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The advent of flash devices constitutes a radical change for 
secondary storage. For instance, writes are mapped onto 
program and erase operations at different granularities, and as a 
result the performance of writes is not uniform in time. How 
should database systems adapt to this new form of secondary 
storage? Before we can answer this question, we need to fully 
understand the performance characteristics of flash devices. 
More specifically, we want to establish what kind of IOs should 
be favored (or avoided) when designing algorithms and 
architectures for flash-based systems. In this paper, our goal is to 
quantify the performance of IO patterns, defined as the 
distribution of IOs in space and time. We define uFLIP, a 
component benchmark for measuring the response time 
distribution of flash IO patterns. We also present a benchmarking 
methodology which takes into account the particular 
characteristics of flash devices. Finally, we present the results 
obtained by measuring 12 flash devices, and derive a set of design 
hints that should drive the development of flash-based systems. 

1. INTRODUCTION 
Tape is dead, disk is tape, flash is disk [5]. The flash devices that 
now emerge as a replacement for mechanical disks are complex 
devices composed of flash chip(s), controller hardware, and 
proprietary software that together provide a block device 
interface via a standard interconnect (USB, IDE, or SATA). Does 
the advent of such flash devices constitute a radical departure 
from hard drives? Should the design of database systems be 
revisited to accommodate flash devices? Must new systems be 
designed differently to take full advantage of the flash devices 
characteristics? 

In trying to answer these questions, an easy short-cut is to 
assume that flash devices behave as the flash chips they contain. 
Flash chips are indeed very precisely specified, they have 
interesting properties (e.g., read/program/erase operations, no 
updates in place, random reads equivalent to sequential reads), 
and many papers use their characteristics to design new 
algorithms [8][12][15]. The problem is that commercially 
available flash devices do not behave as flash chips. They 
provide a block interface, where data is read and written in fixed 
sized blocks. They integrate layers of software that manage block 
mapping, wear-leveling and error correction. As a consequence, 
there is a priori no reason to avoid updates-in-place on flash 
devices. In terms of performance, flash devices are much more 
complex than flash chips. For instance, block writes directed to 
the flash devices are mapped to program and erase operations at 
different granularities and as a result the performance of writes is 
not uniform in time. It would therefore be a mistake to model 
flash devices as flash chips. 

So, how can we model flash devices? The answer is not 
straightforward because flash devices are both complex and 
undocumented. They are black boxes from a system's point of view. 

A first step towards the modeling of flash devices is to have a 
clear and comprehensive understanding of their performance. 
The key issue is to determine the kind of IOs that should be 
favored (or avoided) when designing algorithms and architectures 
for flash-based systems.  

To study this issue, we need a component benchmark that 
quantifies the performance of flash devices. By applying such a 
benchmark to a large set of current and future devices, we can 
start making progress towards a comprehensive understanding. 
While individual devices are likely to differ to some extent, the 
benchmark should reveal common behaviors that will form a 
solid foundation for algorithm and system design. In this paper, 
we propose such a benchmark. 

So far, only a handful of papers have attempted to understand 
the overall performance of flash devices. Moon et al. focused on 
benchmarking SSD performance for typical database access 
patterns, but used only a single device for their measurements 
[9]. Myers measured the performance of database workloads over 
two flash devices [11]. In comparison, our benchmark is not 
specific to database systems. We study a variety of IO patterns, 
defined as the distribution of IOs in time and space. Ajwani et al. 
analyzed the performance of a large number of flash devices, but 
using ad-hoc methodology [1]. By contrast, we identify 
benchmarking methodology as a major challenge. It is indeed 
amazingly easy to get meaningless results when measuring a 
flash device because of the non-uniform nature of writes. Huang 
et al. attempted an analysis of flash device behavior, but neither 
proposed a complete methodology nor made any 
measurements [7]. Many benchmarks aim to measure disk 
performance (see [14] for an excellent survey and critique), but 
those benchmarks do not account for the non-uniform 
performance of writes that characterizes flash devices.  

This paper makes three major contributions: 
1. We define the uFLIP benchmark; a component benchmark 

for understanding flash device performance. uFLIP is a 
collection of micro-benchmarks defined over IO patterns. 

