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Abstract

This paper introduces a branch-and-cut algorithm for the elementary shortest path problem
with a capacity constraint which appears as a subproblem in several column generation based
algorithms, e.g., in the classical Dantzig-Wolfe decomposition of the capacitated vehicle routing
problem. A mathematical model and valid inequalities are presented. Furthermore, a new family
of inequalities denoted the generalized capacity inequalities are introduced. Experimental results
are performed on a set of benchmark instances generated fromwell known benchmark instances
for the capacitated vehicle routing problem. Until now, label algorithms have been the dominant
solution method for this problem but experimental results show that the branch-and-cut algorithm
clearly outperforms on all the generated instances. Secondly, it can be concluded that although the
generalized capacity inequalities drastically improves the lower bound the high separation time
makes their usefulness questionable in their current form.

Keywords: Branch-and-Cut, Elementary Shortest Path Problem with Resource Constraints, Capac-
itated Vehicle Routing Problem

1 Introduction

The elementary shortest path problem with a capacity constraint (ESPPCC) can be stated as: Given
an undirected graphG(V,E) with nodesV and edgesE, a costce associated to each edgee∈ E, a load
di associated to each nodei ∈V, an upper limit on the amount of accumulated loadQ, a source node
s∈V, and a target nodet ∈V; find a path betweensandt with minimum cost satisfying that the sum
of the loads from the visited nodes is not more thanQ.

The ESPPCC is a special case of the elementary shortest path problem with resource constraints
(ESPPRC) and is known to be stronglyNP -Hard, see Dror (1994). To our knowledge the first solution
method proposed for the ESPPRC was a lagrangian relaxation method by Beasley and Christofides
(1989). Later Carlyle et al. (2005) used the same approach and obtained good results when edge costs
are non-negative.

A label algorithm has been developed by Dumitrescu (2002) and Feillet et al. (2004). Based on the
idea of Dijkstra’s bi-directional shortest path algorithmthe label algorithm was improved by Righini
and Salani (2006) by expanding a path both forward and backward from the depot and connecting
them in the middle thereby potentially reducing the runningtime. Furthermore Boland et al. (2006)
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and Righini and Salani (2007) have independently developeda label algorithm that solves the ESP-
PRC by iteratively solving the non-elementary version and increasingly constraining the number of
visits to the customers. In the latter paper this method is referred to as a decremental state-space relax-
ation. The non-elementary problem has pseudo-polynomial complexity and can be solved with label
algorithms, see Desrosiers et al. (1984), Desrochers et al.(1992), Irnich and Villeneuve (2006). The
state-space relaxation has also been used to calculate lower bounds in a branch-and-bound algorithm
by Righini and Salani (2007).

The ESPPRC appears as a subproblem in many column generationbased algorithms, particularly
within routing problems. Feillet et al. (2004) were the firstto use a label algorithm for ESPPRC in a
vehicle routing context, more precisely for the vehicle routing problem with time windows (VRPTW).
Later label algorithms for the ESPPRC have been used by Chabrier (2005), Danna and Pape (2005),
Salani (2005), Jepsen et al. (2007) to successfully solve until then unsolved VRPTW instances from
the benchmarks by Solomon (1987). However, label algorithms tend to have shortcomings when it is
possible to produce long paths in the number of visited nodes, e.g., when resources are not particularly
constraining. This usually results in a large amount of labels that have to be processed and can become
very time consuming, see Jepsen et al. (2007). This motivates alternative solution methods for solving
ESPPRC, e.g., lagrangian relaxation or branch-and-cut (BAC) algorithms. An advantage of a BAC
algorithm would be the possibility to efficiently handledecreasingextension functions which can be
difficult to handle in label algorithms that traditionally relies onincreasingfunctions when extending
labels, see Desaulniers et al. (1998), Irnich (2007) for further details on the concept of extension
functions.

Bauer et al. (2002) suggest to solve the ESPPCC by a BAC algorithm, but to our knowledge noth-
ing further has been published in the literature although several BAC algorithms exist for problems
related to the ESPPCC. Bauer et al. (2002) consider the knapsack constrained circuit problem (KCCP)
where a minimal capacitated cycle in a graph is sought. This is equivalent to the ESPPCC if one node
is fixed in the KCCP, since this node can be spilt into a source and a destination node in the ESPPCC.
They implemented a BAC algorithm to solve a variant of the KCCP where the demand of the nodes
were given with unit weights and denoted it the cardinality constraint circuit problem.

