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Abstract
For management and security reasons, Virtual Machines are in-
creasingly being deployed on Desktop PC’s, but because existing
VMM technologies are mostly targeted at servers, graphical per-
formance is a stumbling block to many modern applications such
as games, simulation, and video-conferencing. Existing high-
performance display systems sacrifice safety and provide appli-
cations with direct hardware access, but the aim of our work is to
build a display system with Virtual Machine quality safety and iso-
lation, while retaining performance comparable to less safe “di-
rect” approaches. We are developing Blink, a Display System for
Virtual Machines, the core component of which is a JIT-compiler
for extended OpenGL programs which execute safely inside the
address space of the display server. Our results show that this
model can lead to fewer context switches than traditional clien-
t/server approaches, can eliminate redundant copying and clear-
ing of graphics buffers, and reduce the visible effects of scheduler
timing variance.

1 Introduction

After a number of years in relative obscurity, Virtual Ma-
chines (VM’s) have been gaining in popularity on the Desk-
top. Modern PCs are more than capable of hosting multi-
ple operating systems, and with the relatively weak secu-
rity models of current desktop operating system becoming
increasingly problematic, many see VM’s as the solution,
because they allow a commodity PC to be divided into mul-
tiple sandboxed security compartments, and are compatible
with a large body of existing software. For example, a user
may choose to run the web browser in its own VM, so that
worms and spyware are less likely to leak into other parts
of the system.

A recent development is the occurrence ofVirtualized
Applications—desktop applications being deployed inside
VM’s. VMWare has recently started shipping a Linux VM
containing an instance of the Firefox web browser, for se-
cure web access, and the Stanford Collective project ships

Figure 1: Blink in action

prepackaged application VM’s to users who are consid-
ered incapable of administering their own desktops. The
current generation of Virtual Machine Monitors (VMM’s)
are mostly optimized for data center use, and as a result
initial desktop VM deployments have not been suited for
graphics-heavy applications such as video conferencing,
games, and simulation. Current systems either run over
wire protocols such as X11 or VNC that do not take advan-
tage of shared memory, or at best have access to a primitive,
two-dimensional framebuffer abstraction, that takes little
advantage of the hardware acceleration features found in
most modern graphics cards. Our work attempts to fill this
gap by providing Virtual Machines with safe access to the
powerful accelerated drawing features of modern display
hardware.

The contribution of this paper is that we design and imple-
ment a system that addresses the following problems:

• How to provide an isolated VM with native-speed ac-
cess to graphics hardware without jeopardizing sys-
tem integrity and isolation,

• How to prevent excessive CPU context switching,
when multiple VM’s with short refresh intervals (such



as Video Players or Games) all need to be consulted
during the preparation of the next video frame, or in
response to user input.

• And finally, how to reduce the visible effects of
scheduling “jitter” on applications with soft-realtime
demands for steady screen refresh rates, when many
applications are sharing a display.

Our new display system, called Blink, multiplexes OpenGL
[1] content coming from multiple untrusted Virtual Ma-
chines onto a single Graphics Processing Unit (GPU).
Blink does not allow clients to program the graphics card
directly, but instead provides a Virtual Processor (VP) ab-
straction to which they can program. VP programs execute
within the context of Blink, and in turn program the GPU
on behalf of the client. Blink employs JIT-compilation and
simple static analysis of VP programs, with increased flex-
ibility and a reduction in processing and context switching
overheads as results. Visible jitter is reduced because client
code executes independently of the client VM time-slice.
Blink is targeted at paravirtualized VM’s—it supplies vir-
tualized applications with an OpenGL-like abstraction that
they can program to, but does not aim to be a transpar-
ent adaptation layer for existing windowing systems such
as X11. Instead, Blink supplies the mechanisms on which
such a layer can be constructed if needed.

2 Design

Compared to other I/O subsystems in an OS, the display
system is harder to multiplex in a way that is both efficient
and safe, especially for demanding applications such as 3D
games or realtime video. This is evidenced by the fact that
the major operating systems all provide “direct” avenues of
contacting the GPU, largely without operating system in-
volvement. However, some level of cooperation between
applications is necessary, so that multiple applications are
able to share a single screen without exceeding their screen
space, and without causing the GPU to crash by unsafely
intermingling hardware command streams. In Linux for
example, applications are required to respect a lock pro-
vided by the kernel, and on MacOSX applications draw
their content to off-screen buffers which are later copied to
the shared screen buffer by theQuartz Compositorprocess.