2. We define a benchmarking methodology that accounts for the 
non-uniform performance of flash devices. 

3. We apply the uFLIP benchmark to a set of 12 flash devices, 
ranging from low-end to high-end devices. Based on our 
results, we discuss a set of design hints that should drive the 
development of flash-based systems on current devices. 
We believe that the investigation of flash device behavior 

deserves strong and continuous effort from the research 
community; an effort that we instigate in this paper. Therefore, 
the uFLIP software and the detailed results (more than 16 million 
data points) are available on a web site (www.uflip.org) that we 
expect to be used and completed by the community. 



2. FLASH DEVICES 
The uFLIP benchmark is focused on flash devices—such as solid 
state disks (SSDs), USB keys, or SD cards—which are packaged 
as block devices. While the details of flash devices vary 
significantly, there are certain common traits in the architecture 
of the flash chips and the block manager, which provides the 
block device abstraction, that impact their performance [3]. In 
this section we review those common traits. 

2.1 Flash Chips 
A flash chip is a form of EEPROM (Electrically Erasable 
Programmable Read-Only Memory), where data is stored in 
independent arrays of memory cells. Each array is a flash block, 
and rows of memory cells are flash pages. Flash pages may 
furthermore be broken up into flash sectors. 

Each memory cell stores 1 bit in single-level cell (SLC) 
chips, or 2 or more bits in multi-level cell (MLC) chips. MLC 
chips are both smaller and cheaper, but they are slower and have 
a shorter expected life span. By default each bit has the value 1. It 
must be programmed to take the value 0 and erased to go back to 
value 1. Thus, the basic operations on a flash chip are read, 
program and erase, rather than read and write. 

Flash devices designed for secondary storage are all based on 
NAND flash, where the rows of cells are coupled serially, 
meaning that data can only be read and programmed at the 
granularity of flash pages (or flash sectors).Writes are performed 
one page (or sector) at a time, and sequentially within a flash 
block in order to minimize write errors resulting from the 
electrical side effects of writing a series of cells. 

Erase operations are only performed at the granularity of a 
flash block (typically 64 flash pages). This is a major constraint 
that the block manager must take into account when mapping 
writes onto program and erase commands. Most flash chips can 
only support up to 105 erase operations per flash block for MLC 
chips, and up to 106 in the case of SLC chips. As a result, the 
block manager must implement some form of wear-leveling to 
distribute the erase operations across blocks and increase the life 
span of the device. To maintain data integrity, bad cells and 
worn-out cells are tracked and accounted for. Typically, flash 
pages contain 2KB of data and a 64 byte area for error correcting 
code and other bookkeeping information. 

Modern flash chips can be composed of two planes, one for 
even blocks, the other for odd blocks. Each flash chip may 
contain a page cache. The block manager should leverage these 
forms of parallelism to improve performance. 

2.2 Block Manager 
In all flash devices, the core data structures of the block manager 
are two maps between blocks, represented by their logical block 
addresses (LBAs), and flash pages. A direct map from LBAs to 
flash pages is stored on flash and in RAM to speed up reads, and an 
inverse map is stored on flash, to re-build the direct map during 
recovery. There is a trade-off between the improved read 
performance due to the direct map and degraded write performance 
due to the update of the inverse map (updates of bookkeeping 
information for a page may cause an erase of an entire block). 

The software layer responsible for managing these maps both 
in RAM (inside the micro-controller that runs the block manager) 
and on flash is called flash translation layer (FTL). Using the 
direct map, the FTL introduces a level of indirection that allows 
the trading expensive writes-in-place (with the erase they incur) 
for cheaper writes onto free flash pages. 

Each update on a free flash page, however, leaves an obsolete 
flash page (that contains the before image). Over time such 
obsolete flash pages accumulate, and must subsequently be 
reclaimed synchronously or asynchronously. As a result, we must 
assume that the cost of writes is not homogeneous in time 
(regardless of the actual reclamation policy). Some block writes 
will result in flash page writes with a minimum bookkeeping 
overhead, while other block writes will trigger some form of page 
reclamation and the associated erase. Assuming a flash device 
contains enough RAM and autonomous power, the flash 
translation layer might be able to cache and destage both data and 
bookkeeping information. 

