Datalogisk Tostiturt

The Off-line Group Seat Reservation Problem

Tommy Clausen, Allan Norlunde Hjorth,
Morten Nielsen, David Pisinger

Technical Report no. 07/02
ISSN: 0107-8283

Dept. of Computer Science

University of Copenhagen e Universitetsparken 1
DK-2100 Copenhagen e Denmark

The Off-line Group Seat Reservation Problem

Tommy Clausen, Allan Nordlunde Hjorth, Morten Nielsen, David Pisinger

DIKU, University of Copenhagen*

{t cl ausen, wol fi e, mi el sen, pi si nger }@i ku. dk

Abstract

In this paper we address the problem of assigning seats in a train for a group
of people traveling together. We consider two variants of the problem. One is a
variant of two-dimensional knapsack where we consider the train as having fixed
size and the objective is to maximize the utilization of the seats in the train. The
other is a variant of two-dimensional bin packing where all requests must be ac-
commodated while trying to minimize the number of passenger cars needed. We
present a number of bounds for these two variants and develop exact algorithms
for solving the problems. Computational results are presented for various instances
known from the packing literature adapted to the problems addressed.

1 Introduction

We are considering the off-line group seat reservation problem (GSRP). In this problem
it is the objective to maximize the use of the seats in a train subject to a number of
constraints: A train consists of a number of seats which are numbered consecutively. A
seat reservation brings a person from a station a to a station b without changing seat.
A group of people, all having the same station of origin and destination, may wish to
sit together, i.e. being assigned to seats with consecutive numbers. Since the problem
is off-line, it is assumed that all data are given in advance.

The GSRP can be interpreted geometrically in the following way. A (group) reser-
vation can be represented by a rectangle having width equal to the number of seats
reserved and height equal to the distance travelled. For the train, the entire route cor-
responds to the height and the availability of seats is represented by the width. This
corresponds to a two-dimensional orthogonal packing problem where no rotation is
allowed and where the position of each reservation is fixed in height.

The example in Figure 1 illustrates the geometric interpretation of the GSRP. A
train with three seats travels four stations from y; to y4. The five given reservations and
the corresponding packing is illustrated in the figure. We shall in the following use the
terms reservation and rectangle interchangedly.

*Technica Report 02/2007, DIKU, University of Copenhagen, Universitetsparken 1, DK-2100 Copen-
hagen

\Z!

reservation | no. seats | from | to 5
1 1 yr | ys y3 4
2 2 yi | y2 3
3 1 Y2 | Y3
4 1 Y2 | Ya a4 1
S 2 Y3 | Va 2
Y1

Figure 1: The geometric interpretation of a group seat reservation problem instance.
The train travels from station y to station y,. Five reservations are given in the table to
the left and a packing of the train is shown to the right.

The group seat reservation problem has numerous applications. A straightforward
application is the reservation of hotel rooms, where people wish to have adjacent
rooms. Also some job scheduling problems can be seen as a group seat reservation
problem. Each job has a fixed starting time and a completion time, and it should be car-
ried out on a number of adjacent machines. Finally, the group seat reservation problem
finds application in the cutting of two-dimensional material, where the quality of the
material varies from top to bottom. This is e.g. the case for coloring of textiles, where
the color may be more intensive in the beginning of a roll, while it is less intensive at
the end. In a similar way, a sheet of metal may have varying qualities, if the melted
metal is the result of a chemical process which varies over time.

In the on-line version of the group seat reservation problem, reservation requests
arrive one by one, and should be assigned a group of seats immediately. The on-line
algorithm must be fair, i.e. it should only reject a request if it cannot be satisfied at
the present moment. Various performance measures for on-line algorithms have been
presented. The most common measure is the competitive ratio [15] which is defined
as the worst-case ratio over all possible input sequences of the on-line performance to
the optimal off-line performance. In the relative worst-order ratio one compares two
on-line algorithms by considering the ratio on how the two algorithms perform on their
respective worst ordering of the sequence. Boyar and Medvedev [6] considered the
single-customer version of the on-line problem, and showed that if all tickets have the
same price, first-fit and best-fit are better than worst-fit in the relative worst-order ratio.
This also holds for the case where the price of the ticket is proportional to the dis-
tance traveled. Moreover, they showed that the off-line version of the single-customer
group seat reservation problem where all tickets have the same price, is equivalent to
a maximum k-colorable subgraph problem for interval graphs, which can be solved in
polynomial time, as shown by Yannakakis and Gavril [28]. Helliesen [18] presented a
new algorithm, scan-fit, for the on-line single-customer seat reservation problem, that
was shown to perform better than first-fit and best-fit in the competitive ratio, both the-
oretically and empirically. Helliesen also considered the on-line version of the GSRP.
In his version it is the objective to utilize the seats as effectively as possible while try-
ing to minimize the distance between the people in a group. The developed algorithms
also take into account how seats are arranged in the train by adding distance tables.

In this paper we describe two variants of the GSRP derived from two variants of

two-dimensional packing. Definitions and terminology follow in Section 2. The first
variant, the group seat reservation knapsack problem, is considered in Section 3, upper
bounds are derived in Section 3.1 and an exact algorithm is presented in Section 3.2.
In addition, a method for testing the feasibility of reservation packings is presented
in Section 3.3. The second variant, the group seat reservation bin packing problem is
described in Section 4. Lower bounds for this problem are described in Section 4.1 and
an exact algorithm is presented in Section 4.2. Finally, computational results for both
variants are presented in Section 5.

2 Definitions and Terminology

Using the terminology from bin packing we may assume that the train has H stations,
and W seats. Let N = {1,--- ,n} be the set of requests, each request j asking for a
number w; of seats, traveling h; stations from station y; to station y;j + hj. Without loss
of generality we may assume thatwj <W.

Although H in principle may be large, we may reduce the problem to only consider
the active stations, i.e.

Yi={yjlieN}u{yj+hj|ieN}
and let Ny be the set of requests using a seat at stationy € Y
Ny:={JeNJyj<y<yj+hj}.

We associate with each stationy € Y a “height” Hy to represent the distance from station
y to the next active stationinY.

By considering the train as a single row of seats, we formulate the group seat reser-
vation knapsack problem (GSR-KP) as the problem of choosing the set of requests
that maximizes the utilization of the train. We measure the utilization of the train as the
number of seats times the distance travelled for all chosen reservations. This problem is
a variant of the two-dimensional knapsack problem (2DKP), in which a number of rect-
angles have to be placed inside a larger sheet. Each rectangle has an associated profit
and the objective is to place the rectangles on the sheet so as to maximize the overall
profit. For the GSR-KP the profit is the area of the rectangles. A well-known variant of
the 2DKP is the addition of so called guillotine pattern constraints. A two-dimensional
packing is said to have a guillotine cutting pattern if the sheet can be separated by a
horizontal or vertical line such that none of the rectangles are cut in two by the line.
This property must hold recursively for the two sheets obtained by separating the origi-
nal along the line. It is noted that guillotine cutting patterns cannot generally be applied
to the GSR-KP, as seen by the packing in Figure 1 where no guillotine cuttable solution
exists.

The problem may be formulated as the following integer-programming model. Let
0, = 1 if request i is selected. Let x; be the first seat (left coordinate) of request i. Let
E = {(i,])} be the set of rectangles which in some way share a station (y-coordinate).

Finally, let ¢;; = 1 iff request i is located left of j.

max jewajhjéJ (1)

s.t. %/wjéj <Ww, yeY (2)
j€
S +0;—4j—¢;i <1 (i,))eE (3)
Xi—Xj—|—W€ij§W—Wi (i,j)EE 4
0<xj <W —w; jeN (5)
tj€{0.1) (i,j) €E (6)
3 € {0,1} jeN ©)

Here (2) says that we may not exceed the capacity W of the train at any station. Con-
straint (3) says that if both requests i and j are selected, then one of them should be
to the left of the other i.e. (& =1A%; =1) = (4j =1V ;i =1). Constraint (4) says
that if request i is located to the left of request j then this should be reflected in the
coordinates, i.e. £jj = 1 = x; +w; < xj. Constraint (5) says that all requests should be
placed inside the train and finally constraints (6) and (7) say that the variables should
be binary.

The problem is A¢ 2-hard, which can easily be shown by reduction of the subset
sum problem to a group seat reservation knapsack problem with no intermediate sta-
tions.

Trains usually consist of several passenger cars, rather than a single passenger com-
partment. This poses additional restrictions on the placement of the reservations in the
train. Not only must reservations be assigned consecutive seats, they must also be as-
signed seats in the same car to be adjacent. This defines another problem, namely the
group seat reservation bin packing problem (GSR-BPP) as the problem of assigning
reservations to cars such that all requests are fulfilled and the number of cars used are
minimized. The GSR-BPP is a variant of the two-dimensional bin packing problem
(2DBPP), in which a number of rectangles must be assigned to identical bins, such that
no bin is overfilled and the number of bins used is minimized. Regarded as a 2DBPP
variant, the train cars correspond to bins and the reservations correspond to the rectan-
gles that must be assigned to bins. Additionally, the rectangles have fixed y-coordinates
in the GSR-BPP.

More formally, we define the GSR-BPP as follows. Let W determine the number
of seats in a car, and let all other variables from formulation (1)—(7) have the same
interpretation in the GSR-BPP as in the GSR-KP. Furthermore, let m; identify the car
that request i is in, and let pi; = 1 if request i is placed in a car closer to the front of the
train than request j (i.e. if mj < mj). Finally v denotes the number of cars used and n is

the number of requests. The problem may then be formulated as:

min v (8)
st. Gj+Li+pij+pi>1 (i) €Eli<] 9)
Xi —Xj—|—W€ij <W —w; (i,j) €E (10)
mi—mj+npij<n-1 (i,j)€E (1)
0<x; <W —w; jeN (12)
0<mj<v jeEN (13)
6. pij € {01} (i) € E (14)
mjeN jeN (15)

Constraint (9) states that either requests i and j may not overlap, or they must be in
different cars. Constraint (10) enforces that x-coordinates must reflect the values of
the ¢ variables, i.e. £jj = 1 = xj +w; < x;. Similarly, constraint (11) enforces that if
request i is placed in front of request j (car-wise), it must have a lower car number, i.e.
pij = 1 = m; < m;. Constraint (12) states that a request must be placed entirely inside
a car, and constraint (13) bounds the number of cars used.

The formulation (8)—(15) is 2 »-hard, which can be realized by reducing from
one-dimensional bin packing to the special case where all requests travel the entire
train route.

To the authors’ knowledge, no previous literature exist on the off-line GSR-KP or
GSR-BPP. However, much related work has been done on the two-dimensional knap-
sack problem and the two-dimensional bin packing problem.

A number of algorithms have been presented for the 2DKP. Hadjiconstantinou and
Christofides [17] studied various IP formulations, but were only able to solve instances
of moderate size. Fekete and Schepers [14] presented a two-phase algorithm which first
selects a subset of rectangles with large profits, and then tests feasibility through an
enumerative algorithm based on isomorphic packing classes. Caprara and Monaci [7]
presented an (% — €)-approximation algorithm for the 2DKP and developed four exact
algorithms based on various enumeration schemes. Belov [3] consider a special case of
the 2DKP in which the placement of the rectangles should follow a guillotine packing
pattern. This more restricted version of the problem can be solved through dynamic
programming. Finally, Pisinger and Sigurd [26] used constraint programming to solve
the general and guillotine-restricted version of the 2DKP. The algorithm follows a two-
phase approach as in Fekete and Schepers [14] by first choosing a subset of rectangles
to pack in the sheet (by solving a one-dimensional knapsack problem), and then testing
whether the rectangles actually fit into the sheet. If the rectangles do not fit into the
sheet a new constraint is added to the one-dimensional knapsack problem.

