods is 52.



3 Network Representation

RMREC may be modeled as a multi-commodity flow problem with inter-balancing constraints
having as objective to maximize the profit of the demanded flow in a capacitated network.

The network consists of a set of unique ports P connected by the services offered by the
liner shipping company. All services are cyclic. Since a service may take months to rotate,
the network must be modeled over time. Let T be the set of time periods.

A time-space network is created as a graph G = (N, A), where N = {p' | pe P,t € T}
is the set of nodes. Let A = Ag|JAg and let Ag = {(p*,p'™?) | p',p™ € N} be the set
of ground arcs representing the stock at a port between two subsequent time periods. Let
Ar = {(pt,qtl) ‘ ptg' e N, t<t, p # q} be the set of travel arcs representing a voyage
on a vessel between two ports p,q € P departing at time ¢ € T and arriving at time ¢’ € T.
The capacity of an arc a € Ag is given by the capacity of the vessels on the service at that
specific time. An illustration of the time-space network may be seen in Figure 1 where time
spans the z-axis and space, i.e., the geographical location of ports spans the y-axis.

travel arc a, € AR

Time

Figure 1: Example of time-space network - dotted arcs are ground arcs.

Each origin Oy and destination D of commodity k is given by a port p € P and time
t € T. For instance the tuple (Oy, Dy, dg, sx) = (BUAgs, BRVgg, 2000, 220), means that the
origin Oy, is Buenos Aires (BUA) in month 08, the destination Dy, is Bremerhaven (BRV) in
month 09, the demand is 2000 TEU (twenty foot container type) and the sales price sy, is 220.
The origin and destination time may be thought of as a time window for the delivery of the
commodity.

In RMREC no consideration is taken for substitution of container types and it is assumed
that all demands are accounted for with the smallest container type, enabling us to scale all
larger container types to the smallest container type.

The granularity of time may be defined in two ways resulting in networks with different
properties. 7' may represent the schedule directly if all events for a set of voyages is defined by
a point in time, i.e., the voyage of a vessel gives rise to a totally ordered set of time units. This
is illustrated in Figure 2. The resulting graph is directed, acyclic and can be topologically
sorted. Hence, finding a shortest path can be done in O(N + A) time.

The network will be very sparse, but may increase the number of path variables for a
commodity, if the time windows of the commodities are not tight. Each vessel represents an
itinerary and has its own nodes and arcs in the network. However, several vessels offer the
same service with regard to visited ports on a voyage. This means, that there may be several
daily departures from a port heading to the same destination. Figure 2 illustrates the issue: a
commodity from port Al to port C4 can be serviced by four possible paths with an identical
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Figure 2: Time-space network with the schedule as time units. Service 1: A — B — C —
D — A, vessel vy 1 departing A at time ¢t = 1 vessel v1 2 departing A at time ¢ = 2.

geographical port sequence (A — B — (). This can be avoided by tight time windows, but
finding a feasible itinerary for a commodity may then become a problem. RMREC is intended
for long-term planning preferably spanning 6 months or more. If a very time detailed network
is applied on a problem with hundreds of ports with several daily departures, the network
will be extremely large, making it impractical to solve. Hence, it seems reasonable to search
for a more compact representation.

The shipping network may also be described by representing each port in a given time
interval and aggregating all arrival and departure events to/from this port within the specified
period. This definition of time gives a less detailed, but more compact graph, where the paths
of the individual vessels are aggregated into a path per rotation for the given time period.
This will lead to fewer variables as well as fewer constraints in the path flow formulation.

Compared to the graph representing the detailed time-space network, the compact graph
is not acyclic. In the compact graph a service can rotate within a single time period (see
Figure 3), and the services may contain cycles within them (see Figure 4). If a service takes
more than one time period to rotate, then an itinerary is a directed path from port h; to port
hiyi, where i represents the number of time periods it takes the vessel to rotate (see Figure
5). However, if the time unit is set to one month, we believe most services will rotate in a
single time period. RMREC is intended for long term planning and a detailed schedule is not
needed at this point. Hence, the compact aggregated time definition is preferred.

Al Bl Cl
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Figure 3: Service A — B — C' — A rotates within one time period.
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Figure 4: Service A — B — C — B — D — A with an internal cycle.
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Figure 5: Service A - B — C' — D — A rotates in two time periods.