A related and well studied problem is the traveling salesmanproblem (TSP), see Padberg and
Rinaldi (1990), Naddef and Thilnel (2002a,b). The main difference between the ESPPCC and the
TSP is that no capacity limit is present in the TSP and that allthe nodes must be visited on the path.

The prize collecting traveling salesman problem (PCTSP) presented by Balas (1989, 1995) is
another related problem. In this TSP variant a prize is collected at each visited node and a minimum
amount of accumulated prizes must be collected on the tour. The difference with this variant of the
TSP and the ESPPRC is that in the PCTSP a minimum amount of prizes (load) needs to be collected,
whereas for the ESPPCC a maximum amount of load can be collected.

In the orienteering problem presented by Fischetti et al. (1998) the profit of visiting the nodes is
maximized and the length of the tour is bounded by a maximum length. The difference here being
that the load is on the edges instead of the nodes.

The main contribution of this paper is the introduction of a BAC algorithm for solving the ESP-
PCC. This includes a 2-index mathematical model and a presentation of valid inequalities with empha-
sis on the introduction of the generalized capacity inequalities. Thorough computational experiments
are performed to verify the usefulness of a the BAC algorithm, e.g., by comparing running times with
those of a label algorithm.

The paper is outlined as follows: Section 2 presents a formalinteger programming model of the
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ESPPCC, Section 3 presents the cutting planes used in the BACalgorithm, the computational results
are found in Section 4, and Section 5 holds concluding remarks and suggestions for further research.

2 Mathematical Models

This section presents a flow model for the ESPPCC in an undirected graphG(E,V). In the following,
variableyi indicate the use of nodei ∈V \{s, t}, and variablexe indicate the use of edgee∈ E where
e(i, j) denotes the end nodesi and j of e. When describing the model some shorthand notation will be
used. For the set of edgesT let

x(T) = ∑
e∈T

xe

Furthermore, for a set of nodesS⊆V let the set of edgesδ(S) = {e(i, j) : i ∈ S∧ j ∈V \S} denote the
edges betweenSandV \Swith δ({i}) = δ(i) for a single nodei ∈V. Also, for a set of nodesS let

y(S) = ∑
i∈S

y(i)

and letE(S) = {e(i, j) : i ∈ S∧ j ∈ S} be the set of edges between the nodes inS.

The mathematical model of ESPPCC is then:

min ∑
e∈E

cexe (1)

s.t. x(δ(s)) = 1 (2)

x(δ(t)) = 1 (3)

∑
e∈δ(i)

xe = 2yi ∀i ∈V \{s, t} (4)

∑
i∈V

diyi ≤ Q (5)

x(E(S)) ≤ y(S)−yi ∀i ∈ S,∀S⊆V, |S| ≥ 2 (6)

xe ∈ {0,1} ∀e∈ E (7)

yi ∈ {0,1} ∀i ∈V \{s, t} (8)

The objective function (1) minimizes the overall edge cost.Constraints (2) and (3) ensure that the
path starts in the source node and and ends in the target. Constraints (4) map thex andy variables.
Constraint (5) imposes the capacity. Constraints (6) impose connectivity and subtour elimination.
Finally, constraints (7) and (8) bounds the variables indicating the use of edges and nodes.

This model has|E|+ |V −2| variables and an exponential number of constraints due to (6). In a
BAC algorithm these constraints will be disregarded and separated when violated to ensure feasibility.

3 Cutting Planes

This section presents the inequalities used in the BAC algorithm: the generalized subtour elimination
constraints (6) which are included in the model presented inSection 2 but can be used as cutting
planes when relaxed from the model, the 0-1 knapsack cover inequalities, and the generalized capacity
inequalities for the ESPPCC.
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3.1 Generalized Subtour Elimination Constraints

These constraints are a generalization of the subtour elimination constraints known from TSP, which
are also valid for ESPPCC on the form:

x(E(S)) ≤ |S|−1 ∀S⊆V (9)

Restricting the constants on the right-hand-side to reflectthe actual node flow provides a tighter in-
equality sinceyi ≤ 1 for all i ∈ V \ {s, t}. The generalized subtour elimination constraints can be
written on either of the forms:

x(E(S)) ≤ y(S)−yi ∀i ∈ S,∀S⊆V, |S| ≥ 2 (10)

x(δ(S)) ≥ 2yi ∀i ∈ S,∀S⊆V \{s, t} (11)

Separation of (10) and (11) can be done by solving as− t-minimum cut from each nodei ∈V \{s, t}
to the target nodet on the induced graph of the LP solution(x⋆,y⋆) with edge weightswe given as:

we =

{

x⋆
e e∈ E \{e(s, t)}

M e= (s, t)

whereM is a sufficiently large constant to ensure thats and t are on the same side of the cut, see
Wolsey (1998).

