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ABSTRACT 

The Memory table structure in MySQL 4.1 is built upon a heap accessible 
through a tree structure. During table scans, this tree structure is repeatedly 
traversed by use of division and modulo operations that are inherently ex-
pensive. 
 
When a given record has been located in the heap, it is copied to a memory 
location accessible by the query processor, a step that seems unnecessary 
for many operations as heap tables are already RAM-based.  
 
In this paper, we examine the initial performance of table scans on Pentium 
4 and Itanium 2, and suggest and implement improvement ideas. 
 
We benchmark the changes and investigate the possible reasons for differ-
ences in the benchmarks – both CPU-architectural-, compiler- and MySQL- 
design issues.   
 
Based on these investigations, we conclude that by removing the repeated 
copying of data in RAM the table scan running time can be reduced by a 
factor of up to 8. However, optimizing the utilization of the tree structure has 
marginal effect despite the fact that we managed to speed up the time it 
takes to locate a leaf node by more than 100%. 
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1 .  INTRODUCTION 

MySQL has engines supporting several types of tables, both disk- and 
memory-based. The disk-based are MyIsam (or variations thereof), BDB 
and InnoDB. The memory-based engine uses Memory tables1, which were 
initially developed for internal use by the query processor and supported 
only hash-indexes, but later extended to be available for the database de-
velopers and enhanced to support B-Tree indexes as well. 
 
As the Memory tables have no durability, speed is the most important fea-
ture for them. While keeping the tables in RAM automatically gives a sig-
nificant increase in speed, we still identified a number of possible optimiza-
tions for the main memory component in MySQL 4.1 in [1].  
 
In this new paper we keep focus on MySQL 4.1 and examine internal tree 
traversals as part of table scans, and compare the expected theoretical 
improvement with the actual benchmark results from the implemented code 
changes that include both reducing the number of required tree traversals 
as well as optimizing the traversal by using bit shifting rather than division 
and modulo operations. 
 
It is a well established fact in optimization of code that numeric division (in-
teger or floating-point) is among the most expensive operations that can be 
performed and if a situation exists where divisions can be easily eliminated 
it is almost always worth the effort to do so.  
 
In MySQL 4.1, the method used for locating a leaf in a Memory table uses 
division and modulo operations to traverse the tree and does so repeatedly 
for every leaf that needs to be found. As mentioned in [1], the tree traversal 
must be expected to be especially costly in table scan since every leaf is 
fetched by tree traversal. Our changes address both the division and the 
repeated tree traversal. 
 
We are aware that the two changes don’t really complement each other, 
since we expect the elimination of excessive tree traversal to diminish the 
speedup gained by removing the expensive division operations, but the 
changes are relatively simple to make, and the overall result should still be 
that less clock cycles are wasted. 
 
Additionally, we have identified that MySQL has a structure that requires it 
to copy data between the storage engines’ buffer pools and the query proc-
essor. With a disk-based storage engine the cost of this is absorbed by the 
much more expensive copying from disk to RAM, but when the storage 
engine is RAM-based the approach seems wasteful. 
 
As a result we have also modified this structure for SELECT-commands 
from Memory tables. This complements the other changes perfectly, as it 
removes a time-costly task, allowing the benefits of the others to be more 
clearly seen. 
                                                 
 
1 Previously named HEAP tables 
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2.1 The Memory Table 

 
The rest of this paper is organized as follows. In the following section we 
describe the data structures and algorithms in the Memory storage engine. 
In section 3 we present the improvement ideas. The experimental frame-
work is discussed in section 4. We present the experiments in section 5 
and discuss the results in section 6. We conclude in section 7 and wrap up 
the paper with ideas for future work in section 8. 
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2 .  CURRENT HEAP IMPLEMENTATION 

This section describes the data structures and algorithms that are affected 
by our improvement ideas, which we present in section 3. The design of the 
data structures in the heap reflects the original purpose of a Memory table, 
which was to act as a temporary table when the query processor needed to 
store intermediate results. As of MySQL 3.23, the Memory storage engine 
also has a public interface, making the heap available to the end user as an 
independent table type. The basic assumption underlying the heap data 
structures is that the field size, key size and consequently the record size 
are fixed. 
 