4 Arc Flow Formulation

Although the integer version of RMREC is AP-hard, the LP relaxation may be solved in
polynomial time. The challenge lies in the expected size of a liner shipping network and the
number of periods in the planning horizon, which result in very large LPs.

In the arc flow formulation we have a set of commodities K, defined on a graph with nodes
N and arcs A. The unit cost of arc (i,j) for commodity k is denoted cf] The non-negative
integer variable :Ef] is the flow on arc (7, j) of commodity k. The capacity of arc (i,7) is u;;
and dy, is the demand for commodity k. Finally, Oy is the origin of commodity k& and Dy is
the destination. A commodity in the network is defined as the tuple (O, Dy, dj, si) which
represents a demand of dj, from node Oy, = pt to node D, = ¢! with a sales price per unit of
Sk

The standard multi-commodity flow model does not consider the supply of empty contain-
ers. Inter-balancing constraints are applied to every node to account for availability of empty
containers. The constraints require, that the amount of containers arriving at a port must be
at least the amount of containers leaving the port for all commodities. Therefore, we get a
demand for empty containers depending on the actual allocation of loaded commodities. The
inter-balancing constraints also introduce a new set of variables representing leased containers
at a node. The cost of leasing is modeled in the objective. Let Cf be the cost of leasing a con-
tainer at port ¢, while [; is the leasing variable at port ¢. If the demand for empty containers
are seen as commodities, a set of empty commodities with no revenue and a derived demand
is needed. In the arc flow formulation a set of empty commodities must be defined consisting
of every possible (O, D) pair with no upper bound on the flow and with no sales price. The
set would be huge and the constraints redundant, as they do not impose bounds on the flow.
The only purpose of the constraints would be to define origin and destination of empty flows.
Since flow conservation is redundant and defining origin and destination of empty flows is
already done by the inter-balancing constraints, an empty super commodity without flow
conservation constraints may be defined in the arc flow model. The empty super commodity
is defined for all arcs in the network, allowing empty flows to start and end anywhere needed



in the network. The empty super commodity has no flow conservation constraints and appear
in the objective with a cost and in the bundled capacity and inter-balancing constraints. For
convenience the commodity set is split into the loaded commodities and the empty super
commodity: Let Kz be the set of commodities with a cargo, a sales price and a demand. Let
k. for all arcs in A be the empty super commodity with no cargo, no sales price and a demand
implicit derived from Kr. Finally, let K = KrU K,. Load rejection and capacity constraints
mean that demand may not be met for all demand pairs. The net flow of commodity & at the
origin node reveals the quantity of demand transported in the network and hence the revenue
of commodity k. The cost of transport, leasing and the empty super commodity must be
subtracted. The arc flow model of RMREC with a profit maximizing objective, an empty
super commodity, leasing variables, load rejection and inter-balancing constraints is stated
as:

max Z Z :EOM ]Ok Z Z Czyxw chll (1)

keKp jeEN keK (ij)eA iEN

sthZ—Zw;ﬂ < dj, 1 =0k ke Kp (2)
JEN JEN
> al >k < d i=Dy keKp (3)
JEN JEN
PIEED L =0 ieN\{OnDK} kekp (4)
JEN JEN
Z a:f] < ugy (i,5) €A (5)
keK
DIDIE D DD DL e A ieN  (6)
keK jeEN keK jeN
JZ‘Z-GZ_F kGK,(i,j)GA (7)
l € 74 ie N (8)

The objective (1) is to maximize the profit of the demanded flow of all commodities in K
on the arcs. Constraints (2)-(4) are the flow conservation constraints which ensure flow of a
demand from origin to destination. Furthermore, the flow is bounded by the demanded quan-
tity dj. Constraints (5) are the bundle constraints ensuring that the flow of all commodities
do not exceed the capacity of the arcs. Constraints (6) are the inter-balancing constraints
which gives a derived demand for the empty super commodity and leased containers. Con-
straints (7)-(8) ensure non-negative and integral flow and leasing variables. The formulation
is polynomial in the input size as the number of variables is O(|K||A| + |N|) and the number
of constraints is O(|N|| K|+ |A| + |N|). Although the problem size is polynomially bounded,
models of large networks have a vast number of variables and a substantial number of con-
straints, which deteriorates the performance of the simplex algorithm when solving the LP
relaxation [19].