3.2 0-1 Knapsack Cover Inequalities

A 0-1 knapsack cover inequality for a set of nodesS⊆V where∑i∈Sdi > Q are given as:

y(S) ≤ |S|−1 (12)

The inequality state that if a set of nodes violates the capacity then not all nodes in the set can be
visited by the path. The 0-1 knapsack cover inequality (12) can be rewritten as

∑
i∈S

(1−yi) ≥ 1 (13)

Given the LP solution(x∗,y∗) the separation problem becomes finding a coverS, i.e, a setS⊆ V
satisfying∑i∈Sdi > Q, where

∑
i∈S

(1−y∗i ) < 1 (14)

in which case the corresponding 0-1 knapsack cover inequality (12) is violated. The most violating
(12) is identified by minimizing the left-hand side of (14), i.e., by solving:

ζ = min
S⊆V

{

∑
i∈S

(1−y∗i )zi : ∑
i∈S

dizi > Q,z∈ {0,1}|V |

}

If ζ ≥ 1 no violated (12) exists. This problem is a minimization version of the well known 0-1
knapsack problem, see Kellerer et al. (2004), Wolsey (1998).

Inspired by the generalization of the generalized subtour elimination constraints Jepsen and Spooren-
donk (2008) suggested to exploit the fact that sinceyi ≤ 1 for all i ∈V \{s, t,} then the flow through
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a set of nodesScan be less than 2 in an LP solution. That is, scaling the right-hand-side of (12) with
half the flowx(δ(S)) yields

y(S) ≤
1
2
(|S|−1)x(δ(S)) (15)

Whenx(δ(S)) < 2 there are cases where the inequality (15) is violated and the normal 0-1 knapsack
cover inequality (12) is not. Jepsen and Spoorendonk (2008)suggested an enumeration scheme to
separate the inequalities. Their results indicated that (15) had a negative effect on the convergence of
the BAC algorithm, therefor this family of inequalities arenot pursued further in this paper.

3.3 Generalized Capacity Inequalities

This subsection introduces a family of inequalities inspired by the fractional capacity inequalities of
the capacitated vehicle routing problem (CVRP), see Toth and Vigo (2001). The generalized capacity
inequality for a set of nodesS⊆V \{s, t} introduced in this paper are given as:

1
2

Qx(δ(S)) ≥ ∑
i∈S

diyi (16)

The inequality ensures that a setS of nodes are visited according to their demand, e.g., if two third
the capacity is consumed inS then the set must be visited at least two third time. An example of a
violated (16) can be seen in the example given in Figure 3.3 onthe following page.

The validity of (16) is proved in the following proposition:

Proposition 1. The generalized capacity inequality(16) is valid for ESPPCC.

Proof. If y(S) = 0 it is implied thatx(δ(S)) = 0, therefor both the left-hand side and the right hand
side evaluate to 0.

If y(S) ≥ 1 it is implied thatx(δ(S)) ≥ 2 and due to the capacity constraint (5) the right-hand side
can never evaluate to more thanQ which will be the minimal value of the left-hand side, i.e., in this
case the capacity constraint (5) dominates the generalizedcapacity inequality (16).

Given an LP solution(x⋆,y⋆) the separation problem of (16) becomes the problem of findinga set
S⊆V \{s, t} where

1
2

Qx⋆(δ(S)) < ∑
i∈S

diy
⋆
i

⇔
1
2

Qx⋆(δ(S))−∑
i∈S

diy
⋆
i + ∑

i∈V

di < ∑
i∈V

di

⇔
1
2

Qx⋆(δ(S))+∑
i∈S

di(1−y⋆
i )+ ∑

i∈V\S

di < ∑
i∈V

di

Separating (16) can be done by solving|V|−2 differents− t-minimum cut problems one from each
nodeh∈V \{s, t} to the target nodet. The problems are solved as maxflow problems using the same
procedure as for separating (10) and (11). The maxflow problem for eachh is solved on a directed
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Consider the fractional solution given by the
graph to the right with different fractional edge
values indicated by the dotted and punctured
lines. The nodes are numbered 0, . . . ,5 where a
path is sought from node 0 to 0. The demand is
given asd = {0,2,2,2,2,1} and the capacityQ is
5.

