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Abstract

This paper introduces a branch-and-cut algorithm for tleenehtary shortest path problem
with a capacity constraint which appears as a subproblemvaral column generation based
algorithms, e.g., in the classical Dantzig-Wolfe deconitpmsof the capacitated vehicle routing
problem. A mathematical model and valid inequalities aespnted. Furthermore, a new family
of inequalities denoted the generalized capacity inetigslare introduced. Experimental results
are performed on a set of benchmark instances generatedifetirknown benchmark instances
for the capacitated vehicle routing problem. Until now,dbalgorithms have been the dominant
solution method for this problem but experimental reslisssthat the branch-and-cut algorithm
clearly outperforms on all the generated instances. Ségdnchn be concluded that although the
generalized capacity inequalities drastically improves lbwer bound the high separation time
makes their usefulness questionable in their current form.

Keywords. Branch-and-Cut, Elementary Shortest Path Problem witlolRes Constraints, Capac-
itated Vehicle Routing Problem

1 Introduction

The elementary shortest path problem with a capacity cansttESPPCC) can be stated as: Given
an undirected grapG(V, E) with nodesv and edge&, a costce associated to each edge E, a load

d; associated to each node V, an upper limit on the amount of accumulated I&gch source node
seV, and a target nodec V; find a path betweesandt with minimum cost satisfying that the sum
of the loads from the visited nodes is not more tan

The ESPPCC is a special case of the elementary shortest nodllenqn with resource constraints
(ESPPRC) and is known to be strongly -Hard, see Dror (1994). To our knowledge the first solution
method proposed for the ESPPRC was a lagrangian relaxatimooh by Beasley and Christofides
(1989). Later Carlyle et al. (2005) used the same approatioltained good results when edge costs
are non-negative.

A label algorithm has been developed by Dumitrescu (200&@¥arillet et al. (2004). Based on the
idea of Dijkstra’s bi-directional shortest path algorittine label algorithm was improved by Righini
and Salani (2006) by expanding a path both forward and backiwam the depot and connecting
them in the middle thereby potentially reducing the runrtinge. Furthermore Boland et al. (2006)
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and Righini and Salani (2007) have independently devel@pkatbel algorithm that solves the ESP-
PRC by iteratively solving the non-elementary version artd@asingly constraining the number of
visits to the customers. In the latter paper this methodfiésmed to as a decremental state-space relax-
ation. The non-elementary problem has pseudo-polynomialptexity and can be solved with label
algorithms, see Desrosiers et al. (1984), Desrochers €992), Irnich and Villeneuve (2006). The
state-space relaxation has also been used to calculate bowads in a branch-and-bound algorithm
by Righini and Salani (2007).

The ESPPRC appears as a subproblem in many column gendratied algorithms, particularly
within routing problems. Feillet et al. (2004) were the fiasuse a label algorithm for ESPPRC in a
vehicle routing context, more precisely for the vehicletimogi problem with time windows (VRPTW).
Later label algorithms for the ESPPRC have been used by @&nhdB005), Danna and Pape (2005),
Salani (2005), Jepsen et al. (2007) to successfully soltietban unsolved VRPTW instances from
the benchmarks by Solomon (1987). However, label algosttend to have shortcomings when it is
possible to produce long paths in the number of visited naglgs when resources are not particularly
constraining. This usually results in a large amount of kbt have to be processed and can become
very time consuming, see Jepsen et al. (2007). This mosiedternative solution methods for solving
ESPPRC, e.g., lagrangian relaxation or branch-and-cuC{B#\gorithms. An advantage of a BAC
algorithm would be the possibility to efficiently handlecreasingextension functions which can be
difficult to handle in label algorithms that traditionallglies onincreasingfunctions when extending
labels, see Desaulniers et al. (1998), Irnich (2007) fothimr details on the concept of extension
functions.

Bauer et al. (2002) suggest to solve the ESPPCC by a BAC #iguarbut to our knowledge noth-
ing further has been published in the literature althougtersé BAC algorithms exist for problems
related to the ESPPCC. Bauer et al. (2002) consider the &okgsnstrained circuit problem (KCCP)
where a minimal capacitated cycle in a graph is sought. Fregjuivalent to the ESPPCC if one node
is fixed in the KCCP, since this node can be spilt into a sounckesadestination node in the ESPPCC.
They implemented a BAC algorithm to solve a variant of the KO&here the demand of the nodes
were given with unit weights and denoted it the cardinaldpstraint circuit problem.