2.1 THE MEMORY TABLE 

A Memory table is stored in a tree structure with records at the leaf level. 
An inner node contains up to 128 child pointers. The maximum tree height 
is 4, thus the maximal number of leafs is 1284. A leaf is simply a fixed size 
chunk of raw memory and it contains nothing but records. The location of a 
record inside a leaf is determined by an offset. Knowing that the first record 
in a leaf (offset = 0) is stored at address leaf_start, the record with some 
offset-value must be stored at address leaf_start + offset * record size.  
 
A record is fetched by supplying its record position posrec. The assignment 
of a posrec to a record is based on the illusion that all records are stored in 
one large array, i.e. the posrec is simply an array index. Since the records 
are actually stored in a tree structure each posrec must be translated to the 
corresponding location in a leaf. If x records are stored in each leaf, the 
leftmost leaf contains the records with a posrec in the range [0 ; x [. The next 
leaf contains the records with a posrec in the range [ x ; 2x [ and so forth. 
With tree height h, the tree structure is thus capable of storing 128h * x re-
cords. 
 

Find record at posrec 12902 
 

1
12800
12902

=⎥⎦
⎥

⎢⎣
⎢

: go to 2nd child 

 
12902 mod 12800 = 102: the new posrec 
 

1
100
102

=⎥⎦
⎥

⎢⎣
⎢

: go to 2nd child 

 
102 mod 100 = 2: the 3rd record in leaf 
 
 

 

fig. 2.1 - The numbers indicate which record positions each node covers. 
 
The example tree in fig. 2.1 illustrates the assignment of record positions to 
the leaves based on the assumptions that the tree is full, the tree height is 2 
and each leaf contains 100 records. 
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2.2 Operations on the Memory Table 

 
Finding the record with e.g. posrec 12902 in such a tree requires traversing 
the tree from root to leaf. Each child of the root has 12800 records in its 
sub-tree. The record with posrec 12902 must consequently be in the sub-
tree of the second child of the root (12902 div 12800 = 1).2 As a result of 
moving down one level, the posrec is now decreased to 102 (12902 mod 
12800 = 102). The second child of the root has 128 children each contain-
ing 100 records. Consequently the record with posrec 102 must be in the 
second child (102 div 100 = 1). Furthermore it must be the 3rd record in this 
leaf since the offset is 2 (102 mod 100). 
 
From this example it should be clear that traversing the tree from root to 
leaf consists of a series of modulo and division computations. 
 
2.2 OPERATIONS ON THE MEMORY TABLE 

On insertion of a record the next free posrec is identified. This might lead to 
allocation of a new leaf node in case no record positions are unused in any 
of the existing leaves. By doing a tree traversal the in-leaf location corre-
sponding to the posrec is identified, and the record is subsequently inserted. 
 
Scanning a Memory table using the tree structure above is quite trivial:  
Fetch the first leaf, i.e. get the leaf_start address corresponding to the re-
cord with posrec 0. Read each record in the leaf. Fetch the next leaf, i.e. get 
the leaf_start address corresponding to the record with posrec x (x records 
pr. leaf) and so on (2x, 3x,…). Since the leaves are not joined together in a 
linked list, fetching the next leaf requires a tree traversal. When the in-leaf 
location of the next record to be fetched has been computed, the record is 
copied to the current record-buffer in the query processor. The copying 
takes place, because the record format in the storage engine may differ 
from the one used in the query processor. 
 