Berkey and Wang [2] presented an extensive computational review of heuristics
for finding upper bounds for two-dimensional bin packing problems (2DBPP). The
heuristics considered were mostly similar to well-known on-line algorithms like best-
fit or next-fit. For a thorough presentation of on-line packing algorithms we refer to
Csirik and Woeginger [9].

A number of lower bounds for the 2DBPP exist, mostly based on adaptations of
bounds for one-dimensional bin packing (see e.g. Martello and Vigo [23]). More recent

bounds include Fekete and Schepers [12] and Boschetti and Mingozzi [4], [5]. The
latter also present a heuristic based upper bound.

Martello and Vigo [23] present an exact algorithm for the 2DBPP. The algorithm
consists of an outer branch-decision tree in which rectangles are assigned to bins. At
every node a heuristic is used to find a feasible solution for the assignment. If none is
found an inner branch-decision tree is created to test the feasibility of the assignment.
An additional heuristic is used to close bins if no unassigned rectangles can fit into
the bin. A similar approach was used by Martello, Pisinger and Vigo [22] to solve the
three-dimensional bin packing problem.

Finally, Lodi, Martello and Vigo [21] provides a detailed survey of bounds, exact
algorithms and heuristics for the 2DBPP.

3 The Group Seat Reservation Knapsack Problem

As mentioned in the introduction we consider the group seat reservation knapsack prob-
lem where the train is considered as having all seats in a single row. In this section we
present a number of upper bounds that we use to develop an exact algorithm for the
problem.

3.1 Upper Bounds

A first upper bound may be obtained by LP-relaxing the integer programming model
for GSR-KP defined by (1)-(7). The optimal solution to this model gives us the upper
bound w1.

Notice that in any LP-optimal solution to (1)—(7) we may set x; := 0 and ¢j; :=
(W —w;)/W. In this way constraint (3) is always satisfied when (1) is satisfied since
W —w; +W — Wi _2_Wi+Wj

W W

bij+Lji=

and (4) is also satisfied since

W — Wi
wey =w—

=W —w;.

As constraint (5) is obviously satisfied, what remains is the problem

max thjéj
2

s.t. %Wjéjgw, yey (16)
j€
0<d<1 jeN

Now, suppose we create a variable 6‘1-(for each single seat by splitting each variable d;

into w;j variables. This yields the formulation

Wj
max h;
22"
Wi
s.t. _%zé'j‘gw, yey (17)
jeNy k=1
o<d<1 JEN, k={1,---,wj},

which is equivalent to (16).

Let A be the constraint matrix of (17). In each column of A the ones will appear
consecutively, since the reservations are connected. This is known as the “consecutive
ones” property which implies that A is totally unimodular. Consequently, 6'j‘ € {0,1}
in the optimal solution to (17). This means that (17), and thereby (16), is equivalent to
splitting the reservations into single-seat reservations.

Denote by G the intersection graph of A, i.e. G contains a vertex for each column
in A and an edge between two vertices if there exists a row in A that contains ones
in both the corresponding columns. Equivalently, G contains a vertex for each single-
seat reservation, and two vertices in G are connected by an edge if the corresponding
reservations share a station. By considering the reservations as intervals on a real line,
we note that G is an interval graph (and is thereby perfect).

If we assign the reservation travel distances as weights to the vertices of G, we may
formulate (17) as a weighted k-independent set problem. The weighted k-independent
set problem considers a graph with a non-negative weight associated with each vertex.
The problem is then to find k independent sets such that the weight sum of all vertices
in the independent sets is maximized. The problem is A’ #-hard in general, but can
be solved polynomially if the graph is an interval graph (see e.g. [25]). This graph
interpretation of the single-seat reservation problem is also noted in [6], although they
noted it for the also equivalent k-colorable subgraph problem.

For the weighted k-independent set problem on interval graphs, Pal and Bhattachar-
jee [25] present an O(km+/Togc + y) time algorithm, where m is the number of vertices
in the interval graph, c is the weight of the longest path in the graph and y is the to-
tal size of all maximal cliques in the graph. Using this algorithm to solve (16), we can
rewrite the running time using the notation of the GSR-KP. The number of independent
sets k is then the number of seats in the train W. The number of vertices m is the total
number of seats in all reservations, i.e. m = y7_, wj. The weight of the longest path
¢ is bounded above by the total travel length of all reservations, i.e. ¢ < y_; h;. The
number of cliques in an interval graph is at most the number of vertices (see e.g. [16]),

2
so y is bounded by m? = (ZT:le) . Thus, the complexity is

n n n 2
O|lW- | hi ; . 18
S fooS s (S0 @

By noting that 3 wj <N-W and 3{_,hj <N-H expression (18) can be reduced to

0 (NWZ\/Iog(NH) + (NW)Z)

which is clearly pseudo-polynomial in terms of the GSR-KP.

We have described two methods for calculating the single-seat relaxation. We shall
denote by 1 the bound calculated by solving the LP-relaxation of (1) — (7) and denote
by @5 the bound calculated by the weighted k-colorable subgraph problem as described
above. Although the bounds are identical, the time complexities of calculating them are
different and no dominance exists between the time bounds.

A third upper bound is obtained by relaxing the problem to the case where the
passengers may need to change seats at every station.

max Z\‘thjaj
j€

s.t. %Wjéj <W yeY (19)
j€

oj € {0,1} jeN

The above problem is a multidimensional knapsack problem with |Y | knapsack
constraints. Let us denote the optimal value of this problem @ 3. The multidimensional
knapsack problem is strongly A 2-hard (see. e.g. [19]).

A fourth upper bound may be found by for every station (y-coordinate), to calculate
how well the train may be filled at this station, by solving the following subset sum

problem:
Fy:max{ %ywjéj %wjéj <W,9; E{O,l}}.
je j€

We may now calculate an upper bound as

Uyg = yg(FyHy.

Calculating 4 is A 2-hard as it contains |Y | subset sum problems.

A fifth upper bound can be calculated by looking at the transition at any station, i.e.
taking into account that the seats being left should be filled by new passengers. For a
given station y € Y we consider three disjunctive sets of requests:

Py is the set of requests that pass through station y, i.e.

Ph={jeN]yj<y<yj+hj}
Sy is the set of requests which start at station y, i.e.
Sy={ieNlyj=y}
Ty is the set of requests which terminate at station y, i.e.

Ty={jeN|yj+hj=y}

For a given stationy € Y consider the problem

Hy_1 (W—Zjepywjéj—ZjeTijeSj)}
s.t. EJGPyWJ6]+ZJESJWJ6]§W
YjeryWidj+ YjeT, Wjdj <W

In other words, Ly is the minimum loss we get at station y. Summing the loss at all
stations, we get the upper bound

us=WH — ZLy.
=

Ly may be determined through dynamic programming. Through a straightforward sub-
set sum recursion we first find all weight sums which can be obtained using requests
from Py. In a similar way we derive dynamic programming tables for weight sums
which can be obtained using requests from Sy and for requests from Ty. Now, for ev-
ery obtainable weight sum corresponding to requests in Py, we match it with the best
weight sums from Sy (resp. Ty) so that the total sum does not exceed W. Note that the
first and the last station are special cases, which needs to be handled separately. At
the first station there is no previous station, so Ty and Py are both empty sets. Thus Lo
can be determined by solving a subset sum problem on Sy. On the other hand, the last
station will never generate any profit since no passenger will be on board afterward, so
any potential loss can safely be ignored. Ly can be determined in O(nW) time, where
n= |PyUSyUTy|. Thus, the running time of s is O(NWY).

3.1.1 Bound Dominance

The bound w4 is calculated by splitting the reservations into smaller reservations each
traveling only one station. In the interpretation of allowing seat changes, this corre-
sponds to allowing seat changes to “outside the ‘train”, i.e. passengers are allowed to
leave the train and join it again at a later station. This is clearly less restricted than 3
in which seat changes must be to other seats within the train. Thus, 73 dominates 4.
Bound w5 considers the train before and after each station and chooses the best obtain-
able packing. This may be done by calculating a subset-sum problem at the station and
its predecessor and choosing the highest value. Clearly, Fy <W — Ly so 74 dominates
Us. That w3 dominates w1 and 2, is seen by comparing formulations (16) and (19).
Clearly, 71 and > are the LP-relaxation of 73.

The bounds w1 and 4 split reservations in different ways: 71 splits into single-seat
reservations and 4 splits into single-station reservations. Thus, 71 and ¢4 does not
dominate each other. But since the problem is already restricted with regard to stations,
we may expect 7/ to be the tighter of the two bounds in general.

Theorem 1 The bound 771 does not dominate 774 and 74 does not dominate 1.

Proof. Consider a train with height H and width W and two reservations ry and rz
which both have height H (i.e. they travel from the first to the last station) and re-
quire |W /2] 41 seats. Clearly, both r1 and ra cannot be assigned seats in the train. By
splitting the reservations into single-seat reservations, the entire train can be filled, so
U1 = H -W. If the reservations into single-station reservations, each station can still
only accommodate ry or ry. Thus, us=H - (|W /2] +1).

Conversely, consider the reservations s; and s, that both request W seats. Let s; travel
from station 1 to station |H /2] + 1 and s, from station |H /2] to station H. Splitting
s1 and sy into single-seat reservations will not change that station |H /2] can accom-
modate only W seats. The W largest single-seat reservations will originate from s1, so
u1=W-(|H/2]+1). If the reservations are split into single-station reservations, only
station |H /2| will be overfilled. This, and all other stations can be filled completely,
SO Ugs=W. O

As 13 dominates all the other bounds and is itself NP-hard, it may be that 3 is
simply a more simple formulation of the GSR-KP. This is not the case as is shown in
Theorem 2.

Theorem 2 There exists an instance of the GSR-KP for which 73 > OPT, where OPT
denotes the optimal solution.

Proof. Consider a train with 7 seats and the reservations a—g and x as illustrated below.
The illustrated packing of a-g represents an optimal solution. The bound @3 will split
X into single-station reservations which may be placed next to c. Thus, OPT < w3 for
this instance.

3.2 Exact Algorithm

In Section 3.1 we have used different ideas to develop upper bounds for the GSR-KP.
For all the bounds it is possible that the calculated value is optimal for the GSR-KP,
but it is more likely to be larger than optimum. Since we wish to develop an exact
algorithm for solving the GSR-KP we use branch and bound.

In each node of the branching tree we choose a rectangle j and divide the solution
space into two subtrees. In one subtree we demand that the chosen rectangle is in the
packing and in the other subtree, we exclude the rectangle from the packing. In the
integer programming model (1)—(7) this corresponds to branching on the & variables
fixing &;j to 1 respectively 0. We thereby get two new subproblems. The first subprob-
lem is equivalent to saying that the width of the train in reduced by wj on all stations

10

covered by the rectangle. The second subproblem corresponds to removing the chosen
rectangle from the set of rectangles that should be packed.

We start by fixing the largest rectangles. This way we will very early in the branch-
ing tree get to a point where there is no more room for extra rectangles and we can
prune large parts of the branching tree.

When we fix a rectangle we check each station separately to see if there is enough
room for the rectangle, but this does not ensure that there exist a legal packing of
the fixed rectangles. Therefore at some point we need to test for feasibility i.e. find
out if there exist a legal packing of the chosen rectangles. One can consider different
schemes for testing feasibility. One possibility is to test for feasibility at each node, but
since we need to find a packing to ensure that it is legal, this scheme requires solving
an A’ ?-hard problem at each node, thus we choose to only test for feasibility when all
rectangles have been fixed. How the actual testing of feasibility is done, is described in
Section 3.3.