A related and well studied problem is the traveling salesmablem (TSP), see Padberg and
Rinaldi (1990), Naddef and Thilnel (2002a,b). The maineadi#hce between the ESPPCC and the
TSP is that no capacity limit is present in the TSP and thahalhodes must be visited on the path.

The prize collecting traveling salesman problem (PCTSEyqmted by Balas (1989, 1995) is
another related problem. In this TSP variant a prize is ctald at each visited node and a minimum
amount of accumulated prizes must be collected on the tdue. difference with this variant of the
TSP and the ESPPRC is that in the PCTSP a minimum amount elsp(tizad) needs to be collected,
whereas for the ESPPCC a maximum amount of load can be aallect

In the orienteering problem presented by Fischetti et &98) the profit of visiting the nodes is
maximized and the length of the tour is bounded by a maximumtke The difference here being
that the load is on the edges instead of the nodes.

The main contribution of this paper is the introduction of &@algorithm for solving the ESP-
PCC. This includes a 2-index mathematical model and a piatsam of valid inequalities with empha-
sis on the introduction of the generalized capacity inatjeal Thorough computational experiments
are performed to verify the usefulness of a the BAC algorijtarg., by comparing running times with
those of a label algorithm.

The paper is outlined as follows: Section 2 presents a formte@der programming model of the
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ESPPCC, Section 3 presents the cutting planes used in theaR@@thm, the computational results
are found in Section 4, and Section 5 holds concluding resnankl suggestions for further research.

2 Mathematical Models

This section presents a flow model for the ESPPCC in an unidadegraphG(E,V). In the following,
variabley; indicate the use of nodez V \ {s,t}, and variable¢ indicate the use of edgec E where
e(i, j) denotes the end nodeand j of e. When describing the model some shorthand notation will be
used. For the set of edgéslet
X(T)=H Xe
2

Furthermore, for a set of nod&s_ V let the set of edgeX(S) = {e(i, j) : i € SA j € V \ S} denote the
edges betweeSandV \ Swith ({i}) = &(i) for a single node € V. Also, for a set of nodeSlet

(S = gsy(i)

and letE(S) = {e(i, ]) :i € SA j € S} be the set of edges between the nodeS in
The mathematical model of ESPPCC is then:

min Z;cexe (1)

s.t.x(8(s)) =1 2

x(8(t)) =1 3)

> Xe=2y VieV\{st} (4)
0]

D Gy <Q ©))

X(E(S) <y(9) —vVi Vie SVSCV,|§ >2 (6)

Xe € {0,1} VeecE (7)

yi € {0,1} VieV\{st} (8)

The objective function (1) minimizes the overall edge cdSanstraints (2) and (3) ensure that the
path starts in the source node and and ends in the targettr@iats (4) map the andy variables.
Constraint (5) imposes the capacity. Constraints (6) irapmmnectivity and subtour elimination.
Finally, constraints (7) and (8) bounds the variables iatitig) the use of edges and nodes.

This model hasE| + |V — 2| variables and an exponential number of constraints due)tdr{Ga
BAC algorithm these constraints will be disregarded an@sspd when violated to ensure feasibility.

3 Cutting Planes

This section presents the inequalities used in the BAC dlgor the generalized subtour elimination

constraints (6) which are included in the model presentefidation 2 but can be used as cutting
planes when relaxed from the model, the 0-1 knapsack cogquatlities, and the generalized capacity
inequalities for the ESPPCC.
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3.1 Generalized Subtour Elimination Constraints

These constraints are a generalization of the subtourredtioin constraints known from TSP, which
are also valid for ESPPCC on the form:

x(E(S) <|9-1 VSCV 9)

Restricting the constants on the right-hand-side to reflexiactual node flow provides a tighter in-
equality sincey; <1 for alli € V \ {s,t}. The generalized subtour elimination constraints can be
written on either of the forms:

X(E(S) < Y(S) — v Vi€ SYSCV,[S > 2 (10)
X(3(S)) > 2 Vie SYSCV\{st} (11)

Separation of (10) and (11) can be done by solvisg-a-minimum cut from each nodec V \ {s,t}
to the target nodeon the induced graph of the LP soluti¢xt,y*) with edge weightsve given as:

_ [ x ecE\{e(st)}
We_{ M e=(st)

whereM is a sufficiently large constant to ensure teandt are on the same side of the cut, see
Wolsey (1998).
3.2 0-1Knapsack Cover Inequalities

A 0-1 knapsack cover inequality for a set of no&S V wherey;.sdi > Q are given as:

y(S <|§-1 (12)

The inequality state that if a set of nodes violates the dap#een not all nodes in the set can be
visited by the path. The 0-1 knapsack cover inequality (52) fee rewritten as

Z(l—yi) >1 (13)

Given the LP solutionx*,y*) the separation problem becomes finding a cdyeire, a setSC V
satisfyingysdi > Q, where

25(1—%*) <1 (14)

le

in which case the corresponding 0-1 knapsack cover ingguak) is violated. The most violating
(12) is identified by minimizing the left-hand side of (14g.i by solving:

= rsréi\r){gg(l—W)Z ; I;dia >Q,z€ {0,1}'\"}

If ¢ > 1 no violated (12) exists. This problem is a minimizationsien of the well known 0-1
knapsack problem, see Kellerer et al. (2004), Wolsey (1998)

Inspired by the generalization of the generalized subtlmiration constraints Jepsen and Spooren-
donk (2008) suggested to exploit the fact that sipce 1 for alli € V' \ {s;t, } then the flow through

4
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a set of node& can be less than 2 in an LP solution. That is, scaling the-hightd-side of (12) with
half the flowx(&(S)) yields

VS < 5(1S ~ DX(E(S) (15)

Whenx(3(S)) < 2 there are cases where the inequality (15) is violated amddhmal 0-1 knapsack
cover inequality (12) is not. Jepsen and Spoorendonk (2808yested an enumeration scheme to
separate the inequalities. Their results indicated tHatl{ad a negative effect on the convergence of
the BAC algorithm, therefor this family of inequalities aret pursued further in this paper.

3.3 Generalized Capacity Inequalities

This subsection introduces a family of inequalities inspiby the fractional capacity inequalities of
the capacitated vehicle routing problem (CVRP), see Toth\dgo (2001). The generalized capacity
inequality for a set of nodeSC V \ {s,t} introduced in this paper are given as:

_QX ) > zsdl Yi (16)

The inequality ensures that a $eof nodes are visited according to their demand, e.qg., if twalt
the capacity is consumed Bithen the set must be visited at least two third time. An exangpla
violated (16) can be seen in the example given in Figure 3iBeifollowing page.

The validity of (16) is proved in the following proposition:

Proposition 1. The generalized capacity inequaliy6) is valid for ESPPCC.

Proof. If y(S) =0 it is implied thatx(d(S)) = 0, therefor both the left-hand side and the right hand
side evaluate to O.

If y(S) > Llitisimplied thatx(3(S)) > 2 and due to the capacity constraint (5) the right-hand side
can never evaluate to more th@which will be the minimal value of the left-hand side, i.a,this
case the capacity constraint (5) dominates the generateeakity inequality (16). O

Given an LP solutiorfx*, y*) the separation problem of (16) becomes the problem of finaiset
SCV\{st} where

NI

SQX(3(9) < ngl yi
1

& EQX*(ﬁ(S)) —ngiyi*fz/di < Z/ di
& X )3y E Y d<yd

ieV\S
Separating (16) can be done by solviig — 2 differents— t-minimum cut problems one from each

nodeh € V \ {s,t} to the target node The problems are solved as maxflow problems using the same
procedure as for separating (10) and (11). The maxflow pmolite eachh is solved on a directed
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Consider the fractional solution given by the
graph to the right with different fractional edge

values indicated by the dotted and puncture

lines. The nodes are numbered .0,5 where a @ o3
path is sought from node 0 to 0. The demand a ,

given asd = {0,2,2,2,2,1} and the capacit® is Do s | T
5 o

Consider a generalized capacity inequality (1¢ 0 @

covering the node s&= {1,2 3} resulting in a
fractional flowx*(8(S)) = x§; + X3 = 3 through