While the principles of the flash translation layer described 
above are well known, the details of its implementation and the 
associated trade-offs for a given flash device are not documented. 
Flash devices are thus black-boxes. The goal of the uFLIP 
benchmark is to characterize their performance. 

3. THE uFLIP BENCHMARK 
In this section we propose uFLIP, a new benchmark for 
observing and understanding the performance of flash devices. 
The benchmark is a set of 11 micro-benchmarks, defined in 
Section 3.1, which together capture the characteristics of flash 
devices. Benchmarking flash devices is difficult, as their 
performance is not uniform in time. We therefore present a 
benchmarking methodology in Section 3.2.  

3.1 The uFLIP Micro-Benchmarks 
The basic construct of uFLIP is an IO pattern, which is simply a 
sequence of IOs with particular characteristics. In each pattern, 
we refer to the ith submitted IO as IOi, and define IOi by (a) the 
time at which it is submitted t(IOi), (b) its logical block address 
LBA(IOi), (c) its size IOSize and (d) a mode (read or write). We 
only consider direct, synchronous IO in order to bypass the host 
file system and to avoid interferences from the device drivers.1 

Each micro-benchmark specifies a set of reference patterns, 
typically through formulas that define t(IOi,) and LBA(IOi,) with a 
single varying parameter. An execution of a reference pattern 
against a device is called a run; a collection of runs of the same 
reference pattern is called an experiment. We measure and record 
the response time for individual IOs.2 

Note that for each pattern, we must also specify its location 
on the flash device (TargetOffset), the size of its target space 
(TargetSize), and its length (IOCount). Setting these parameters 
is part of the methodology discussed in Section 3.2. 

In theory, IO patterns can be arbitrarily complex. In uFLIP, 
however, we focus on relatively simple reference patterns that 
together capture the performance of flash devices. Indeed, we 
observed that more complex patterns just cloud the picture. 

We now define the eleven uFLIP micro-benchmarks by 
describing informally the sets of reference patterns and the 
parameter that is varied. Note that due to space constraints, we 
                                                                 
1 The lowest layer of the file system is the disk scheduler, which actually 

submits IO operations. The disk scheduler is, as its name indicates, 
designed to optimize submission of IOs to disk. Whether disk 
schedulers should be redesigned for flash devices is an open question; 
the FLIP benchmark should help in determining the answer. 

2 One could consider other metrics such as space occupation or aging. 
Given the block abstraction the only way to measure space occupation 
is indirectly through write performance measurements. Measuring 
aging is difficult since reaching the erase limit (with wear leveling) 
may take years. Measuring power consumption, however, should be 
considered in future work. 



cannot fully specify every micro-benchmark in this paper. The 
complete specification of all the IO patterns and parameter 
settings can be found at www.uflip.org/benchmark/. 
1. Granularity: The flash translation layer manages a direct 
map between blocks and flash pages, but the granularity at which 
this mapping takes place is not documented. The IOSize 
parameter allows determining whether a flash device favours a 
given granularity of IOs. The reference patterns used for this 
micro-benchmark are sequential reads, sequential writes, random 
reads, and random writes that are aligned to IOSize blocks; we 
refer to these patterns as baseline patterns in the remainder of this 
section. For the baseline patterns, IOs are contiguous in time, i.e., 
t(IOi+1) = t(IOi) + rt(IOi),.where rt(IOi) is the response time for IOi. 

Random: LBA(IOi) = TargetOffset + 
Random(TargetSize/IOSize) ×  IOSize 

Sequential: LBA(IOi) = TargetOffset + i × IOSize 
2. Alignment: Using a fixed IOSize (e.g., chosen based on the 
first micro-benchmark), we study the impact of alignment on the 
baseline patterns by introducing the IOShift parameter and 
varying it from 0 to IOSize. 

Random: LBA(IOi) = TargetOffset + 
Random(TargetSize/IOSize) × IOSize + IOShift  

Sequential: LBA(IOi) = TargetOffset + i × IOSize + IOShift 
3. Locality: We study the impact of locality on the random 
baseline patterns, by varying TargetSize down to IOSize. 
4. Circularity: We study the impact of circularity on the 
sequential baseline patterns by varying TargetSize from IOSize to 
IOCount × IOSize / 2. 