Consider a generalized capacity inequality (16)
covering the node setS= {1,2,3} resulting in a
fractional flowx⋆(δ(S)) = x⋆

01 + x⋆
03 = 4

3 through
the node set. The corresponding (16) is violated
since

1
2

Qx⋆(δ(S)) =
10
3

� ∑
i∈S

diy
⋆
i =

12
3

0

1

4

2

3

5
2/3

1/3

Figure 1:A violated generalized capacity inequality (16).

graph induced from the LP solution(x⋆,y⋆), i.e., edges are split into opposite directed arcs, and the
arcs intoh are disregarded. The edge weightsei j are given as:

wi j =















1
2Qx⋆

h j +d j i = h, j ∈V \{h, t}
1
2Qx⋆

it +di(1−y⋆
i ) i ∈V \{s, t} , j = t

1
2Qx⋆

i j i ∈V \{h, t}, j ∈V \{h, t}
M i = s, j = t

whereM is a sufficiently large constant to ensure thatsandt are on the same side of the cut.
This graph is more dense than the induced graph used for separating (10) and (11), therefor the

separation of (16) is expected to be slower.

4 Computational Results

A new set of benchmarks based on the CVRP instances fromhttp://www.branchandcut.org
are used for the computational experiments. The instances are divided in series A, B, E, G, M, and
P according to the authors. The ESPPCC instances are pricingproblems gathered from solving the
CVRP with column generation, see Fukasawa et al. (2006), Jepsen et al. (2007), i.e., dual values have
been subtracted from the edge costs resulting in instances with negative edge weights. The ESPPCC
instances are based on late column generation iterations ofthe harder (time> 500 sec.) CVRP in-
stances solved by Fukasawa et al. (2006). The ESPPCC instances are gathered in the SPPRCLIB
available athttp://www.diku.dk/˜spooren/spprclib.htm .

The experiments begins with an investigation of the impact of the parameter setting for cut genera-
tion of the generalized subtour elimination constraints (10) which is part of the model for the ESPPCC
given by (1)-(8). Next, the impact of the generalized capacity inequalities (16) are investigated. For
the parameter test we consider 10 of the harder problems in the test library, two from each series
except the G series. This is followed by a lower bound comparison using different separation strate-
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gies. Last a comparison of the BAC algorithm and a state-of-the-art label algorithm derived from the
algorithm used in Jepsen et al. (2007).

All experiments are performed on a 2.66 GHz Intel(R) Xeon(R)X5355 machine with 8 GB mem-
ory using CPLEX 10.2. The BAC algorithm is implemented usingcallback functions for cut gen-
eration which is available in the CPLEX callable library. The tests are performed using the default
CPLEX parameters. This includes the generation of cuts for general mixed-integer programs such
as Chvátal-Gomory, MIR, and disjunctive cuts. Also, the 0-1 knapsack covers are included in the
CPLEX default settings and preliminary tests indicated that neither the separation time or the change
in lower bounds were much affected by the cuts. Therefor, we have not done any further tests of the
0-1 knapsack covers but rely on the CPLEX default settings.

4.1 Parameters Impact for the Generalized Subtour Elimination Constraints

The setting of the parameters for generation of violated generalized subtour elimination constraints
(6) can have a huge influence on the computational time for theBAC algorithm. A low threshold on
violation will result in good lower bounds and fewer branch nodes but a slower convergence in each
node, while the opposite is true for a high threshold. Also the number of violated cuts added in each
iteration can influence the convergence and the time spent re-optimizing the LP-problem.

Figure 2 on the next page shows a plot with two axes given as theviolation threshold and number
of cuts to add per iteration. The requirement of violation isranging from 0.1 to 1 in steps of 0.1 and
the number of cuts to add is ranging from 1 then 10 to 100 in steps of 10. The third vertical axis
indicate the average time spent. The time for each instance is scaled to the interval[0,1] where 0 is
the minimum time and 1 a maximum time given for all parameter settings for that instance.

