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Abstract

Principle Component Analysis is a simple tool to obtain linear models for
stochastic data and is used both for a data reduction or equivalently noise elim-
ination and for data analysis. Principle Component Analysis fits a multivariate
Gaussian distribution to the data, and the typical method is by using the log-
likelihood estimator. However for small sets of high dimensional data, the log-
likelihood estimator is often far from convergence, and therefore reliable models
must be obtained by use of prior information. In this paper, we will examine
an earlier work on reconstructing missing data using statistical knowledge and
regularization, we will show the circumstances for which this is equivalent to
a Bayes estimation, we will give an expository presentation of Bayes Principle
Component Analysis for a range of exponential type priors, and we will develop
algorithms for their estimate.

1 Elasticity in Linear Shape-Variation on Tooth Land-
marks
In [1], shape variation of landmarks on teeth was studied using an extension of Prin-

ciple Component Analysis [2], [B], where it was suggested to estimate of the covariance
matrix as,

1
C=—XXT+K 1
ZXXT 4 (1)
where X = [z1,%9,...,2] is a matrix of concatenated N dimensional points in

Euclidean space and -7 is the transpose operator. It was observed that the general-
ization error was reduced in terms of the leave-one-out error, when matrix K had the
following form,

Ky = 1) ("5 + 5 )

where f is an exponentially decreasing function such that f(0) = 1, d;; is the geodesic
distance between two points on the surface of a tooth z; and z;, and n; and n; are
the corresponding outward normals.

We will in the following show, that may be considered a Bayes estimate of the
covariance matrix, where the prior is given as an inverted Wishart distribution

P(C) = kexp (—]\;tr (Kc—1)> , (3)
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for a suitable normalization constant k, arbitrary constant matrix M > 0, and when
K is positive definite. We will further show that K is positive definite, when f(d;;)
is diagonally dominant.

2 Log-Likelihood Estimation of Mean and Covari-
ance

In the following we will give an expository derivation of the classical log-likelihood
estimates of the mean vector and covariance matrix for random data sets using the
method of Matrix Differential Calculus [4], and this material will be used as a reference
point for deriving expressions for Bayes estimates.

Consider an N dimensional Euclidean space and M sample points in this space,
T, € RYV. We will assume that the sample points are identically, independently, and
normally distributed in RV according to,

W=

Pl ) = 203 0D exp (5o 0T an =) @

§RN><N

for unknown covariance matrix C € and mean pu € RV. Hence, the joint

distribution is given as,
) o) M exp (LS
Ploy, ol €)= (@205 1013)) " exp (=5 3 @ = ) O am =) |

2
m=1
()
To estimate C and p from a set of samples, we seek the maximum point of P(21, ..., 2|, C)
as,

OP (1, ..., Tm |, C)

=0 6
e , (62)
OP (21, ..., T |, C)
=0 6b
. ; (6b)
or equivalently
810gP(x17...,xm|u,C) _
ac,, =0, (7a)
alog P(‘rlv cey :L'm|/l, C)
= b

due to the strict monotonicity of the logarithm function. For practical reasons we
also rewrite the sum under the exponential function as,

M
Z (@ — )" C Hap — p) = tr (CT'XXT) (8)

m=1

where
X =[@1—p),. - (@m — )] (9)

and rewrite the logarithm of the Gaussian distribution as,

MN M 1
L(zy,.c.,xm|p, C) = — 5 log(27) — - log|C| — itr (C*IXXT) , (10)




This is the same as minus the optimal code length [5] of the total set of data points
from our assumed Gaussian source, and where C' and p is fixed and known to both
the sender and receiver.