LBA(IOi) = TargetOffset + (i × IOSize) mod TargetSize 
5. Partitioning: The partitioned patterns are a variation of the 
sequential baseline patterns. We divide the target space into P 
partitions which are considered in a round robin fashion; within 
each partition IOs are performed sequentially. This pattern 
represents, for instance, a merge operation of several buckets 
during external sort. If we denote the partition size by PS = 
TargetSize/P, the partition written to at step i as Pi = i mod P, and 
the offset within the partition as Oi = ⎣i/P⎦ mod PS, then: 

LBA(IOi) = TargetOffset + (PS × Pi + Oi) × IOSize  
6. Order: The order patterns are another variation on the 
sequential patterns, where logical blocks are addressed in a given 
order. For the sake of simplicity, we consider a linear increase (or 
decrease) in the LBAs addressed in the pattern, determined by a 
linear coefficient k. We can thus define a) patterns with 
increasing LBAs (k > 1) or decreasing LBAs (k < 0), or b) in-
place patterns (k = 0) where the LBA remains the same 
throughout the pattern. These mapping are simple, yet important 
and representative of different algorithmic choices: for example, 
a reverse pattern (k = –1) represents a data structure accessed in 
reverse order when reading or writing, the in place pattern is a 
pathological pattern for flash chips, while an increasing LBA 
pattern represents the manipulation of a pre-allocated array, filled 
by columns or lines. 

LBA(IOi) = TargetOffset + i × k × IOSize 
7. Parallelism: Since flash devices include many flash chips 
(even most USB keys contain two flash chips), we want to study 
how they support overlapping IOs. We divide the target space into 
D (possibly overlapping) subsets, each one accessed by a process 
executing the same baseline pattern. We vary the parameter D to 
study how a flash device supports parallelism and thus how 

asynchronous IO should be scheduled, and how parallelism should 
be managed. We omit details due to lack of space. 
8. Mix Read/Write: We compose two baseline patterns, one 
with reads and the other with writes. Both patterns are either 
sequential or random. We vary the ratio of reads to writes to 
study how such mixes vary from the baselines. We omit details 
due to lack of space. 
9. Mix Sequential/Random: We compose two baseline 
patterns, one with sequential IOs and the other with random IOs. 
Both patterns consist either of reads or writes. We vary the ratio 
of sequential to random IOs to study how such mixes vary from 
the baselines. We omit details due to lack of space. 
10. Pause: This is a variation of the baseline patterns, where IOs 
are not contiguous in time. We introduce a parameter Pause, 
expressed in msec., and vary the Pause parameter to observe 
whether potential asynchronous operations from the flash device 
block manager impact performance. 

t(IOi+1) = t(IOi) + rt(IOi) + Pause 
11. Bursts: This is a variation of the previous micro-benchmark, 
where a single pause of a fixed length is introduced after a fixed 
number of IOs, rather than every IO. The Pause parameter is then 
varied to study how potential asynchronous overhead 
accumulates in time. We omit details due to lack of space. 

Even though uFLIP is not a domain-specific benchmark, it 
should still fulfill the four key criteria defined in the 
Benchmarking Handbook: portability, scalability, relevance and 
simplicity [6]. Because uFLIP defines how IOs should be 
submitted, uFLIP has no adherence to any machine architecture, 
operating system or programming language: uFLIP is portable. 
Also, uFLIP does not depend on the form of flash device being 
studied, we have indeed run uFLIP on USB keys, SD cards, IDE 
flashes and SSD drives: uFLIP is scalable. We believe uFLIP is 
relevant to algorithm, system and flash designers because the 11 
micro-benchmarks are based on flash characteristics as well as on 
the characteristics of the software that generates IOs. It is neither 
designed to support decision making nor to reverse engineer flash 
devices. Whether uFLIP satisfies the criteria of simplicity is a bit 
trickier. The benchmark definition itself is quite simple. Indeed, 
we reduced an infinite space of IO patterns down to 11 micro-
benchmarks that define how IOs are submitted using very simple 
formulas. Benchmarking flash devices, however, is far from 
simple because their performance is not uniform in time. The 
methodology we present in the next section addresses this issue. 
Furthermore, our decision to measure response time for each 
submitted IO means that the benchmark results are very large and 
analysing those results is not straightforward. In the 
Demonstration Section, we present a visualization tool that 
facilitates result analysis. 

