

SPEEDING UP MAIN
MEMORY TABLE

SCANS IN MYSQL

MICHAEL LODBERG SAMUEL

&

ANDERS UHL PEDERSEN

ABSTRACT

The Memory table structure in MySQL 4.1 is built upon a heap accessible
through a tree structure. During table scans, this tree structure is repeatedly
traversed by use of division and modulo operations that are inherently ex-
pensive.

When a given record has been located in the heap, it is copied to a memory
location accessible by the query processor, a step that seems unnecessary
for many operations as heap tables are already RAM-based.

In this paper, we examine the initial performance of table scans on Pentium
4 and Itanium 2, and suggest and implement improvement ideas.

We benchmark the changes and investigate the possible reasons for differ-
ences in the benchmarks – both CPU-architectural-, compiler- and MySQL-
design issues.

Based on these investigations, we conclude that by removing the repeated
copying of data in RAM the table scan running time can be reduced by a
factor of up to 8. However, optimizing the utilization of the tree structure has
marginal effect despite the fact that we managed to speed up the time it
takes to locate a leaf node by more than 100%.

2 of 38

CONTENTS

1. Introduction...4
2. Current Heap Implementation ..6

2.1 The Memory Table..6
2.2 Operations on the Memory Table ...7
2.3 Hash Index..7
2.4 Operations on the Hash Index ..8

3. Performance Improvement Ideas ...9
3.1 Speeding up Tree Traversal ...9
3.2 Minimizing the Number of Tree Traversals.................................10
3.3 Reducing the cost of reading records ...11

4. Experimental Framework..13
4.1 Benchmark Strategies ..13
4.2 Hardware Platform..13
4.3 Measurements ..15
4.4 Measuring Achievements ...15
4.5 Choice of Timers...16

5. Experiments..17
5.1 Reuse of Division Computation in Modulo Computation17
5.2 Division Operator Speed vs. Bit-shifting Speed..........................18
5.3 Out-of-order/Parallel Execution ..18
5.4 Cache Misses ...19
5.5 Locating the Next Leaf in MySQL ...19
5.6 Table Scan in MySQL (tree traversal optimized)20
5.7 Simulation Validity ..20
5.8 Taking Timer-resolution into Account ...21
5.9 Table Scan in MySQL (Memory copying optimized)...................21

6. Results..22
6.1 Validity of Simulations...22
6.2 Reuse of Division Computation in Modulo Computation23
6.3 Division Operator Speed vs. Bit-shifting Speed..........................24
6.4 Out-of-order/Parallel Execution ..24
6.5 Locating a Leaf in MySQL ..25
6.6 Table Scan in MySQL (tree traversal optimized)28
6.7 Table scan in MySQL (memory copying optimised)30
6.8 Table scan in MySQL (tree traversal + memcpy optimised)32
6.9 Final Remarks...33

7. Conclusion..35
8. Further Work...36
9. References ...37

3 of 38

1 . INTRODUCTION

MySQL has engines supporting several types of tables, both disk- and
memory-based. The disk-based are MyIsam (or variations thereof), BDB
and InnoDB. The memory-based engine uses Memory tables1, which were
initially developed for internal use by the query processor and supported
only hash-indexes, but later extended to be available for the database de-
velopers and enhanced to support B-Tree indexes as well.

As the Memory tables have no durability, speed is the most important fea-
ture for them. While keeping the tables in RAM automatically gives a sig-
nificant increase in speed, we still identified a number of possible optimiza-
tions for the main memory component in MySQL 4.1 in [1].

In this new paper we keep focus on MySQL 4.1 and examine internal tree
traversals as part of table scans, and compare the expected theoretical
improvement with the actual benchmark results from the implemented code
changes that include both reducing the number of required tree traversals
as well as optimizing the traversal by using bit shifting rather than division
and modulo operations.

It is a well established fact in optimization of code that numeric division (in-
teger or floating-point) is among the most expensive operations that can be
performed and if a situation exists where divisions can be easily eliminated
it is almost always worth the effort to do so.

In MySQL 4.1, the method used for locating a leaf in a Memory table uses
division and modulo operations to traverse the tree and does so repeatedly
for every leaf that needs to be found. As mentioned in [1], the tree traversal
must be expected to be especially costly in table scan since every leaf is
fetched by tree traversal. Our changes address both the division and the
repeated tree traversal.

We are aware that the two changes don’t really complement each other,
since we expect the elimination of excessive tree traversal to diminish the
speedup gained by removing the expensive division operations, but the
changes are relatively simple to make, and the overall result should still be
that less clock cycles are wasted.

Additionally, we have identified that MySQL has a structure that requires it
to copy data between the storage engines’ buffer pools and the query proc-
essor. With a disk-based storage engine the cost of this is absorbed by the
much more expensive copying from disk to RAM, but when the storage
engine is RAM-based the approach seems wasteful.

As a result we have also modified this structure for SELECT-commands
from Memory tables. This complements the other changes perfectly, as it
removes a time-costly task, allowing the benefits of the others to be more
clearly seen.

1 Previously named HEAP tables

4 of 38

2.1 The Memory Table

The rest of this paper is organized as follows. In the following section we
describe the data structures and algorithms in the Memory storage engine.
In section 3 we present the improvement ideas. The experimental frame-
work is discussed in section 4. We present the experiments in section 5
and discuss the results in section 6. We conclude in section 7 and wrap up
the paper with ideas for future work in section 8.

5 of 38

2 . CURRENT HEAP IMPLEMENTATION

This section describes the data structures and algorithms that are affected
by our improvement ideas, which we present in section 3. The design of the
data structures in the heap reflects the original purpose of a Memory table,
which was to act as a temporary table when the query processor needed to
store intermediate results. As of MySQL 3.23, the Memory storage engine
also has a public interface, making the heap available to the end user as an
independent table type. The basic assumption underlying the heap data
structures is that the field size, key size and consequently the record size
are fixed.

2.1 THE MEMORY TABLE

A Memory table is stored in a tree structure with records at the leaf level.
An inner node contains up to 128 child pointers. The maximum tree height
is 4, thus the maximal number of leafs is 1284. A leaf is simply a fixed size
chunk of raw memory and it contains nothing but records. The location of a
record inside a leaf is determined by an offset. Knowing that the first record
in a leaf (offset = 0) is stored at address leaf_start, the record with some
offset-value must be stored at address leaf_start + offset * record size.

A record is fetched by supplying its record position posrec. The assignment
of a posrec to a record is based on the illusion that all records are stored in
one large array, i.e. the posrec is simply an array index. Since the records
are actually stored in a tree structure each posrec must be translated to the
corresponding location in a leaf. If x records are stored in each leaf, the
leftmost leaf contains the records with a posrec in the range [0 ; x [. The next
leaf contains the records with a posrec in the range [x ; 2x [and so forth.
With tree height h, the tree structure is thus capable of storing 128h * x re-
cords.

Find record at posrec 12902

1
12800
12902

=⎥⎦
⎥

⎢⎣
⎢

: go to 2nd child

12902 mod 12800 = 102: the new posrec

1
100
102

=⎥⎦
⎥

⎢⎣
⎢

: go to 2nd child

102 mod 100 = 2: the 3rd record in leaf

fig. 2.1 - The numbers indicate which record positions each node covers.

The example tree in fig. 2.1 illustrates the assignment of record positions to
the leaves based on the assumptions that the tree is full, the tree height is 2
and each leaf contains 100 records.

6 of 38

2.2 Operations on the Memory Table

Finding the record with e.g. posrec 12902 in such a tree requires traversing
the tree from root to leaf. Each child of the root has 12800 records in its
sub-tree. The record with posrec 12902 must consequently be in the sub-
tree of the second child of the root (12902 div 12800 = 1).2 As a result of
moving down one level, the posrec is now decreased to 102 (12902 mod
12800 = 102). The second child of the root has 128 children each contain-
ing 100 records. Consequently the record with posrec 102 must be in the
second child (102 div 100 = 1). Furthermore it must be the 3rd record in this
leaf since the offset is 2 (102 mod 100).

From this example it should be clear that traversing the tree from root to
leaf consists of a series of modulo and division computations.

2.2 OPERATIONS ON THE MEMORY TABLE

On insertion of a record the next free posrec is identified. This might lead to
allocation of a new leaf node in case no record positions are unused in any
of the existing leaves. By doing a tree traversal the in-leaf location corre-
sponding to the posrec is identified, and the record is subsequently inserted.