It should be noted that when a container is leased, it remains in the network for the
remainder of the period. This corresponds to long-term leasing for the first period and short
term leasing in the last periods. The cost of a leasing variable should depend on the amount
of time periods remaining in 7" at the node where it is leased. Off-leasing, that is terminating



the lease of a container, can be modeled by defining an off-leasing variable and making cost
dependent on the net leasing between in- and off-leasing variables at the nodes. This changes
the objective function (1) to:

max Z Z sk(:nlg)kj — :E?ok) — Z Z Cfﬂ?f] - Zd(lin - léff)

keKp jeN keK (i,j)eA ieN

and the inter-balancing constraints (6):

Zzﬂfg—zzwﬁ—lﬁn+liﬁgo 1€ N

keK jeN keK jeN

The above model assumes off-leasing can occur at any port. Off-leasing can be restricted to
certain ports by defining off-leasing variables accordingly. When the container is leased the
remainder of the optimization period is paid for. When it is off leased the remainder of the
optimization period at the off-leasing point is refunded.

Various services are offered by leasing companies, that own half the maritime container
fleet worldwide, see [12]. Leasing services vary from one-trip and round-trip leases to short-,
medium- and long-term leasing ranging from one month to 42 months, see [20]. For the
current RMRECit is chosen to model leasing on a monthly basis, i.e., one time period, which
may range from a single month to the entire time period optimized upon. However, the
leasing mode may be altered, if different leasing services are explored.

5 Path Flow Formulation

In the following we introduce a path flow model for RMREC. Solving the LP relaxed path
flow model compared to the arc flow model has several advantages:

e Although there is a polynomial bound on the number of variables in the arc flow formu-
lation, it is a large polynomial factor. Even though the number of paths in the network
may be exponential, it depends on how dense the network is. If the network is sparse,
like in most liner shipping networks, there will be few path variables for each commodity
keK.

e The network size of an international liner shipping company means that column gener-
ation is our only hope to solve the problem in reasonable time. This is true, even for
the LP relaxation.

e An LP-solution to the path flow formulation can be transformed to a feasible IP solution
to RMREC by rounding, as flow conservation is respected implicitly in the path variables
(see figures 6 and 7). This makes it possible to translate the solution directly into
itineraries for the demand pairs.

The RMREC given as the arc flow model (1)-(8) has block-angular structure with |Kp|
subproblems given by the flow conservation constraints for each full commodity. The com-
modity subproblems are tied together by the bundle constraints (10), i.e., the arc capacity
constraints, and the inter-balancing constraints (12) regarding the supply of empty contain-
ers. Using Dantzig-Wolfe decomposition we get a master problem considering paths for all
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Figure 6: A fractional solution to the arc flow model: Containers may be split at every node.

E Spr(p2)f(p2) = 2.25 F
Spr(p1)f(p1) =0

Spe(P1)f(p1) =0,0pr(P2)f(p2) =225 dpc(p1)f(p1) =0,6rc(p2)f(p2) =2.25

S4B (p2)f(p2) —2~2\ Spc(p2)f(pe) =0 Scp(p2)f(p2) =2.25
@——dap(p1)f(p1) =2.75—-@-3dpc(p1)f(p1) = 2.75 Scp(p1)f(p1) =2.75 —-@
A B C D

Figure 7: Fractional solution to the path flow model: Containers may only be split at the
origin.

commodities, and a subproblem defining the possible paths for each commodity £ € K. Due
to the flow decomposition theorem (Chapter 3.5 in [1]), which states that every non-negative
arc flow can be represented as a non-negative path and cycle flow, this can be formulated
such that master variables define the flow of a commodity on a path, and the subproblem
find valid paths for that commodity.

Let P be a path connecting O and Dy and P be the set of all paths belonging to
commodity k. The flow on path p is denoted by the variable f(p). The binary indicator 6;;(p)
is one if and only if arc (4,7) is on the path p. Finally, c% = > _(i.j)eA 0ij (ﬁ)c’fj is the cost of
path p for commodity k. The master problem is:

max Z Z (sk — cg)f(p) — Z clf](Exij . Zcfli o)

ke Kp pePy (i,5)€A iEN
subject to Z Z %:;(P)f (D) + :E,IJ(E < ugj (4,7) € A (10)
k€K g pePy,
D FB) < di keKr  (11)
pEP;

DD (60 - 6@ () + 2t —alkF —1'<0  ieN  (12)

keKppeP, jeN

f(P) € Zy pEPkeKr  (13)
zhP €Ly (i,j)e A (14)
ez, ieN  (15)

Where the :Ef] variables are replaced by azfj = Y vep, 9ii(P)f(P) according to the flow
decomposition theorem for all k € Kr. The subproblems for commodities k € Kp are given

10



by the polytopes:

DIETEDIE =1 =0
JEN JEN
Py = dowi— Y =1 =D
k JjEN jeN
PRI =0 i€ NA{O Dic}
JEN JEN

The convexity constraints for the individual subproblems (11) bound the flow between the
(Og, Dy) pair from above (a maximal flow of d, is possible). The extreme points of Py model
a path between the (O, Dy) pair.