2.3 HASH INDEX 

As the hash index is indirect each bucket element consists of a pointer to 
the record it represents and a pointer to the next element in the bucket. The 
hash key for a record is translated to a bucket number (posbuck) using 
modulo. The bucket numbers are equivalent to the record positions (posrec) 
mentioned above and this makes it possible to store the bucket elements in 
the very same tree data structure as is used for records. As a result of this 
strategy the number of potential buckets equals the number of records. 
Thus an ideal hash function would only need to store one element in each 
bucket (assuming unique record keys).  

                                                 
 
2 Because of 0-indexing, 0 corresponds to first child, 1 corresponds to second child 
etc. 
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2.4 Operations on the Hash Index 

 

fig. 2.2 - Four elements in bucket with posbuck 3. Only the first element in 
the bucket is stored at posbuck 3. The other elements are found by following 
the pointers. 
 
In fig. 2.2 a bucket with posbuck 3 is illustrated in the lower left part of the 
tree structure. The hash key in each of the four elements all map to posbuck 
3 though only the first element in the bucket is actually stored at that posi-
tion. 
 
When inserting bucket elements the tree grows, as more leaves are allo-
cated. Obviously the number of potential buckets (posbuck) increases when 
more leaves are allocated. This will likely affect the mapping of a hash key 
to a bucket number because modulo is used. It naturally leads to situations 
in which the hash key for an already inserted bucket element now maps to 
a different bucket (posbuck) and consequently the bucket element must be 
moved to another bucket. In [1] we have described how this issue is effi-
ciently dealt with. 
 
2.4 OPERATIONS ON THE HASH INDEX 

All operations on the hash index (insert, delete, update, lookup) entail ac-
cessing one or more buckets and thus one or more tree traversals (to fetch 
the first element in a bucket). The hash index operations are described in 
detail in [1]. 
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3 .  PERFORMANCE IMPROVEMENT IDEAS 

It follows from section 2 that tree traversal is central to operations on both 
the Memory table and the hash index, although the copying of each record 
to the current record-buffer is the most time-consuming action. Speeding up 
the tree traversal is one performance improving strategy. An alternative 
strategy could be to minimize the number of tree traversals. We have de-
cided to pursue both strategies in the quest for better performance. 
 
3.1 SPEEDING UP TREE TRAVERSAL 

The tree traversal consists of a number of modulo and division computa-
tions. As the division operators (also used for modulo) are quite expensive 
in terms of clock cycles it might be beneficial to replace them with bit-
shifting instructions. This is however only an option if the divisor is always a 
power of 2. 
 
The number of elements in the inner nodes is always 128, i.e. a power of 2. 
Hence, if we can assure that the number of records in a leaf is also a power 
of 2 then the divisor is always a power of 2. The leaf node size in the cur-
rent implementation depends on a system variable called read_buffer_size, 
which is 128KB by default. A leaf then contains the largest number of re-
cords that results in a leaf node size ≤ 128KB. Hence, the number of re-
cords in a leaf currently depends on the record size. We can change it by 
adjusting the number of records in a leaf to be the largest power of 2 that 
results in a leaf node size ≤ 128KB. 
 
Now modulo can be trivially performed using an AND and a SUB instruc-
tion. Division by bit shifting is less trivial since the number of bits that the 
divisor consists of must be known in advance. Fortunately the number of 
bits (in the divisor at initiation of the tree traversal) can be computed in ad-
vance. When doing the actual tree traversal we know that moving down 
one level in the tree means that the divisor must itself be divided by 128, 
i.e. the number of bits in the divisor decreases by 7. 
 
Counting the bits in the divisor can be done in several ways. The slowest 
and simplest method is the math-library version: log2(divisor)+1. A faster 
but still simple method is to start with a guess of 1 bit and increase until the 
guess is right. It is even faster to do binary guessing, i.e. guess 16 bit, then 
16+8 if divisor is larger or 16-8 if smaller, then (8 or 24) +/- 4 etc. until the 
guess is right3. A preliminary benchmark indicated that binary guessing is 
up to 7 times faster than using log. 
 