The differential of L only considering C' and u as variables is found to be,

M 1 1
dL = —tr (201d0 +3 (dC7) XX+ 5C7d (XXT)) : (11)
To identify the partial derivatives of dL we isolate terms containing dC' and du. For

C we need only consider the first two terms in , and together with

dC~' = —Cc~1(dc)c, (12)
we find that
0=dL¢c (13a)
M_ | -1 T
=—tr| 5 C7lC - 5C (dC)CT'XX (13b)
= —%tr (C7'dC) (MI—-C7'XXT)). (13c)
A non-trivial solution is,
0=MI-C'XX" (14a)
I
1
= —xx7 14
C=XXT, (14b)

which may be recognized as the log-likelihood estimate of the covariance matrix [6]
Theorem 3.2.1]. For dy we need only consider the third term in , and through
similar calculations we find the non-trivial solution to be,

1 M
“:Mm;xm’ (15)

Again this is verified to be the standard (biased) log-likelihood estimate.

3 Bayes Estimation Covariance

In the following sections, we only treat estimators for the covariance matrix. Applying
Bayes theorem on Mean and Covariances we find that
P(z1, ..., T |, C)P(p, C)
P(u,Clzy,.cc,xm) = , 16
(1. Clar, o) o (16)
where we denote P(u,C|z1,...,Ty,) the posterior, P(x1, ...,z |y, C) the likelihood,
P(u,C) the prior, and P(x1, ..., ) the evidence. The point of Maximum Posterior,
also known as Maximum A Posterior (MAP), is found as the maximum as the point
of zero partial derivatives by the differential of the log-Posterior w.r.t. u and C,

dlog P(u,Clxy, ..., Xm) = dlog P(x1, ..., Tm |, C) + dlog P(p, C) — dlog P(x1, ..., Tum)

=dlog P(x1,...,xm|p, C) + dlog P(u, C). (17b)

Again this has an information theoretical equivalent as the differential of minus the
two-parts Minimum Description Length (MDL) [7]. In the following we will discuss
estimates based on various priors of increasing complexity.



3.1 Gaussian Prior on Covariance Matrices

As the simplest prior we will in the following assume identical and independent Gaus-
sians the elements of ;. and C. Independence among other this imply,

P(p,C) = P(n)P(C), (18)

which by the logarithm becomes additive terms, and w.r.t. the differential we can
henceforth focus on the Bayes estimate of C,

P(C) = (27r32)_NT2 exp (2132|O — B|2> (19a)
= (27r52)_NT2 exp (—2182‘51“ ((C’ — B)T (C— B))) , (19b)
(19c¢)

where B and s are the mean and variances of the covariance matrix. The differential
of the log-prior of the covariance matrix is,

dlog P(C) = —%dtr (c-B"(©-B) (20a)
= —%u ((dCT) (C-B)+(C-B)" dc) (20b)

Combining the above results with and only considering terms involving dC', we
now have,

0 =dlog P(i,Clx1, ...y Tpy) (21a)

1 1 1
= —gtr (Mcldc —CctdC)o X XT + = (dc™)(C - B) + = (C— B)" d(])

(21b)
1 2
= —gtr (Mc—ldc —Cc'xxTcdo + = (C— B)" dc) (21c)
1
= —gtr (<M0—1 —C ' XXTo™ + 32 (C — B)T) dC) : (21d)
S

where we have used that tr is linear, trAB = trBA, and trA = trA”. A non-trivial
solution is found to be,

2
0=MC'—C'XXTC '+ S(C- B)". (22)
This is a non-linear equation in C, and we may simplify it by pre- and post multipli-
cation with C to yield,

onc—XXT+S%C(C—B)Tc (23a)
!

=L (xx7- zC(C—B)Tc (23b)
M 52 '

The above is seen to be a third degree matrix polynomial in C, where the log-likelihood
estimate act as zero order term. A solution may be found by a gradient descent, where



function Lest = bayespca(y,B,sigma,stepsize);
% BAYESPCA A estimation of covariance matrices using Gaussian prior.