From Figure 2 on the following page it is observed that the best parameter setting appears to be
to add 1 cut per iteration that is violated by at least 0.4. This indicates that the cut separation time is
insignificant compared to solving the LPs.

4.2 Investigating the Generalized Capacity Inequalities

Note, that the generalized capacity inequalities (16) can substitute the generalized subtour elimination
constraints (10) in model (1)-(8), since any infeasible integer solution will be violated by some gen-
eralized capacity inequality. However, preliminary test showed that due to slow separation times (16)
are not competitive compared to (10) in a BAC algorithm. Therefor, a cut policy was chosen such
that (16) are only separated (and possible added) whenever no violated (10) are separated (using the
default parameters found above).

Again preliminary tests indicated that due to the slow separation routine (16) were not worth the
effort. A slow separation was expected since the max-flow calculations is done on very dense graphs
compared to the very sparse graph used in the separation of (10). However, we believe that it is
relevant to investigate if (16) can ever become useful, e.g., with a faster heuristic separation routine.

Figure 3 on page 9 shows, as before, a plot of the violation threshold, number of cuts to add per
iteration, and average time. The time is calculated withoutthe separation time of (16), hence it only
indicates if the convergence of the BAC is improved or not when (16) are added.

Figure 3 on page 9 indicates that a large violation threshold(≥ 0.8) is preferred for (16). This
further indicates that the convergence of the BAC algorithmis faster when few of (16) are added
leading to a smaller LP but a worse lower bound. Figure 4 substantiate this result as it can be seen
that almost no cuts are added with violation thresholds 0.8 and higher.
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Figure 2:Parameter test for the generalized subtour elimination constraints (10). Above is a plot of the average
time given the violation threshold and the number of cuts to add.

Although the generalized capacity inequalities (16) are a theoretically nice set of inequalities
our tests have shown that in their current form and with the proposed exact separation routine the
inequalities do not appear to be computationally competitive.

4.3 Lower Bound Comparison

Table 1 on page 11 sums up the root lower bounds (root) and the number of branch nodes (B&B) for
three different cut separation parameter settings. A ‘-’ entry in the branch node columns indicate that
the BAC algorithm timed out at 600 seconds. The three parameter setting tested are:

• GSECis the BAC algorithm where at most 1 violated generalized subtour elimination constraint
(10) with a minimum violation of 0.01 is added per iteration.

• GCI is the BAC algorithm with theGSECparameter setting and when no violated (10) are found
then at most 1 violated generalized capacity inequality (16) with a minimum violation of 0.01
is added.

• default is the BAC algorithm where at most 1 violated generalized subtour elimination con-
straint (10) with a minimum violation of 0.4 is added per iteration.

The optimal solution is given in the right most column.
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Figure 3: Parameter test for the generalized capacity inequalities (16). Above is a plot of the average time
given the violation threshold and the number of cuts to add.

When comparing the parameter settingsGSECandGCI, it is obvious that the generalized capacity
inequalities (16) improves the lower bounds considerably.The average gap is decreases by 63%
when comparing the two settings, this includes the instances that timed out and potentially could
have improved the lower bound further. Surprisingly the number of branch nodes does not decrease
proportionally with the size of the gap. That is, for the instances that did not time out the average gap
is closed by 76% but with only 7% fewer branch nodes. In several cases the number of branch nodes
actually increases considerable. This indicates that (16)complicates the branch decisions.

The behavior observed between parameter settingGSECanddefault is more as expected. A
worse lower bound with thedefault setting leads to more branch nodes. However, the previous
test for the generalized subtour elimination (10) constraints showed that this setting was the fastest on
average.

4.4 Comparison with a Label Algorithm

Table 2 on page 12 shows the running time of the BAC algorithm with default parameters compared
to the running time of a label algorithm.

The BAC algorithm clearly outperforms the label algorithm.That is, in all 45 instances. However,
it is worth noting that when the solution is near 0 (which is and upper bound for all instances since
they are generated as pricing problems in a column generation algorithm) then the label algorithm
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Figure 4:Parameter test for the generalized capacity inequalities (16). Above is given the average scaled num-
ber of generalized capacity inequalities added with different violation thresholds when solving the instances,
i.e., with a violation threshold of 0.1 the number of cuts aredecreased by about 50 % compared to the setting
with a violation threshold of 0.01.

performs much better than on the instances that contains much negativity. That is, the label algorithm
is faster when there are less negativity in the problem whereas the BAC algorithm appears to be more
robust.