Since it is very important that we quickly find some feasible solutions in order to
prune parts of the branching tree we use a depth first strategy in our branching.

3.3 Testing Feasibility

When testing the feasibility of a packing, we are given a set of reservations and we then
wish to determine if the reservations can be placed in a way to make them fit into the
train. Placing the reservations within the train corresponds to assigning values to the
binary ¢-variables of equations (3) and (9) for the GSR-KP and GSR-BPP, respectively.
Recall that ¢;; = 1 means that reservation i is positioned to the left of j.

The test for feasibility consists of two parts. An algorithm that determines the feasibility
of a single packing (i.e. assignment of the £-variables) is described in section 3.4 and an
enumeration scheme for applying this algorithm to every possible packing is described
in section 3.5.

3.4 Feasbility of a Packing

. We shall first consider the feasibility of a packing where the relative positions of the
rectangles are known, i.e. the left-right ordering of overlapping rectangles is predeter-
mined. To test the feasibility of the packing, we will construct a graph representing
the packing in a way similar to the constraint graph considered by Pisinger and Sigurd
[26] and Fekete and Schepers [13]. By exploiting that the rectangles are fixed in the
y-dimension, we may represent a packing by using a graph as follows: Let G = (V,E)
be a directed graph with a vertex for each reservation and the edge (i, j) € E iff 4;; = 1.
For ease of notation we shall not distinguish between a vertex and its corresponding
rectangle. The following properties are necessary and sufficient for determining if the
packing represented by G is feasible. Without loss of generality we will assume that all
rectangles are placed as far to the left as possible.

P1 G is acyclic.
P2 For every path p = (v1,...,Vn) IN G, FicpWi <W.

11

Example 1 Consider the instance given by N = {(2,3,0),(3,2,0),(4,1,3),(1,4,0)},
where i = (wi, h;,yi), i€ N and H = 6, W = 6. Below are shown graph representations
of three different packings of the instance.

O30 50 50
O-®@ O-@ O-@

The leftmost graph represents a feasible packing with 1 to the left of 2 and 4 to
the left of all other rectangles. The middle graph contains the path p = (1,4,3) with
YiepWi = 7, so this is infeasible by P2. The rightmost graph contains a cycle and does
not represent a legal packing by P1. By transitivity, 1 must be both to the left and right
of 2, but this cannot result in a feasible arrangement of the rectangles.

That the properties P1 and P2 are necessary follows from the middle and right graph of
Example 1. That the properties are also sufficient can be seen by the following:

Theorem 3 The properties P1 and P2 are sufficient for describing a feasible packing

Proof. We will show that every graph G that satisfies properties P1 and P2 corresponds
to an arrangement of rectangles that comprises a feasible packing, i.e. the rectangles
satisfies the following:

(1) None of the rectangles overlap
(2) All rectangles are placed within the box representing the train

To show (1) consider two nodes i, j € V. Since G is acyclic (by P1), exactly one of the
three following cases occur:

i) There is a path p fromito jinG.
Assume wlog. that p has length k and p = (vo,Vv1,...,Vk) with vg =1iand vy = j.
For each edge (Vm,Vm+1) € E we can place vy, and Vg1 S0 that Xm+ Wim < Xmy1.-
By transitivity this will ensure x; +w; <Xj, yielding a packing where i and j does
not overlap.

ii) There is a path from jtoiin G.
This case is analogous to i) and yields xj +w; < x;.

iii) There is no path betweeniand j in G.
i and j are positioned at different heights in the box, i.e. yi+hi <yj ory;+h; <
yi. Since the y-coordinates are fixed there is no way for i and j to overlap.

12

Since each of the three cases can lead to a packing without overlap and i and j were
chosen arbitrarily, (1) is proven.

To show (2) consider a rectangle j € N and assume for the sake of contradiction that
Xj+wj >W. Since wj <W, xj > 0. By assumption, j is positioned as far left as possi-
ble, so there must exist a rectangle i € N with x; +w; = xj and (i, j) € E, i.e. rectangle
i blocks j from being pushed further to the left. Similarly, another such rectangle will
exist for i unless x; = 0. This leads to a sequence of rectangles {mg, ms, ..., mx} where
j =mg and i = m1. Each rectangle in the sequence will touch its immediate successor
and predecessor in the sequence.

By considering the sequence in reverse order (such that the rectangles will be ordered
left to right), we get a path in G. Since the rectangles touch each other, Xm, = Z{(:sHWt-
Rectangle j is the last rectangle on the path, so xj = mg = zf:lwt. But xj +wj =
YvepWyv < W by property P2, which leads to the desired contradiction. Since j was
chosen arbitrarily, this proves (2). O

The following algorithm determines if a graph satisfies the properties P1 and P2
by computing the x; values for all reservations j € N. By the assumption of leftmost
placement we must set

max{xi+w; | (i,j) €E}, 3JieN:(i,j)€E
Xi= { 0 otherwise

The algorithm works as follows: Initially all rectangles are placed all the way to the left.
We topologically sort G to find a left-right ordering of the rectangles. If G is cyclic, and
thus infeasible by P1, this is discovered during the topological sort. Starting with the
leftmost rectangles, the rectangle pushes all overlapping rectangles to the right until
they no longer overlap. Since G is topologically sorted, no overlap will exist when all
rectangles have been considered. If a rectangle is pushed beyond the width of the box,
i.e. for some j we have xj +w; > W, the packing is infeasible by P2.
The main loop of the algorithm visits every vertex and every edge, so the main loop
runs in ©(V + E) time. The topological sort can be implemented to run in O(V +E)
time, so the complexity of Algorithm 1is ©(V +E).

3.5 Enumeration Scheme

Algorithm 1 describes testing the feasibility of a packing, given the individual place-
ments of the reservations. To decide if a feasible packing exists for a set of reserva-
tions, all such placements must be considered. Since each placement is represented by
a specific orientation of all edges in the graph, there exist an exponential number of
placements. We consider all placements by using a branch-decision tree to enumerate
the edge orientations in the graph. At each node in the tree we add an edge to the graph
and branch on the orientation of the edge. If the graph at some node describes an infea-
sible packing, that subtree is eliminated since adding more edges to the graph will not
make the packing feasible. If a feasible packing is found at a leaf node, the algorithm
returns true. If no more nodes exists, the algorithm returns false.

13

Algorithm 1 Assigning position coordinates to reservations in packing
if G is acyclic then
L « topologic_sort(G)
ese
return false
end if
Xi <0, Vie N {lInitialize x; }
whileL # 0 do
vj = firstitem in L
forallvj: (i,j) e Edo
Xj < max{Xxj,x +w;} {Push all overlapping rectangles right}
if Xj +wj >W then
return false
end if
end for
L—L\{vi}
end while
return true

4 The Group Seat Reservation Bin Packing Problem

So far, the train has been considered as having a single line of seats. However, most
trains will consist of several cars or coupes, and it would seem unreasonable to split a
group of passengers traveling together into different cars, even if their seat numbers are
consecutive. Thus we now consider the group seat reservation bin packing problem.
For this problem we will, as for the GSR-KP, develop an exact algorithm, but first we
present some lower bounds we can use in the algorithm.

4.1 Lower Bounds

A first lower bound £1 may be found by solving the LP-relaxation of (8)—(15). Similar
to the GSR-KP upper bound 771 we may set /jj = (W —w;)/W and pj; = (n—1)/n.
Thus constraint (8) is always satisfied, since

Wi+wj 2

b+ it pij+pji=4-— o

Again, similar to 21, setting xj := 0 and m; := 0 satisfies constraints (9) and (10), since

W —w; 1
W_w—w and npij:—nn =n-1

We =W

Asm; =0foralli,v=0and £, = 0 will hold for any instance. This means that 1 will
always pack all items into the first bin.

A second lower bound £ is found by for every station (y-coordinate), to calculate
a lower bound on the number of cars at this station. Let the binary variable x;j = 1 iff

14

request j is assigned to car i and let B denote the set of cars. Moreover let & = 1 iff car
i is used.

n
min £2=75 5 (20)
PR
s.t. %ijij <W¢o ieB (21)
j€
Xii =1 jeN (22)
gB i y
6 € {0,1} icB (23)
Xij € {0,1} ieB, jeNy (24)

We may now calculate the lower bound as

2
£ e
The model (20)—(24) is recognized as an ordinary bin packing problem (BPP)
which is a¢ 2-hard to solve. Hence, to find a polynomial bound for the GSR-BPP we
may use any lower bound from the literature of BPP. For eachy € Y let E§ be such a
lower bound chosen as maximum of the bounds presented by Martello and Toth [24],
Dell’Amico and Martello [11].

. W
& = HJeNy:wj >?H
T max {’VZjeNs(p)WJ _(|N14(p)|W_ZjeNk(p)Wi)-‘ ’
1<p<¥ w
W—Wi
INS(P)| = ¥ jen, (p) L =52 |
W (25)
Y]
where
Ne(p) = {ieNy:W—p>w;>%} (26)
Ns(p) = {ieNy:%¥>w;>p} @7)
This leads to the third lower bound
_ 3
S

which according to [11] can be calculated in O(Ny) time for each y € Y leading to an
overall time complexity of O(N?).

Finally, we may choose to consider two stations y,y’ € Y at the same time. Let
xij = 1 iff request j € Ny is assigned to car i at station y and x; = 1 iff request j € Ny
is assigned to car i at station y’. As before let & = 1 iff car i is used and let B denote

15

the set of cars.

min &, =351, (28)
St Y jen, WiXij <W¢% 1i€B (29)
ZjeN}/Wijj <Wo i€B (30)
YiesXij =1 JeNy (32)

o € {0,1} ieB (33)

Xij,Xi/J- €{0,1} ieB, jeNy (34)

Here constraint (29) and (30) are the ordinary bin packing constraints for each of the
stations y,y’ while (31) demands that a request is assigned to the same car at both
stations. Constraint (32) enforces that each request j € Ny must be assigned a car.

We may now calculate the lower bound as

L4 = max E;‘,y,
yyey

Calculating &* is a(#-hard, which is seen by reduction from bin packing to the
special case y = y'. Therefore calculating £4 is also 4 2-hard.

4.2 Exact Algorithm

For solving the group seat reservation bin packing problem, we construct a two-phase
branching algorithm as proposed by Martello and Vigo [23].

The first phase is an outer branch-decision tree that assigns rectangles to bins, con-
sidering rectangles ordered by decreasing size. At each node the next unassigned rect-
angle is assigned to each of the open bins, i.e. bins that already contain rectangles. If
the number of open bins is less than the upper bound, a new bin is opened by assigning
the rectangle to it. Initially the upper bound is set as the number of rectangles, and is
updated when a better feasible solution is found. The tree is traversed in a depth first
manner, as this postpones the parts of the solution space using a large number of bins
to a point where they may hopefully be pruned. Each rectangle is only allowed to open
one new bin, which specifically restricts the assignments of the first rectangles. Since
there are no open bins initially, the first rectangle can only be assigned to the first bin
(by opening it), the second rectangle can only be assigned to the first and second bin,
and so on. This helps limit the symmetry inherent to bin packing problems.

The second phase is run at each node of the outer tree to test the feasibility of the
assigned rectangles. We use the branch-decision tree described in Section 3.3 to test
the feasibility.