BT T Totototototototo oo oo oot o T To ToTo To To To To T
% Estimate covariance matrix by bayes method with Gaussian on norm of
% covariance matrix.
yA
M = size(y,2);
normdnew = inf;
while normdnew > 0.0001
%Cest = yxy’/M;
Cest = B;
Cest (ones(size(Cest))+1*randn(size(Cest))).*Cest;
dnew = Cest - 1/Mx(yxy’ - 2/sigma”2 * (Cest*Cest’*Cest-Cest*B’*Cest));
dold = abs(dnew)+1;
i=0;
while (i<1000)
i=i+l;
dold = dnew;
% The following should be,
% dnew = Cest - 1/Mx(yxy’ - 2/sigma”2 * (Cest*Cest’*Cest-Cest*B’*Cest));
% However, this apparently has convergence problems. Instead we use
% the symmetry of Cest and B,
dnew = Cest - 1/Mx(y*y’ - 2/sigma”2 * (Cest~3-Cest*B*Cest));
normdnew = max(abs(dnew(:)));
Cest = Cest - stepsize*dnew;
end
end
[Xest,Lest,V] = svd(Cest);

Figure 1: A Matlab program implementing Bayes estimation for Gaussian Priors.

the gradient already is calculated as the right-hand side of 7 and the solution is
sought starting in the log-likelihood estimate. An example of a Matlab program
solving for C is given in Figures Outputs are shown in Figure [3| for randomly
generated data from a known source with covariance C*, optimal but in real life
unavailable mean B = C*, and various values of s. It is seen, that the estimate is
increasingly close to the log-likelihood estimate as s increases, as should be expected.

Convergence of the algorithm may be improved by applying a continuation method,
where a sequence of values Spyax, ..., S0 is chosen, and solutions are found for each
s; using the previous point s;_1 as the starting point. The maximal value $y.x is
typically set to oo in which case the prior becomes uniform, and the solution to C' is
seen to be identical to the log-likelihood estimate.

3.2 Reverse Engineering a Prior

Returning to the study on shape variation of teeth as described in Section [I} we
will now interpret the addition of the standard log-likelihood estimate of the
covariance matrix by a constant matrix K,

1 T
C= XX+ K. (24)

as Bayes estimate of the covariance matrix, where K is part the essential part of a
prior.



function testbayespca
TESTBAYESPCA A test program for bayes estimation of covariance matrices.

=

==

Global parameters

N = 2; % Dimension of space

M = 10; % Number of samples

Sdiag = [1,2]; % The standard deviation of the datagenerating density

stepsize = 0.01; 7 Stepsize in the Eulerian solver

sigma = 0.3; % The standard deviation for the Gaussian probability on covariance matrices

% Coordinate system
x = randn(N,N);
for i = 1:N
for j = i-1:-1:1
x(:,1) = x(:,1) - (xC:,1)7*x(:,3))*x(:,3);
end
x(:,1) = x(:,1)/sqrt(sum(x(:,1).72));
end
B = x*diag(l./Sdiag."2)*x’; % Prior mean matrix
a = inv(diag(Sdiag))*randn(N,M); % Random points according to a non isotropic Gaussian distribution
y = x*a;

blue = [0,0,1];

green = [0,1,0];

red = [1,0,0];
plot(y(1,1:min(100,M)),y(2,1:min(100,M)),’.’, color’ ,blue);
axis equal

hold on; drawUnitCircle(x,Sdiag,blue); hold off; drawnow;

% Estimate covariance matrix by maximum likelihood.

Cest = y*y’/M;

[Xest,Lest,V] = svd(Cest);

hold on; drawUnitCircle(Xest,sqrt(diag(inv(Lest))),red); hold off; drawnow;

% Estimate covariance matrix by maximum priori.

