

Technical Report no. 06/10
ISSN: 0107-8283

Never Mind the Standard
Here is the TinyOS 802.15.4 Stack

 Jan Flora & Philippe Bonnet

Dept. of Computer Science
University of Copenhagen • Universitetsparken 1

DK-2100 Copenhagen • Denmark

Never Mind the Standard:

Here is the TinyOS 802.15.4 Stack

Jan Flora
University of Copenhagen

janflora@diku.dk

Philippe Bonnet
University of Copenhagen

bonnet@diku.dk

Abstract
802.15.4 has been designed to support
wireless monitoring and control applica-
tions with tight energy budget and limited
throughput needs. This sounds promising,
but can this standard be efficiently imple-
mented on 8-bit sensor motes with limited
resources and computing capabilities?
Ideally, it should be possible to trim off
parts of the stack that are not relevant for
a given sensor profile in order to reduce
memory footprint. More generally, it
should be possible to adapt the stack to
the hardware limitations of a given plat-
form. In order to study these issues, we
cannot use the implementations provided
by radio manufacturers. These are fairly
undocumented blackboxes without tuning
capabilities. We are thus developing an
802.15.4 stack in TinyOS on a Motorola
HCS08 microcontroller and Freescale
MC13192 radio. In the process, we are ex-
periencing the wide gap that exists be-
tween the specification of a standard and a
real implementation. In this paper, we re-
port on the two most challenging issues we
faced: timing and cluster tree network
support. We argue that the timing re-
quirements of the IEEE 802.15.4 standard
is not supported properly by the proposed
OSI reference model design and we pro-
pose a new PHY/MAC interface. We also
question the ability of the standard to sup-
port cluster tree networks topology.

1. Introduction
Two of the barriers to the adoption of wire-
less sensor networks are their price and
their complexity. The emergence of stan-

dards could help lower these barriers. In
particular, the IEEE 802.15.4 protocol has
been designed for applications with tight
energy budgets and limited throughput
needs and should thus match the characte-
ristics of a large class of wireless sensor
networks. The IEEE 802.15.4 standard has
been around for 3 years this summer, and
there are only few actual deployments.
One of the problems is that existing
802.15.4 stacks are blackboxes provided
by radio constructors. It is thus impossible
to reduce the memory footprint of the
802.15.4 stack, or to tune it to the meet
the constraints of a given hardware plat-
form (e.g, the 802.15.4 based Chicpon
2430 SoC that relies on a 8051 processor).
In order to tackle these issues, we decided
to implement an 802.15.4 stack in TinyOS.
TinyOS is an open-source embedded oper-
ating system for networked sensor pla-
torms. Using an event based execution
model, every task is scheduled using a
simple task queue. Only code initiated by
hardware interrutps may preempt running
tasks. TinyOS trades less than 1KB of
memory for a highly modular system with
a variety of hardware platforms. The
strength of TinyOS lies in its component-
based approach, introducing easy-to-
comprehend wiring of components into ap-
plications. This makes code recycling easy
and allows for a natural code division using
interface definitions. One of the questions
we want to study is whether the modulari-
ty of TinyOS can help trim the memory
footprint of the 802.15.4 stack.
We are developing a generic IEEE 802.15.4
protocol stack for TinyOS on a Motorola
HCS08 microcontroller and Freescale
MC13192 radio. Our implementation is

available on SourceForge1. We leave the
evaluation of our implementation (in term
of memory footprint, throughput and sta-
bility), the lessons learnt implementing
timing constraints in TinyOS, as well as a
discussion of the tuning issues for future
work2. In this paper we focus on the main
issues we faced in the design and imple-
mentation phases: timing and cluster tree
networks support.
Note that an implementation of 802.15.4 in
TinyOS has been claimed to be impossible
[5]. This is true for the modular design dic-
tated by the standard. However, it turns
out that none of the radio manufacturers
actually follow the standard. We document
the inconsistencies of IEEE 802.15.4 in
terms of timing and cluster tree network
establishment. We propose to redefine the
PHY/MAC boundary in 802.15.4 to actually
accommodate the design of existing
802.15.4 radio chips. We explore the de-
sign space for cluster tree networks.

2. Timing is Everything
When reading through the IEEE 802.15.4
standard, it is clear that timing is of the
essence. Nearly all operations at the PHY
or MAC layer have to conform to timing
requirements. However, overall timing
considerations are nowhere to be found.
Take for example the calculation of CRC
for incoming frames. According to the IEEE
802.15.4 standard the CRC calculations are
done in the MAC layer, meaning that a
frame has to travel through the PHY layer
before the frame can be considered valid.
There are several problems with this ap-
proach:

 Time is wasted passing the frame
through the PHY and finally calcu-
lating the CRC in the MAC. A frame
that passes CRC check also has to
be passed through additional filters
to ensure that it is destined for the
receiving device [1].