3.2 Benchmarking Methodology 
The fact that response time is non-uniform in time is a real 
challenge when measuring flash performance. First, the initial 
state of the device matters. Second, each micro-benchmark 
should be large enough to capture the variations representative of 
the device under study. Third, consecutive micro-benchmark runs 
should not interfere with each other. 

Initial State: Ignoring the initial state of a flash device leads to 
meaningless performance measurements. Out-of-the-box, the 
Samsung SSD had excellent random write performance (around 
1 msec for a 16KB random write, compared to around 8 msec for 
other SSDs). After we randomly wrote the entire 32GB of flash, 



however, the performance decreased by almost an order of 
magnitude. 

In order to obtain repeatable results, we need to run the 
micro-benchmarks from a well-defined initial state, independent 
from the complete IO history. Since flash devices only expose a 
block device API, we cannot erase all blocks and get back to 
factory settings. Because flash devices are black boxes, we 
cannot know their exact state. We thus make the following 
assumption: Writing the whole flash device completely defines its 
state. The rationale is that the direct and indirect maps managed 
by the FTL are filled and well-defined. 

We propose to enforce an initial state for the benchmark, by 
performing random IOs of random size (ranging from 0.5KB to 
the flash block size) on the whole device. This method is quite 
slow, but stable since only sequential writes disturb the state 
significantly. We alleviate this problem by grouping sequential 
writes to distinct target spaces (specified by TargetOffset) when 
running the micro-benchmarks. The alternative—performing a 
complete rewrite of the device using sequential IOs of a given 
size—is faster but less stable, as random writes, badly aligned 
IOs, or IOs of different sizes, modify the initial state.  

Start-up and Running Phases: Consider a device where the 
first 128 random writes are very cheap (400 µsec), and where the 
subsequent random writes oscillate between very cheap 
(400 µsec) and very expensive (27 msec). If we run the Mix 
Read/Write micro-benchmark with an IOCount of 1024, we will 
get meaningless results when the ratio of random writes is lower 
than 1/8 (because then our measurements only capture the initial, 
very cheap random writes). If we are not careful, we might even 
conclude that mixing reads with a few writes has an excellent 
impact on performance. 

We propose a two-phase model to capture response time 
variations within the course of a micro-benchmark run. In the 
first phase, that we call start-up phase, response time is cheap 
(because expensive operations are delayed). In the second phase, 
that we call running phase, response time is oscillating between 
two or more values. We characterize each device by two 
parameters: start-up, which defines the number of IOs for the 
start-up phase, and period, which defines the number of IOs in 
one oscillation in the running phase. In order to measure start-up 
and period, we run all four baseline patterns (SR, RR, SW and 
RW) with a very large IOCount. We can then identify the two 
phases for each pattern (the start-up phase may not be present) and 
derive upper bounds across the patterns for start-up and period. 

The impact of this two-phase model on the benchmarking 
methodology is twofold. First, for each experiment we must 
adjust IOCount to capture both the start-up phase and the running 
phase. Second, we must ignore the start-up phase when 
summarizing the results of each run, so that we can use a 
statistical representation (min, max, mean, standard variation) to 
represent the response times obtained during the running phase. 

No interference: Consecutive benchmark runs should not 
interfere with each other. Consider a device that implements an 
asynchronous page reclamation policy. Its effects should be 
captured in the running phase defined above. We must make 
sure, however, that the effect of the page reclamation triggered 
by a given run has no impact on subsequent, unrelated runs.  

To evaluate the length of the pause between runs, we rely on 
the following experiment. We submit sequential reads, followed 
by a batch of random writes, and sequential reads again. We 
count the number of sequential reads in the second batch which 
are affected by the random writes. We use this value as an upper 
bound on the pause between consecutive runs.  

4. FLASH DEVICE EVALUATION 
In this section, we report on our experimental evaluation of a 
range of flash devices, using the uFLIP benchmark. It was quite 
difficult to select a representative and diverse set of flash devices, 
as a) the flash device market is very active, b) products are not 
well documented (typically, random write performance is not 
provided!), and c) in fact, several products differ only by their 
packaging. We eventually selected 13 different devices3, from 
low-end USB keys or SD cards to high-end SSDs. While we ran 
the entire uFLIP benchmark for all the devices, we only present 
results for six representative devices listed in Table 1. Detailed 
information and measurements for all the devices can be found at 
http://www.uflip.org/results.html.  