The exponential number of variables is handled by considering only a small subset in a
restricted master problem. Paths/columns are then generated on the fly using delayed column
generation. The dual variables corresponding to the three constraint sets are:

e w;; for each (i,j) € A corresponding to the bundle constraints (10)

e 0" corresponding to the convexity constraints (11) for each commodity k € K

e o' corresponding to the inter-balancing constraints (12) for each port i € N.

The reduced cost ¢ of a path p € Py, for the variable f(p) in subproblem k € K is given as:

& =" — Z i (P) (cf] — wij> — % — a9 4 aP*
(i,5)eA
Note, that the dual values o' cancel each other out for intermediate ports on a path in
constraints (12), i.e., only the supply port Oy and the demand port Dy of a path are affected
by these constraints.
As the subproblems are only dependent on the arc variables x;; the constant terms given
by commodity k£ may be treated isolated implying:

> 0@ +wig) < sF—oF —a% 4P
(i,7)eA
Minimizing Z(i,j)e (cij + wij)z;; when finding an extreme point of Py, will return the
path variable with the best reduced cost for the subproblem belonging to k. The subproblem
corresponds to an ordinary shortest path problem with positive arc costs as ¢;;, w;; > 0:

min Z (Cij +wij):17ij (16)
(ij)eA

s.t. Z Lij — Z T ji =1 1= OK (17)
JEN JEN
JEN JEN
Z:Eij—zxji =0 iEN\{Ok,DK} (19)
JEN JEN
Lij S {07 1} (Z>]) €A (20)
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6 Computational Results

The experimental results are performed on data based on real life shipping networks. The
test instances are created from a snapshot of the Containership Databank [6] from 2005. The
set P of ports (and hence the set N of nodes) and the set of arcs A with capacities are
created from services found at [6]. Cost and demand functions are generated randomly but
such that both profitable and unprofitable products are present, demands are asymmetric in
the sense that an area such as Asia should have more export than import (and vice versa for,
e.g., Europe and North America), the total demand must exceed the capacity of the network
for some areas, and the profit of some products must be able to support the price of leasing
containers. Liner shipping operators are chosen so that the instances vary in size from 34
ships to 316 ships. Test instances are named according to the number of ships in the fleet,
see Table 1. Note, that instance 293 is larger than instance 316 in terms of the number of
ports and unique rotation legs.

Test instance  Ports  Unique rotation legs  Average out degree  Fleet capacity in TEU
34 44 101 2.295 21035

62 60 104 1.733 111004

98 58 122 2.103 348356

136 96 198 2.063 383179

159 117 253 2.162 422796

222 151 326 2.156 633719

293 234 565 2.415 846447

316 185 455 2.459 992479

Table 1: Test instances - instance name denotes the fleet size, e.g., 34 has a fleet size of 34
ships

All tests were performed on an Intel(R) Xeon(R) CPU 2.66 GHz processor with 8 GB
RAM. We have used the LP solvers from ILOG’s CPLEX 10.2 and the open source CLP
solver from COIN-OR. All tests were performed with the CPLEX Barrier solver, CPLEX
dual simplex solver and the CLP dual simplex solver. The best results for the arc flow model
were obtained with CPLFEX barrier solver and the best results for the path flow model were
obtained with CLP dual simplex. Computational results are stated for the best results for
each model for 1, 3, 6, 9, and 12 time periods. The models are solved to LP-optimality. For
larger test instances the arc flow model cannot be generated with the available memory. In
all tests where it has been possible to generate the arc flow model, the objective value for
the two models are identical. This confirms the correctness of the path flow model and the
implementation of the column generation algorithm.