4.2.1 Closing Bins

In addition to the two-phase branching scheme we attempt at each node to close one or
more bins. If it can be determined that for some bin i, none of the unassigned rectangles

16

fit into the bin, we mark the bin as closed. In the subtree rooted at that node, rectangles
are not assigned to the closed bin.

In order to avoid creating a feasibility branch-decision tree for each unassigned
rectangle in combination with each node, the following method is employed instead.
For each station (y-coordinate) of the bin, the width of all rectangles that cover that
station is added. If the sum exceeds the width of the bin, the packing is infeasible.
Since the method is heuristic in nature, it may occur that a bin is kept open even though
no feasible packing may be obtained from adding any of the remaining unassigned
rectangles. This method is identical to the test performed when fixing a rectangle in the
branch and bound tree for the GSR-KP (see Section 3.2).

4.3 Dantzig Wolfe Decomposition

Like most other bin packing like problems, the GSR-BPP can easily be decomposed.
Let S be the set of possible assignments of requests in a single car. Let aj; = 1 iff request
j was assigned to the car in assignment i € S. Finally let ; = 1 iff assignment i is used.
Then the problem can be formulated as

min %6; (35)
s.t. Esaijéi >1 jeN (36)
6 €{0,1} €S (37)

The objective function (35) minimizes the number of assignments (i.e. cars) used, while
constraint (36) ensures that every request was fulfilled.

As the above model may become super-polynomially large, delayed column gen-
eration can be used to solve the LP-relaxation of the model. Let S’ C S be a subset of
the assignments, satisfying that all request can be fulfilled. Then the restricted master
problem is

min 5§ (38)
i€s

s.t. z ajj6>1 jeN (39)
i€s
de{0,1} ie¥ (40)

Letv; for j € N be the dual variables corresponding to (39). The pricing problem then

17

becomes

max jeZwVJaj (41)

s.t. %Wjé] <Ww, yeY (42)
j€
5i+5j—€ij—€ji§l (i,j) eE (43)
Xi—Xj—|—W€ij <W —wj; (i,j)EE (44)
0<x; <W —w; jEN (45)
Xj >0 jJEN (46)
bij e {0,1} (i,j) eE (47)
0; €4{0,1} jeN (48)

which is recognized as a generalization of (1)—(7), in which the profit of a request is not
proportional to wjhj. The reduced cost of the assignment found by solving (41)-(48) is

r= 1—jeZ\‘Vj5j.

If r < 0 we extend S" with the new assignment, i.e. setting a;; = &; in the next column
i = |S'| +1 and extending S’ accordingly. If r > 0 then the process terminates, and we
have solved the LP-relaxation of (35) — (37).

5 Computational Results

We have implemented bounds and exact algorithms for the GSR-KP and the GSR-BPP
as described in Sections 3 and 4. The algorithms and bounds have been implemented
in ANSI C except bound 27, which has been implemented in C++ since it makes use
of some algorithms from LEDA 4.5 [20]. All tests have been performed on an Intel
Pentium 4 with 2 GB of memory running at 3GHz. For all GSR-BPP tests we have
limited the time consumption to 30 minutes. Tests not completed within this time limit
are terminated with no result.

We start this section by looking at the upper bounds for the GSR-KP followed by
the exact algorithm for the GSR-KP. Then we look at lower bounds for GSR-BPP and
the performance of the exact algorithm for this problem. All computational times in the
tables are in seconds.

5.1 Upper boundsfor GSR-KP

Since we have no knowledge of any prior work on this problem new test instances
for testing the algorithms had to be created. All instances were created by modifying
the 2D knapsack packing instances also considered by Caprara and Monaci [7]. A
detailed description of the CGCUT instances can be found in [8]. The GCUT instances
are described in [1] and the OKP instances are described in [14]. Finally the WANG
instances are described in [27].

18

We needed to add a starting station for all the reservations, while making sure that
the ending stations were still valid. The CGCUT, OKP and WANG instances allowed
several reservations of the same type. These reservations were split up into individual
reservations and assigned separate starting stations. The starting stations are generated
randomly and we therefore generate five new instances from each of the original in-
stances to make sure we get some variation.

To evaluate the quality of 71 we used CPLEX 7.0 [10] to solve the problem as
a linear programming problem. w3 is a multiple knapsack problem with no further
constraints and can relatively easily be solved as an integer programming problem.
Thus this bound is also solved using CPLEX. We have made own implementations of
the upper bounds 72, 14 and s described in Section 3.1.

We have compared the quality and performance of the bounds implemented and
chosen the tightest bound and the fastest bound to be used in the bounding part of the
exact algorithm.

The results for the upper bounds are summarized in Tables 1 and 2. In the first two
columns we see the IP-optimal value found by CPLEX and the time used in seconds.
The next columns are the time used and the relative gap in percent to the optimal value
for each of the upper bounds.

U3 is the tightest of the considered bounds, as it finds the optimal solution for all
of the instances. For most problem instances 71 and ¢, are the second best upper
bounds and as expected 71 and 2> yield exactly the same bound values. w5 is faster
to calculate on the CGCUT, OKP and WANG instances. For these instances the train is
relatively small, having at most 100 seats. For the GCUT instances 71, performs better,
being up to 10 seconds faster than 2, on some instances. For these instances H and
W are significantly larger. GCUT_13, which is the largest, has H =W = 3000, so the
pseudo-polynomial nature of 2 is clearly observed.

Table 3 gives an overview of the overall quality of the bounds. It is clear that 73
is the tightest bound considered and the corresponding solution times are reasonable,
so we will choose this bound as one of the bounds for the exact algorithm. It is also
obvious that 4 is significantly faster to calculate so we choose this upper bound as the
second bound for the exact algorithm.

Due to the very high running times of 7, on the large instances we shall not con-
sider it further, but use 771 for comparisons with the remaining bounds.

Figure 2 illustrates the quality of the different bounds without taking the time aspect
into consideration. The x-axis indicates the gap in percent and the y-axis indicates the
number of instances solved within the given gap. <3 is hardly visible since all instances
are solved with a gap of 0% to the optimal solution. Therefore the 23 line is at 100%
all of the time. It is seen that although bound w1 on average provides upper bounds
of very good quality, it has a problems closing the gap to the optimal solution for a
number of instances.

5.2 Resultsfrom the GSR-KP

The results from the exact algorithm for the GSR-KP are summarized in Table 4. The
algorithm is run twice for each instance, using the bounds 23 and 74. The results are
compared to those of the CPLEX IP-solver.

19

CPLEX Uy Uy Uz Uy Usg
Instance Time Opt | Time Gap | Time Gap | Time Gap | Time Gap | Time Gap
CGCUT01_0 | 0.07 119 001 252 000 252| 000 O0O0O| 000 336 | 000 840
CGCUT01_1 | 0.03 124 | 003 806| 000 806 | 001 000| 000 968 | 000 1371
CGCUT01_2 | 0.01 119 | 001 000 | 000 0.00 | 000 0.00| 000 10.08 | 0.00 15.13
CGCUT01_3 | 0.06 107 | 001 280 | 000 280 | 000 000| 000 13.08 | 0.00 17.76
CCGCUT01_4 | 0.02 112 | 001 625| 000 625| 000 000| 000 804 | 000 1518
CCGCUT02_0 | 2.24 2137] 004 650 000 650[001 O0.00] 000 19.09 | 0.00 21.10
CCCUT02_1 | 1.24 2033 | 004 738| 000 738 | 004 000| 000 1392 | 0.00 17.36
CGCUT02_2 | 0.97 2085 | 003 590 | 001 590 | 001 000| 000 2791 0.00 2950
CCGCUT02_3 | 0.42 2042 | 003 451 | 000 451 | 000 0.00| 000 1342 | 0.00 15.87
CCCUT02_4 | 1.44 1990 | 0.03 849 | 000 849 | 001 000| 000 1879 | 000 2231
CGCUT03_0 | 2.07 2277 | 022 549 | 003 549 | 003 000| 000 2222 000 2262
CGCUT03_1 | 0.31 2391 | 027 117 | 003 117 | 001 000| 000 1631 | 000 17.11
CGCUT03_2 | 3.84 2277 | 023 597 | 005 597 | 010 000| 001 2275 000 2279
CGCUT03_3 | 2.38 2373 | 022 662| 004 662| 004 000| 000 17.02 | 0.00 17.02
CCCUT03_4 | 1.44 2323 | 022 852| 005 852| 004 0.00| 000 2028 | 0.00 20.49
GCUT01_0 0.01 31404 | 000 3294 | 003 3294 [001 000| 000 3231 000 33.09
GCUT01_1 0.00 36840 | 0.02 40.17 | 0.02 4017 | 002 0.00| 000 27.62 | 0.00 2828
GCUT01_2 0.00 31404 | 0.01 4422 | 002 4422 | 002 000| 000 3894 | 0.00 39.72
GCUT01_3 0.01 36840 | 001 3098 | 002 3098 | 001 000| 000 17.73 | 0.00 1840
GCUT01_4 0.00 31404 | 001 3896 | 002 3896 | 001 0.00| 000 3372 | 000 3451
GCUT02_0 0.05 40328 003 723 007 723] 002 000| 000 3389 | 000 3451
GCUT02_1 0.04 50934 | 005 830| 003 830 | 002 000| 000 1443 | 000 1492
GCUT02_2 0.09 42341 | 003 1746 | 0.07 1746 | 002 0.00| 000 3272 | 0.00 3332
GCUT02_3 0.03 46568 | 0.05 14.68 | 0.04 1468 | 0.02 0.00| 000 17.05| 0.00 17.59
GCUT02_4 0.03 49997 | 005 866 | 007 866 | 000 0.00| 000 10.64 | 0.00 11.14
GCUT03_0 015 46614 | 0.08 1462 | 010 1462 | 002 0.00| 000 2633 | 0.00 26.87
GCUT03_1 0.05 51714 | 006 1135| 011 11.35| 0.02 0.00| 000 13.89 | 0.00 1438
GCUT03_2 0.09 4493 | 008 925| 012 925| 002 000| 000 2818 | 0.00 2874
GCUT03_3 0.13 47614 | 005 1586 | 0.11 1586 | 0.03 0.00| 000 2419 | 0.00 24.49
GCUT03_4 0.14 47053 | 0.07 1424 | 009 1424 | 003 0.00| 000 2485 | 0.00 2539
GCUT04_0 0.63 52509 | 020 1155| 024 1155| 0.07 0.00| 000 1573 | 0.00 16.21
GCUT04_1 0.94 50937 | 019 1343 | 024 1343 | 009 0.00| 000 19.03 | 0.00 19.32
GCUT04_2 048 52673 | 017 1442 | 029 1442 | 007 000| 000 1625 | 0.00 16.38
GCUT04_3 059 56225 | 021 255| 027 255| 004 000| 000 863 | 000 9.08
GCUT04_4 031 50902 | 021 1008 | 035 10.08 | 0.08 0.00| 000 1740 | 000 17.89
GCUT05_0 0.03 169939 | 003 1731 | 003 1731 [000 000 | 000 3328 | 002 3358
GCUT05_1 0.03 169939 | 002 644 | 005 644 | 001 000| 000 2952 | 0.01 29.68
GCUT05_2 0.03 169939 | 002 973 | 004 973 | 001 000| 000 2658 | 0.01 26.87
GCUT05_3 0.02 169939 | 003 751 | 005 751 | 000 0.00| 000 19.71 | 0.01 20.00
GCUT05_4 0.02 169939 | 002 973| 003 973 | 000 000| 000 2775 | 001 2804
GCUT06_0 0.06 193017 | 006 925 023 925[002 000| 000 1617 | 0.00 16.43
GCUT06_1 0.04 224996 | 006 266 | 015 266 | 003 000| 000 830 | 001 853
GCUT06_2 0.05 169866 | 006 381 | 023 381 | 003 000| 000 3298 | 001 3327
GCUT06_3 0.06 174603 | 0.07 1178 | 021 11.78 | 0.03 0.00| 000 29.64 | 0.01 29.93
GCUT06_4 0.05 191258 | 007 573 | 024 573 | 003 0.00| 000 2018 | 0.01 20.44
GCUT07_0 010 179087 | 0.12 1226 | 0.69 1226 | 0.02 0.00| 000 2345 001 2373
GCUT07_1 0.06 191817 | 010 740 | 066 740 | 0.03 0.00| 000 1940 | 0.00 19.67
GCUT07_2 0.08 189689 | 0.12 17.15| 059 1715 | 0.03 0.00| 000 2451 | 001 2478
GCUT07_3 0.08 206839 | 012 831 | 061 831 | 004 000| 000 1618 | 0.01 16.42
GCUT07_4 011 193296 | 009 1699 | 065 1699 | 0.04 0.00| 000 1925 | 001 1931
GCUT08_0 104 202333 | 022 1380 | 121 1380 | 010 000 | 000 1940 | 001 19.65
GCUT08_1 0.72 217062 | 021 558 | 151 558 | 011 0.00| 000 1252 | 0.01 1275
GCUT08_2 0.64 215983 | 024 446 | 078 446 | 006 000| 000 1293 | 0.01 13.06
GCUT08_3 0.81 195827 | 021 814 | 183 814 | 007 000| 000 1914 | 0.00 19.40
GCUT08_4 029 213144 | 026 6.06| 165 6.06| 006 000| 001 1220 | 001 1243