The problem with direct GPU access is that malicious ap-
plications may be able to bypass window system label-
ing mechanisms, and may be able to affect overall sta-
bility. While the above mentioned systems restrict direct
hardware access to a trusted set of users, today it is often
the case that untrusted code (such as a game or animation
downloaded from the Internet) is run by a trusted user, so
in reality existing systems trade safety for performance.

Virtual Machine systems cannot afford to make this trade-

off. The ability to run untrusted code sandboxed within a
VM is the main motivation for desktop deployment, so the
choice is between either limiting the VM display model to
a dumb but safe 2D framebuffer model, or a model which
provides safe access to accelerated graphics hardware. An-
other limitation is that VMM’s are expected to provide an
abstract model of the actual hardware in the machine, and
this conflicts with the way systems such as OpenGL are
typically implemented, with part of their implementation
being loaded into the address spaces of client programs as
shared libraries. Both for safety and for compatibility rea-
sons, a layer of abstraction between client and hardware
will be necessary. One way to implement such a layer is
by letting clients program in high-level OpenGL (rather
than programming hardware registers directly), and have
the display system interpret or translate the OpenGL com-
mands into native programming of the GPU, after verifying
their harmlessness.

2.1 BlinkGL Stored Procedures

In the GLX extension to X11, OpenGL commands are seri-
alized over the X11 wire protocol, and an interpreter runs in
the display system and translates serialized commands into
actual programming of the GPU. Translation costs may be
amortized to some extent by the use ofdisplay lists, se-
quences of OpenGL commands stored in video memory.
However, display lists are static and only useful in the parts
of the GL program that need not adapt to frequently chang-
ing conditions. Blink is similar to GLX in that it serializes
OpenGL commands in the client, and de-serializes and runs
them in the server. Blink clients program to “BlinkGL”, in
reality a set of C macros and inline functions that turn GL
commands like

glBegin(n);

into store operations such as:

op->code=GL_Begin;
op->args[0]=n;

- which the Blink display server then translates into na-
tive GPU programming. In the hope of amortizing the
cost of translating BlinkGL over several display updates,
Blink usesBlink Stored Procedures(SP’s). In contrast to
display lists which run on the GPU, a Blink stored pro-
cedure is a BlinkGL program that runs on the CPU—
inside the display server—and in addition to GL calls can
perform operations such as register arithmetic and condi-
tional jumps. Stored procedures are sequences of serialized
OpenGL commands, with each command consisting of an
opcode and a set of parameters. A part of the opcode space
is reserved for special operations for virtual register copy-
ing, arithmetic, or conditional forward-jumps. External
state, such as mouse coordinates or window dimensions,
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Figure 2: The flow of Information in Blink.

can be read into registers with special BlinkGL calls, pro-
cessed, and the results given as arguments to other BlinkGL
calls that take register arguments. Each SP has a regis-
ter file residing in memory shared with the client VM, so
that registers may be used for communicating simple val-
ues between the SP and the VM. The Blink server contains
a Just-In-Time (JIT) compiler which converts BlinkGL into
native CPU machine code that is invoked ascallbacksdur-
ing screen redraw or in response to user input. Because of
the simplicity of BlinkGL, JIT compilation is fast, and for
OpenGL calls the generated code is of similar quality to the
output ofgcc . Table 1 lists the most common SP’s that a
Blink client will provide.

2.2 Versioned Shared Objects

Blink differs from GLX and X11 in that it assumes the
presence of shared memory between Blink clients and the
Blink server. Because there is no virtual memory overlap
between VM’s, shared objects are referred via opaque in-
teger handles rather than pointers. Figure 2 shows the flow
of information in Blink. The communication protocol has
been optimized for shared memory, and for allowing reuse
of already processed (e.g. JIT-compiled) content. Client
VM’s communicate with Blink through an array of Ver-
sioned Shared Objects (VSO’s). A VSO is a in-memory
data record containing an object identifier (OID), an ob-
ject type identifier, a version number, and a list of mem-
ory pages containing object data. When Blink receives an
update notification from a client VM, it scans through the
client’s VSO array, looking for updated objects. When a
changed or new object is encountered, Blink performs type-

(1,17,sp) (2,5,tex)

Machine Page Frames

VSO array

Figure 3: Versioned Shared Objects with OID’s 1 and 2 re-
spectively, pointing to physical machine page frames. The
first object contains a BlinkGL stored procedure, and the
second a texture image.