Scanning a Memory table using the tree structure above is quite trivial:
Fetch the first leaf, i.e. get the leaf_start address corresponding to the re-
cord with posrec 0. Read each record in the leaf. Fetch the next leaf, i.e. get
the leaf_start address corresponding to the record with posrec x (x records
pr. leaf) and so on (2x, 3x,…). Since the leaves are not joined together in a
linked list, fetching the next leaf requires a tree traversal. When the in-leaf
location of the next record to be fetched has been computed, the record is
copied to the current record-buffer in the query processor. The copying
takes place, because the record format in the storage engine may differ
from the one used in the query processor.

2.3 HASH INDEX

As the hash index is indirect each bucket element consists of a pointer to
the record it represents and a pointer to the next element in the bucket. The
hash key for a record is translated to a bucket number (posbuck) using
modulo. The bucket numbers are equivalent to the record positions (posrec)
mentioned above and this makes it possible to store the bucket elements in
the very same tree data structure as is used for records. As a result of this
strategy the number of potential buckets equals the number of records.
Thus an ideal hash function would only need to store one element in each
bucket (assuming unique record keys).

2 Because of 0-indexing, 0 corresponds to first child, 1 corresponds to second child
etc.

7 of 38

2.4 Operations on the Hash Index

fig. 2.2 - Four elements in bucket with posbuck 3. Only the first element in
the bucket is stored at posbuck 3. The other elements are found by following
the pointers.

In fig. 2.2 a bucket with posbuck 3 is illustrated in the lower left part of the
tree structure. The hash key in each of the four elements all map to posbuck
3 though only the first element in the bucket is actually stored at that posi-
tion.

When inserting bucket elements the tree grows, as more leaves are allo-
cated. Obviously the number of potential buckets (posbuck) increases when
more leaves are allocated. This will likely affect the mapping of a hash key
to a bucket number because modulo is used. It naturally leads to situations
in which the hash key for an already inserted bucket element now maps to
a different bucket (posbuck) and consequently the bucket element must be
moved to another bucket. In [1] we have described how this issue is effi-
ciently dealt with.

2.4 OPERATIONS ON THE HASH INDEX

All operations on the hash index (insert, delete, update, lookup) entail ac-
cessing one or more buckets and thus one or more tree traversals (to fetch
the first element in a bucket). The hash index operations are described in
detail in [1].

8 of 38

3 . PERFORMANCE IMPROVEMENT IDEAS

It follows from section 2 that tree traversal is central to operations on both
the Memory table and the hash index, although the copying of each record
to the current record-buffer is the most time-consuming action. Speeding up
the tree traversal is one performance improving strategy. An alternative
strategy could be to minimize the number of tree traversals. We have de-
cided to pursue both strategies in the quest for better performance.

3.1 SPEEDING UP TREE TRAVERSAL

The tree traversal consists of a number of modulo and division computa-
tions. As the division operators (also used for modulo) are quite expensive
in terms of clock cycles it might be beneficial to replace them with bit-
shifting instructions. This is however only an option if the divisor is always a
power of 2.

The number of elements in the inner nodes is always 128, i.e. a power of 2.
Hence, if we can assure that the number of records in a leaf is also a power
of 2 then the divisor is always a power of 2. The leaf node size in the cur-
rent implementation depends on a system variable called read_buffer_size,
which is 128KB by default. A leaf then contains the largest number of re-
cords that results in a leaf node size ≤ 128KB. Hence, the number of re-
cords in a leaf currently depends on the record size. We can change it by
adjusting the number of records in a leaf to be the largest power of 2 that
results in a leaf node size ≤ 128KB.

Now modulo can be trivially performed using an AND and a SUB instruc-
tion. Division by bit shifting is less trivial since the number of bits that the
divisor consists of must be known in advance. Fortunately the number of
bits (in the divisor at initiation of the tree traversal) can be computed in ad-
vance. When doing the actual tree traversal we know that moving down
one level in the tree means that the divisor must itself be divided by 128,
i.e. the number of bits in the divisor decreases by 7.

Counting the bits in the divisor can be done in several ways. The slowest
and simplest method is the math-library version: log2(divisor)+1. A faster
but still simple method is to start with a guess of 1 bit and increase until the
guess is right. It is even faster to do binary guessing, i.e. guess 16 bit, then
16+8 if divisor is larger or 16-8 if smaller, then (8 or 24) +/- 4 etc. until the
guess is right3. A preliminary benchmark indicated that binary guessing is
up to 7 times faster than using log.

The bit-shifting is only an improvement if the division/modulo computations
are a bottleneck during the tree traversal. To determine if this is the case,
the following four issues must be considered regarding the execution of the
current implementation:

1. Does the processor reuse the result of the division computation in
the subsequent modulo computation? Since the operands are the

3 Assuming the divisor never exceeds 32 bits

9 of 38

3.2 Minimizing the Number of Tree Traversals

same for the division and modulo computations, only a single inte-
ger division operation is needed to compute both results. A modern
processor might be able to reuse the result from the division compu-
tation and thus eliminate the otherwise needed integer division op-
eration used to perform modulo.

2. What is the processor-latency and the processor-throughput for the
integer division operation? The latency for an operation is the num-
ber of clock cycles that are required to complete the execution of
the operation. This determines the lower bound on the time it takes
to traverse the tree since the current tree traversal relies on a series
of mutually dependent integer division operations. The throughput
for an instruction is the number of clock cycles required to wait be-
fore the same instruction can be processed again. If no reuse oc-
curs, two independent division operations are executed at each
level of the tree traversal and in such case the division-throughput
affects the running time.

3. How expensive is a data cache miss4 and how many cache misses
can be put down to visiting inner tree nodes? The division and
modulo computations determine which child-pointers to follow when
traversing the tree. If the child-pointer of interest is not in any data
cache, a cache miss occurs and the pointer must be fetched from
memory. In such case the cache miss becomes the bottleneck and
the running time is thus less affected by the division improvement.

4. Is the processor capable of out-of-order or parallel execution to
minimize the delay (if any) caused by a cache miss? While waiting
for the completion of a load instruction causing a data cache miss,
the processor might be able to execute load-independent instruc-
tions which will reduce the perceived latency of the division opera-
tion.

These issues constitute one part of our investigation below; another part is
considering how to minimize the number of tree traversals.

3.2 MINIMIZING THE NUMBER OF TREE TRAVERSALS

When scanning a Memory table the tree is traversed once pr. leaf. The im-
provement to make is quite obvious: Join the leaves into a singly linked list
by adding next-leaf pointers. This way, a tree traversal is only needed once
- to fetch the first (leftmost) leaf. The drawback is the space overhead due
to the allocation of a next-leaf pointer pr. leaf, i.e. 4B pr. 128KB (assuming
the default leaf size and 32-bit addressing). This improvement makes the
bit-shifting improvement insignificant for table scans but all other operations
still benefit from the faster tree traversal as table scanning is the only op-
eration visiting the leaf nodes in sequence.

The benefit of linking the leaves depends on three things:

1. Does the lookup of the pointer to the next leaf generate a cache
miss? As mentioned, the record is copied to the current record-

4 When we use the term cache miss it normally refers to a data cache access miss
and it normally implies a memory access. Accordingly, we typically do not explicitly
specify the cache level when using the term cache hit.

10 of 38

3.3 Reducing the cost of reading records

buffer in the query processor when the in-leaf location of the next
record to be fetched has been computed. Consequently the current
record is always present in the cache. At some point the last record
in a leaf becomes the current record. Knowing this, it is wise to allo-
cate and store the pointer to the next leaf just after the last record in
the leaf. Unless the record precisely fits in (a multiple of) the largest
cache line, the next-leaf pointer will be readily available in cache,
because it is “accidentally” loaded into the cache when the last re-
cord in the leaf is copied to the current record-buffer. Using this
strategy it is less likely that the pointer lookup will generate a cache
miss.

2. Does the tree traversal generate cache misses? If the inner nodes
visited during a tree traversal are in cache then the lookup time is
purely determined by the speed of the division/modulo computa-
tions. In such case following a next-leaf pointer might not be much
faster than a tree traversal.

3. Is the processor capable of out-of-order or parallel execution,
thereby minimizing the delay caused by a possible cache miss
when looking up a next-leaf pointer? If the processor can be kept
busy during a possible cache miss due to looking up the next-leaf
pointer, the next-leaf-pointer-lookup might outperform the tree tra-
versal in any case.