Table 1: Comparison of the five bounds for GSR-KP on the first half of the instances.
The first column shows the instance name. The second column reports the time used
in seconds by CPLEX for solving the problem to IP-optimality, and the found optimal
solution. The remaining columns show the time required to compute the upper bound
and the gap between it and the optimal solution for each of the bounds.

20

CPLEX Uy Uy Uz Ug Usg
Instance Time Opt [Time Gap | Time Gap | Time Gap | Time Gap | Time Gap
GCUT09_0 0.02 689944 | 0.04 1911 | 015 1911 | 0.02 000 | 000 2109 | 0.03 21.24
GCUT09_1 0.01 608874 | 0.04 2101 | 026 21.01| 000 000| 000 2355| 003 2371
GCUT09_2 0.02 579884 | 0.03 2801 | 027 2801 | 002 000| 001 3383 | 0.03 34.05
GCUT09_3 0.01 674052 [0.03 471 | 0.18 471 | 001 0.00| 000 2782 | 003 2797
GCUT09_4 0.02 644262 | 0.06 854 | 0.25 854 (001 000 | 000 2368 | 003 2383
GCUT10_0 0.07 684206 | 0.10 649 | 147 649 (003 000 (| 001 2694 | 005 27.09
GCUT10_1 0.07 684206 | 0.12 1062 | 1.19 1062 | 004 000 | 000 3284 | 004 3299
GCUT10_2 0.07 684206 | 010 980 | 126 980 | 0.04 000| 001 3045| 0.04 30.59
GCUT10_3 0.07 684206 | 011 11.83 | 118 1183 | 0.05 000 | 000 30.94| 0.03 31.08
GCUT10_4 0.08 684206 | 0.11 1629 | 1.37 1629 | 006 000 | 001 3293 | 005 33.08
GCUT11_0 018 725928 | 0.13 11.08 | 262 11.08 | 0.07 000| 000 2723 | 005 2737
GCUT11_1 0.21 823381 | 014 1226 | 224 1226 | 006 000 | 000 1716 | 002 17.28
GCUT11_2 0.27 801744 | 016 1241 | 195 1241 | 008 000 | 000 1771 | 001 17.83
GCUT11_3 0.34 738006 | 016 17.13 | 1.74 1713 | 0.09 000 | 001 2320 | 005 2334
GCUT11_4 020 751244 | 017 1400 | 271 1400 | 0.08 000 | 000 2384 | 004 2397
GCUT12_0 050 8386038 | 027 7.02| 936 702 012 000| 002 10.87| 013 10.98
GCUT12_1 055 860063 | 0.28 749 | 821 749 | 012 000| 003 1012 | 015 10.24
GCUT12_2 0.70 839682 | 0.32 1142 | 484 1142 | 016 000 | 003 1618 | 0.13 16.30
GCUT12_3 0.54 755831 | 0.32 1649 | 559 1649 | 016 000 | 003 2479 | 014 2492
GCUT12_4 0.37 83529 | 0.28 9.74 | 9.85 974 009 000 | 003 1332 | 015 1344
GCUT13_0 165 6306124 | 022 1179 | 325 1179 | 011 000 | 001 2341 | 171 2346
GCUT13_1 0.64 6235136 | 020 768 | 453 7.68| 008 000| 001 2325| 125 2331
GCUT13_2 118 6162026 | 020 622 | 356 622 | 010 0.00 | 0.01 2647 | 139 26.55
GCUT13_3 0.75 6634536 | 018 540 | 315 540 010 000 | 001 2137 | 192 2144
GCUT13_4 273 6131618 | 0.18 883 | 4.86 883 (010 000 | 001 2711 | 177 2719
OKPO1_0 5.82 8462 | 0.14 811 | 0.02 811 | 005 000 | 000 1690 | 000 17.17
OKPO1_1 20.61 8904 | 0.14 9.06 | 0.04 906 [009 000 | 000 1158 | 001 1220
OKPO1_2 4.98 8544 | 0.15 503 | 0.03 503 005 000 (| 000 1378 | 001 1437
OKPO1_3 4.79 8640 | 016 755| 003 755| 010 0.00| 000 1318 | 0.01 13.76
OKPO1_4 5.54 8380 | 018 901 | 003 9.01| 005 000| 000 1442 | 0.01 1556
OKP02_0 0.54 7967 | 004 1122 | 002 1122 | 004 000 | 000 1681 | 0.00 1781
OKP02_1 0.23 7881 | 005 713 | 001 713 | 002 0.00| 000 10.86| 0.00 11.78
OKP02_2 0.37 833% | 004 1019 | 001 1019 | 003 000| 000 16.09 | 0.00 17.07
OKP02_3 0.37 8498 | 0.04 1104 | 001 1104 | 004 000 | 0.00 1553 | 0.00 1556
OKP02_4 0.40 7845 | 005 1354 | 001 1354 | 003 000| 000 2311 | 001 2419
OKP03_0 0.18 7830 | 0.04 1835 0.02 1835| 005 000| 0.00 2314 | 0.00 2328
OKP03_1 0.25 7767 | 004 1259 | 002 1259 | 0.02 0.00| 000 2194 | 0.00 2312
OKP03_2 0.14 7880 | 0.05 1594 | 0.02 1594 | 0.02 000 | 000 2220| 0.00 2338
OKP03_3 0.28 7846 | 0.07 1817 | 0.02 1817 | 004 000 | 0.00 2568 | 0.00 26.87
OKP03_4 0.25 7408 | 0.05 1559 | 0.02 1559 | 0.03 000 | 0.00 2461 | 0.00 25.85
OKP04_0 12.63 8848 | 0.20 715 | 0.05 715 016 000 (| 000 1004 | 000 1142
OKP04_1 5.69 9356 | 0.22 442 | 0.05 442 | 015 0.00| 0.00 6.87 | 0.01 6.87
OKP04_2 24.54 9045 | 019 578 | 005 578 | 012 000| 000 827 | 001 827
OKP04_3 291 9226 | 018 554 | 005 554 | 005 000| 000 700| 001 7.00
OKP04_4 8.55 8660 | 0.23 1035 | 005 1035 | 011 0.00| 000 1291 | 0.00 1455
OKPO5_0 162.51 9793 | 049 159 010 159 | 010 000| 001 206| 001 207
OKPO5_1 6.03 9799 | 0.48 165 | 0.10 165| 0.06 0.00| 0.00 184 | 0.01 1.96
OKPO5_2 8.84 9787 | 0.49 1.20 | 0.10 120 | 0.02 0.00| 0.00 196 | 0.01 2.18
OKPO5_3 542 9787 | 0.42 166 | 0.10 166 | 006 0.00| 0.00 215 | 0.01 217
OKPO5_4 33.06 9793 | 047 165| 009 165| 006 000| 000 209| 001 210
WANG20_0 0.16 2190 | 010 17.76 | 001 17.76 | 0.02 0.00 | 0.00 24.06 | 0.01 2457
WANG20_1 0.11 2237 | 010 1265| 001 1265 | 001 000 | 000 16.18| 0.01 17.97
WANG20_2 0.16 2378 | 008 685| 001 6.85| 003 000| 000 1245| 0.00 12.66
WANG20_3 0.04 2398 | 012 1255 | 0.01 1255| 002 000 | 0.00 1239 | 0.01 1259
WANG20_4 0.10 2166 | 0.08 1717 | 0.01 1717 | 003 000 | 0.00 2225| 0.01 2262

Table 2: Comparison of the five bounds for GSR-KP on the second half of the instances.
The first column shows the instance name. The second column reports the time used
by CPLEX in seconds for solving the problem to IP-optimality, and the found optimal
solution. The remaining columns show the time required to compute the upper bound
and the gap between it and the optimal solution for each of the bounds.

21

Bound CPLEX-IP Ui Uz Uus Uy Us

Average time 3.19 0.13 | 0.83 | 0.05 | 0.00 | 0.09
Spread / time 16.03 0.11 | 1.81 | 0.04 | 0.01 | 0.34
Average gap 0.00 10.92 | 10.92 | 0.00 | 19.23 | 19.93
Spread / gap 0.00 772 | 7.72 | 0.00 | 832 | 812

Table 3: Overall comparison of the five bounds for GSR-KP. Average time (in seconds)
and average gap in percent to the optimal solution and the matching spread for the
CPLEX IP-solver and the five upper bounds.