We ran the uFLIP benchmark on an Intel Celeron 2.5GHz 
processor with 2GB of RAM running Windows XP. We ran each 
micro-benchmark using our own software package, FlashIO 
available at http://www.uflip.org/flashio.html). We ran uFLIP 
three times on each device; the differences in performance were 
typically within 5%. 

4.1 Benchmark Results 
Due to space limitations, we only present highlights of our results.  

As mentioned in Section 3.2, we first filled each device with 
random writes of random size, and then ran the baseline patterns 
with large IOCount to measure startup and period for each 
device. Figures 1 and 2 show the most interesting traces obtained 
on the MTRON SSD and on the Kingston USB key, for RW and 
SW respectively. The x-axis shows the time in units of IO 
operations, while the y-axis shows the cost of each operation in 
msec (note the logarithmic scale). In Figure 1, we can easily 
distinguish between the startup phase and the running phase, 
while in Figure 2 there is no startup phase. In Figure 1, the 
dashed line represents the running average of response time, 
including the startup phase measurements, while the solid line 
represents the running average of response time, excluding the 
start-up phase measurements. As expected, excluding the startup 
phase measurements results in a faster and more accurate 
representation of response time.  

With respect to startup and running phases, we can basically 
divide the set of tested devices in two classes. The Memo GT, 
and MTRON SSDs both have a startup phase for random writes 
followed by oscillations with very small period. They do not 
show startup or oscillations for SR, RR and SW. For these 
devices, care should be taken when running experiments that 
involves a small number of RW, typically Mix Read/Write since 
the startup phase should be scaled-up according to the number of 
RW. The other 10 devices have no startup phase but show small 
oscillations for RR, larger one for SW and sometimes remarkable 
oscillations for RW (with some impressive variations between 
0.25 and 300 msec!). For simplicity, we fixed IOCount to 1024 
for all the tested devices and checked manually the stability in the 
running phase.4 

Let us now study the performance of the Granularity micro-
benchmark where IOSize is varied. We generally expect reads to 
be cheaper than writes because some writes will generate erase 
operations, and we also expect random writes to be more 
                                                                 
3 At the time of submission, we were still waiting for the recently 

released Flash PCI card from Fusion-IO, advertised as reaching 
throughput of 600MB/s for random writes. We plan to publish the 
benchmarking results on our web-site before the end of October.  

4 The automatic determination of the smallest correct IOCount is left for 
future work. 



expensive than sequential writes as they should generate more 
erases. Figure 3 shows the response time (in msec) of each IO 
operation for the MemoGT SSD. Three observations can be made 
about this figure. First, all reads and sequential writes are very 
efficient; their response time is linear with a small latency (about 
70 µsec for SR/SW and 115 µsec for RR). Second, for rather 
large random writes, the response time is much higher, at least 5 
msec; note that, similar to Figure 1, the cost of random writes 
alternates between cheap writes (of similar cost to sequential 
writes) and extremely expensive erase operations. Third, small 
random writes are serviced much faster; apparently due to 
caching as four writes of 4KB take about as much time as two 
writes of 8KB and one write of 16KB. In comparison, Figure 4 
shows the response time for the Kingston DT USB key. In this 
figure, the response time of random writes is omitted, as it is 
more than 200 msec. As the figure shows, for this device the cost 
of sequential writes is affected strongly by the IO granularity, as 
smaller writes incur a significantly higher cost than writes of 
32KB. Comparing the two devices, we observe that while 
random writes are up to a factor of five times slower than the 
other operations on the MemoGT, they are one or two orders of 
magnitude slower for the Kingston DT USB key. This is 
undoubtedly due to more advanced hardware and FTL on the 
MemoGT SSD. The remainder of these experiments was run with 
IO sizes of 32KB. 