1http://tinyos.cvs.sourceforge.net/tinyos/tinyos-
1.x/contrib/diku/evb13192/
2 Please check Jan’s blog at http://nflora.dk/studie for
regular updates on the evaluation. You can also con-
sult the archive to read about the daily challenges
faced during the design and implementation phases.

 A frame cannot be processed until
proven valid. Time constraints for
time critical operations might be
broken.

 CRC calculations could be per-
formed incrementally at a lower
layer. The CRC can actually be cal-
culated in hardware during frame
reception so that invalid frames can
be discarded right away.

IEEE 802.15.4 radio chip manufacturers
like Freescale and Chipcon have acknowl-
edged these problems and are providing
CRC calculations as part of their hardware
design [4][6]. Chipcon even has address
decoding and destination filtering in hard-
ware [4]. The constructors of 802.15.4 ra-
dios thus break the standard.

2.1 Timing of Acknowledgements
The most time critical operation in the
802.15.4 stack is the acknowledgement of
incoming frames. According to the stan-
dard these acknowledgements should be
implemented at the MAC layer [1].
An acknowledgement frame is to be
transmitted within 192 μs3 after receiving
the last byte of a frame [1]. Thus, the time
used by the radio hardware to switch from
receive mode to transmit mode must be at
most 192 μs (known as the turnaround
time [1]). As a result, the worst case sce-
nario is that the transmission of an ac-
knowledgement frame happens immediate-
ly after receiving the last frame byte. Both
the Freescale MC13192 and the Chipcon
CC2420 have a turnaround time that is be-
low the maximum turnaround time al-
lowed: 144 μs for the MC13192 and 128 μs
for the CC2420. This leaves us with re-
spectively 48 or 64 μs to pass the frame to
the MAC layer, perform CRC checking and
destination filtering, generate the acknowl-
edgement frame, pass the acknowledge-
ment frame back to the PHY layer and start
the transmission. With a typical clock rate
of 16 MHz and a CPI of around 4, we have
to be able to accomplish the above task in

3 The timing calculations are based on a symbol pe-
riod of 16 μs corresponding to the symbol period used
for a 2.4 GHz radio.

_Ref16753964
_Ref16753192
http://tinyos.cvs.sourceforge.net/tinyos/tinyos-1.x/contrib/diku/evb13192/
http://tinyos.cvs.sourceforge.net/tinyos/tinyos-1.x/contrib/diku/evb13192/
http://nflora.dk/studie
_Ref16753291
_Ref16753993
_Ref16753291
_Ref16753192
_Ref16753192
_Ref16753192

192 to 256 instructions. This must be con-
sidered an impossible task. Alone destina-
tion filtering requires more instructions.
From the above calculations it should be
clear that both CRC checking and destina-
tion filtering need to be done while receiv-
ing the frame. Transmission of acknowled-
gement frames must be initiated imme-
diately after receiving the frame needing
acknowledgement. We suggest that all of
these operations are moved to the PHY
layer to be as close to the hardware as
possible.

2.2 Radio Operation Timing
The nature of the IEEE 802.15.4 synchro-
nization, collision avoidance and TDMA
schemes require some radio operations like
frame transmissions to be timed precisely.
Poor timing will result in poor performance
due to loss of frames and possibly loss of
synchronization. Even though the timing is
so crucial, the MAC/PHY interface sug-
gested in the standard does not mention
any timing information at all. This means
that the timing lies implicitly in the execu-
tion time of the function call. The timing of
the radio operation is thereby determined
by (i) the execution time of the PHY func-
tion and (ii) the hardware initiation delay.
This is not adequate if we want a generic
implementation of the MAC layer to work
with PHY layers from several different radio
chips.
Additional timing information is also
needed when transmitting frames using
slotted CSMA-CA (Carrier Sense Multiple
Access with Collision Avoidance). Both the
CCA (Clear Channel Assessment) opera-
tions and the transmit operation need to
be aligned to a so called backoff boundary
for the CSMA-CA scheme to be effective.
The backoff boundaries are 320 μs apart.
Flooding the PHY layer with CCA and
transmit requests periodically with a period
of 320 μs will possibly require operation
queuing capabilities in the PHY layer. We
suggest making the request for CCA an
attribute of the transmission request. This
will make obsolete the explicit CCA request
in the PHY interface and move more critical
timing issues to the PHY layer. This also

matches the decision from the hardware
designers, as both the MC131924 and the
CC2420 radio implement transmissions
with CCA in hardware.