100 .
L Bound w3
90 7 Bound g ------ n
80 // Bound Uy -~ |
4 Bound us - ---
70 //// _
60 7 -
50 —
40 —
30 —
20 —
10 —
o | | | |
0 10 20 30 40 50

Figure 2: Quality of the implemented upper bounds. “1” represents w1 and the iden-
tical . The x-axis indicates the gap to the optimal solution in percent, and the y-axis
indicates how many instances are solved within the given gap (sampled in 5% intervals)

22

CPLEX | As Ay CPLEX | Asz Ay
Instance Requests Opt| time |time| time || Instance Requests Opt| time |time| time
CGCUT01_0 16 119 0.07]0.01 0.00 [| CGCUT02_0 23 2137 2241017 0.67
CGCUT01_1 16 124 0.03| 0.01 0.01 || CGCUT02_1 23 2033 1.24|0.10 0.79
CGCUT01_2 16 119 0.01|0.01 0.01 || cCGCUT02_2 23 2085 0.97|0.08| 110
CGCUT01_3 16 107 0.06 | 0.01 0.02 || cecuT02_3 23 2042 042|0.09| 0.39
CGCUT01_4 16 112 0.02| 0.01 0.01 || CGCUT02_4 23 1990 1.440.12 0.84
CGCUT03_0 62 2277 207|135 5.48 | GCUT01_0 10 31404 0.01 0.04 0.01
CGCUT03_1 62 2391 0.31]|0.81 6.14 || GCUT01_1 10 36840 0.00 | 0.05 0.03
CGCUT03_2 62 2277 3.84|2.05 6.43 || GCUT01_2 10 31404 0.00| 0.03| 0.03
CGCUT03_3 62 2373 2.38| 149 446 || GCUT01_3 10 36840 0.01|0.05| 0.03
CGCUT03_4 62 2323 1.44 1.60 5.78 || GCUT01_4 10 31404 0.00 | 0.03 0.03
GCUT02_0 20 40328 0.05]0.13 0.22 [| GCUT03_0 30 46614 0.15] 041 0.97
GCUT02_1 20 50934 0.04|0.11 0.16 || GCUT03_1 30 51714 0.05| 0.44 0.90
GCUT02_2 20 42341 0.09 | 0.22 0.32 || GCUT03_2 30 44963 0.09|043| 064
GCcUT02_3 20 46568 0.03|0.08 0.25 || GCUT03_3 30 47614 0.13|0.38| 0.71
GCUT02_4 20 49997 0.03| 0.08 0.07 || GCUT03_4 30 47053 0.14(0.21 0.75
GCUT04_0 50 52509 0.63] 1.66 6.35 [| GCUT05_0 10 169939 0.03] 0.06 0.10
GCUT04_1 50 50937 094|213 9.02 || GCUTO05_1 10 169939 0.03|0.06| 0.09
GCUT04_2 50 52673 0.48(0.92 4.75|| GCUTO05_2 10 169939 0.03|0.05| 0.07
GCcuUT04_3 50 56225 0.59 | 1.71 5.25 || GCUT05_3 10 169939 0.02|0.05| 0.07
GCUT04_4 50 50902 0.31| 1.58 4.85 || GCUT05_4 10 169939 0.02 | 0.05 0.09
GCUT06_0 20 193017 0.06[0.28 0.45 [GCUT07_0 30 179087 0.10| 0.51 0.70
GCUT06_1 20 224996 0.04|0.20 0.40 || GcuTo7_1 30 191817 0.06|0.64| 129
GCUT06_2 20 169866 0.05|0.22 0.58 || GCUTO07_2 30 189689 0.08|0.71| 129
GCUT06_3 20 174603 0.06 | 0.29 0.67 || GCUTO07_3 30 206839 0.08|0.76 | 0.76
GCUT06_4 20 191258 0.05| 0.35 0.61 || GCUT07_4 30 193296 0.11| 0.67 1.28
GCUT08_0 50 202333 1.04]353 15.05 [| GCUT09_0 10 689944 0.020.03 0.14
GCUT08_1 50 217062 0.72|350| 14.12|| GCUT09_1 10 608874 0.01|0.07| 011
GCUT08_2 50 215983 0.64|2.26 8.73 || GCUT09_2 10 579884 0.02|0.05| 0.11
GCUT08_3 50 195827 0.81| 2.00 16.79 || GCUT09_3 10 674052 0.01 | 0.06 0.10
GCUT08_4 50 213144 0.29| 2.29 9.54 || GCUT09_4 10 644262 0.02 | 0.04 0.11
GCUT10_0 20 684206 0.07]0.27 0.79 || GCUT11_0 30 725928 0.18] 219 5.56
GCUT10_1 20 684206 0.07 | 0.29 1.07 || GCUT11_1 30 823381 0.21|156| 323
GCUT10_2 20 684206 0.07|0.28 0.83|| GCUT11_2 30 801744 027|202 421
GCUT10_3 20 684206 0.07| 0.31 0.96 || GCUT11_3 30 738006 0.34|1.79 5.62
GCUT10_4 20 684206 0.08 | 0.32 1.00 || GCUT11_4 30 751244 0.20 | 0.61 4.32
CGCUT12_0 50 886038 0.50[5.20 14.97 || GCUT13_0 32 6306124 1.65[4.69[14529
GCcuT12_ 1 50 860063 0.55(3.89| 16.35|| GCUT13_1 32 6235136 0.64|1.36| 45.87
GCUT12_2 50 839682 0.70 | 4.77| 22.63|| GCUT13_2 32 6162026 118 4.29 | 162.28
GCuUT12_3 50 755831 0.54| 3.64 21.42 || GCUT13_3 32 6634536 0.75(4.11| 83.77
CGCUT12_4 50 835296 0.37| 351 10.06 || GCUT13_4 32 6131618 2.7313.00| 81.02
OKPO1_0 50 8462 582 1.23 5.93]| OKP02_0 30 7967 054014 026
OKPO1_1 50 8904 | 20.61|0.74 5.26 || OKP02_1 30 7881 0.23|0.14| 015
OKP0O1_2 50 8544 4.98|1.30 5.87 || OKP02_2 30 8335 0.37|029| 027
OKPO1_3 50 8640 4.79 | 1.65 4.75 || OKPO2_3 30 8498 0.37|0.24 0.31
CKPO1_4 50 8380 554 1.02 4.89 || OKPO2_4 30 7845 0.40(0.13 0.34
OKP03_0 30 7830 0.18]0.26 0.26 || OKPO4_0 61 8848 1263|105 911
OKP03_1 30 7767 0.25|0.10 0.28 || OKPO4_1 61 9356 5.69|3.29| 1145
OKP03_2 30 7880 0.14|0.22 0.33 || OKP04_2 61 9045| 2454|270 11.13
COKP03_3 30 7846 0.28]0.31 0.38 || OKP04_3 61 9226 291|099 355
CKP03_4 30 7408 0.25]0.20 0.26 || OKP04_4 61 8660 8.55| 1.06 4.86
OKPO5_0 97 9793 16251 7.27| 111.31||WANG20_0 42 2190 016|019 043
OKPO5_1 97 9799 6.03 | 8.06 | 1332.44 || WANG20_1 42 2237 0.11|048| 052
COKPO5_2 97 9787 8.84|8.05(302.16 || WANG20_2 42 2378 0.16 | 0.42 0.24
COKPO5_3 97 9787 542|577 | 385.83 (| WANG20_3 42 2398 0.04 | 0.20 0.40
COKPO5_4 97 9793 | 33.06(7.69| 1303.85 || WANG20_4 42 2166 0.10| 0.38 0.46

Table 4: Comparison between CPLEX IP-solver and the exact algorithm for the GSR-
KP. The columns show the instance name, the number of request and the optimal solu-
tion to the problem. Next, we report the time used by CPLEX in seconds and the exact
algorithm to compute the solution. Az is the exact algorithm using w3 and A is the
exact algorithm using 4. The fastest time for each instance is shown in bold face.

23

The algorithm is able to solve all the test instances using both of the applied bounds.
Using @3 all instances are solved within reasonable time. A slight increase in compu-
tational time is noted as the number of requests increase, up to slightly more than eight
seconds for OKP_05 which has 97 requests. The algorithm using w4 also shows good
computational times for the smaller instances, but degrades significantly for the larger
instances. This seems reasonable as 4 is not very tight, so the solution space becomes
too large, even though the bound is faster to compute.

It is clear from the table that the performance of our algorithm depends on the
type of problem instance it is solving. With bound w3 our algorithm is faster than the
CPLEX IP-solver for most CGCUT and OKP instances. This is an interesting result, as
the OKP were introduced by Fekete and Schepers as particularly difficult instances. For
the GCUT and WANG instances the CPLEX IP-solver is faster than our algorithm and
for some of them quite considerably. Our algorithm is the fastest at solving 30 out of
100 instances when using bound 3. In six of the instances the algorithm is the fastest
when using bound 4.

CPLEX Az Ay
Total time 351.38 | 141.60 | 4279.25
Average time 3.19 1.29 38.90
Spread 16.03 1.88 | 182.44

Table 5: Summary of results for the CPLEX IP-solver and the exact algorithm for the
GSR-KP. Az and A4 denotes the exact algorithm using bounds 23 and 4 respectively.
Times are in seconds.

Table 5 summarizes the results in Table 4. The exact algorithm using 3 displays
the lowest total running time despite being fastest on only 30 of the 110 instances.
It also has a low standard deviation (spread) indicating that this algorithm is robust
to the different instances. Although being fastest on the majority of the instances, the
CPLEX IP-solver has a higher total running time and a larger standard deviation. This
indicates that the CPLEX IP-solver is more susceptible to fluctuations in the solution
time required. This is most obvious on OKPO5_0 where the CPLEX IP-solver uses
162 seconds, but also OKPO1_1, OKP04_2 and OKP05_4 displays this tendency.

5.3 Lower bounds for the GSR-BPP

The test instances used in the GSR-BPP is a further modification of the instances from
Caprara and Monaci [7] used in the GSR-KP. The maximum number of available seats
in the train is ignored, and instead we introduce W, the number of seats in a train car.
The train car sizes chosen are 10, 20 and 40. To make the new instances valid we adjust
the number of seats asked for by a request. To ensure 0 < wj <W we set

Wi — W if wi modW =0,
"7 lwj modwW otherwise.

Of the lower bounds considered £ is the LP-relaxation of the problem. We saw in
section 4.1 that £1 = 0 for all instances, so this was not implemented. £ is an ordinary

24

bin packing problem and hence it will be ¢ # -hard to compute this bound. £3 is a lower
bound of £, which is polynomially solvable. It is quickly computed and is generally
expected to produce very tight lower bounds (see e.g. [24]). £4 is similar to £, with
some additional constraints and hence still Al 7-hard to solve. This led us to suspect
that £4 would be somewhat slower than £, but possibly give tighter bounds.

In a branch and bound algorithm the time required to calculate a bound is very
important. £3 is expected to be considerably faster than the other two and is at the
same time believed to give quite good bounds. Consequently only £3 was chosen as
the lower bound implemented for use in the exact algorithm.

The results of the lower bound applied to the test instances are shown in Table 6. As
can be seen all bounds were calculated using a negligible amount of time. Moreover,
in the cases where we have an optimal solution, £3 matched the upper bound in every
instance except one (GCUT10_1 - bin size 40), indicating that .3 is very tight for the
considered instances.

5.4 Resultsfrom the GSR-BPP

Since we had no previous results to compare to, we used the CPLEX IP-solver as a
reference solution. CPLEX displayed some difficulties solving the test instances. In
fact the CPLEX IP-solver was only able to solve between 18 and 20 (depending on bin
size) of the 110 instances in less than 30 minutes. On some of the instances CPLEX
was imposed a time limit of 18 hours but was still unable to solve the instances.

The exact algorithm was not able to solve all of the instances, but performed sig-
nificantly better than the CPLEX IP-solver as can be seen in Table 7 and Table 8. It
solved between 49 and 54 of the instances to optimality within the 30 minute time
limit. Moreover, for the instances where both algorithms solved the problem to opti-
mality, the presented exact algorithm was considerably faster than CPLEX.

The complexity of the problem depends in large parts on the number of requests.
The CPLEX IP-solver is able to solve all instances with 10 requests and most of the
instances with 16 requests but none of the instances with more requests. The presented
exact algorithm solves most of the instances with up to about 30 requests and a few
with more than 30 requests.

It is interesting to notice that the considered instances are either solved very fast
or not at all (given the imposed time limit). Considering that 3 was able to find the
correct solution to almost every instance which was solved to optimality and in very
little time, we expect that it is reasonably easy to find a good solution, but quite difficult
to prove optimality. In many cases both the CPLEX IP-solver and the exact algorithm
probably have found an optimal solution, but are unable to prove optimality within the
given time frame.