The bit-shifting is only an improvement if the division/modulo computations 
are a bottleneck during the tree traversal. To determine if this is the case, 
the following four issues must be considered regarding the execution of the 
current implementation: 

1. Does the processor reuse the result of the division computation in 
the subsequent modulo computation? Since the operands are the 

                                                 
 
3 Assuming the divisor never exceeds 32 bits 
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3.2 Minimizing the Number of Tree Traversals 

same for the division and modulo computations, only a single inte-
ger division operation is needed to compute both results. A modern 
processor might be able to reuse the result from the division compu-
tation and thus eliminate the otherwise needed integer division op-
eration used to perform modulo. 

2. What is the processor-latency and the processor-throughput for the 
integer division operation? The latency for an operation is the num-
ber of clock cycles that are required to complete the execution of 
the operation. This determines the lower bound on the time it takes 
to traverse the tree since the current tree traversal relies on a series 
of mutually dependent integer division operations. The throughput 
for an instruction is the number of clock cycles required to wait be-
fore the same instruction can be processed again. If no reuse oc-
curs, two independent division operations are executed at each 
level of the tree traversal and in such case the division-throughput 
affects the running time. 

3. How expensive is a data cache miss4 and how many cache misses 
can be put down to visiting inner tree nodes? The division and 
modulo computations determine which child-pointers to follow when 
traversing the tree. If the child-pointer of interest is not in any data 
cache, a cache miss occurs and the pointer must be fetched from 
memory. In such case the cache miss becomes the bottleneck and 
the running time is thus less affected by the division improvement. 

4. Is the processor capable of out-of-order or parallel execution to 
minimize the delay (if any) caused by a cache miss? While waiting 
for the completion of a load instruction causing a data cache miss, 
the processor might be able to execute load-independent instruc-
tions which will reduce the perceived latency of the division opera-
tion. 

 
These issues constitute one part of our investigation below; another part is 
considering how to minimize the number of tree traversals. 
 
3.2 MINIMIZING THE NUMBER OF TREE TRAVERSALS 

When scanning a Memory table the tree is traversed once pr. leaf. The im-
provement to make is quite obvious: Join the leaves into a singly linked list 
by adding next-leaf pointers. This way, a tree traversal is only needed once 
- to fetch the first (leftmost) leaf. The drawback is the space overhead due 
to the allocation of a next-leaf pointer pr. leaf, i.e. 4B pr. 128KB (assuming 
the default leaf size and 32-bit addressing). This improvement makes the 
bit-shifting improvement insignificant for table scans but all other operations 
still benefit from the faster tree traversal as table scanning is the only op-
eration visiting the leaf nodes in sequence. 
 
The benefit of linking the leaves depends on three things: 

1. Does the lookup of the pointer to the next leaf generate a cache 
miss? As mentioned, the record is copied to the current record-

                                                 
 
4 When we use the term cache miss it normally refers to a data cache access miss 
and it normally implies a memory access. Accordingly, we typically do not explicitly 
specify the cache level when using the term cache hit. 
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3.3 Reducing the cost of reading records 

buffer in the query processor when the in-leaf location of the next 
record to be fetched has been computed. Consequently the current 
record is always present in the cache. At some point the last record 
in a leaf becomes the current record. Knowing this, it is wise to allo-
cate and store the pointer to the next leaf just after the last record in 
the leaf. Unless the record precisely fits in (a multiple of) the largest 
cache line, the next-leaf pointer will be readily available in cache, 
because it is “accidentally” loaded into the cache when the last re-
cord in the leaf is copied to the current record-buffer. Using this 
strategy it is less likely that the pointer lookup will generate a cache 
miss. 

2. Does the tree traversal generate cache misses? If the inner nodes 
visited during a tree traversal are in cache then the lookup time is 
purely determined by the speed of the division/modulo computa-
tions. In such case following a next-leaf pointer might not be much 
faster than a tree traversal. 