. N
the node set. The corresponding (16) is violate
since

—Qx* :_deH:_

Figure 1:A violated generalized capacity inequality (16).

graph induced from the LP solutidx*,y*), i.e., edges are split into opposite directed arcs, and the
arcs intoh are disregarded. The edge weiggjsare given as:

2Q>q§,+d, i=h, jeV\{ht}

Wi — 2Q>ﬂ*+d|(1 ¥i) TeV\{st}, j=t

! 5QX%; icV\{ht}, jeV\{ht}
M i=sj=t

whereM is a sufficiently large constant to ensure thandt are on the same side of the cut.
This graph is more dense than the induced graph used foradip(10) and (11), therefor the
separation of (16) is expected to be slower.

4 Computational Results

A new set of benchmarks based on the CVRP instanceshttoti/www.branchandcut.org
are used for the computational experiments. The instaneedivded in series A, B, E, G, M, and
P according to the authors. The ESPPCC instances are ppoiijems gathered from solving the
CVRP with column generation, see Fukasawa et al. (20063edegt al. (2007), i.e., dual values have
been subtracted from the edge costs resulting in instanitesegative edge weights. The ESPPCC
instances are based on late column generation iteratiotiedfarder (time> 500 sec.) CVRP in-
stances solved by Fukasawa et al. (2006). The ESPPCC iastame gathered in the SPPRCLIB
available atttp://www.diku.dk/"spooren/spprclib.htm

The experiments begins with an investigation of the |mpiathe)parameter setting for cut genera-
tion of the generalized subtour elimination constrain® (&hich is part of the model for the ESPPCC
given by (1)-(8). Next, the impact of the generalized cayaoiequalities (16) are investigated. For
the parameter test we consider 10 of the harder problemseitest library, two from each series
except the G series. This is followed by a lower bound comsparusing different separation strate-
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gies. Last a comparison of the BAC algorithm and a statdwefart label algorithm derived from the
algorithm used in Jepsen et al. (2007).

All experiments are performed on a 2.66 GHz Intel(R) XeorXB355 machine with 8 GB mem-
ory using CPLEX 10.2. The BAC algorithm is implemented usaadjback functions for cut gen-
eration which is available in the CPLEX callable library. eTtests are performed using the default
CPLEX parameters. This includes the generation of cuts émetal mixed-integer programs such
as Chvatal-Gomory, MIR, and disjunctive cuts. Also, th& Rnapsack covers are included in the
CPLEX default settings and preliminary tests indicated tiegther the separation time or the change
in lower bounds were much affected by the cuts. Therefor, awe mot done any further tests of the
0-1 knapsack covers but rely on the CPLEX default settings.

4.1 ParametersImpact for the Generalized Subtour Elimination Constraints

The setting of the parameters for generation of violateceg®ized subtour elimination constraints
(6) can have a huge influence on the computational time foB#&@ algorithm. A low threshold on
violation will result in good lower bounds and fewer branadas but a slower convergence in each
node, while the opposite is true for a high threshold. Alsoribmber of violated cuts added in each
iteration can influence the convergence and the time speayitimizing the LP-problem.

Figure 2 on the next page shows a plot with two axes given agdlegion threshold and number
of cuts to add per iteration. The requirement of violationaisging from 0.1 to 1 in steps of 0.1 and
the number of cuts to add is ranging from 1 then 10 to 100 insstéd 0. The third vertical axis
indicate the average time spent. The time for each instanseailed to the interva0, 1] where 0 is
the minimum time and 1 a maximum time given for all parameggtireys for that instance.

From Figure 2 on the following page it is observed that theé pasameter setting appears to be
to add 1 cut per iteration that is violated by at least 0.4 sTindicates that the cut separation time is
insignificant compared to solving the LPs.

4.2 Investigating the Generalized Capacity I nequalities

Note, that the generalized capacity inequalities (16) castiute the generalized subtour elimination
constraints (10) in model (1)-(8), since any infeasiblegatr solution will be violated by some gen-
eralized capacity inequality. However, preliminary tdstwed that due to slow separation times (16)
are not competitive compared to (10) in a BAC algorithm. Effier; a cut policy was chosen such
that (16) are only separated (and possible added) whenewaolated (10) are separated (using the
default parameters found above).