In the following we compare performance of the arc flow and the path flow model for test
instances with 1 and 3 time periods, where the arc flow model can be generated for most
instances. Next we present results for the solution times for large instances using the path
flow model in conjunction with delayed column generation. For the path flow model all test
instances up to 9 time periods can be solved within an hour. For 12 time periods all tests
that may be generated with the available memory are solved in less than 75 minutes. Lastly,
we present the integer solutions for a simple rounding heuristic applied to the LP solutions of
the path flow model. The IP solutions presented are within a very reasonable distance of the
LP upper bound and the gap is sufficiently small to discard the need for a branch-and-price
algorithm as well as more sophisticated heuristics.
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6.1 Arc flow and path flow compared

The result tables and graphs abbreviate the arc flow model to A and the path flow model to
P. The size of the respective models is stated as m x n. MEM indicates that memory was not
sufficient for the process to complete. The size of the LP for the arc flow model is calculated
for comparison with the size of the master problem of the path flow model. Column time
denotes the CPU time in seconds to solve the respective model, while iter denotes the
number of iteration for the column generation algorithm. The arc flow model is solved in one
LP iteration.

Table 2 shows the relative performance of the arc flow model and the path flow model
for 1 and 3 time periods respectively. The path flow formulation in conjunction with delayed
column generation outperforms the arc flow model by a wide margin even for small instances.
The size of the LPs for the column generation algorithm is surprisingly small and the column
generation algorithm is at least two orders of magnitude faster than the arc flow model for
one time period and three orders of magnitude faster for three time periods.

arc flow model path flow model
Test no. m X n objective time m X n objective time iter
34-01 21860 x 9605  2.59 - 1077 4.76 360 x 378  2.59 - 1097 0.02 4
62-01 35732 x 20684  1.21-1099 23.30 506 x 542  1.21-1099 0.03 4
98-01 60448 x 28832  5.37-1099 46.40 674 x 889  5.37-1099 0.06 4
136-01 166020 x 80646  4.32- 1099 180.00 1131 x 1589  4.32-1099 0.20 6
159-01 264249 x 122401  4.27-10%9 407.00 1413 x 2155  4.27-10%9 0.31 8
222-01 416779 x 193304  7.92-10%9 952.00 1754 x 2285  7.92-1099 0.34 5
293-01 1237583 x 510835 1.1-101°  1670.00 2087 x 4008 1.1-10%0 1.03 8
316-01 878790 x 357690  1.22-10'0  1140.00 2570 x 3352  1.22-10'0 0.70 6
34-03 252718 x 85663 7.9-1007 580 1168 x 2962 7.9-1007 0.40 5
62-03 501300 x 209232 4.3-1099 1730 1771 x 2159 4.3-1099 0.63 10
98-03 844638 x 305330  1.98 1010 5420 2407 x 3638  1.98 1010 1.73 15
136-03 2245890 x 823602  1.55- 1010 5690 3930 x 5863  1.55-10%0 2.98 11
159-03 3518550 x 1244586  2.04 - 100 10600 4886 x 8894  2.04-1010 6.34 18
222-03 5860293 x 2075114  2.62 - 1010 57600 6310 x 10039  2.62-1010  14.10 16
293-03 | 16257902 x 5260738 - MEM | 10382 x 16620 3.65-10'0  38.20 14
316-03 | 11965115 x 3829015 - MEM | 9185 x 14097 5.06-10'°  33.50 24

Table 2: Test instances for 1 and 3 time periods

Figures 8(a)-8(b) plot the solution time of the algorithms as a function of the size of the
LP model. The unit |[N|+4 |A|+|K| is chosen at the z—axis because it is the decisive factors in
the size of the LP constraint set for both models. Figure 8(a) shows a fast growth in solution
time for the arc flow model (full lines). Using a logarithmic scale in Figure 8(b) it is seen
that the growth is exponential. The solution times of the path flow model (dotted lines) grow
more moderately. Figures 8(c)-8(d) correspond to figures 8(a)-8(b) when considering three
time periods. Again, Figure 8(d) shows an exponential growth of the arc flow model (the two
largest instances could not be generated due to memory limitations).