To give a short outline of the results of the micro-benchmarks 
that we do not cover in detail (typically because their results were 
predictable), we observed the following. Using IO granularities 
that were not aligned with flash page sizes resulted in most cases 
in performance degradation, as did unaligned IO requests. 
Composite patterns of random reads and writes, or sequential and 
random writes, did not affect the overall cost of the workloads. 
Circularity does not affect performance, until the area written to 
is so small that the writes become in-place writes (see below for 

the effect of in-place writes). Finally, we did not notice any 
significant improvement while submitting IOs in parallel. 

Moving on to the more interesting results, we first consider 
the effect of locality on random writes. Figure 5 shows the 
response time of random writes (relative to sequential writes) as 
the target size grows from very small (local) to very large (note 
the logarithmic x-axis). Our expectation was that doing random 
writes within a small area might improve their performance. The 
figure verifies this intuition, as random writes within a small area 
have nearly the same response time as sequential writes. The 
figure shows, however, that the exact effect of locality varies 
between devices, both in terms of the area that the random writes 
can cover, and in terms of their relative performance. 

Table 1 succinctly summarizes the remainder of the 
experiments; we will discuss the result columns from left to right. 
First, SR, RR, SW, RW indicate the cost of a corresponding IO 
operation of 32KB. These columns show that there is a large 
difference in performance between the USB keys and the other 
devices, but also between low-end and high-end SSDs. For the 
high-end SSDs, even the random write performance is quite 
good. In fact, as we explore more results, the high-end SSDs 
distinguish themselves further from the rest. 

The fifth column of Table 1 indicates the effect of inserting 
pauses into a random write workload. No value indicates that this 
had no effect, which in turn indicates that no asynchronous page 
reclamation is taking place. For the high-end SSDs, however, 
inserting a pause improves the performance of the random writes 
to the point where they behave like sequential writes. 
Interestingly, the length of the pause when that happens is roughly 
the time required on average for a random write. Thus, no true 
response time savings are seen by inserting this pause, as the total 
workload takes the same overall time regardless of the length of the 
pause. A similar effect is seen with the Burst micro-benchmark. 

Fig. 1: Starting and running phase for Memo GT Fig. 2: Running phase for Kington DT Fig. 3: Granularity for Mtron Fig. 4: Granularity for Kingston DT

Fig. 5: Locality for four devices

Table 1: Results summary
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The sixth column of Table 1 summarizes the effect on 
locality, which we already explored with Figure 5; it shows the 
size of “locality area” in MB and, in parentheses, the cost of 
random writes within that area relative to sequential writes.  

The seventh column of Table 1 summarizes a similar effect 
for the Partitioning micro-benchmark. The goal of that 
experiment was to study whether concurrent sequential write 
patterns to many partitions degrade the performance of the 
sequential writes. The column shows the number of concurrent 
partitions that can be written to without significant degradation of 
the performance, as well as the cost of the writes relative to 
sequential writes to a single partition. Note that when writing to 
more partitions than indicated in this column, the write 
performance degrades significantly.  

Finally, the last two columns show the cost of the reverse and 
in-place patterns, compared to the cost of sequential writes. As the 
columns show, the effect of the in-place pattern, in particular, 
varies significantly between devices, ranging from time savings of 
about 40% for the Samsung SSD, to a performance degradation of 
an order of magnitude for the Transcend IDE module. 

4.2 Discussion 
The goal of the uFLIP benchmark is to facilitate understanding of 
the behavior of flash devices, in order to improve algorithm and 
system design against such devices. In this section we have used 
the uFLIP benchmark to explore the characteristics of a large set 
of representative devices (although we have presented a limited 
set of results due to space constraints). From our results, we draw 
three major conclusions. 

First, we have found that with the current crop of flash 
devices, their performance characteristics can be captured quite 
succinctly with a small number of performance indicators (the 
ones shown in Table 1 and a few more). 

Second, we observe that the performance difference between 
the high-end SSDs and the remainder of the devices, including 
low-end SSDs, is very significant. Not only is their performance 
better with the basic IO patterns, but they also cope better with 
unusual patterns, such as the reverse and in-place patterns. 
Unfortunately, the price label is not always indicative of relative 
performance, and therefore designers of high-performance 
systems should carefully choose their flash devices. 