Again preliminary tests indicated that due to the slow sajpam routine (16) were not worth the
effort. A slow separation was expected since the max-floautations is done on very dense graphs
compared to the very sparse graph used in the separatiorOpf However, we believe that it is
relevant to investigate if (16) can ever become useful, with a faster heuristic separation routine.

Figure 3 on page 9 shows, as before, a plot of the violatiosstiold, number of cuts to add per
iteration, and average time. The time is calculated withbetseparation time of (16), hence it only
indicates if the convergence of the BAC is improved or not nvfikb) are added.

Figure 3 on page 9 indicates that a large violation threskinl@.8) is preferred for (16). This
further indicates that the convergence of the BAC algoriierfaster when few of (16) are added
leading to a smaller LP but a worse lower bound. Figure 4 asnliste this result as it can be seen
that almost no cuts are added with violation threshol@sad higher.
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Time

Figure 2:Parameter test for the generalized subtour eliminatiostcaimts (10). Above is a plot of the average
time given the violation threshold and the number of cutsi. a

Although the generalized capacity inequalities (16) ardeotetically nice set of inequalities
our tests have shown that in their current form and with theppsed exact separation routine the
inequalities do not appear to be computationally competiti

4.3 Lower Bound Comparison

Table 1 on page 11 sums up the root lower bounds (root) andutider of branch nodes (B&B) for
three different cut separation parameter settings. A #yeim the branch node columns indicate that
the BAC algorithm timed out at 600 seconds. The three paemsetting tested are:

e GSEUJs the BAC algorithm where at most 1 violated generalized@utelimination constraint
(20) with a minimum violation of 0.01 is added per iteration.

e GClisthe BAC algorithm with th&s SECparameter setting and when no violated (10) are found
then at most 1 violated generalized capacity inequality ¢li6h a minimum violation of 0.01
is added.

e default isthe BAC algorithm where at most 1 violated generalized@uwtbelimination con-
straint (10) with a minimum violation of 0.4 is added per dtéon.

The optimal solution is given in the right most column.

8
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Time

Figure 3: Parameter test for the generalized capacity inequalitiés (Above is a plot of the average time
given the violation threshold and the number of cuts to add.

When comparing the parameter setti®@SECINdGCl, it is obvious that the generalized capacity
inequalities (16) improves the lower bounds consideraliife average gap is decreases by 63%
when comparing the two settings, this includes the inswileat timed out and potentially could
have improved the lower bound further. Surprisingly the hamof branch nodes does not decrease
proportionally with the size of the gap. That is, for the amgtes that did not time out the average gap
is closed by 76% but with only 7% fewer branch nodes. In séwases the number of branch nodes
actually increases considerable. This indicates that¢@@jplicates the branch decisions.

The behavior observed between parameter se@i8§Canddefault is more as expected. A
worse lower bound with thdefault  setting leads to more branch nodes. However, the previous
test for the generalized subtour elimination (10) constsashowed that this setting was the fastest on
average.

4.4 Comparison with aLabel Algorithm

Table 2 on page 12 shows the running time of the BAC algorithith default parameters compared
to the running time of a label algorithm.

The BAC algorithm clearly outperforms the label algorithimat is, in all 45 instances. However,
it is worth noting that when the solution is near 0 (which islaipper bound for all instances since
they are generated as pricing problems in a column generatgorithm) then the label algorithm
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Avg. number of cuts

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Violation threshold

Figure 4:Parameter test for the generalized capacity inequalitiés @bove is given the average scaled num-

ber of generalized capacity inequalities added with défieviolation thresholds when solving the instances,

i.e., with a violation threshold of 0.1 the number of cuts @eereased by about 50 % compared to the setting
with a violation threshold of 0.01.

performs much better than on the instances that containk megativity. That is, the label algorithm
is faster when there are less negativity in the problem vasetiee BAC algorithm appears to be more
robust.