6.2 Solution of large instances

We now consider the solution times for 6, 9 and 12 time periods. The arc flow model cannot
be generated for the largest instances and hence is not discussed further in this section.
Table 3 shows that test instances with 6 time periods solved with the path flow model
complete within 10 minutes. The master problems are small compared to the arc flow model
and the number of iterations is reasonable. The sparsity of the networks probably results in
few path variables for a commodity, which leads to relatively fast convergence of the delayed
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Figure 8: Relative performance of the arc flow and path flow model, 1 and 3 time periods

column generation algorithm. Note, that test 316 is slower than test 293 in spite of a smaller
LP. This might be specific for test 316 but may also be due to degeneracy, ¢ rounding or
many cache misses. Test instances with 9 time periods may all be completed in less than one
hour. All but the two largest tests, 293 and 316 complete within 12 minutes. The number
of columns in the two largest test instances is significant. Again we see, that test 316 needs
more time and iterations to complete than test 293 although the LP is smaller. The increased
solution time seems to be problem specific and it is interesting to note that the network of
test 316 is denser than that of test 293. This supports the theory that the sparsity of shipping
networks is a key to success for the path flow model and the column generation algorithm. For
9 time periods we see, that the number of iterations varies from 9 to 89. However, execution
times still grow steadily and the size of the LPs is reasonable considering the size of the
networks. For 12 time periods the LPs have reached a critical size and tests 293 and 316 do
not have sufficient memory to complete (the * indicates the size of the LP at the last iteration
before the process was aborted). The number of iterations for the remaining test instances
is reasonable and the solution times are still within 75 minutes which is equitable for large
models representing a shipping network for a whole year.

Figure 9(a)-9(b) show the solution time of the path flow model for 1, 3, 6, 9, and 12
time periods as a function of the size of the LP. It is seen, that the growth in solution times
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arc flow model path flow model
Test no. m X n objective time m X n objective time iter
34-06 1066630 x 341650  2.49 - 1098 3410 2380 x 11070  2.49 - 1008 4.56 7
62-06 2325144 x 906684  9.18 - 1099 7300 3799 x 5305  9.18- 1099 5.70 19
98-06 3951400 x 1346390  5.03-10'° 35100 5235 x 7989  5.03- 1010 8.61 12
136-06 3552132 x 10282128 - MEM 8407 x 15251 3.9.1010 43.70 17
159-06 5310627 x 15903588 - MEM 10366 x 24020  4.09-10'0  104.00 24
222-06 9339332 x 27929628 - MEM 13918 x 25635  7.29-10'0  206.00 23
293-06 22762597 x 74147688 - MEM 22231 x 41419  7.71-10'°  480.00 23
316-06 17078785 x 56225975 - MEM 20147 x 36229  1.18-10'"  586.00 29
34-09 767917 x 2441692  4.98-10°% 12500 3592 x 11205 4.98- 1078 5.7 9
62-09 2134956 x 5595156 - MEM 5906 x 12790  1.78 1010 48.7 89
98-09 3176366 x 9500606 - MEM 8165 x 14201  7.11-10%0 66.1 21
136-09 8302998 x 24496164 - MEM 13020 x 24212  7.17-101° 186.0 41
159-09 12274875 x 37445355 - MEM 15919 x 51822  7.36- 1010 404.0 28
222-09 22172150 x 67565663 - MEM 21812 x 42444  1.26- 101 618.0 17
293-09 | 52866028 x 175158501 - MEM 34252 x 69529  1.37-10%  2010.0 27
316-09 17078785 x 56222321 - MEM 31643 x 63309 2.18-10'!  3120.0 45
34-12 1364464 x 4377904 - MEM 4804 x 20557  3.69 - 1098 20 5
62-12 3587508 x 9502560 - MEM 7607 x 36750 1.4-10%0 125 27
98-12 5183822 x 15650086 - MEM 10242 x 39919  8.62- 1010 210 18
136-12 15092328 x 44953488 - MEM 17681 x 36455  1.24-10! 329 30
159-12 22176291 x 68270220 - MEM 21518 x 87218  9.42-10'0 1780 48
222-12 | 40655981 x 125020921 - MEM 20818 x 67841  1.72-101 4240 32
203-12 | 95531887 x 319187701 - MEM | 46302 x 114088* - MEM  25%
316-12 | 74721600 x 252239000 - MEM 43369 x 90759* - MEM  40%

Table 3: Test instances for 6, 9 and 12 time periods. * indicates the size of the LP and the
last iteration of the process when aborting due to insufficient memory

is relatively steady for 3 time periods. Figure 9(a) shows an exponential tendency for the
graphs of 9 and 12 time periods, where the LPs have reached a critical size. The trend is
even more explicit in figure 9(b) where the graphs are plotted on a logarithmic scale. The
trend is particular for the larger test instances, which have denser networks and hence, more
path variables per commodity. The exponential tendency is very clear in the graph of 12 time
periods although the two largest tests did not complete.