With our experiments, we will shed light on these points.

3.3 REDUCING THE COST OF READING RECORDS

When a record is to be read, it is located by the storage engine and re-
turned to the query processor. In MySQL this is done by the query proces-
sor providing the storage engine with a pointer to allocated area in RAM.
The storage engine is then expected to copy its data, one record at a time,
to the given area.

The rationale for this seems to be that the time it takes to retrieve the data
from disks is far greater than the time it takes to copy it to a standard loca-
tion, and the query processor will then have easy, standardized access to
the data that will already have the structure that the query processor needs
when it is copied.

This seems to be a fair solution for disk-based storage engines. In theory, it
might be cleaner to let the record propagate through the layers as a vari-
able or a return value, but it is important to remember that even a single
record will in many cases be rather large, and there is a risk that the stack
(and other control structures) will be put under a greater pressure than
need be if the ‘clean’ solution is selected.

However, for the Memory-storage engine, this solution seems inefficient.
The data is already present in RAM and allowing the query processor to
access data that is already properly structured rather than copying doesn’t
seem to be an unacceptable violation of encapsulation rules, especially not
considering the current implementation.

11 of 38

3.3 Reducing the cost of reading records

Unfortunately, a large number of functions in the query processor rely on
the record being present at the allocated area. The code is rash with mem-
cpy-functions, and many methods that accesses the fields in records don’t
use the record pointer to calculate offsets from, but use the pointer to the
allocated RAM area in the query processor to calculate absolute ad-
dresses.

The main concern with this is the fact that pointers present in the local
scope of the query processor does in fact point to the record address – but
changing those pointers does not affect the field-pointers – which suggests
that the assumption that a pre-allocated area exists is exploited at several
locations in the code. The benefit is obviously that the pointers need only
be calculated once; speeding up record accesses, but the actual calculation
is spread out to several functions, making it very difficult to avoid the copy-
ing.

Changing all occurrences of this is far beyond a paper as this and not par-
ticularly interesting since the partial implementation we have made exposes
both strengths and weaknesses of the solution.

In practice we have decided to implement the solution such that it works for
SQL-statements that select data from a single table with or without where-
clauses. This is done by adding a global record pointer to the system. The
pointer is updated by the heap engine instead of copying a record to the
query processor. In the query processor, the address of the record pointer
is used to iterate through the fields and update their individual pointers ac-
cordingly, as they would still be pointing to the original area. When this is
done, the query processor can continue. Note that we only need to update
a field pointer if it is part of the query. The optimal solution would be to up-
date the field pointers in a just-in-time manner: Consider a query that con-
tains two conditions and both must evaluate to true. If the first condition
evaluates to false we do not need to examine the second and hence we do
not need to update the field pointers in the second condition. Accordingly
we do not need to update the field pointers in the SELECT clause unless
the row matches the query conditions. Since we are only interested in the
best-case (1 column) and worst-case (all columns) scenario we have not
implemented this just-in-time solution.

While there would be no great computation cost by letting this record
pointer propagate ‘properly’ through the layers, doing so would break many
overloaded functions and methods which would need to be fixed for a build
to work, but which would add absolutely no value to the experiments or
conclusions.

12 of 38

4 . EXPERIMENTAL FRAMEWORK

4.1 BENCHMARK STRATEGIES

The changes in performance due to the proposed tree-optimizations are
expected to be small in terms of wall-clock time. In a preliminary bench-
mark of the current implementation we selected 100.000 records corre-
sponding to a heap containing app. 130MB data. Scanning the entire Mem-
ory table resulted in a running time of astounding 0,15 s. on a Pentium 4
1,7GHz (excluding query-processing time and output-time).

To accurately measure the change in performance we therefore need to
process large amounts of data. Since a Memory table is purely RAM-
resident the amount of RAM in the benchmark computers dictates a rela-
tively low upper limit on the data size. Faced with this problem we have
identified two approaches to the performance measurement that we con-
sider to be acceptable:

1. Implement the changes in MySQL and alter the heap to repeatedly
call the modified functions until the difference in running time can be
measured with sufficient reliability.

2. Simulate the heap-functions outside the MySQL-context.

The first option ensures that the changed functions interact with a real da-
tabase environment and that the measured times are as authentic as pos-
sible. The second option on the other hand, makes it easier to rule out any
influences from the MySQL-environment and to accurately control parame-
ters such as the number of cache misses, the tree height etc. and hence
determine the direct effect of the changes on the used architectures.

While some of the questions in sections 3.1 and 3.2 can be answered with
sufficient certainty in a simulation, other questions can be more suitably
answered in the MySQL-environment. Consequently we have decided to
pursue both strategies.

4.2 HARDWARE PLATFORM

We have decided to benchmark the optimizations on the two very different
platforms described below.

 Pentium 4 1600MHz Itanium 2 900MHz
System: Microsoft Windows XP Debian GNU/Linux 2.4.25
Addressing: 32-bit 64-bit
Processors: 1 2
RAM: 256MB 4GB
L1 cache size/line: 12KB / 128B 16KB / 64B
L2 cache size/line: 256KB / 128B 256KB / 128B
L3 cache size/line: None 1,5MB / 128B
Compiler: MS Visual C++ 6.0 Intel C/C++ 8.0.066

13 of 38

4.2 Hardware Platform

The P4-platform is interesting because the CPU is “intelligent” in the sense
that it diminishes pipeline stalls by out-of-order instruction execution. The
Itanium 2-platform has been chosen because the CPU is capable of parallel
instruction execution and because the compiler is “intelligent” as it dimin-
ishes pipeline stalls by bundling instructions that can be executed in paral-
lel. In the remainder of this section we elaborate on these features and
other relevant differences between the platforms.

That a shift operation is many times faster to perform than a division is ba-
sic knowledge. [2] However, CPU designers have put a lot of effort into
both speeding up division and generally diminishing the effect of computa-
tion latency.

In P4, the optimizations performed can be explicit by the compiler (i.e. by
using the assembler instruction XOR rather than CWD or CDQ for sign ex-
tension in certain cases [3]), but in many cases, the processor itself has
ways of improving real throughput of division operations - most notably
through the “Out-of-order Execution Logic” (OEL).

The OEL specifies that if several operations are independent of each other,
the processor will attempt to execute these in parallel, delaying the results
from them to make it seem as if they have been executed in order. This
means that in optimal cases5, only the actual use of the Arithmetic Logic
Unit (ALU) will delay execution of a division operation, and this should re-
duce the overall latency for this operation. The ALU even has a pseudo-
pipeline, as it can do a so-called “staggered add” where the first 16 bits of
an addition operation is passed on to dependent units in the processor be-
fore the next 16 bits are computed.

In the Itanium processor, the approach is somewhat different.

First of all, the Itanium 2 (I2) processor/ALU has no native division opera-
tion [4], so any division operation has to be done by algorithms imple-
mented in software.

Second, the ALU is fully pipelined and can start a new operation every
clock cycle, which greatly improves the overall throughput, but does little to
help the speed in applications that doesn’t use the ALU intensively, since
the latency for each operation remains constant.

Finally, through use of Itanium’s “Explicitly Parallel Instruction Computing”
(EPIC) it is possible for the compiler to bundle certain operations so that the
processor will be able to execute these in parallel. It is important to note
that only certain operations can be bundled together, and that this is done
entirely by the compiler – the processor does not rearrange at runtime like
the P4, and the dependencies that decide what can run in parallel and what
can’t are distinctly different from those on P4.

5 And with a warm pipeline

14 of 38

4.3 Measurements

4.3 MEASUREMENTS

Just as Intel’s own documentation has reservations regarding the perceived
cost (duration) of the various instructions, our measurements have issues
to be aware of.

Most notably, the OEL makes it virtually impossible to determine the effect
of our changes in a real environment, with a full-scale database server that
serves many users.

Therefore, it is important to distinguish between our improvements and
those done automatically by compiler and CPU. The compiler can largely
be controlled by the use of flags, but the CPU improvements are illustrated
by running tests that only differ in the dependency of the variables – effec-
tively a throttle to control the level of parallelism possible.

This means that we can test the theoretical best-case improvement of our
changes directly, and show that the changes does ease the load on the
ALU, which improves the general throughput even if the perceived effects
in a live environment might be somewhat diminished on a Pentium 4 due to
OEL and other factors.