Callback Name Executed

init() At first display
update() On client VM request
reshape() On window move or resize
redraw() For each display
input() On user input

Table 1: List of client Stored Procedures callbacks and their
times of invocation.

specific processing of object contents, such as JIT compi-
lation of stored procedures whose version numbers have
changed. Figure 3 shows the first two objects in a VSO
array containing a stored procedure and a texture object.

2.3 Static Verification

One problem with using OpenGL for a shared display is
that, per the OpenGL specification, the entire display has
to be redrawn for every update. In a shared system, either
each client must be consulted for each redraw, or client ar-
eas must be cached in off-screen buffers, so the screen can
be composed by drawing all client buffers to the screen in
back-to-front order. The problem with the first solution is
that some clients may take very long to redraw, and with
the latter that it may be costly in terms of video memory
for off-screen buffers and in terms of redundant copy oper-
ations. We leave the decision of whether to use off-screen
buffers to the client. A video player for example will often
decode the current video frame to a texture with the CPU,
then use the GPU to display the texture mapped onto a rect-
angular surface. If the video player is forced to go via an
off-screen buffer, the frame will have to be copied twice by
the GPU, first when it is drawn to the off-screen buffer, and
second when the display is composed by the display sys-
tem. In such cases, the application is likely to bypass the
use of off-screen buffers.

In order to do this safely our JIT-compiler performs sim-
ple static verificationof SP behavior during compilation.



If Blink wishes to confine a client to a certain region of
the screen, this may be achieved with theglScissor()
command which restricts drawing to a subset of the screen,
but the client must then be prevented from extending the
Scissor rectangle outside of its allowance, and from dis-
abling it altogether. The static verifier allows filtering or ad-
justment of unwanted client actions, but also enables global
optimizations that exploit advance knowledge of client be-
havior. If the client is known not to use the Z-buffer for
depth-ordering of drawing operations, this buffer does not
need to be cleared before invoking the client’s redraw code,
and if the client is not enabling transparency, content cov-
ered by the client’s rectangle does not need to be redrawn.
The constraints placed on a SP during compilation depend
on how the SP is used, as not all callbacks are allowed to
perform operations that draw to or clear the screen.

The static checker is simple and conservative; it does not
attempt to predict the outcomes of conditional jumps. In-
stead it errs on the side of safety and only assumes that a
given command will execute if it is outside of any condi-
tional scope.

2.4 Frame Rate Independence

Often, application content must be adjusted to fit the sys-
tem screen refresh rate. For instance, a sequence of video
frames encoded at 50fps can be adjusted to a 70fps dis-
play by repeating some frames two times, but this uneven
display rate will make the video appear choppy. An al-
ternative is to interpolate content, for instance by blending
subsequent video frames into artificial intermediate frames.
Blink SP’s can perform simple interpolation and blending,
by rendering multiple frames over another with variable
transparency. Another advantage of Blink SP’s here is that
multiple frames may be batch-decoded during the VM’s
time slice, and then later rendered to the display by the
SP. This will lead to fewer context switches and improved
system throughput. For 3D content, suchframe rate inde-
pendencemay be achieved simply by specifying 3D object
positions as functions of time instead of as constants hard-
coded in GL command arguments. Simple animations such
as the classic spinning gears in the GLXGears example ap-
plication may run mostly independent of the client VM,
with gear angles specified as a function of time.