2.3 A Revised PHY/MAC Interface
We can now present a simplified and tim-
ing aware PHY/MAC interface for 802.15.4.
The new interface leaves all critical timing
issues to be handled differently on each
platform by the platform specific PHY layer.
As an example, the MC13192 chip leaves
many of the timing critical operations to be
handled in software, while the CC2420 chip
handles almost everything in hardware in-
cluding auto acknowledgement. The new
PHY/MAC interface only has 4 operations:

 Transmit frame/Transmit done
Additional attributes:
Commence time
CCA requested

 Enable receiver/Data ready
Additional attributes:
Commence time

 Energy detect/Detection done
 Disable transciever

The first three operations can be thought
of as request/confirm pairs. The attributes
listed are additional to those attributes
specified for the corresponding operations
in the IEEE 802.15.4 standard.
Apart from the radio operations we operate
with the following state variables:

 Current channel (set)
 Contention window size (set)
 Transmit power (set)
 Ack backoff alignment (set)
 Supported channels (get)

All variables that are written (set) from the
MAC layer do not need to be read (get),
since the value is already part of the MAC
layer state. The channels supported by the
radio chip is never written from the MAC as
this corresponds to a hardware abstraction.

4 This is actually an undocumented feature controlled
in some of the hidden registers of the MC13192 chip.
The feature is hinted in the Freescale 802.15.4 PHY
source, which is available from the Freescale website.

3. Cluster tree networks
The IEEE 802.15.4 standard aims at sup-
porting larger scale networks of up to
65536 nodes. In contrast to the simple star
topology network (see Figure 1), such a
network will require more that just a single
PAN coordinator. In a star topology net-
work, only two device roles are necessary:
(1) The PAN coordinator - typically
represented by a FFD (Full Function De-
vice) and (2) the end devices - typically
represented by one or more RFD (Reduced
Function Devices).
The synchronization is dictated by the PAN
coordinator as it sends out network bea-
cons5 for the end devices to adjust their
timing contexts. The network timing con-
text is called a superframe. The network
beacon indicates the beginning of the su-
perframe and the beacon interval deter-
mines the time between beacons. The su-
perframe is used to define the timing of
the next beacon transmission, the CAP
(Contention Access Period) in which a
CSMA scheme is used, the CFP (Contention
Free Period) in which a TDMA (Time Divi-
sion Multiple Access) scheme is used and
the inactive period (see Figure 3). The end
devices are then able to communicate with
the coordinator in the specified periods.
When extending a network from a star
network to a cluster tree network (Figure

5 We only consider beacon enabled networks in this
section, as cluster tree networks cannot be formed
without using network beacons.

2), a new device role is needed: The coor-
dinator. A coordinator replicates the
attributes of its parent coordinator, thus
acting as a substitute for the network PAN
coordinator when forming a separate net-
work cluster. In a cluster tree network,
such a PAN coordinator replica is often re-
ferred to as a cluster head. There are sev-
eral issues involved with creating a coordi-
nator, none of which are addressed in the
IEEE 802.15.4 standard. The most serious
issues are: (1) superframe clashing and
(2) operating in two superframe contexts
Some of these problems are mentionned in
the Freescale 802.15.4 User Guide [2] and
in the Zigbee 1.0 specification [3].

3.1 Avoiding Superframe Clashing
The first step when becoming a coordinator
node is associating to an existing coordina-
tor or PAN coordinator (referred to as the
parent coordinator). After a successful as-
sociation the node acts as a normal end
device. To become a coordinator, the node
must start transmitting its own network
beacon, thus starting a new cluster. The
question of, when the new coordinator
should transmit its beacon is not addressed
by the IEEE 802.15.4 standard. We cannot
accept overlaps between child and parent
coordinator superframes since the two
coordinators are within communication
range. A superframe overlap would inter-
fere with the TDMA scheme and would
create unnecessary channel contention. To
solve this problem, the parent coordinator

Figure 1: Star Topology

Figure 2: Cluster Tree Topology

_Ref16753403
_Ref16753395

superframe must be shorter that the par-
ent coordinator beacon interval. The new
child superframe can then be placed in be-
tween consecutive parent superframes,
utilizing the inactive period as shown in
Figure 4. To counteract potential drift is-
sues, the child beacon time should be spe-
cified as an offset to the parent beacon
time. How to achieve a good scheduling of
superframes between neighboring coordi-
nators is out of the MAC layer scope.
We needed a way for the application to
pass the parent beacon offset to the MAC
layer when starting up a coordinator. The
Zigbee specification suggests that the start
request primitive is extended with a Start-
Time parameter, while the Freescale ap-
proach is to add an extra state variable in
the MAC layer (accessible through the PAN
information base (PIB)). We chose to use
the Freescale solution, as it does not
change the APP/MAC interface.