10
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GSEC GClI default

Name B&B root B&B root B&B root solution
A-n54-k7-149 231 -90877 - -41213 280 -109018 -12492
A-n60-k9-57 1641 -98206 - -64557 3071  -118437 -1000
A-n61-k9-80 205 -63534 92 -41032 462 -73397 -23549
A-n62-k8-99 133 -103839 - -47340 301 -122973 -35969
A-n63-k9-157 122 -63082 492 -38929 113 -78190 -24189
A-n63-k10-44 127 -76475 149 -51035 280 -80765 -32561
A-n64-k9-45 358 -92812 157 -65209 425  -104686 -50550
A-n65-k9-10 152 -93117 129 -58526 189 -103936 -42835
A-n69-k9-42 72 -56453 - -53299 179 -60410 -43290
A-n80-k10-14 84 -121510 45  -112483 120 -128508 -105283
B-n45-k6-54 277 -95588 497 -88761 502 -103214 -74278
B-n50-k8-40 166  -105497 - -41212 237  -128488 -12832
B-n52-k7-15 25 -85997 22 -79129 59 -90278 -74998
B-n57-k7-20 12 -876421 19 -876421 328 -882924 -867154
B-n66-k9-50 239 -81006 28 -38097 1195 -94120 -26520
B-n67-k10-26 184 -55180 178 -26808 343 -63086 -21924
B-n68-k9-65 150 -88375 - -55175 342 -99383 -31001
B-n78-k10-70 344 -91021 - -54330 480 -101516 -44333
E-n76-k7-44 117 -30127 115 -25885 338 -32038 -22214
E-n76-k10-72 239 -36569 164 -31404 138 -38613 -25241
E-n76-k14-102 3163 -28126 - -16153 3992 -31018 -1
E-n76-k15-40 3747 -25752 - -17526 4993 -28675 -1
E-n101-k8-291 48 -8296 - -7398 197 -9472 -4266
E-n101-k14-158 1468 -25748 - -22729 1350 -30882 -3590

G-n262-k25-316 669 -1434843 -1434843 1510 -1434883 -3326
M-n101-k10-97 40 -35323 37 -34758 76 -37825 -32628

M-n121-k7-260 89 -162680 - -161424 147  -164742  -160097
M-n151-k12-15 338 -87899 - -85488 822 -92880 -79996
M-n200-k16-143 6 -199411 4 -199411 118 -201772  -198792
M-n200-k17-12 4  -121506 1 -121210 7 -121506 -121210
P-n50-k7-92 950 -18594 1152 -12245 1319 -21516 -2
P-n50-k8-19 160 -89868 40 -89848 207 -90606 -83307
P-n50-k10-24 197 -19811 608 -11971 443 -21975 -2965
P-n51-k10-30 1028 -23812 - -18488 1588 -27061 -2
P-n55-k7-116 84 -27065 36 -22945 105 -28094 -17824
P-n55-k8-260 101 -18839 145 -11377 167 -22237 -3573
P-n55-k10-44 913 -21448 2197 -11798 1192 -25131 -1090
P-n55-k15-88 5971 -26723 - -20135 4781 -28128 -2
P-n60-k10-24 242 -26948 137 -21183 301 -29289 -15001
P-n60-k15-8 1495 -21889 1889 -13812 1507 -24674 -534
P-n65-k10-102 2390 -18923 - -10975 2532 -21424 -3
P-n70-k10-12 2 -72264 1 -70317 21 -73460 -70317
P-n76-k4-41 1 -88276 1 -88276 1 -88276 -88276
P-n76-k5-16 6 -108884 10 -108884 24  -108884  -107633