The delayed column generation method shows good convergence for the generated test
instances, and methods to reduce the master problem constraint set has not been required.
We are able to solve instances of large shipping networks spanning 9 months in less than
one hour. For 12 months the two largest instances cannot be generated with the available
memory, but the remaining tests which have a significant size are solved within 75 minutes.
The convergence is suspected to be correlated to the sparsity of the networks. The results of
the tests show that the column generation technique is very effective for solving RMREC for
sparse networks. The path flow model and column generation algorithm outperforms solving
the arc flow model by a wide margin. It appears that the number of path variables for real life
liners is very modest and therefore the number of variables in the restricted master problem is
relatively small. Services, capacities and ports are based on the real world, the cost structure
is randomly generated. This indicates that RMREC will perform well on real life problems,
but the real partition of surplus/deficit zones for empty containers and the commodity set of
a real life instance might be harder to solve than the generated instances presented in this

paper.

16



6.3 Quality of integer solutions and speed of rounding heuristic

In this section we present the integer solutions obtained by a simple rounding heuristic of
the LP solution provided by the path flow model. We show that the integer solutions have
a very small gap to the LP upper bound. An integer solution to RMREC is obtained by
rounding down all fractional variables. At nodes with violated inter-balancing constraints we
supply empty containers through the leasing variable to maintain feasibility. Table 4 shows
the integer solutions obtained by rounding. For each test instance we report the fraction of
fractional basis variables (Frac/basis), the percentage of fractional basis variables (Frac %),
the fractional moves as a percentage of total moves (Rounded %), the gap (obj gap) and gap
percentage (gap %) between the LP and IP solution and the CPU time in seconds (time).

Test Frac/basis Frac %  Rounded 7% obj gap gap % time
34-01 0/183 0.0 0.0 0 0.0 0.01
62-01 0/214 0.0 0.0 0 0.0 0.01
98-01 0/331 0.0 0.0 0 0.0 0.01
136-01 10/538 1.9 27-107% 13800  3.2-107%  0.01
159-01 0/464 0.0 0.0 0 0.0  0.02
222-01 0/836 0.0 0.0 0 0.0  0.02
293-01 23/1430 1.6 22-1074 2940  2.7-107%  0.06
316-01 28/1210 23  25-107% 34100  2.8-107%  0.05
34-03 0/588 0.0 0.0 0 0.0 0.02
62-03 46/723 64  1.4-1073 81900  1.9-107%  0.03
98-03 116,/1020 11.4  1.06-1073 271000 1.37-1075  0.03
136-03 0/1680 0.0 0.0 0 0.0 0.08
159-03 16,/1500 1.1 1.32-107* 62000 3.05-10~6  0.15
222-03 324,/2600 12.5 1.81-1073 767000  2.93-107>  0.20
293-03 375,/4450 84 1.41-1073 902000 2.47-107°  0.48
316-03 161/3620 44 5.03-107% 518000 1.02-107°  0.36
34-06 0/1060 0.0 0.0 0 0.0 0.04
62-06 102/1330 77 1.7-1078 457000 4.98-107%  0.10
98-06 290,/1960 14.8  1.37-1073 1340000 2.66-10~°>  0.14
136-06 453/3290 13.8  2.17-107% 1610000 4.13-107°  0.36
159-06 401/3130 12.8  1.88-1073 1620000 3.96-107>  0.56
222-06 969/5060 19.1  2.40-10~2 3850000 5.28-10"°  0.86
203-06 | 1114/9460 11.8  2.14-1073 3650000 4.74-107°  2.01
316-06 | 1281/7660 16.7 2.04-1073 5220000 4.44-10"° 1.55
34-09 0/1560 0.0 0.0 0 0.0 0.10
62-09 259/1990 13.0 3.22-107% 1810000 1.02-10"%  0.21
98-09 673/3080 21.8  2.18-1073 3770000 5.30-10"%  0.29
136-09 744,/4800 15.5 2.44-1073 4260000 5.94-107°  0.82
159-09 637/4910 13.0 1.89-1073 2960000 4.03-107°  1.27
222-09 | 1568/7610 20.6 3.05-1073 8070000 6.41-10"°  1.99
293-09 | 1838/13900 13.2  2.39-1073 7540000 5.49-107°  4.93
316-09 | 2357/11500 20.5 2.61-10~3 12900000 5.92-10"%  3.70
34-12 0/2030 0.0 0.0 0 0.0 0.15
62-12 50,2470 2.0 4.53-107% 366000 2.61-1075  0.38
98-12 532/3300 16.1 1.25-1073 2870000 3.32-107°  0.49
136-12 630,/6280 10.0  1.63-1073 5470000 4.41-107°  1.46
159-12 984/6410 154 2.18-107% 4870000 5.17-107°  2.30
222-12 | 2163/10600 20.3  3.05-1073 13500000 7.89-10"%  3.59
293-12 - - - - - -
316-12 - - - - - -