We find our theoretical best case by creating performance cases that focus
on the simple, raw achievements, but in a way that mimics the existing
code.

In many hardware based implementations of division, the ALU will have the
remainder of an integer division present. Even in advanced division algo-
rithms and hardware, the ALU will have an (unshifted) remainder present in
all iterations. However, since the I2 relies on a software algorithm to do its
division, it also relies on the software to provide the remainder; the proces-
sor itself cannot be expected to have any knowledge of the usability of val-
ues in the registers used by the algorithm.

4.4 MEASURING ACHIEVEMENTS

In order to determine the effects of our changes, we need to find a reliable
set of measurements. According to Douglas W. Jones [5] it is important to
ensure that the computer used for benchmarking is exclusively used for the
benchmarks. However, due to the complexity of MySQL as well as of mod-
ern OS it is difficult to control the CPU-time allocated for benchmarks and
obtain reliable results.

Also, this statement was made in 1986, where the way computers were
used was distinctly different from today. Jones’ requirement remains inter-
esting in order to determine the raw effect of changes made, but this won’t
necessarily reflect the effect in a live system. Unfortunately, it is close to
impossible6 to reliably benchmark the effects in a live system with hundreds
of tables, users, etc., but it remains important to remember and compare

6 And certainly beyond the scope of this paper

15 of 38

4.5 Choice of Timers

the effects on the live system (or an approximated version of it) with the
isolated tests.

One solution to this is to simply run the benchmarks so many times that
one is confident that any difference in the average run time before and after
the changes displays the actual improvement (or deterioration) incurred by
the changes. The obvious advantage of this method is that it benchmarks
the changes in a simulation of real usage – and hence gives an indication
of what users can expect if the changes were implemented.

The best metrics for this benchmark is wall-clock time, time spent in the
changed functions, number of times given functions are called, etc.

As discussed in 4.1, another solution is to isolate and – if possible – extract
the code that is being changed to a small test-program that doesn’t do any-
thing else than run the code with and without the changes. This has to be
done carefully in order to be reliable. First, if more than one change has
been made, the changes should be benchmarked individually as well as
combined in order to see what effect (if any) they have on each other. Sec-
ond, compared to a full-fletched MySQL, a test-program with only one run-
ning thread can have a false positive effect on the instruction cache, might
have effects on data cache, and might be easier for compiler and CPU to
optimize due to the reduced complexity. But not all side-effects increase
speed: On the P4, the OEL is so good at diminishing the effects of division
latency that a small loop won’t have sufficient instructions to keep the CPU-
pipeline full while waiting for a division to complete. See sections 5.5 and
6.5 for a further discussion on how we examine the effect of this.

Wall-clock time and time spent in the changed functions are also interesting
metrics for this benchmark, but should be complemented by CPU-statistics,
cache-statistics, etc. Especially cache-statistics should be interesting, since
one of the changes we’ve made changes the access pattern when scan-
ning Memory tables.

These statistics are very difficult to obtain hard measurements for, since
both system-wide and application-wide statistics will tend to include too
much noise. In the following sections we will describe how the different
measurements are designed to also uncover the changes in cache utiliza-
tion.

4.5 CHOICE OF TIMERS

In MySQL we intend to use the built-in timer functionality, which is based on
the system timer with a precision of 10-55 ms. In the simulations on the
Pentium 4-platform we can use the high-resolution Windows-timer Query-
PerformanceCounter with a resolution in the order of nanoseconds. In the
simulations on the Itanium 2-platform we intend to use the gprof-tool with a
10ms-resolution.

While not altogether optimal, these timers suffice because we can ensure
sufficiently long running times to eliminate any influence from a timer with
ms-resolution.

16 of 38

5 . EXPERIMENTS

As mentioned in section 4.1 we have decided to both benchmark the
changes in MySQL and simulate the changes in order to shed light on all
relevant aspects.

The performance improvement due to the two changes mentioned in sec-
tions 3.1 and 3.2 depends on a number of factors. The experiments must
be designed in a way that allows us to control or at least predict the effect
of these factors. It is furthermore essential that the experiments make it
possible to draw conclusions regarding the extent of the speedup in a real-
istic setting.

The factors affecting performance can be extracted from the questions in
sections 3.1 and 3.2:

1. Reuse of the division remainder in the modulo computation
2. Division operator speed vs. bit-shifting speed
3. Effect of out-of-order/parallel execution
4. Cost of cache misses

Before discussing how to measure the effect of each factor it is useful to
investigate the instruction dependencies in the tree traversal.

fig. 5.1 - Dependency graph for tree traversal

Each iteration in the tree traversal loop consists of a division operation, a
load operation and a modulo operation. It follows from fig. 5.1 that the load
depends both on the result of the division and on the result of the load in
the previous iteration. After moving down one level in the tree structure a
new division computation is needed and it depends on the result of the
modulo computation in the preceding iteration. Furthermore the new
modulo depends on the modulo computation of the previous iteration.

5.1 REUSE OF DIVISION COMPUTATION IN MODULO COMPUTATION

In a simulation of the tree traversal we can alter the algorithm such that the
divisor or dividend in the division computation differs from the divisor or
dividend in the modulo computation. If the running time changes as a result

17 of 38

5.2 Division Operator Speed vs. Bit-shifting Speed

of this modification we know that the processor reuses the value in the re-
mainder register when computing modulo.

If the processor is capable of reusing the remainder value from division in
the modulo computation, the dependency graph must be modified as illus-
trated in fig. 5.2.

fig. 5.2 - Modified dependency graph for tree traversal

5.2 DIVISION OPERATOR SPEED VS. BIT-SHIFTING SPEED

According to the Intel P4-processor documentation [6] the integer division
instruction IDIV has a latency of 56-70 cycles and a throughput of 23 cy-
cles. The Intel C++ Compiler on the other hand converts the division opera-
tor to a series of smaller floating-point instructions, which leads to a latency
of 43 cycles and a throughput of 5.5 cycles. In any case, if no cache misses
occur during the tree traversal, the division operation is the bottleneck in
the tree traversal loop because the other tree traversal instructions depend
on the result of the division.

In a simulation of the tree traversal we can exclude all cache misses and
compare the running time of the version using a division operator with the
version using bit-shifting. This shows the maximal speedup due to bit-
shifting.

5.3 OUT-OF-ORDER/PARALLEL EXECUTION

If an instruction causes a data cache miss two scenarios are possible. Ei-
ther it causes the processor to stall and not resume until the data is avail-
able in cache or out-of-order/parallel execution is utilized in which case the
processor executes other instructions that are independent of the result of
the instruction causing a cache miss. As the illustrations above show, the
subsequent modulo and division computations are independent of the re-
sult of the load and can be executed while the load instruction waits (as-
suming a cache miss). Speeding up the division computation in this sce-
nario is less beneficial since even the slow division operation might be able
to finish during a cache miss. Thus, bit-shifting is only worth the effort when
the load results in a hit.

18 of 38

5.4 Cache Misses

We can test the out-of-order/parallel execution capabilities of the processor
by adjusting the number of cache misses in the simulation. If the difference
in running time between the division-operator version and the bit-shifting
version is unaffected by the number of cache misses, then no out-of-
order/parallel execution has occurred. If the difference shrinks when adding
more cache misses then it has likely occurred.

5.4 CACHE MISSES

We have already discussed how to determine the effect of cache misses on
tree traversal. The optimization consisting of following a pointer to the next
leaf instead of doing a tree traversal is expected to be beneficial because
the allocation of the next-leaf pointer just after the end of the leaf ensures
that it is present in cache when needed. Thus, we do not expect cache
misses to affect the next-leaf pointer optimization. Benchmarking table scan
in MySQL will assist in clarifying this issue.

5.5 LOCATING THE NEXT LEAF IN MYSQL

Table scan, record insertion/update/deletion and hash index operations are
all affected by tree traversal. Hence we want to measure how our changes
affect the time it takes to locate the next leaf in MySQL.

The query processor requests one record at a time from the Memory stor-
age engine. If the record matches the condition(s) of the query it is further
processed, otherwise it is discarded. Since we only focus on locating
leaves, we want to disable all further row processing in the query proces-
sor. Consequently the query processor will discard all rows in the bench-
marks and no rows will be sent to the client. Furthermore we intend to ex-
clude the pre-processing of the query (parsing, execution planning etc.)
from the measured running time. When the Memory storage engine has
identified the location of the next record it copies the record to the current
record-buffer in the query processor. We exclude this operation from the
benchmarks as well. Hence the benchmark will only measure the time it
takes to locate each leaf in the Memory table, i.e. the part of the heap af-
fected by our changes.