3.2 Operating in Two Superframe
Contexts
When taking on the coordinator role, a de-
vice has to be able to operate in two dif-
ferent superframe contexts: The super-
frame context of the parent coordinator
and the superframe context of the local
cluster. This raises issues regarding, which
superframe context is addressed by which

operation or request. The IEEE 802.15.4
standard does not touch these issues at all.
As the superframe contexts only impact
radio communication, we need to deter-
mine in which superframe context a partic-
ular frame is to be transmitted, and in
which superframe context the receiver
needs to be turned on, following a particu-
lar request. Luckily all frames but data
frames are implicitly tied to a specific su-
perframe context, as they are only sent
from coordinator to end device or vice ver-
sa. Accordingly problems only arise in the
following situations:

 When turning on the receiver. Either (i)

úsing the RxEnable request primitive,
or (ii) due to RxOnWhenIdle PIB
attribute being set

 When transmitting data

Let us look at the receiver problems first.
The RxEnable primitive is very useful when
doing peer to peer communication and will
typically be used to force devices not act-
ing as coordinators into receive mode for a
certain period of time. As the RxOnWhe-
nIdle PIB attribute is typically used to keep
the receiver enabled on coordinators dur-
ing the CAP, the RxEnable request primi-
tive is less valuable to the coordinator. We
chose to let the RxOnWhenIdle PIB
attribute refer to the local superframe con-

Figure 3: The Superframe Structure

Figure 4: Superframe Alignment

text, and let the RxEnable request primi-
tive operate in the parent superframe con-
text. That way, an application is able to
enable the receiver in both superframe
contexts in a well defined way.
The data transmission problem does not
have such an elegant solution. The prob-
lem is caused by a lack of information with
regards to cluster members. We need to
know whether the addressee of a given
data frame resides inside or outside of the
local cluster. If we do not have any ad-
dressing information for members of our
cluster, it is impossible to know the super-
frame context in which a data frame
should be transmitted. We can only deter-
mine that frames destined for the parent
coordinator must be transmitted in the
parent coordinator superframe context.
One possible solution is to let the coordina-
tor register the addresses of all associated
devices, in order for the coordinator to
keep track of its own cluster. Since cluster
member information is already registered
in the higher layers, this solution introduc-
es information redundancy. Also since all
decisions regarding capacity of a cluster is
decided above MAC level, buffer space for
storing member addresses in the MAC
layer could prove a potential problem.
Without information about cluster mem-
bers, the best solution we can hope for is
to limit the data transmission capabilities
between a coordinator and its parent net-
work. We can choose to only allow data
transmission from a given coordinator to
its parent coordinator in the parent coordi-
nator superframe context. Data destined
for all other addresses will be transmitted
in the local superframe context. This solu-
tion imposes some restrictions on the
routing possibilities between two clusters,
since only routing between cluster heads
would be allowed, and is thus far from op-
timal. Especially because cluster heads are
typically chosen to reside far from each
other in order for cluster ranges to overlap
as little as possible. A third possibility is to
alter the data request primitive to contain
information about the addressee residing
inside or outside the local cluster.
We went for the simple solution as we
didn't want to change the APP/MAC inter-

face for compatibility reasons, even though
that clearly is the best solution. The mem-
ber list solution seemed too clumsy and
too big an effort to fix a problem caused by
a bad interface design. This problem will
hopefully be addressed in the next IEEE
802.15.4 standard revision.

4. Conclusion
In this paper we have documented some of
the problems encountered when imple-
menting an IEEE 802.15.4 protocol stack
on a real hardware platform (HCS08 mi-
crocontroller and Freescale MC13192 ra-
dio). Timing issues proved to be one of the
biggest hurdles and led us to suggest ma-
jor changes in the PHY/MAC interface. This
interface actually reflects the design choic-
es of radio manufacturers. We are in the
process of porting our 802.15.4 stack to
the CC2420 radio to verify that our design
is generic.
Support for the cluster tree topology is
very sketchy in the current IEEE 802.15.4
standard. It seems that, just like Blu-
etooth, the first generation of IEEE
802.15.4 protocol stacks lacks the com-
plete design to support multihop networks.
An open source implementation of
802.15.4 will certainly help explore the de-
sign space.

5. References
[1] IEEE Std 802.15.4-2003, Part 15.4: Wireless

Medium Access Control (MAC) and Physical
Layer (PHY) Specifications for Low-Rate Wire-
less Personal Area Networks (LR-WPANs)

[2] 802.15.4 M AC PH Y S oftw are U ser’s G uide,
Freescale Semiconductors, September 2005,
Rev. 1.2

[3] ZigBee Specification v1.0, ZigBee Alliance,
December 2004

[4] CC2420 datasheet, Texas Instruments, October
2005, Rev. 1.3

[5] Jonas Thomsen, Dirk Husemann: Evaluating
the use of motes and TinyOS for a mobile sen-
sor platform. In proceedings of the 24th
IASTED Parallel and Distributes Computing and
Networks Conference, February 2006

[6] MC13192/MC13193 Reference Manual, Frees-
cale Semiconductors, April 2005, Rev. 1.3