3 Implementation

Blink runs on top of the Xen [2] Virtual Machine Mon-
itor. One VM is given full control of the graphics hard-
ware, and runs as a graphics server for a number of client
VM’s. By virtue of running on Xen, the graphics server
is an ordinary OpenGL application running under Linux,
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Figure 4: Components of a Blink system. Clients exe-
cute as user mode processes in unprivileged VM’s. They
communicate with the Blink OpenGL Multiplexer through
a special kernel module. The Multiplexer runs as a user
mode process in a privileged VM which has direct access
to graphics hardware.

using native OpenGL drivers.1 Client VM’s place stored
procedures and textures in shared memory, structured as
Versioned Shared Objects, and signal the server VM. Dur-
ing the next screen update, Blink scans for updated VSO’s,
performs necessary JIT compilation, and incorporates any
changes in the next display update. Currently, most client
VM’s run Linux, but dedicated application VM’s without a
operating system are also in development. In Linux VM’s,
applications access the display through a device that clients
canmmapto create shared memory segments for sharing
VSO’s with the Blink GL Multiplexer residing in the dis-
play VM.

4 Evaluation

We evaluated Blink on a low-end desktop PC, a Dell Op-
tiplex GX260 PC with a 2GHz single-threaded Intel Pen-
tium4 CPU, with 512kB cache and 1024MB SDRAM.
The machine was equipped with an ATI Radeon 9600SE
4xAGP card with 128MB DDR RAM, at the time of writ-
ing (January 2006) retailing for less than $70.

We first evaluated JIT compiler performance. We in-
strumented the compiler to read the Time Stamp Counter

1A practical problem faced by any experimental system is how to ob-
tain device drivers. Only a few years back, the task of outfitting a proto-
type operating system with the most important drivers, e.g. for a network
adapter and a disk controller was merely a question of porting the rele-
vant components from an open code base such as FreeBSD or Linux. But
with increasing complexity of graphics adapters, and without access to
hardware specifications and driver source code for major brand hardware,
manual porting of drivers is not a feasible solution. Fortunately, Xen al-
lows most drivers to run inside a VM with no or few changes, and with
only minor tweaks we were able to convince the ATI acceleratedfglrx
OpenGL driver to run in a Linux VM under Xen.



Type of input #Instr. Compile Execute

OpenGL-mix 8,034 102 (41) cpi 41 cpi
Arith-mix 8,192 99 (55) cpi 50 cpi

Table 2: Performance of the JIT compiler, cpi = cycles-per-
instruction. Numbers in parentheses are from warm-cache
runs.

Scenario Execute

OpenGL-mix Native 552 cpi
OpenGL-mix Blink 554 cpi
OpenGL-mix Blink + JIT 656 cpi

Table 3: Cycles per GL command, natively in the display
server, and from JIT-compiled code.

(TSC) before and after compilation, and report average
number of CPU cycles spent per input BlinkGL instruction.
Because we did not measure OpenGL performance in this
test, all call-instructions emitted by the compiler point to a
dummy function which simply returns. We measured in-
structions spent per executed virtual instruction, again with
the TSC, and report per virtual instruction averages.

As input we created two programs; the first (OpenGL-mix)
is the setup phase of the GLXGears application, repeated
6 times. This program performs various setup operations,
followed by upload of a large amount of vertexes for the
gear objects with theglVertex() command. The sec-
ond (Arith-mix) is mix of 8 arithmetic operations over two
virtual registers, repeated for every combination of the 32
virtual registers. Both programs consist of roughly 8K in-
structions, performance figures are in table 2. We noticed
that subsequent invocations (numbers in parentheses) of the
compiler were almost twice as fast as the first one, most
likely because of the warmer caches on the second run.
We expect larger programs and multiple SP’s compiled in
a row to gain a similar benefit. Arithmetic operations on
virtual floating point registers are costlier than GL calls, as
we make little attempt to optimize them because we expect
them to be infrequent compared to GL calls.

To validate our claim that for OpenGL-calls the JIT-
compiler produces similar-quality togcc (version 3.3.6
run with -O3 ), we also ran the OpenGL-mix code in two
scenarios—statically compiled into the display server, and
in the JIT-compiled version. Performance of the two pro-
grams is nearly identical, as can be seen in table 3. When
adding the 102 cpi cost of compilation, for cases where this
will not be amortized, we see a modest 18% overhead com-
pared to the native case.

Secondly we measured overall system throughput. For this
we ported two applications to display via Blink. This first
was the “Gears” OpenGL demo, consisting of three flat-
shaded spinning gears, and the second the popular open
source “MPlayer” media player. Figure 1 shows both ap-
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Figure 5: MPlayer performance on Blink.

plications running within Blink. We ran multiple instances
of each application in separate VM’s, and measured the av-
erage time delta between client updates.