Normally several records are stored in each leaf in the tree structure. To
maximize the number of tree traversals we have modified the heap such
that only one record is stored in each leaf and with a record size of 8 bytes.
This way the amount of memory in the benchmark computers does not se-
verely limit the size of the tree structure and the (performance-affecting)
tree height. We intend to repeatedly fetch all the leaves until the total re-
sponse time reaches a level that makes it possible to rule out timer resolu-
tion as the cause of the difference in response time.

It should be noted that the row processing of matching rows in the query
processor affects the instruction cache, data cache, TLB etc. Disabling row
processing might artificially speed up the heap response time in general
and this might be in favour of the original version and in particular the bit-
shifted heap because it is expected to benefit the most from improved data
cache performance.

19 of 38

5.6 Table Scan in MySQL (tree traversal optimized)

Eliminating the copying of a record to the current record-buffer might also
affect the benchmark validity. When copying, the record also becomes
available in cache and some of the inner nodes in the tree structure might
consequently be “swapped out” of several or all cache levels. Once again
our benchmark strategy improves cache performance and thus favours the
original version and in particular the bit-shifted version. In addition, running
the benchmarks in a single-user environment further improves the cache
utilization.

On the other hand our benchmark strategy makes it possible to rule out
influence from the MySQL-environment, which we consider important as we
expect the differences to be small in terms of wall-clock time.

5.6 TABLE SCAN IN MYSQL (TREE TRAVERSAL OPTIMIZED)

Table scan is the only operation in MySQL that relies heavily on the tree
traversal algorithm. Consequently we want to benchmark how our changes
affect the total running time of table scan, without costs incurred by external
factors such as I/O and communication between the server and client.

In contrast to the leaf-locating benchmark this benchmark displays more
realistic cache behaviour because all parts of the table scan execution is
included. As we expect the total running time to be affected by the record
size we want to measure the speedup due to our changes while varying the
record size. To make the figures comparable we need to keep the number
of leaves constant, i.e. we have to adjust the number of records when ad-
justing the record size. We furthermore ensure that the number of records
pr. leaf is a power-of-2 in all three versions because we want to exclude
differences in records pr. leaf as the cause of differences in running time.
Once again, we intend to repeat the table scan until “random noise” can be
ruled out as the cause of the difference in response time.

5.7 SIMULATION VALIDITY

Before running any of the described tree traversal simulations we need to
verify that the running times in the simulations are sufficiently close to the
running times in MySQL. Specifically, we need to verify that the difference
in running time between division-operator-tree-traversal and bit-shifted-tree-
traversal in the simulation is comparable to the difference in running time in
MySQL.

The simulation of the tree traversal differs from the MySQL-version only in
the data access pattern. While the MySQL-version reads data from a node
at the calculated position, the simulation reads data from an array instead.
When reaching the end of the array the simulation moves to the start of the
array and rereads the elements. Only every 32nd array element is read as
this ensures the elements are not already available in cache7. Furthermore
the array is sufficiently large to ensure that the first array elements are
swapped out of cache before the simulation moves to the start of the array

7 Otherwise it could have been part of the cache line when reading the previous
element

20 of 38

5.8 Taking Timer-resolution into Account

again. This way we do not need to allocate large amounts of data in RAM
and we can specify precisely how many cache misses should occur.

In our MySQL-benchmarks we expect each inner node to generate a few
cache misses until the entire node is available in cache and we expect that
when an inner node is present in cache it will stay there while needed be-
cause it is unlikely to be “swapped out” as mentioned in section 5.5. Given
these assumptions we are able to accurately calculate the expected num-
ber of cache misses during a full table scan and we can distribute these
misses such that at most one miss occurs pr. tree traversal in our simula-
tion.

5.8 TAKING TIMER-RESOLUTION INTO ACCOUNT

The duration of a single tree traversal is so brief that we have no choice but
to measure the time it takes to perform a large number of tree traversals.
By repeatedly calling the tree traversal and scan functions we are able to
obtain measurements in the order of seconds. This essentially eliminates
the need for high precision timers.

5.9 TABLE SCAN IN MYSQL (MEMORY COPYING OPTIMIZED)

In the original version the current record is copied from storage engine to a
fixed location in the query processor. Consequently the query processor
does not have to rely on offset computations when accessing the fields in
the current record. Instead field pointers containing an exact memory ad-
dress are used in all parts of the query processor. Without the copying of
the current record to a fixed location we have to compensate by updating
the field pointers in the query processor such that they point to fields in the
current record located inside the storage engine. Note that we only update
a field pointer if it is part of the query.

We want to examine the following factors that determine the benefit of hav-
ing removed the copying of records:

1. The fraction of the total number fields that is part of the query
2. The size of the fields that are part of the query

In these benchmarks we once again intend to exclude costs incurred by
external factors such as I/O and communication between the server and
client.

21 of 38

6 . RESULTS

Unless otherwise indicated we have run the tests with 300000 leaves. Each
table scan was repeated 100 times and hence we have divided all running
times by 100. We have compiled MySQL with the same options and flags
as is used to compile the official MySQL-binaries [7] unless otherwise indi-
cated. The simulations have been compiled with compiler-default release
flags on both platforms. The only exception is that the simulations on Ita-
nium were compiled with the –O1 option (compiler-default is –O2) because
this is the optimization level used when compiling the official MySQL-
binaries on Itanium. On P4 we compiled with the MySQL default -O2 op-
tion.

6.1 VALIDITY OF SIMULATIONS

We initiate this section with an evaluation of the validity of the simulations
since it form the basis of most of the subsequent benchmarks. We have
measured the difference in speed between the original MySQL-
implementation and the bit-shifted MySQL-version (DIFF-M) with the num-
ber of leaves as the independent variable. These results are compared to
the difference in speed between the simulation of the original MySQL-
implementation and the simulation of the bit-shifting optimized MySQL-
version (DIFF-S). We tested the validity with both processors: Pentium 4
(P4) and Itanium 2 (I2).

Simulation vs. MySQL

0
0,01
0,02
0,03
0,04
0,05
0,06
0,07

50
00

0

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

Number of leaves

Ti
m

e
in

 s
ec

on
ds DIFF-M (P4)

DIFF-S (P4)
DIFF-M (I2)
DIFF-S (I2)

fig. 6.1 - Comparing simulations to MySQL

The simulations appear to be a good approximation at least when the num-
ber of leaves is in the range [50000; 300000]. The number of leaves is
within this range in all the subsequent benchmarks and thus the tree height
is 3 in all benchmarks. The difference in the simulation is 6% larger than
the difference in MySQL on both platforms. By proper use of constants we
have been able to take this into account in the measurements below.

22 of 38

6.2 Reuse of Division Computation in Modulo Computation

6.2 REUSE OF DIVISION COMPUTATION IN MODULO COMPUTATION

In this simulation benchmark of the original MySQL-implementation (ORI-S)
we ensured that the data access instruction always requested the same
data and hence we practically excluded all cache misses without excluding
any instructions from the simulations.

Reuse of division result

0
0,02
0,04
0,06
0,08
0,1

0,12
0,14
0,16

P4 I2

Processor

Ti
m

e
in

 s
ec

on
ds

ORI-S-REUSE
ORI-S-NOREUSE

fig. 6.2 - Reusing the division remainder to compute modulo

The result is somewhat surprising. The P4 processor reuses the result of
the division computation in the subsequent modulo computation and it is
clearly beneficial. On the other hand, the Itanium 2-processor does not
benefit from reusing.

To determine the reason for this, let us first look at the no-reuse case in the
P4 processor. Since no cache misses occur, the division computation is the
bottleneck. The integer division instruction IDIV is used for both division
and modulo and it has a throughput of 23 cycles in the P4 processor [6], i.e.
the processor has to wait for 23 cycles before it is able to process another,
independent, IDIV instruction. The processor cannot be kept busy for 23
cycles between the division computation and modulo computation. Conse-
quently it stalls for some time before initiating the modulo computation.
When looping (next iteration), it has to execute division again. Now the divi-
sion computation depends on the result of the modulo computation as illus-
trated in fig. 5.2. Thus the processor stalls again due to the IDIV latency of
56-70 cycles.