Table 4: Rounded integer solutions - 1-12 time periods

Table 4 shows that 10 out of 38 ( ~ 26%) of the LP solutions are already integer. Test
instance 34 is integer throughout. The remaining integer LP solutions are found in time
periods one and three. 20 out of 38 (=~ 53%) LP solutions have less than 10% fractional basis
variables. The highest percentage among the remaining 18 LP solutions is 21.8%. The most
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fractional solutions seems to be test instances with 9 time periods. Despite having more than
20% fractional basis variables the amount of flow rounded is never more than 0.3% of the
total flow and the gap percentage in terms of the objective value is never higher than 0.01%.
This confirms that the rounded integer solution is a good solution in terms of the gap to
the LP upper bound. This is probably due to generally large flows on path variables making
the rounding insignificant. Execution times are mostly less than one second but on larger
instances execution times rise to at most 5 seconds. The optimal integer solution might be
slightly better, but given a gap percentage less than 10~* the computation time needed for
a branch-and-price algorithm does not seem justified since the gap is smaller than the data
uncertainty.

7 Concluding Remarks

We have presented a mathematical model for the container revenue management problem
considering empty repositioning and solved it to near-optimality using delayed column gener-
ation and rounding. To the best of our knowledge a revenue management model considering
empty repositioning has not been presented in the literature before. The mathematical model
is surprisingly simple. The inter-balancing constraints, which ensure repositioning of empty
containers, results in an augmented multi-commodity flow problem. It appears that these
constraints do not complicate the model to an extent where the solution time is significantly
affected. Furthermore, test results show that the inter-balancing constraints ensure trans-
portation of low profitable products before repositioning empty containers to deficit ports,
see Lofstedt [14] for a detailed discussion. This demonstrates the importance of considering
empty container repositioning in a booking model for liner shipping. Also, the size of the
instances created and solved in this paper are significantly larger than previously reported in
the reviewed literature.

Solving the LP relaxed path flow model with delayed column generation turned out to be
very successful compared to solving the arc flow model with the CPLEX barrier solver. The
column generation algorithm is at least two orders of magnitude faster for one time period
and three orders of magnitude faster for three time periods. The column generation algorithm
is able to solve all instances for 6 time periods in 586 seconds. For 9 time periods test instance
316 containing 1665 nodes (185 ports in 9 periods), 5575 arcs and 24403 commodities is solved
in 3120 seconds. For 12 periods the two largest test instances cannot be solved within the
space limit. The largest instance completed contains 1812 nodes (151 ports in 12 periods),
5573 arcs and 22433 commodities and is solved in 4240 seconds. A rounding heuristic is
applied to the LP solutions of the path flow model with great success. The heuristic finds a
solution in less than 5 seconds. All integer solutions have a gap to the LP upper bound of at
most 0.01% which is well below the data uncertainty.

An area of future work is to incorporate booking and empty repositioning into rout-
ing/scheduling decisions of the vessel fleet as the overall cost of running a liner shipping
company is the fixed cost of committing to a schedule. Also, it would e very interesting to in-
corporate substitution of containers into the path flow model of RMREC. Some modifications
may result in hard pricing problems (complexity and computationally wise), but we believe
that even a complex pricing problem may be solved in reasonable time as the graph may be
split into subgraphs according to time periods, and because paths are generally very short.
Furthermore, pricing problems may be solved in parallel to decrease solution times. Reinhardt
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[15] solve a multi-objective shortest path problem for liner shipping with non-additive costs.
These techniques could be relevant for RMREC because it is likely that several criteria needs
to be taken into account when defining the attractiveness of a path and various strategic goals
may have a non-additive cost structure.
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