Lest = bayespca(y,B,signma,stepsize);

hold on; drawUnitCircle(Xest,sqrt(diag(inv(Lest))),green); hold off; drawnow;
title(’Blue=true, red=loglikelihood, green=bayes’,’fontsize’,18);

print ’bayesCovariance.ps’ -depsc

function drawUnitCircle(x,Sdiag,color)

% DRAWUNITCIRCLE draws a circle and axes in the x*Sdiag. 2*x’ coordinate system

%
plot([0,x(1,1)]/Sdiag(1),[0,x(2,1)]/Sdiag(1),’~’, color’,color)
hold on;
plot(x(1,1)/Sdiag(1),x(2,1)/Sdiag(1),’0’,’color’,color)
plot([0,x(1,2)]/Sdiag(2),[0,x(2,2)]/Sdiag(2),’-’, color’,color)
plot(x(1,2)/Sdiag(2),x(2,2)/Sdiag(2),’0’,’color’,color)
t = linspace(0,2*pi,100);
t = [t,0];

p = x(1:2,1:2)*inv(diag(Sdiag(1:2)))*[cos(t);sin(t)];

plot(p(1,:),p(2,:),’-’, color’,color);

hold off

set(gca,’fontsize’,18);

xlabel(’x’);

ylabel(’y’);

Figure 2: Example of using the Bayes estimation program in Figure



Blue=true, red=loglikelihood, green=bayes Blue=true, red=loglikelihood, green=bayes Blue=true, red=loglikelihood, green=bayes

Figure 3: Comparing Log-likelihood to Bayes Estimate on 10 randomly sampled points
for (a) s =10.1, (b) s =0.2, and (c¢) s = 0.3.

Targeting a Gaussian likelihood we pre multiply with $MC~H(dC)C™, re-
arranging terms, and taking the trace, which gives

1
0= —5tr (MC™1dC = 071 (dC)C ™ X XT — MC™!(dO)O™'K) (252)
= —%tr (MC~'dC — C'XxXTC7'dC — MO~ (dC)CT'K) (25b)

Comparing with we realize that the first two terms may be attributed the Gaus-
sian likelihood, and we thus choose to attribute the last term to the prior. This yet
unknown prior must have the differential,

1
dlog P(C) = —5tr (-MC~'(dC)CT'K) (26a)
1
= —gtr (-MKC~*(dC)Cc™) (26b)
1 _
= —5tr (MKdC™) (26¢)
Thus, the prior must be a linear function in C~!, and we conclude that
1
P(C) = exp (—2tr (MKC™! —|—D)> (27a)
M
= kexp (—2tr (Kc—1)> , (27b)

for a suitable, constant matrix D normalizing the integral of P by k = exp (—3tr(D)).
When K is positive semi-definite, this is identified to be an inverted Wishart distribu-
tion [6l Chapter 7.7]. A Wishart distribution W (X, n), is the distribution of matrices
XTX, where the p columns of X are random n-dimensional vectors identically but
independently drawn from a normal distribution with mean value p and covariance
3, N(u,¥). If C is distributed as W(X,n), then C~! is distributed as (27), where
K=x1

The matrix K i positive definite, when f(d;;) is is diagonally dominant, i.e. for all

i=1...M
M

f(di)l = > 1£(di)]- (28)
=1, j#i
This is proven as follows: Using the Hadamard product, A ® B = {a;;b;;}, we may
rewrite as,
1
K = 5F@(NTN+ 1), (29)



where N = [ni|na|...|na]. The matrix F has a positive diagonal, since f(d;;) = 1.
Further, assuming that F is diagonally dominant, we find that F©® NT N is diagonally
dominant, since the element of [( N7 N);;| < 1 and has 1 along the diagonal. Finally, as
a consequence of , the sum of two diagonally dominant matrices is also diagonally
dominant, and we therefore conclude that K is diagonally dominant when F' is. A
consequence of Gershgorin’s theorem [8, As presented in [J]] is that all diagonally
dominant matrices with positive diagonals have positive eigenvalues, and therefore
we conclude that K is positive definite, when F is diagonally dominant.

4 A Catalog of Priors and Estimators

In the following we will discuss a number of common priors and algorithms for esti-
mating the corresponding covariance matrix.