Now let us look at the reuse case in P4. The modulo computation has to
wait for the result of IDIV which takes up to 56-70 cycles but then the
modulo computation only takes a few cycles and after looping the next IDIV
can start straight away. Consequently it is beneficial for the P4 processor
when the divisor and dividend are the same.

23 of 38

6.3 Division Operator Speed vs. Bit-shifting Speed

After inspection of the assembly code we have verified that the Itanium 2-
processor does reuse when possible. Thus in the reuse case, the proces-
sor waits for the division computation to finish and reuses the result to im-
mediately compute the result of modulo.

In case of no-reuse the processor can execute the division and modulo
computations partly in parallel because the processor only has to wait for
5,5 cycles from initiation of the first division operation to the initiation of the
second division operation (that calculates modulo). Hence, the Itanium 2-
processor does not really benefit from reuse because of its near-optimal
division throughput.

6.3 DIVISION OPERATOR SPEED VS. BIT-SHIFTING SPEED

Once again the data access instruction always requested the same data in
this benchmark. Hence the difference in speed between the simulation of
the original MySQL-implementation (ORI-S) and the bit-shifting implemen-
tation (BIT-S) indicates the maximal possible speedup due to our change.
In a MySQL-context this corresponds to the unlikely situation in which all
inner nodes are available in cache at all times.

Division vs. bit-manipulation

0
0,02
0,04
0,06
0,08
0,1

0,12
0,14
0,16

P4 I2

Processor

Ti
m

e
in

 s
ec

on
ds

ORI-S
BIT-S

fig. 6.3 - Maximal speedup due to bit-shifting

While the maximal speedup on the platform using the P4 processor is app.
440%, it is no less than app. 660% on the platform using the Itanium 2
processor which indicates that the division operation is quite slow in the
Itanium 2 processor.

6.4 OUT-OF-ORDER/PARALLEL EXECUTION

We now turn to the opposite case in which every data access generates a
cache miss. In this situation the difference in speed between the simulation
of the original MySQL-implementation (ORI-S) and the bit-shifting imple-
mentation (BIT-S) indicates the minimal possible speedup due to our

24 of 38

6.5 Locating a Leaf in MySQL

change. In a MySQL-context it corresponds to the just as unlikely situation
in which a cache miss happens every single time an inner node is visited.

Max cache misses

0
0,05

0,1
0,15

0,2
0,25

0,3
0,35

0,4
0,45

P4 I2

Processor

Ti
m

e
in

 s
ec

on
ds

ORI-S

BIT-S

fig. 6.4 - Minimal speedup due to bit-shifting

With the data cache access as the constant bottleneck only a small
speedup can be expected on a computer using the P4 processor because
the division instruction almost manages to finish during a cache miss. This
reveals that cache misses are quite expensive and that the P4 processor is
obviously capable of utilizing the cache miss time through out-of-order exe-
cution by, for instance, performing a division operation.

On the Itanium, the cache miss reduces the benefit from bit-shifting, but a
speedup is still expected because both division and modulo cannot finish
during the cache miss. The benchmark does however indicate that the Ita-
nium 2 processor is capable of parallel execution.

6.5 LOCATING A LEAF IN MYSQL

On the basis of the previous benchmarks we are at last prepared for the
interpretation of the results from the MySQL-benchmarks. The benchmarks
have been run on both platforms with the number of leaves as the inde-
pendent variable. The query processor and the Memory storage engine
were modified as described in section 5.5 and the benchmarks only contain
table scan measurements.

25 of 38

6.5 Locating a Leaf in MySQL

MySQL-benchmark (default flags)

0
0,02
0,04
0,06
0,08
0,1

0,12
0,14
0,16

50000 100000 150000 200000 250000 300000

Number of leaves

Ti
m

e
in

 s
ec

on
ds

ORI-P4
BIT-P4
NLP-P4
ORI-I2
BIT-I2
NLP-I2

fig. 6.5 - Comparison in MySQL on both Pentium 4 and Itanium 2

 Pentium 4 Itanium 2
Speedup due to bit-shifting 26% 64%
Speedup due to next-leaf-pointers 72% 113%

table 6.1 - Speedup of locating a leaf in MySQL due to changes

On both platforms the MySQL-version using next-leaf pointers (NLP) is the
winner. This indicates that looking up a pointer to the next leaf does not
generate a cache miss.

The cache utilization in this benchmark might be slightly better than in a
real MySQL-setting as mentioned in section 5.5. This might have sped up
the two tree traversal versions (the bit-shifting version in particular) be-
cause the risk of an inner node being “swapped out” of cache while still
needed is minimal. Consequently the relative NLP-speedup might be even
larger in a real setting.

Section 6.2 revealed that the Pentium 4 benefits from reusing the division
result in the modulo computation. Thus the bit-shifting operations have to
compete with a single division instruction and this somewhat limits the po-
tential speedup due to bit-shifting as we also showed in section 6.3.

Although the official MySQL-binaries are compiled with the –O1 optimiza-
tion level on Itanium we decided to rerun the MySQL-benchmark after
compiling with the compiler-default –O2 level. Only the bit-shifted tree tra-
versal benefits from this.

26 of 38

6.5 Locating a Leaf in MySQL

MySQL-benchmark on Itanium 2 - O1 vs. O2

0
0,02
0,04
0,06
0,08
0,1

0,12
0,14
0,16

50000 100000 150000 200000 250000 300000

Number of leaves

Ti
m

e
in

 s
ec

on
ds

ORI-O2
BIT-O2
NLP-O2
ORI-O1
BIT-O1
NLP-O1

fig. 6.6 - Comparison in MySQL on Itanium 2. Compiled with –O2 vs. –O1

Itanium 2 O1-flag O2-flag
Speedup due to bit-shifting 64% 71%
Speedup due to next-leaf-
pointers

113% 113%

table 6.2 - Compile-flag dependent speedup in MySQL on Itanium 2

The speedup due to bit-shifting has increased from 64% to 71% on Itanium
2 while the speed of the original tree traversal and following a next-leaf
pointer is unchanged.

The software pipelining optimization comes into play when moving from O1
to O2 [8]. This optimization explains why the speedup due to bit-shifting
increases from 64% to 71%. By software pipelining we refer to the concept
of overlapping the loop iterations, i.e. to execute instructions from two or
more iterations concurrently as illustrated in fig. 6.7.

fig. 6.7 - Software pipelining8

8 As seen at http://www.cs.nyu.edu/courses/fall04/G22.2243-
001/lectures/lect7-1up.pdf

27 of 38

http://www.cs.nyu.edu/courses/fall04/G22.2243-001/lectures/lect7-
http://www.cs.nyu.edu/courses/fall04/G22.2243-001/lectures/lect7-

6.6 Table Scan in MySQL (tree traversal optimized)

In the original MySQL-version the division operation must be executed prior
to the load and modulo operations as both depend on the division result (as
verified in section 6.2). The division in the next loop iteration has to wait for
the completion of the modulo operation in the current iteration as was illus-
trated in fig. 5.2. Thus software pipelining cannot occur.

In the bit-shifting version software pipelining is possible. The bit-shifting
operations used to perform modulo do not depend on the division-by-bit-
shifting operation as illustrated in fig. 5.1. Furthermore the Itanium 2-
processor is capable of executing the bit-shifting operations in parallel. As
illustrated in table 6.3 the division and modulo operations in iteration x+1
can execute concurrently with the load operation in iteration x. The table
clearly simplifies the execution but it illustrates the concept.

Cycle number Instructions executed in parallel
0 Division1 Modulo1
1 Load1 Division2 Modulo2

2 Load2 Division3 Modulo3

… … … …
X Loadx

table 6.3 - Software pipelining the bit-shifted loop

As none of the versions benefit from compiling with optimization level O3
we have not included the results from that benchmark.

6.6 TABLE SCAN IN MYSQL (TREE TRAVERSAL OPTIMIZED)

Having estimated how the changes affect the time it takes to fetch the next
leaf, the next and final step is to investigate the impact of our changes on
the total running time. The running times in this benchmark correspond to
table scans in which no records satisfy the selection criterion. The number
of leaves (3125) is held constant because we double the number of records
when the record size is halved. Hence the amount of data is constant as
well (app. 400MB). The table scan has been repeated 1000 times to ensure
sufficiently large differences in running time.