3. Is the processor capable of out-of-order or parallel execution, 
thereby minimizing the delay caused by a possible cache miss 
when looking up a next-leaf pointer? If the processor can be kept 
busy during a possible cache miss due to looking up the next-leaf 
pointer, the next-leaf-pointer-lookup might outperform the tree tra-
versal in any case. 

 
With our experiments, we will shed light on these points. 
 
3.3 REDUCING THE COST OF READING RECORDS 

When a record is to be read, it is located by the storage engine and re-
turned to the query processor. In MySQL this is done by the query proces-
sor providing the storage engine with a pointer to allocated area in RAM. 
The storage engine is then expected to copy its data, one record at a time, 
to the given area.  
 
The rationale for this seems to be that the time it takes to retrieve the data 
from disks is far greater than the time it takes to copy it to a standard loca-
tion, and the query processor will then have easy, standardized access to 
the data that will already have the structure that the query processor needs 
when it is copied.  
 
This seems to be a fair solution for disk-based storage engines. In theory, it 
might be cleaner to let the record propagate through the layers as a vari-
able or a return value, but it is important to remember that even a single 
record will in many cases be rather large, and there is a risk that the stack 
(and other control structures) will be put under a greater pressure than 
need be if the ‘clean’ solution is selected. 
 
However, for the Memory-storage engine, this solution seems inefficient. 
The data is already present in RAM and allowing the query processor to 
access data that is already properly structured rather than copying doesn’t 
seem to be an unacceptable violation of encapsulation rules, especially not 
considering the current implementation. 
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3.3 Reducing the cost of reading records 

Unfortunately, a large number of functions in the query processor rely on 
the record being present at the allocated area. The code is rash with mem-
cpy-functions, and many methods that accesses the fields in records don’t 
use the record pointer to calculate offsets from, but use the pointer to the 
allocated RAM area in the query processor to calculate absolute ad-
dresses.  
 
The main concern with this is the fact that pointers present in the local 
scope of the query processor does in fact point to the record address – but 
changing those pointers does not affect the field-pointers – which suggests 
that the assumption that a pre-allocated area exists is exploited at several 
locations in the code. The benefit is obviously that the pointers need only 
be calculated once; speeding up record accesses, but the actual calculation 
is spread out to several functions, making it very difficult to avoid the copy-
ing. 
 
Changing all occurrences of this is far beyond a paper as this and not par-
ticularly interesting since the partial implementation we have made exposes 
both strengths and weaknesses of the solution. 
 
In practice we have decided to implement the solution such that it works for 
SQL-statements that select data from a single table with or without where-
clauses. This is done by adding a global record pointer to the system. The 
pointer is updated by the heap engine instead of copying a record to the 
query processor. In the query processor, the address of the record pointer 
is used to iterate through the fields and update their individual pointers ac-
cordingly, as they would still be pointing to the original area. When this is 
done, the query processor can continue. Note that we only need to update 
a field pointer if it is part of the query. The optimal solution would be to up-
date the field pointers in a just-in-time manner: Consider a query that con-
tains two conditions and both must evaluate to true. If the first condition 
evaluates to false we do not need to examine the second and hence we do 
not need to update the field pointers in the second condition. Accordingly 
we do not need to update the field pointers in the SELECT clause unless 
the row matches the query conditions. Since we are only interested in the 
best-case (1 column) and worst-case (all columns) scenario we have not 
implemented this just-in-time solution. 
 
While there would be no great computation cost by letting this record 
pointer propagate ‘properly’ through the layers, doing so would break many 
overloaded functions and methods which would need to be fixed for a build 
to work, but which would add absolutely no value to the experiments or 
conclusions. 
 