10



A Branch-and-Cut Algorithm for the ESPPCC Jepsen, Petersenand Spoorendonk

GSEC GCI default

Name B&B root B&B root B&B root solution

A-n54-k7-149 231 -90877 - -41213 280 -109018 -12492
A-n60-k9-57 1641 -98206 - -64557 3071 -118437 -1000
A-n61-k9-80 205 -63534 92 -41032 462 -73397 -23549
A-n62-k8-99 133 -103839 - -47340 301 -122973 -35969
A-n63-k9-157 122 -63082 492 -38929 113 -78190 -24189
A-n63-k10-44 127 -76475 149 -51035 280 -80765 -32561
A-n64-k9-45 358 -92812 157 -65209 425 -104686 -50550
A-n65-k9-10 152 -93117 129 -58526 189 -103936 -42835
A-n69-k9-42 72 -56453 - -53299 179 -60410 -43290
A-n80-k10-14 84 -121510 45 -112483 120 -128508 -105283

B-n45-k6-54 277 -95588 497 -88761 502 -103214 -74278
B-n50-k8-40 166 -105497 - -41212 237 -128488 -12832
B-n52-k7-15 25 -85997 22 -79129 59 -90278 -74998
B-n57-k7-20 12 -876421 19 -876421 328 -882924 -867154
B-n66-k9-50 239 -81006 28 -38097 1195 -94120 -26520
B-n67-k10-26 184 -55180 178 -26808 343 -63086 -21924
B-n68-k9-65 150 -88375 - -55175 342 -99383 -31001
B-n78-k10-70 344 -91021 - -54330 480 -101516 -44333

E-n76-k7-44 117 -30127 115 -25885 338 -32038 -22214
E-n76-k10-72 239 -36569 164 -31404 138 -38613 -25241
E-n76-k14-102 3163 -28126 - -16153 3992 -31018 -1
E-n76-k15-40 3747 -25752 - -17526 4993 -28675 -1
E-n101-k8-291 48 -8296 - -7398 197 -9472 -4266
E-n101-k14-158 1468 -25748 - -22729 1350 -30882 -3590

G-n262-k25-316 669 -1434843 - -1434843 1510 -1434883 -1426535

M-n101-k10-97 40 -35323 37 -34758 76 -37825 -32628
M-n121-k7-260 89 -162680 - -161424 147 -164742 -160097
M-n151-k12-15 338 -87899 - -85488 822 -92880 -79996
M-n200-k16-143 6 -199411 4 -199411 118 -201772 -198792
M-n200-k17-12 4 -121506 1 -121210 7 -121506 -121210

P-n50-k7-92 950 -18594 1152 -12245 1319 -21516 -2
P-n50-k8-19 160 -89868 40 -89848 207 -90606 -83307
P-n50-k10-24 197 -19811 608 -11971 443 -21975 -2965
P-n51-k10-30 1028 -23812 - -18488 1588 -27061 -2
P-n55-k7-116 84 -27065 36 -22945 105 -28094 -17824
P-n55-k8-260 101 -18839 145 -11377 167 -22237 -3573
P-n55-k10-44 913 -21448 2197 -11798 1192 -25131 -1090
P-n55-k15-88 5971 -26723 - -20135 4781 -28128 -2
P-n60-k10-24 242 -26948 137 -21183 301 -29289 -15001
P-n60-k15-8 1495 -21889 1889 -13812 1507 -24674 -534
P-n65-k10-102 2390 -18923 - -10975 2532 -21424 -3
P-n70-k10-12 2 -72264 1 -70317 21 -73460 -70317
P-n76-k4-41 1 -88276 1 -88276 1 -88276 -88276
P-n76-k5-16 6 -108884 10 -108884 24 -108884 -107633
P-n101-k4-174 174 -19656 165 -19041 395 -19887 -17702

Table 1:Comparison of the number of branch nodes and lower bounds.
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Name BAC time (s) label time (s) speed up

A-n54-k7-149 6.96 1735.23 249.3
A-n60-k9-57 36.55 242.64 6.6
A-n61-k9-80 4.44 >7200.00 ∞
A-n62-k8-99 17.94 >7200.00 ∞
A-n63-k9-157 3.16 >7200.00 ∞
A-n63-k10-44 2.12 693.80 327.3
A-n64-k9-45 14.57 >7200.00 ∞
A-n65-k9-10 4.43 >7200.00 ∞
A-n69-k9-42 1.76 3246.72 1844.7
A-n80-k10-14 12.14 >7200.00 ∞