28 of 38

6.6 Table Scan in MySQL (tree traversal optimized)

MySQL - varying record size

0

1

2

3

4

5

6

7

16 40 72 136 264 520 1032 2056 4104

Record size in bytes

Ti
m

e
in

 s
ec

on
ds

ORI-I2
BIT-I2
NLP-I2

fig. 6.8 – Total running time in MySQL for different record sizes

The graph in fig. 6.8 indirectly indicates that the running time is nearly dou-
bled when the number of records is doubled – despite the fact that the re-
cord size is divided by two. This is primarily due to the record-size inde-
pendent iteration overhead (return to query processor; examine record;
request next record). The running times are virtually identical for all three
versions of MySQL.

By “zooming in” on the running times in fig. 6.8 we can examine the differ-
ences between the three versions of MySQL. We add a constant to each
running time such that the running time of the original implementation is
always 1.

MySQL - zoom on differences

0,997

0,998

0,999

1

1,001

1,002

1,003

16 40 72 13
6

26
4

52
0

10
32

20
56

41
04

Record size in bytes

Ti
m

e
in

 s
ec

on
ds

ORI-I2
BIT-I2
NLP-I2

fig. 6.9 – The differences in running time when table scanning on Itanium

29 of 38

6.7 Table scan in MySQL (memory copying optimised)

Since the number of leaves is constant one would expect the speed differ-
ences to be constant as well, i.e. unaffected by the record size. With 16
bytes as the only exception, none of the record sizes are a power of 2.
Hence it is unlikely that looking up next-leaf pointers caused any cache
misses as explained in section 3.2. The speedup due to following next-leaf
pointers is nearly constant for all record sizes. Except for record sizes
around 1000 bytes, the speedup due to bit-shifting is nearly constant as
well and less beneficial than NLP. Although the irregular behaviour of bit-
shifting is reproducible we have not been able to identify the cause.

The chosen record sizes may seem rather small but it should be noted that
the maximal column size is 255B and hence 4104B corresponds to a table
of at least 17 columns.

We expect the speed-differences to be even smaller on the P4-platform for
two reasons: First, the figures in table 6.1 indicates a smaller speedup on
P4 and second, the amount of RAM on the P4-platform is only 256MB lead-
ing to a maximum of app. 1000 leaves of 128KB in practice (3125 leaves in
the Itanium-benchmark). Hence we consider it unrewarding to repeat this
time-consuming test on the P4-platform.

6.7 TABLE SCAN IN MYSQL (MEMORY COPYING OPTIMISED)

Now we turn our focus to the memory copying optimisation and explore
how the table scan running time is affected. In this first benchmark we have
examined the impact of the number of columns (all of 129B) that are part of
the query for a small and a large record size. The running times in the
benchmark correspond to table scans in which none of 25,000 records sat-
isfy the selection criterion.

Impact of number of columns in query

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

520
(1)

520
(2)

520
(3)

520
(4)

4104
(1)

4104
(2)

4104
(3)

4104
(4)

Record size in bytes (#cols in query)

Ti
m

e
in

 s
ec

on
ds

Ori-P4
NoMcpy-P4
Ori-I2
NoMcpy-I2

30 of 38

6.7 Table scan in MySQL (memory copying optimised)

fig. 6.10 – Table scan running times with and without memory copying

As we expected the running times of the original version are unaffected by
the number of columns but substantially affected by the record size (due to
the copying). On the contrary the running times of the optimized version
increase proportionally with the number of columns in the query (due to
field pointer updating) and are only marginally affected by the overall record
size. Adding one extra column to the query appears to have a larger impact
on Itanium 2 than on P4.

In the following two benchmarks we aim for a larger perspective by study-
ing how record and column size influences running time. We show best-
case and worst-case behaviour of the optimized version by selecting a sin-
gle column and all columns. The running times correspond to table scans in
which none of 25,000 records satisfy the selection criterion.

Impact of record size (small columns)

0

0,02

0,04

0,06

0,08

0,1

0,12

40 (2) 72 (3) 136
(5)

264
(9)

520
(17)

1032
(32)

2056
(64)

4104
(128)

Record size in bytes (#cols in record)

Ti
m

e
in

 s
ec

on
ds

Ori-P4

NoMcpy-P4
(select *)
NoMcpy-P4
(select 1 col)
Ori-I2

NoMcpy-I2
(select *)
NoMcpy-I2
(select 1 col)

 fig. 6.11 – Table scan running times with a fixed column size of 32B

To our surprise the worst-case behaviour (in which all columns are part of
the query) on Itanium 2 is significantly worse than the original version for
most record sizes. On the other hand the worst-case on P4 is no worse
than original version. It strongly suggests that the current field-pointer up-
date routine is sub-optimal on Itanium. On the positive side the best-case
running time (single-column selection) is nearly constant and radically im-
proves the running time for all but the smallest record sizes. The question is
whether an “average” column size of 32B is representative. Below we have
repeated the benchmark with a column size of 128B.

31 of 38

6.8 Table scan in MySQL (tree traversal + memcpy optimised)

Impact of record size (large columns)

0

0,02

0,04

0,06

0,08

0,1

0,12

40 (1) 72 (1) 136
(2)

264
(3)

520
(5)

1032
(9)

2056
(17)

4104
(32)

Record size in bytes (#cols in record)

Ti
m

e
in

 s
ec

on
ds

Ori-P4

NoMcpy-P4
(select *)

NoMcpy-P4
(select 1
col)
Ori-I2

NoMcpy-I2
(select *)

N M I2

 fig. 6.12 – Table scan running times with a fixed column size of 128B

Quadrupling the column size is evidently in favour of the optimized version
since fewer field pointers need updating compared to the amount of data
that needs to be copied and now the worst-case running time of the opti-
mised version is at least as fast as the original version - no matter the
choice of record size.

According to the last figure the running time can be (best-case) reduced to
80% of the original running time on Itanium 2 and 38% on Pentium 4 for a
record size of 520B. By increasing the record size to 4104B the running
times can be reduced to 12% and 19% respectively. Obviously the results
would be even better if the column size was further enlarged.

6.8 TABLE SCAN IN MYSQL (TREE TRAVERSAL + MEMCPY OPTIMISED)

In this final benchmark we combine the next-leaf pointer optimisation with
the memory copying optimisation. We have already shown that optimising
tree traversal has a minuscule impact on the total running time of table
scan. The sole purpose of this benchmark is to examine whether the rela-
tive benefit of the next-leaf pointer optimisation is worth mentioning when
memory copying is no longer part of table scan. The best-case scenario
comprises large records (4104B), large columns (255B) and a single-
column, no-match query. The table scan has been repeated 1000 times to
ensure sufficiently large differences in running time.

32 of 38

6.9 Final Remarks

Combining optimizations

0,035

0,036

0,037

0,038

0,039

0,04

0,041

0,042

0,043

0,044

0,045

NoMcpy-I2 NoMcpy/NLP-I2

Ti
m

e
in

 s
ec

on
ds

fig. 6.13 – Table scanning 100.000 4104B-records on Itanium 2
when combining memory copying optimisation with tree traversal
optimisation.

The benchmark indicates that a speedup of no more than 1,6% can be ex-
pected in a best-case scenario despite the fact that memory copying has
been eliminated.

6.9 FINAL REMARKS

The experimental results show a significant speedup of locating the next
leaf expressed in percentages. However, with a table size in the order of
400MB the reduction of the original table scan running time on Itanium 2 is
0,25% at best and the speedup is unlikely to be more than 1,6% in the
memory copying optimised version. As 50000 leaves of 128KB correspond
to a Memory table of no less than 6.1 GB, the MySQL-benchmark in sec-
tion 6.5 suggests that the wall-clock speedup due to next-leaf-pointers (on
the Itanium 2-platform with a 6.1 GB Memory table) is 14 ms. Late in the
process of writing this report we managed to get a profiling tool up and run-
ning. It confirmed that less than 0,5% of the time is spent in the tree tra-
versal code and it furthermore confirmed that the copying of each record to
the current record-buffer is the salient bottleneck indeed. Hence, the benefit
of optimizing the leaf-locating part is hardly worth mentioning.

Memory copying optimisations are far more important as the gap between
CPU speed and memory speed has been constantly growing, making the
memory relatively slower over time and hence making excessive copying
more costly. Even though the problem is somewhat alleviated by caches
and their increasing size, the current situation where all data processed is
copied in memory will flood most, if not all, caches. The best one can hope
for is that where a prefetching algorithm is available, it will be strong
enough to reduce the waiting period. Also, as cache-sizes grow, so will the
number of primitives to explicitly change cache-behaviour. For instance, the
Itanium offers an API for explicitly prefetching data into cache. This is an
interesting development because cache misses are so expensive that they

33 of 38

6.9 Final Remarks

can severely degrade an application’s performance. At the same time, it is
important to keep the cache management algorithms simple since time
spent in these just add to the overall cache latency.