Finally, based on our results, we are able give the following 
design hints for algorithm and system designers: 
Hint 1: Flash devices do incur latency. Therefore, larger IOs are 
generally beneficial, even for read operations.  
Hint 2: Block size should (currently) be 32KB. Based on the first 
hint, large block sizes are beneficial for writes, while an 
application of the famed five minute rule [4] says 4KB pages are 
beneficial for reads, based on prices and capacities of the high-
end devices we studied. We therefore believe that 32BK is a 
good trade-off for those high-end devices. 
Hint 3: Blocks should be aligned to flash pages. This is not 
unexpected, based on flash characteristics, but we have observed 
that the penalty paid for lack of alignment is quite severe. 
Hint 4: Random writes should be limited to a focused area. Our 
experiments show that random writes to an area of 4–16MB 
perform nearly as well as sequential writes. 
Hint 5: Sequential writes should be limited to a few partitions. 
Concurrent sequential writes to 4–8 different partitions are 
acceptable; beyond that performance degrades to random writes.  
Hint 6: Neither concurrent nor delayed IOs improve the 
performance. Due to the absence of mechanical components, IO 

scheduling is not improved through abundance of pending 
asynchronous IOs. Furthermore, introducing a pause does not 
affect total response time. 

5. CONCLUSION 
The design of algorithms and systems using flash devices as 
secondary storage should be grounded in a comprehensive 
understanding of their performance characteristics. We believe 
that the investigation of flash device behavior deserves strong 
and continuous effort from the community: uFlip and its 
associated benchmarking methodology should help define a 
stable foundation for measuring flash device performance. By 
making available online (at www.uflip.org) the benchmark 
specification, the software we developed to run the benchmark, 
and the results we obtained on 12 devices, our plan is to gather 
comments and feedback from researchers and practitioners 
interested in the potential of flash devices. Future work includes 
automatic tuning each run's length, to ensure that the start-up 
period is omitted and the running phase captured sufficiently well 
to guarantee given bounds for the confidence interval, while 
minimizing .the number of IOs issued. 
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7. DEMONSTRATION 
In the interest of the research community, we will make our open 
source software package available, as well as our complete 
database of measurements. The web-site is hosted at 
www.uflip.org. In this section, we propose a demonstration of 
our software package and the measurement database. 

7.1 Software Architecture 
The uFLIP benchmark software consists of four components.  
• The uFLIP Interface, which allows the user to choose 

settings for individual micro-benchmarks, and to configure 
the initial state of the flash device. 

• The FlashIO workload generator, which executes the micro-
benchmarks defined by the uFLIP Interface, and stores the 
results into a database. 

• The uFLIP Database, which is divided into two parts: a core 
area for verified benchmark results, and a holding area for 
transient or non-verified results. 

• The uFLIP Visualizer, which presents results from the 
uFLIP Database. 

The first three components are rather straightforward. We now 
describe the uFLIP Visualizer in more detail. 

The interface of the uFLIP Visualizer prototype is shown in 
Figure 6. Once a device has been selected, a “dashboard” is 
shown, which is a matrix of micro-benchmarks and IO modes 
(random reads, sequential reads, random writes, sequential 

writes) is displayed. For each such combination, interesting 
results are indicated with a red color. 

From this dashboard, individual results can then be explored 
by viewing graphs similar to Figure 3. Furthermore, when more 
detail is desired, graphs such as that in Figure 1 can be viewed. 
Through this navigation, results for individual devices can be 
interactively explored. 

7.2 Demonstration Presentation 
During the 10 minute presentation, we propose to demonstrate 
the use of the uFLIP Interface and the uFLIP Visualizer (running 
the uFLIP benchmark is too time consuming). First, we will show 
how to manipulate the settings of the interface, in order to run the 
benchmark and facilitate exploration of the flash device's 
properties. Second, we will demonstrate the navigation of the 
results database, using one of the high-end devices reported on in 
this paper. 

7.3 Off-line Demonstration 
Off-line demonstration to individual conference attendees is 
always most entertaining and informative. In order to facilitate 
discussions and explorations, the uFLIP Interface will include a 
“demo” button, which can be used to select settings that allow 
running the benchmark in a reasonable time-frame, even for USB 
keys of conference attendees. Once the results have been stored 
to the holding area, they can be explored interactively using the 
uFLIP Visualizer.
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