MPlayer decodes video frames from a 512x304 resolution
DivX file to a memory buffer, which is copied to a tex-
ture by theupdate SP, and composed to the screen by
the redraw SP. We measured time deltas in both SP’s,
because the former is only run on request by the client,
whereas the latter runs every time the shared screen is re-
drawn. Times forupdate are a measure of the system
level of service as seen by each client, where times for
redraw are a measure of display server responsiveness.
MPlayer shows a video running at 25fps, soupdate and
redraw should be serviced at 40ms intervals. Figure 4
shows time deltas forupdate andredraw as functions
of the number of client VM’s executing. For up to 5 con-
current MPlayer instances, the system is able to provide
adequate service to client VM’s. However, for up to 12
VM’s (at which point the machine ran out of memory), the
redraw SP is still serviced at more than the required rate.
We expect this to be partly due to scheduler interaction be-
tween MPlayer’s timing code, Blink, and Xen, and partly
due to bottlenecks in other parts of the system.

The Gears demo uses SP register arithmetic to transform
the gear objects without contacting the client. Gears im-
plements noupdate SP, so we only measure redraws. To
gauge the improvement obtained by not having to contact
the client for each display update, we run two versions of
Gears: GearsSP which uses stored procedure arithmetic
and avoids context switching, and GearsSwitch which is
updated by the client for each screen redraw. Figure 4
shows time-deltas as a function of the number of VM’s.
We see that GearsSP is able to maintain our target frame
rate (50fps for this test) for more than twice the amount
of VM’s than GearsSwitch, due to its avoidance of context
switches.

5 Related Work

Safe-language kernel extensions have been proposed be-
fore, e.g. in the SPIN [3] and Exokernel [4] operating sys-
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tems. In Exokernel, applications would download code
such as packet filters into the kernel, where it would be
compiled into native code and check for misbehavior be-
fore letting it execute. Our work is an extension of these
ideas in that we let applications and their in-server exten-
sions (SP’s) exist in a producer-consumer relationship, as
in the case of a video player decoding multiple frames dur-
ing a single time-slice for subsequent display, and that we
reason about SP behavior not only for safety, but also for
performing global optimizations based on this knowledge.

Our work builds on OpenGL, a display system derived
from IRIS GL, developed by Silicon Graphics Inc. GLX
is an extension to the X11 protocol for integrating OpenGL
applications into the X Window System, and for remote
OpenGL display. We have not compared the perfor-
mance of our system to GLX, because the version available
(XFree86/X.org) on Linux currently cannot utilize acceler-
ated hardware for remote connections.

Specialized secure 2D display systems for microkernels
have been described by Feske et.al. [5] for L4, and by
Shapiro et.al. [6] for EROS. Both systems make use of
shared memory graphics buffers between client and server,
and both describe mechanisms for secure labeling of win-
dow contents. Our work addresses the growing need for
3D acceleration but, other than mandating a yellow border
around client areas, does not currently address labeling in
detail.

6 Future Work

While we expect our work to be useful for Xen systems in
general, the scope of our future work is broader. Our long-
term aim is to build a complete desktop operating system
around Xen Virtual Machines, in which Blink will be the
framework for user interaction. Our current prototype is
limited in a number of respects; first of all we do not ac-
count resources such as video memory used by clients, and
we make no attempt at preempting very long SP’s. In future
work we will implement features for cooperative multitask-
ing, in the form of a yield instruction periodically inserted
by the compiler, and we will implement resource account-

ing. Another problem is that we currently lack support for
multiplexing of clientswithin a VM, as each VM can cur-
rently only use a single OpenGL hardware context. We are
planning to extend our interface by allowing each VM ac-
cess to multiple hardware contexts.

7 Conclusion

With this work we have shown that strong isolation does
not have to entail poor graphical performance, and that vir-
tualized applications do not have to be limited to “secretar-
ial” tasks such as word processing. With the help of a sim-
ple and fast JIT-compiler and a shared-memory protocol,
we have managed to reduce client/server communication
overheads and to amortize translation costs over multiple
display updates. Lastly, we have shown ways of compos-
ing multiple applications to the same screen without a need
for off-screen buffers, and of and performing other types of
optimizations by exploiting advance knowledge of client
behavior obtained during compilation.
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