34 of 38

7 . CONCLUSION

In this paper we first set out to investigate the practical value of optimizing
the application of the tree data structure in the Memory storage engine in
MySQL 4.1. Our optimizations consisted of speeding up tree traversal
through bit-shifting and minimizing the number of tree traversals by using
next-leaf pointers. Through simulations we examined the potential of the
optimizations on fetching the next leaf node. Then, by benchmarking table
scan in MySQL we succeeded in measuring the practical value of the op-
timizations. This led us to investigate the cost of what seemed to be super-
fluous copying between different areas in RAM.

In case of optimal cache behaviour the simulations suggested that tree tra-
versal based on bit-shifting is 400-700% faster than the current tree tra-
versal algorithm based on the division-operator. In practice for finding
leaves in the tree, the tree traversal speedup due to bit-shifting is probably
in the range 25%-75% while following next-leaf pointers appears to result in
a speedup in the range 70%-120%.

Unfortunately, the total time spent in the tree traversal area is too small
compared to, for instance, copying of records between the storage engine
and the query processor. This means that even if our relative speedup for
the tree traversal is significant, the effect on total running time is not im-
pressive, i.e. a speedup in the order of milliseconds. Even when we remove
the copying, which is the primary time-consumer, and could be expected to
have absorbed some of the initial tree-scan costs, the impact on the total
running time of table scan in MySQL is minuscule (a speedup of < 1,6%).

In contrast we have shown that there is great speedups to be gained if the
query processor’s access to records is redesigned, i.e. elimination of the
copying of records between storage engine and query processor. In optimal
cases the table scan running time can be reduced to 1/8 on Itanium 2 and
1/5 on Pentium 4. The worst-case running time matches the original run-
ning time on Pentium 4. However, the worst-case behaviour is awful on
Itanium 2 because the field-pointer update routine is based on a ListItera-
tor-implementation that performs poorly on Itanium 2.

35 of 38

8 . FURTHER WORK

As we have previously pointed out the copying of records between the
Memory storage engine and the query processor is the major time-
consumer when table scanning. It might be beneficial to insert explicit pre-
fetching instructions in the source code or to adjust the implementation in
ways that urge prefetching-enabled compilers to automatically insert data-
cache prefetching instructions. This way the records will be readily avail-
able in cache when the copying takes place.

The current field-pointer update routine that we used in the memcpy-
optimized version appears to be sub-optimal on Itanium 2. It might be bene-
ficial to re-implement or circumvent the applied MySQL-ListIterator (which
is commonly used in MySQL).

36 of 38

9 . REFERENCES

1. Michael L. Samuel & Anders U. Pedersen, “MySQL in a Main Memory
Database Context”, Department of Computer Science, University of
Copenhagen, 2004

2. John L. Hennesey & David A. Patterson, “Computer architecture: a

quantitative approach, 2nd edition”, ISBN 1-55860-372-7, Stanford &
Berkeley, USA, 1996

3. “IA-32 Intel® Architecture Optimization”, Order Number 248966-010,

Intel, USA, 2004

4. “Intel® Itanium® Architecture Software Developer’s Manual, Volume 1:

Application Architecture. Revision 2.1, October 2002”, Document Num-
ber 245317-004, Intel, USA, 2002

5. D. W. Jones, “An empirical comparison of priority-queue and event-set

implementations”, Communications of the ACM 29, 4, 300-311, 1986

6. “Intel Pentium 4 Processor Optimization Reference Manual”, Order

Number 248966, Intel, USA, 2001

7. Lenz Grimmer: “List: MySQL Packagers”, http://lists.mysql.com/pack-

agers/179, April 2004

8. “Intel® C++ Compiler for Linux* Systems User's Guide”, Document

number: 253254-014, Intel, 2003

9. “Intel® Itanium® Architecture Software Developer’s Manual, Volume 2:

System Architecture. Revision 2.1, October 2002”, Document Number
245318-004, Intel, USA, 2002

10. “Intel® Itanium® Architecture Software Developer’s Manual, Volume 2:

Instruction Set Reference. Revision 2.1, October 2002”, Document
Number 245319-004, Intel, USA, 2002

11. Joshua A. Redstone, Susan J. Eggers and Henry M. Levy, “An Analysis

of Operating System Behavior on a Simultaneous Multithreaded Archi-
tecture”, Proceedings of the 9th International Conference on Architec-
tural Support for Programming Language and Operating Systems, No-
vember 2000

12. “Intel® Itanium™ Processor Reference Manual for Software Optimiza-

tion”, Document Number: 245473-003, Intel, USA, 2001

13. ”IA-32 Intel® Architecture Software Developer’s Manual – Volume 1:

Basic Architecture”, Order Number 253665, Intel, USA, 2004

14. “IA-32 Intel® Architecture Software Developer’s Manual – Volume 2:

Instruction Set Reference A-M”, Order Number 253666, Intel, USA,
2004

37 of 38

15. “IA-32 Intel® Architecture Software Developer’s Manual – Volume 3:

Instruction Set Reference N-Z”, Order Number 253667, Intel, USA,
2004

16. "IA-32 Intel® Architecture Software Developer’s Manual – Volume 4:

System Programming Guide”, Order Number 253668, Intel, USA, 2004

17. “A Formal Specification of Intel® Itanium® Processor Family Memory

Ordering – Application Note”, Document Number: 251429-001, Intel,
USA, 2002

18. Glenn Hinton, et al, “The Microarchitecture of the Pentium® 4 Proces-

sor”, Intel Technoloy Journal Q1, 2001

19. Jean-Francois Collard & Daniel Lavery, “Optimizations to Prevent

Cache Penalties for the Intel® Itanium® 2 Processor”, Intel, USA, 2003

20. “Intel® Itanium®2 Processor Reference Manual – For Software Devel-

opment and Optimization”, Order Number: 251110-002, Intel, USA,
2003

21. “Introduction to Microarchitectural Optimization for Itanium®2 Proces-

sors”, Document Number: 251464-001, Intel, USA, 2002

38 of 38

	INTRODUCTION
	CURRENT HEAP IMPLEMENTATION
	THE MEMORY TABLE
	OPERATIONS ON THE MEMORY TABLE
	HASH INDEX
	OPERATIONS ON THE HASH INDEX

	PERFORMANCE IMPROVEMENT IDEAS
	SPEEDING UP TREE TRAVERSAL
	MINIMIZING THE NUMBER OF TREE TRAVERSALS
	REDUCING THE COST OF READING RECORDS

	EXPERIMENTAL FRAMEWORK
	BENCHMARK STRATEGIES
	HARDWARE PLATFORM
	MEASUREMENTS
	MEASURING ACHIEVEMENTS
	CHOICE OF TIMERS

	EXPERIMENTS
	REUSE OF DIVISION COMPUTATION IN MODULO COMPUTATION
	DIVISION OPERATOR SPEED VS. BIT-SHIFTING SPEED
	OUT-OF-ORDER/PARALLEL EXECUTION
	CACHE MISSES
	LOCATING THE NEXT LEAF IN MYSQL
	TABLE SCAN IN MYSQL (TREE TRAVERSAL OPTIMIZED)
	SIMULATION VALIDITY
	TAKING TIMER-RESOLUTION INTO ACCOUNT
	TABLE SCAN IN MYSQL (MEMORY COPYING OPTIMIZED)

	RESULTS
	VALIDITY OF SIMULATIONS
	REUSE OF DIVISION COMPUTATION IN MODULO COMPUTATION
	DIVISION OPERATOR SPEED VS. BIT-SHIFTING SPEED
	OUT-OF-ORDER/PARALLEL EXECUTION
	LOCATING A LEAF IN MYSQL
	TABLE SCAN IN MYSQL (TREE TRAVERSAL OPTIMIZED)
	TABLE SCAN IN MYSQL (MEMORY COPYING OPTIMISED)
	TABLE SCAN IN MYSQL (TREE TRAVERSAL + MEMCPY OPTIMISED)
	FINAL REMARKS

	CONCLUSION
	FURTHER WORK
	REFERENCES