B-n45-k6-54 1.32 >7200.00 ∞
B-n50-k8-40 11.01 >7200.00 ∞
B-n52-k7-15 1.00 >7200.00 ∞
B-n57-k7-20 1.74 >7200.00 ∞
B-n66-k9-50 66.93 >7200.00 ∞
B-n67-k10-26 4.62 >7200.00 ∞
B-n68-k9-65 11.88 >7200.00 ∞
B-n78-k10-70 24.30 >7200.00 ∞

E-n76-k7-44 6.02 >7200.00 ∞
E-n76-k10-72 1.19 >7200.00 ∞
E-n76-k14-102 14.77 45.19 3.1
E-n76-k15-40 19.59 151.59 7.7
E-n101-k8-291 8.08 >7200.00 ∞
E-n101-k14-158 37.84 >7200.00 ∞

G-n262-k25-316 53.00 >7200.00 ∞

M-n101-k10-97 3.12 >7200.00 ∞
M-n121-k7-260 34.46 >7200.00 ∞
M-n151-k12-15 78.03 >7200.00 ∞
M-n200-k16-143 3.18 >7200.00 ∞
M-n200-k17-12 17.75 >7200.00 ∞

P-n50-k7-92 2.42 104.22 43.1
P-n50-k8-19 0.36 >7200.00 ∞
P-n50-k10-24 0.72 2.91 4.0
P-n51-k10-30 2.18 4.06 1.9
P-n55-k7-116 0.58 2275.07 3922.5
P-n55-k8-260 1.20 133.45 111.2
P-n55-k10-44 2.14 14.69 6.9
P-n55-k15-88 3.97 44.73 11.3
P-n60-k10-24 1.04 110.20 106.0
P-n60-k15-8 1.95 2.50 1.3
P-n65-k10-102 6.65 163.48 24.6
P-n70-k10-12 0.24 >7200.00 ∞
P-n76-k4-41 1.85 >7200.00 ∞
P-n76-k5-16 0.57 >7200.00 ∞
P-n101-k4-174 11.25 >7200.00 ∞

Best 45 0

Table 2:Time comparison of the BAC and the label algorithm.
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5 Concluding Remarks

This paper introduced a BAC algorithm for solving the ESPPCC. The algorithm clearly outperformed
a label algorithm for the considered instances. Label algorithms have been the preferred solution ap-
proach up until now, but the experimental results presentedin this paper suggest otherwise. However,
it should be noted that the label algorithm is almost competitive when the instances contain little neg-
ativity. This is especially interesting when using column generation algorithms where subproblems
with little negativity must be solved to optimality.

Furthermore, the generalized capacity inequalities were introduced as a set of valid inequalities for
the ESPPCC. On the bright side, it can be concluded that the inequalities improve the lower bounds
significantly. However, this comes at a cost of complicatingthe branch decision leading to a large
amount of branch nodes. Also, the exact separation routine takes a considerable amount of time. This
is due to solving a maxflow problem on a near complete graph. That is, the generalized capacity
inequalities improves the lower bound but leads to overall slower running times.

Future research could include the adaption of more valid inequalities known from related problems
such as the TSP and the CVRP, e.g., two-matching inequalities, comb inequalities, and infeasible path
inequalities. Another interesting direction is the conditional cuts by Fischetti et al. (1998). Such a cut
resembles a specialized branch rule as it cuts off some of thebranch tree after solving a subproblem
for the subtree.

Also, it would be interesting to extend the BAC algorithm to solve the more general ESPPRC.
Extending the mathematical formulation to cover a directedgraph is fairly easy. This will result in a
doubling of the number of variables. This does not favor the BAC algorithm where compact formu-
lations are preferred but it may be manageable. However, a much more delicate matter is handling
resources with bounds imposed at the nodes or edges (compared to a capacity resource where the
bound is global). Such resources includes the well known time window constraints which are often
modeled using ”big-M” constraints that are known to be notoriously computationally unstable. An al-
ternative for handling time window-like constraints are the use of valid inequalities such as infeasible
path inequalities. However, there are an exponential number of these inequalities which areNP -
hard to separate (compared to the polynomial separation time of the generalized subtour elimination
constrains) so these cuts are bound to have a significant impact on the running time.
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