6 Further Work

The GSR-KP considers the profit of each reservation to be the product of the number of
seats occupied and the distance travelled. A more general approach would be to repre-
sent the profit of a reservation as a separate parameter, as is the case in two-dimensional

25

Binsize 10 | Binsize20 | Binsize40 Binsize 10 | Binsize20 | Binsize40
Instance Boundtime | Boundtime | Boundtime || Instance Bound time | Bound time | Bound time

CGCUT01_0 3 0.00 2 0.00 1 0.00 || CGCUT02_0 10 0.00 7 0.00 5 0.00
CGCUT01_1 3 0.00 2 0.00 1 0.00 || CGCUT02_1 10 0.00 7 0.00 5 0.00
CGCUT01_2 3 000 2 000 1 0.00 || cecuTo2_2 9 0.00 7 0.00 6 0.00
CGCUT01_3 4 000 2 000 1 0.00 || cecuT02_3 9 0.00 7 0.00 6 0.00
CGCUT01_4 4 0.00 2 0.00 1 0.00 || CceCUT02_4 10 0.00 7 0.00 6 0.00
CGCUT03_0 27 0.00 40 0.01 39 0.00 || GcUT01_0 6 0.00 5 001 7 0.00
CGCUTO03_1 28 0.00 39 001 40 0.00 || GCUTO1_1 4 0.00 4 001 5 0.00
CGCUT03_2 27 0.01 38 001 39 0.00 || GCUTO01_2 5 0.00 4 0.00 5 0.00
CGCUT03_3 27 0.01 39 0.01 39 0.00 || GCUTO01_3 5 0.00 4 0.00 6 0.00
CGCUT03_4 27 001 39 001 40 0.00 || GCUTO01_4 5 0.00 5 001 6 0.00

GCUT02_0 14 0.01 14 0.01 13 0.00 || GCUT03_0 15 o0.01 14 0.01 14 0.00
GCUT02_1 12 0.01 13 0.01 12 0.00 || GCUT03_1 15 o0.01 15 0.01 14 0.00
GCuT02_2 13 0.01 12 0.01 12 0.00 || GCUT03_2 16 0.01 15 0.01 15 0.00
GCuUT02_3 13 0.00 13 0.00 13 0.00 || GCUT03_3 14 0.01 14 0.01 15 0.00
GCUT02_4 13 0.01 14 0.01 13 0.00 || GCUT03_4 15 0.01 15 0.01 15 0.00

GCUT04_0 23 001 22 001 23 0.00 || GCUTO05_0 5 001 5 001 6 0.00
GCUT04_1 25 0.01 24 0.01 25 0.00 || GCUTO5_1 6 001 6 001 6 0.00
GCUT04_2 25 0.01 24 0.01 23 0.00 || GCUTO5_2 6 001 5 001 6 0.00
GCUT04_3 24 0.01 22 0.00 23 0.00 || GCUTO5_3 6 001 5 001 6 0.00
GCUT04_4 28 001 27 001 26 0.00 || GCUTO5_4 6 001 5 001 6 0.00

GCUT06_0 10 0.01 12 0.01 8 0.00 || GCUTO7_0 16 0.00 16 0.00 18 0.01
GCUT06_1 10 0.01 11 0.01 7 0.00 || GCUTO7_1 14 0.01 14 0.01 17 0.01
GCUT06_2 11 0.01 12 0.01 8 0.00 || GCUTO7_2 15 0.01 16 0.01 17 0.00
GCUT06_3 10 o0.01 12 0.01 8 0.00 || GcUT07_3 15 o0.01 14 0.01 17 0.00
GCUT06_4 11 0.00 12 001 8 0.00 || ccuTo7_4 16 0.01 15 001 17 0.00

GCUT08_0 27 0.00 24 0.01 20 0.01 || GCUT09_0 5 001 4 001 4 0.00
GCUT08_1 26 0.01 21 0.01 20 0.01 || GCUT09_1 5 001 4 001 5 0.00
GCUT08_2 26 001 22 0.00 19 0.01 || GCUT09_2 6 0.01 5 001 4 0.00
GCUT08_3 27 001 23 0.00 21 0.01 || GCUT09_3 5 001 4 001 5 0.00
GCUT08_4 29 0.00 25 0.01 20 0.01 || GCUT09_4 6 001 5 001 4 0.00

GCUT10_0 14 0.01 12 0.01 10 0.02 || GCUT11_0 16 0.01 15 0.01 18 0.01
GCUT10_1 13 0.01 11 o0.01 9 001] ccurii_l 15 o0.01 16 0.02 17 o0.01
GCUT10_2 14 0.01 12 0.00 10 0.01 || GcuT1l_2 14 0.00 14 001 16 0.01
GCUT10_3 14 0.01 12 0.01 10 0.01 || GCUT11_3 15 0.00 15 0.02 16 0.01
GCUT10_4 13 0.01 11 0.01 9 0.01 | GCUT11_4 14 0.01 14 0.01 18 0.01
GCUT12_0 31 0.02 25 001 28 0.02 || GCUT13_0 9 001 7 0.02 6 0.01
GCcuT12_1 30 001 26 0.01 27 003 || GCUT13_1 11 0.01 11 0.01 10 0.01

GCUT12_2 29 0.02 26 0.02 28 0.03 || GCUT13_2 9 001 7 002 6 001
GCUT12_3 29 0.02 25 0.01 27 0.03 || GCUT13_3 8 001 7 001 6 001
GCUT12_4 31 001 27 001 28 0.03 || GCUT13_4 9 001 7 0.02 6 001
OKPO1_0 16 0.00 11 o0.01 14 0.00 || OKP0O2_0 8 0.00 10 o0.01 8 0.00
OKPO1_1 16 0.01 11 0.01 11 0.00 || OKPO2_1 9 0.00 11 0.01 8 0.00
OKPO1_2 15 0.01 10 0.01 11 0.00 || OKPO2_2 9 0.00 10 0.00 8 0.00
OKPO1_3 16 0.00 11 0.00 12 0.00 || OKPO2_3 7 0.00 8 001 6 0.00
OKPO1_4 16 0.00 11 001 12 0.00 || OKP0O2_4 9 0.00 10 0.00 8 0.00
OKP03_0 14 0.00 8 001 8 0.00 || OKP04_0 21 0.00 18 0.01 15 0.00
OKP0O3_1 10 0.00 6 001 7 0.00 || OKPO4_1 20 0.00 18 0.01 14 0.00
OKPO3_2 13 0.00 7 001 10 0.00 || OKPO4_2 19 0.00 18 0.01 14 0.00
OKP03_3 14 0.00 9 001 9 0.00 || OKP0O4_3 21 0.00 20 0.01 16 0.00
OKP03_4 11 0.00 6 001 8 0.00 || OKPO4_4 24 0.00 22 001 18 0.00
OKPO5_0 27 0.00 27 001 19 0.00 || WANG20_0 16 0.00 14 0.01 20 0.00
OKPO5_1 24 0.00 27 0.00 17 0.00 || WANG20_1 13 0.00 14 0.01 20 0.00
OKP0O5_2 25 0.00 27 001 18 0.00 || WANG20_2 13 0.00 12 001 19 0.00
OKPO5_3 26 0.00 27 001 19 0.00 || WANG20_3 15 0.00 12 001 17 0.00
OKPO5_4 23 0.00 23 001 14 0.00 || WANG20_4 15 0.00 14 0.01 18 0.00

Table 6: Computational results for £3, illustrating the value of the lower bound and the
time required to compute it in seconds, using three different bin sizes.

26

Binsize 10 Binsize 20 Bin size 40
CPLEX b&b CPLEX b&b CPLEX b&b

Instance Requests | Opt time time Opt time time | Opt time time

CGCUT01_0 16 3 8.25 0.00 2 0.45 0.14 1 0.07 0.00
CGCUT01_1 16 3 0.58 0.00 2 0.47 0.07 1 0.07 0.00
CGCUT01_2 16 3 0.36 0.00 2 0.46 0.08 1 0.06 0.00
CGCUT01_3 16 4 - 0.00 2 0.29 0.07 1 0.07 0.00
CGCUT01_4 16 4 - 0.00 2 0.34 0.05 1 0.08 0.00
CGCUT02_0 23 - - - 7 - 477 5 - 0.02
CGCUT02_1 23 10 - 32658 7 - 0.07 - - -
CGCUT02_2 23 - - - 7 - 0.03 6 - 0.02
CGCUT02_3 23 - - - 7 - 0.04 6 - 0.06
CGCUT02_4 23 10 - 35174 7 - 0.04 6 - 9.36
CGCUT03_0 62 - - - - - - - - -
CGCUT03_1 62 - - - - - - - - -
CGCUT03_2 62 - - - - - - - - -
CGCUT03_3 62 - - - - - - - -
CGCUT03_4 62 - - - - - - - - -
GCUT01_0 10 6 1.10 0.00 5 0.43 0.00 7 9.42 0.01
GCUTO01_1 10 4 0.13 0.00 4 0.21 0.00 5 0.88 0.01
GCUT01_2 10 5 5.54 0.00 4 0.33 0.00 5 0.71 0.00
GCUT01_3 10 5 0.22 0.00 4 2.64 0.00 6 4.15 0.03
GCUT01_4 10 5 0.35 0.01 5 0.70 0.00 6 7.08 0.00
GCUT02_0 20 14 - 6.69 14 - 119 13 - 0.23
GCUT02_1 20 12 - 56.71 13 - 6.41 12 - 6.55
GCUT02_2 20 13 - 11.26 12 - 0.04 12 - 0.37
GCUT02_3 20 13 - 42.44 13 - 2.84 13 - 4.04
GCUT02_4 20 13 - 2.46 14 - 1.01 13 - 0.65
GCUT03_0 30 - - - - - - - - -
GCUT03_1 30 - - - - - - - - -
GCUT03_2 30 - - - - - - - - -
GCUT03_3 30 14 - 167.27 - - - - - -
GCUT03_4 30 - - - - - - 15 - 97801
GCUT04_0 50 - - - - - - - - -
GCUT04_1 50 - - - - - - - - -
GCUT04_2 50 - - - - - - - - -
GCUT04_3 50 - - - - - - - - -
GCUT04_4 50 - - - - - - - - -
GCUT05_0 10 5 0.42 0.00 5 4.23 0.01 6 7.54 0.01
GCUT05_1 10 6 6.54 0.01 6 2.84 0.01 6 141 0.00
GCUT05_2 10 6 5.74 0.01 5 4.07 0.00 6 3.98 0.02
GCUT05_3 10 6 101 0.02 5 188 0.00 6 0.46 0.00
GCUT05_4 10 6 3.17 0.00 5 12.67 0.01 6 1.02 0.00
GCUT06_0 20 10 - 0.03 12 - 2.27 8 - 5.74
GCUT06_1 20 10 - 0.50 11 - 0.11 - - -
GCUT06_2 20 11 - 0.05 12 - 0.06 - - -
GCUT06_3 20 10 - 0.03 12 - 116 8 - 0.11
GCUT06_4 20 11 - 0.94 12 - 0.06 8 - 62.14
GCUT07_0 30 - - - - - - - - -
GCUT07_1 30 14 - 9.19 14 - 7570 - - -
GCUT07_2 30 - - - - - - - - -
GCUT07_3 30 15 - 24.92 14 - 4.48 - - -
GCUT07_4 30 - - - - - - - - -
GCUT08_0 50 - - - - - - - - -
GCUT08_1 50 - - - - - - - - -
GCUT08_2 50 - - - - - - - - -
GCUT08_3 50 - - - - - - - - -
GCUT08_4 50 - - - - - - - - -

Table 7: Comparison between CPLEX IP-solver and the proposed branch-and-bound
algorithm on the first half of the GSR-BPP instances. We report the instance name and
the number of requests for the given instance. For each of the three bin sizes we report
the optimal solution and the running time in seconds for CPLEX and our algorithm. A
hyphen indicates that the instance could not be solved within a 30 minute time limit.