P-n101-k4-174 174 -19656 165 -19041 395 -19887 -17702

Table 1:Comparison of the number of branch nodes and lower bounds.
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Name BAC time (s) labeltime (s) speedup
A-n54-k7-149 6.96 1735.23 249.3
A-n60-k9-57 36.55 242.64 6.6
A-n61-k9-80 4.44 >7200.00 00
A-n62-k8-99 17.94 >7200.00 00
A-n63-k9-157 3.16 >7200.00 0
A-n63-k10-44 2.12 693.80 327.3
A-n64-k9-45 14.57 >7200.00 00
A-n65-k9-10 4.43 >7200.00 00
A-n69-k9-42 1.76 3246.72 1844.7
A-n80-k10-14 12.14 >7200.00 0
B-n45-k6-54 1.32 >7200.00 0
B-n50-k8-40 11.01 >7200.00 00
B-n52-k7-15 1.00 >7200.00 00
B-n57-k7-20 1.74 >7200.00 00
B-n66-k9-50 66.93 >7200.00 0
B-n67-k10-26 4.62 >7200.00 0
B-n68-k9-65 11.88 >7200.00 00
B-n78-k10-70 2430  >7200.00 00
E-n76-k7-44 6.02 >7200.00 )
E-n76-k10-72 1.19  >7200.00 )
E-n76-k14-102 14.77 45.19 3.1
E-n76-k15-40 19.59 151.59 7.7
E-n101-k8-291 8.08  >7200.00 00
E-n101-k14-158 37.84  >7200.00 )
G-n262-k25-316 53.00 >7200.00 )
M-n101-k10-97 3.12 >7200.00 00
M-n121-k7-260 34.46  >7200.00 00
M-n151-k12-15 78.03  >7200.00 )
M-n200-k16-143 3.18 >7200.00 )
M-n200-k17-12 17.75  >7200.00 00
P-n50-k7-92 2.42 104.22 43.1
P-n50-k8-19 0.36  >7200.00 )
P-n50-k10-24 0.72 291 4.0
P-n51-k10-30 2.18 4.06 1.9
P-n55-k7-116 0.58 2275.07 39225
P-n55-k8-260 1.20 133.45 111.2
P-n55-k10-44 2.14 14.69 6.9
P-n55-k15-88 3.97 44.73 11.3
P-n60-k10-24 1.04 110.20 106.0
P-n60-k15-8 1.95 2.50 1.3
P-n65-k10-102 6.65 163.48 24.6
P-n70-k10-12 0.24  >7200.00 00
P-n76-k4-41 1.85  >7200.00 0
P-n76-k5-16 0.57  >7200.00 0
P-n101-k4-174 11.25  >7200.00 0
Best 45 0

Table 2:Time comparison of the BAC and the label algorithm.
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5 Concluding Remarks

This paper introduced a BAC algorithm for solving the ESPPT algorithm clearly outperformed
a label algorithm for the considered instances. Label dlgos have been the preferred solution ap-
proach up until now, but the experimental results preseintéus paper suggest otherwise. However,
it should be noted that the label algorithm is almost contigetivhen the instances contain little neg-
ativity. This is especially interesting when using columangration algorithms where subproblems
with little negativity must be solved to optimality.

Furthermore, the generalized capacity inequalities wereduced as a set of valid inequalities for
the ESPPCC. On the bright side, it can be concluded that #wualities improve the lower bounds
significantly. However, this comes at a cost of complicatimg branch decision leading to a large
amount of branch nodes. Also, the exact separation rowtkesta considerable amount of time. This
is due to solving a maxflow problem on a near complete graphat ) the generalized capacity
inequalities improves the lower bound but leads to ovetall/er running times.

Future research could include the adaption of more valiguakties known from related problems
such as the TSP and the CVRP, e.g., two-matching ineq@aldtnb inequalities, and infeasible path
inequalities. Another interesting direction is the comdhial cuts by Fischetti et al. (1998). Such a cut
resembles a specialized branch rule as it cuts off some dirtrech tree after solving a subproblem
for the subtree.

Also, it would be interesting to extend the BAC algorithm tdve the more general ESPPRC.
Extending the mathematical formulation to cover a diregieaph is fairly easy. This will result in a
doubling of the number of variables. This does not favor t&&Rlgorithm where compact formu-
lations are preferred but it may be manageable. However,@hmore delicate matter is handling
resources with bounds imposed at the nodes or edges (cainjmaeecapacity resource where the
bound is global). Such resources includes the well knowe tivindow constraints which are often
modeled using "big-M” constraints that are known to be niotgsly computationally unstable. An al-
ternative for handling time window-like constraints are tise of valid inequalities such as infeasible
path inequalities. However, there are an exponential nurabéhese inequalities which arg?-
hard to separate (compared to the polynomial separatiom dinthe generalized subtour elimination
constrains) so these cuts are bound to have a significanttropahe running time.
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