 

12 of 38 
 



  

4 .  EXPERIMENTAL FRAMEWORK 

4.1 BENCHMARK STRATEGIES 

The changes in performance due to the proposed tree-optimizations are 
expected to be small in terms of wall-clock time. In a preliminary bench-
mark of the current implementation we selected 100.000 records corre-
sponding to a heap containing app. 130MB data. Scanning the entire Mem-
ory table resulted in a running time of astounding 0,15 s. on a Pentium 4 
1,7GHz (excluding query-processing time and output-time). 
 
To accurately measure the change in performance we therefore need to 
process large amounts of data. Since a Memory table is purely RAM-
resident the amount of RAM in the benchmark computers dictates a rela-
tively low upper limit on the data size. Faced with this problem we have 
identified two approaches to the performance measurement that we con-
sider to be acceptable: 
 

1. Implement the changes in MySQL and alter the heap to repeatedly 
call the modified functions until the difference in running time can be 
measured with sufficient reliability.  

2. Simulate the heap-functions outside the MySQL-context. 
 
The first option ensures that the changed functions interact with a real da-
tabase environment and that the measured times are as authentic as pos-
sible. The second option on the other hand, makes it easier to rule out any 
influences from the MySQL-environment and to accurately control parame-
ters such as the number of cache misses, the tree height etc. and hence 
determine the direct effect of the changes on the used architectures. 
 
While some of the questions in sections 3.1 and 3.2 can be answered with 
sufficient certainty in a simulation, other questions can be more suitably 
answered in the MySQL-environment. Consequently we have decided to 
pursue both strategies. 
 
4.2 HARDWARE PLATFORM 

We have decided to benchmark the optimizations on the two very different 
platforms described below. 
 
 Pentium 4 1600MHz Itanium 2 900MHz 
System: Microsoft Windows XP Debian GNU/Linux 2.4.25 
Addressing: 32-bit 64-bit 
Processors: 1 2 
RAM: 256MB 4GB 
L1 cache size/line: 12KB / 128B 16KB / 64B 
L2 cache size/line: 256KB / 128B 256KB / 128B 
L3 cache size/line: None 1,5MB / 128B 
Compiler: MS Visual C++ 6.0 Intel C/C++ 8.0.066 
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4.2 Hardware Platform 

The P4-platform is interesting because the CPU is “intelligent” in the sense 
that it diminishes pipeline stalls by out-of-order instruction execution. The 
Itanium 2-platform has been chosen because the CPU is capable of parallel 
instruction execution and because the compiler is “intelligent” as it dimin-
ishes pipeline stalls by bundling instructions that can be executed in paral-
lel. In the remainder of this section we elaborate on these features and 
other relevant differences between the platforms. 
 
That a shift operation is many times faster to perform than a division is ba-
sic knowledge. [2] However, CPU designers have put a lot of effort into 
both speeding up division and generally diminishing the effect of computa-
tion latency. 
 
In P4, the optimizations performed can be explicit by the compiler (i.e. by 
using the assembler instruction XOR rather than CWD or CDQ for sign ex-
tension in certain cases [3]), but in many cases, the processor itself has 
ways of improving real throughput of division operations - most notably 
through the “Out-of-order Execution Logic” (OEL). 
 
The OEL specifies that if several operations are independent of each other, 
the processor will attempt to execute these in parallel, delaying the results 
from them to make it seem as if they have been executed in order. This 
means that in optimal cases5, only the actual use of the Arithmetic Logic 
Unit (ALU) will delay execution of a division operation, and this should re-
duce the overall latency for this operation. The ALU even has a pseudo-
pipeline, as it can do a so-called “staggered add” where the first 16 bits of 
an addition operation is passed on to dependent units in the processor be-
fore the next 16 bits are computed.  
 
In the Itanium processor, the approach is somewhat different.  
 
First of all, the Itanium 2 (I2) processor/ALU has no native division opera-
tion [4], so any division operation has to be done by algorithms imple-
mented in software. 
 