4.1 Scalar Priors on Matrices

We will in the following consider scalar functions of square matrices, g : RV*N | and
in particular the following functions tr(C'), det(C), ||C||, the later being the two or
Frobenius norm. These have differentials given by,

dtr(C) = tr(dC), (30a)
ddet(C) = det(C)tr(C~dC), (30b)

d||C|| = dy/tr(CTC) = HéHtr(chC) (30c)

and which may easily be extended with differentiable functions of these f : ® — R,
such that

df (9(C)) = f'(9(C))dg(C). (31)
This allows us to concentrate on probability distributions of one variable, P(f(g(C))),
covering a wide range of distributions on matrices. In the general case

['(9(C))
dlog P(f(9(C))) = dg(C). (32)
P(f(9(C)))
Distributions based on the exponential function on scalars are popular and particular
simple in terms of the differential of their logarithm. E.g. for the following distribu-
tions

1 —z?
PGausS (‘T) - \/W exXp < 202 ) (333“)
1 —x
Pryp(x) = —exp (2) , x>0 (33b)
12 12
1 —(log(x) — p)*
PLOgNormal(x) = xm exp < 902 , T > 0 (33C)
the differential of their logarithms are,
d10g Poanss(z) = ;—fda: (34a)
-1
dlog Pexp(z) = de, x>0 (34b)
(o2 — 41
leg PLogNormal(x) = (U a + Og(x)) dI, €T Z 0 (34C)



For both tr and || - || these distributions further act as independent distributions on
the involved entries of C, and since the covariance matrix is known to be positive,
semi-definite, and thus tr(C) > 0, and det(C) > 0.

0=MC'—Cc'xXTCc '+

PGauss PExp PLogNormal
—tr(C -1 — (0% — pu + log(tr(C))
o i o?tr(C)
— 2 — — (02 — log(det(C
det(C) | 29U | L ooyt | Tt logldet(©))
: " (2 = -+ log(lIC1))
-1 -1 — (0% — u—+log
C —cT (o o’
U = 2I[CT 2[[CTP
(35)
Pre and post multiplication with C' and isolating the M C' term gives,
MC=XXT+
PGauss PExp PLogNormal
tr(C) o L o® — p+log(tr(C))
t - 7 -
x(C) o2 C; ,uQC , a2tr(C) ¢
det(C 1 — log(det(C
det() | CU o | L geyeoye | T ptlosldet(@) (36)
I e > — i+ log(|[C)
1 1 0° — p+log
c —octc | ——-cctc co'c
et | - W2I[CT 0|7

These are all non-linear equations, which must be solved iteratively.

4.2 Probability Densities on Logarithm of Matrices

A more complicated model of covariance matrices is to assume that the sorted eigen-
values have a polynomial or exponential relation. That is, covariance matrices are
symmetric and semi-definite implying that

C=VAVT (37)

for some orthonormal matrix V' of C’s eigenvectors and for a diagonal matrix A
of positive eigenvalues both ordered according to eigenvalue. We thus assume that
diag(A) has a simple expression,

diag(A) = h(Aii), (38)

where h(z) is a polynomial or exponential in z. In that case we may easily calculate
the matrix logarithm as,

C =Vliog(AMVT, (39)

where log(A) is the diagonal matrix of log(A;;). The implication is for that the det
and tr operations of C' are simply given as,

det C' = [ [ diag(log(A)), (40a)
trC =) _ diag(log(A)), (40b)



and their differentials are

ddet C = Z%HlogAjjdA”’ (41&)
i G4
dtrC =Y %dAii. (41D)

These may be used as input to the differential of the exponential type distributions
above in the standard way.

For a Gaussian of the norm on the matrix logarithm of the covariance matrix
results in a prior term as follows,

-1
dlog Paauss(|[10g(C)|]) = —-tr (V(log(A))*dV" + A~1dA) (42)
This cannot be refactored into terms only depending on dC', but using
dC = (dV)AVT + V(dNVT + VAdVT, (43)

we may refactor the log-likelihood terms in dV' and dA.

5 Summary

The maximum posterior method has been developed for many common distribu-
tions applied to many common matrix operators, and a program has been written
to demonstrate the consequence of applying a prior to covariance estimates. Fur-
ther, an existing covariance estimation scheme has been reformulated to reveal its
corresponding prior.
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