27

Binsize 10 Binsize 20 Bin size 40
CPLEX b&b CPLEX b&b CPLEX b&b

Instance Requests | Opt time time Opt time time Opt time time

GCUT09_0 10 5 0.18 0.00 4 0.87 0.00 4 0.08 0.00
GCUT09_1 10 5 12.62 0.00 4 1.63 0.01 5 0.46 0.01
GCUT09_2 10 6 8.03 0.01 5 341 0.00 4 0.10 0.01
GCUT09_3 10 5 0.16 0.01 4 0.09 0.01 5 2.55 0.02
GCUT09_4 10 6 25.64 0.01 5 111 0.01 4 1.99 0.01
GCUT10_0 20 14 - 0.32 12 - 16.69 10 - 0.06
GCUT10_1 20 13 - 0.56 1 - 17.53 10 - 647.89
GCUT10_2 20 14 - 0.35 12 - 18.01 10 - 0.05
GCUT10_3 20 14 - 2.23 12 - 162.85 10 - 0.06
GCUT10_4 20 13 - 0.15 11 - 0.06 9 - 0.05
GCUT11_0 30 - - - - - - - - -
GCUT11_1 30 - - - - - - 17 - 245.09
GCUT11_2 30 - - - - - - - - -
GCUT11_3 30 - - - - - - - - -
GCUT11_4 30 14 - 557.32 - - - - - -
GCUT12_0 50 - - - - - - - - -
GCUT12_1 50 - - - - - - - - -
GCUT12_2 50 - - - - - - 28 - 49556
GCUT12_3 50 - - - - - - - - -
GCUT12_4 50 - - - - - - - - -
GCUT13_0 32 9 - 33681 7 - 0.08 6 - 0.05
GCUT13_1 32 - - - 11 - 653.65 - - -
GCUT13_2 32 - - - 7 - 0.06 6 - 5.21
GCUT13_3 32 8 - 2.48 7 - 0.09 6 - 0.06
GCUT13_4 32 - - - - - - - - -
OKPO1_0 50 - - - - - - - - -
OKPO1_1 50 - - - - - - - - -
OKPO1_2 50 - - - - - - - -
OKPO1_3 50 - - - - - - - - -
OKPO1_4 50 - - - - - - - - -
OKP02_0 30 8 - 14282 10 - 70.94 8 - 249.07
OKPO2_1 30 - - - 1 - 0.07 - - -
OKP02_2 30 9 - 0.06 10 - 0.06 8 - 8.16
OKP02_3 30 - - - 8 - 52368 - - -
OKP02_4 30 - - - - - - - - -
OKP03_0 30 14 - 0.15 - - - 8 - 0.05
OKPO3_1 30 - - - - - - 7 - 0.04
OKPO3_2 30 - - - - - - 10 - 52.78
OKP03_3 30 14 - 11.72 - - - 9 - 0.06
OKP03_4 30 1 - 3.42 - - - 8 - 0.05
OKP04_0 61 21 - 177 - - - 15 - 0.80
OKP04_1 61 - - - - - - - - -
OKP04_2 61 - - - - - - - - -
OKP04_3 61 - - - - - - - - -
OKP04_4 61 - - - - - - 18 - 111
OKPO5_0 97 - - - - - - - - -
OKPO5_1 97 - - - - - - - - -
OKPO5_2 97 - - - - - - - - -
OKPO5_3 97 - - - - - - - - -
OKPO5_4 97 - - - - - - - - -
WANG20_0 42 - - - - - - - - -
WANG20_1 42 - - - - - - 20 - 1.37
WANG20_2 42 - - - - - - - - -
WANG20_3 42 - - - - - - - - -
WANG20_4 42 - - - - - - 18 - 19.26

Table 8: Comparison between CPLEX IP-solver and the proposed branch-and-bound
algorithm on the second half of the GSR-BPP instances. We report the instance name
and the number of requests for the given instance. For each of the three bin sizes we
report the optimal solution and the running time in seconds for CPLEX and our algo-
rithm. A hyphen indicates that the instance could not be solved within a 30 minute time
limit.

28

knapsack problems. In this way, route segments can be priced individually, which more
realistically models the pricing presently done by many railway companies. However,
the upper bounds presented cannot be used without modification.

For the GSR-BPP, no upper bounds have been considered. As the feasibility com-
putations are much more efficient for the GSR-BPP than for ordinary two-dimensional
packing problems, it is not known what effect an upper bound would have on the effi-
ciency of the exact algorithm presented.

The Dantzig Wolfe decomposition formulation stated in Section 4.3 has not been
tested empirically. As the formulation will lead to tighter bounds one could hope that
even more instances could be solved to optimality by this approach.

7 Conclusion

This is, to the best of our knowledge, the first paper to study the exact solution of the
off-line GSRP. Two variants have been considered: the GSR-KP which is a variant of
the 2DKP and the GSR-BPP which is a variant of the 2DBPP. For each problem, a
number of bounds has been proposed and exact algorithms to solve the problems have
been implemented. Additionally, necessary and sufficient conditions for feasible GSRP
solutions based on a graph representation of the reservations has been described. An
enumerative algorithm using these conditions has been implemented and is used in the
exact algorithms of both the GSR-KP and the GSP-BPP.

For the GSR-KP we have proposed five upper bounds, which have been compared
theoretically and computationally. Of these, the tightest bound and the fastest bound
has been used in an exact algorithm. For comparison, the instances was also solved
using the CPLEX IP-solver.

Of the implemented algorithms, the algorithm using the fastest bound showed the
poorest performance, and was the fastest algorithm on very few instances. The algo-
rithm using the tightest bound solved all instances within reasonable time, and was
significantly faster than the CPLEX IP-solver on some of the hardest instances. For
many of the medium-sized instances, however, the CPLEX IP-solver showed the best
performance.

For the GSR-BPP four lower bounds were considered. Of these, £3 was expected
to perform well, and it was implemented with promising results. The GSR-BPP was
more complex to solve than the GSR-KP and both the CPLEX IP-solver and the exact
algorithm implemented had difficulties solving some of the instances. Neither was able
to solve all of the instances within a 30 minute time limit, but the exact algorithm solved
several instances which the CPLEX IP-solver was unable to solve. For the instances
solvable by the CPLEX IP-solver, the exact algorithm was the fastest in all cases. Thus
for this version of the GSRP the presented algorithm is clearly the best choice, when
an exact solution is desired.

29

References

[1] J.E. Beasley, Algorithms for unconstrained two-dimensional guillotine cutting,
Journal of the Operational Research Society, 36 297-306 (1985).

[2] J.0. Berkey and P.Y. Wang. Two Dimensional Finite Bin Packing Algorithms. J.
Oper. Res. Soc. 38 423-429 (1987).

[3] G. Belov. Problems, Models and Algorithms in One- and Two-
Dimensional Cutting. PhD thesis, Technischen Universitdt Dresden, 2003.
http://ww. mat h. t u- dr esden. de/ ~bel ov/ publ / t ext 030908_SUBM T. pdf .

[4] M. A. Boschetti and A. Mingozzi Two-Dimensional Finite Bin Packing Problem.
Part I: New lower bounds for the oriented case 40OR: Quarterly Journal of the
Belgian, French and Italian Operations Research Societies 1, 27-42 (2003).

[5] M. A. Boschetti and A. Mingozzi Two-Dimensional Finite Bin Packing Problem.
Part I1: New lower and upper bounds 4O0R: Quarterly Journal of the Belgian,
French and Italian Operations Research Societies 1, 135-147 (2003).

[6] J. Boyar and P. Medvedev. The relative worst order ratio applied to seat reser-
vation Proceedings of SWAT 2004 Lecture Notes in Computer Science 3111
Springer, Heidelberg (2004) T. Hagerup and J. Katajainen (eds.)

[7] A. Caprara and M. Monaci. On the two-dimensional knapsack problem. Opera-
tions Research Letters, 32 5-14 (2004).

[8] N. Christofides, C. Whitlock, An algorithm for two-dimensional cutting prob-
lems, Operations Research, 25 30-44 (1977).

[9] J. Csirik and G. Woeginger. On-line Packing and Covering Problems. Online al-
gorithms. Lecture Notes in Computer Science 1442 147-177 Springer, Heidelberg
(1998) A. Fiat and G. Woeginger (eds.)

[10] ILOG. CPLEX 7.0, Reference Manual, ILOG, S.A., France, 2004

[11] M. Dell’Amico and S. Martello, Optimal Scheduling of Tasks on Identical Paral-
lel Processors, ORSA Journal on Computing 7, 191-200 (1995)

[12] S.P. Fekete and J. Schepers. New classes of fast lower bounds for bin packing
problems. Mathematical Programming 91, 11-31 (2001)

[13] S.P. Fekete and J. Schepers. A Combinatorial Characterization of Higher-
Dimensional Packing. Mathematics of Operations Research 29 353-368 (2004)

[14] S.P. Fekete, J. Schepers and J. van der Veen. An exact algorithm for higher-
dimensional orthogonal packing. Operations Research (to appear).

[15] A. Fiat and G. Woeginger, editors. Online Algorithms — The State of the Art.
Lecture Notes in Computer Science 1442 Springer, Heidelberg (1998)

30

[16] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press
(1980)

[17] E. Hadjiconstantinou and N. Christofides. An exact algorithm for general, or-
thogonal, two-dimensional knapsack problems. European Journal of Operational
Research, 83 39-56 (1995)

[18] A.Helliesen. The Seat Reservation Problem - An Empirical Study. Master Thesis,
Technical University of Denmark, October 2003.

[19] H. Kellerer, U. Pferschy and D. Pisinger. Knapsack Problems. Springer, Heidel-
berg (2004)

[20] Algorithmic Solutions Software GmbH LEDA 4.5 The LEDA User Manual
Algorithmic Solutions Software GmbH, Germany,

[21] A. Lodi, S. Martello and D. Vigo. Recent Advances on Two-Dimensional Bin
Packing Problems Discrete Applied Mathematics 123, 379-396 (2002).

[22] S. Martello, D. Pisinger, D. Vigo. The Three-Dimensional Bin Packing Problem
Operations Research, 48, 256-267 (2000).

[23] S. Martello and D.Vigo. Exact Solution of the Two-Dimensional Finite Bin Pack-
ing Problem. Manage. Sci. 44 388-399 (1998).

[24] S. Martello and P. Toth, Lower Bounds and Reduction Procedures for the Bin
Packing Problem, Discrete Applied Mathematics 28, 59—70 (1990).

[25] M. Pal and G. P. Bhattacharjee. A Sequential Algorithm for Finding a Maximum
Weight k-Independent Set on Interval Graphs Intern. J. Computer Math. 60, 205—
214 (1996).

[26] D. Pisinger and M.M. Sigurd. Using Decomposition Techniques and Constraint
Programming for Solving the Two-Dimensional Bin Packing Problem. IN-
FORMS Journal on Computing, 19, 16 pages (2007).

[27] P.Y. Wang, Two algorithms for constrained two-dimensional cutting stock prob-
lems, Operations Research, 31, 573-586 (1983).

[28] M.Yannakakis, F.Gavril. The maximum k-colorable subgraph problem for
chordal graphs Information Processing Letters 24 133-137 (1987).

31

	forside0702.pdf
	Forside0702.doc

	teknisk_rapport_0702.pdf