Second, the ALU is fully pipelined and can start a new operation every 
clock cycle, which greatly improves the overall throughput, but does little to 
help the speed in applications that doesn’t use the ALU intensively, since 
the latency for each operation remains constant. 
 
Finally, through use of Itanium’s “Explicitly Parallel Instruction Computing” 
(EPIC) it is possible for the compiler to bundle certain operations so that the 
processor will be able to execute these in parallel. It is important to note 
that only certain operations can be bundled together, and that this is done 
entirely by the compiler – the processor does not rearrange at runtime like 
the P4, and the dependencies that decide what can run in parallel and what 
can’t are distinctly different from those on P4. 
 

                                                 
 
5 And with a warm pipeline 
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4.3 Measurements 

4.3 MEASUREMENTS 

Just as Intel’s own documentation has reservations regarding the perceived 
cost (duration) of the various instructions, our measurements have issues 
to be aware of. 
 
Most notably, the OEL makes it virtually impossible to determine the effect 
of our changes in a real environment, with a full-scale database server that 
serves many users. 
 
Therefore, it is important to distinguish between our improvements and 
those done automatically by compiler and CPU. The compiler can largely 
be controlled by the use of flags, but the CPU improvements are illustrated 
by running tests that only differ in the dependency of the variables – effec-
tively a throttle to control the level of parallelism possible.  
 
This means that we can test the theoretical best-case improvement of our 
changes directly, and show that the changes does ease the load on the 
ALU, which improves the general throughput even if the perceived effects 
in a live environment might be somewhat diminished on a Pentium 4 due to 
OEL and other factors. 
 
We find our theoretical best case by creating performance cases that focus 
on the simple, raw achievements, but in a way that mimics the existing 
code.  
 
In many hardware based implementations of division, the ALU will have the 
remainder of an integer division present. Even in advanced division algo-
rithms and hardware, the ALU will have an (unshifted) remainder present in 
all iterations. However, since the I2 relies on a software algorithm to do its 
division, it also relies on the software to provide the remainder; the proces-
sor itself cannot be expected to have any knowledge of the usability of val-
ues in the registers used by the algorithm. 
 
4.4 MEASURING ACHIEVEMENTS 

In order to determine the effects of our changes, we need to find a reliable 
set of measurements. According to Douglas W. Jones [5] it is important to 
ensure that the computer used for benchmarking is exclusively used for the 
benchmarks. However, due to the complexity of MySQL as well as of mod-
ern OS it is difficult to control the CPU-time allocated for benchmarks and 
obtain reliable results. 
 
Also, this statement was made in 1986, where the way computers were 
used was distinctly different from today. Jones’ requirement remains inter-
esting in order to determine the raw effect of changes made, but this won’t 
necessarily reflect the effect in a live system. Unfortunately, it is close to 
impossible6 to reliably benchmark the effects in a live system with hundreds 
of tables, users, etc., but it remains important to remember and compare 

                                                 
 
6 And certainly beyond the scope of this paper 
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4.5 Choice of Timers 

the effects on the live system (or an approximated version of it) with the 
isolated tests. 
 
One solution to this is to simply run the benchmarks so many times that 
one is confident that any difference in the average run time before and after 
the changes displays the actual improvement (or deterioration) incurred by 
the changes. The obvious advantage of this method is that it benchmarks 
the changes in a simulation of real usage – and hence gives an indication 
of what users can expect if the changes were implemented. 
 
The best metrics for this benchmark is wall-clock time, time spent in the 
changed functions, number of times given functions are called, etc.  
 
As discussed in 4.1, another solution is to isolate and – if possible – extract 
the code that is being changed to a small test-program that doesn’t do any-
thing else than run the code with and without the changes. This has to be 
done carefully in order to be reliable. First, if more than one change has 
been made, the changes should be benchmarked individually as well as 
combined in order to see what effect (if any) they have on each other. Sec-
ond, compared to a full-fletched MySQL, a test-program with only one run-
ning thread can have a false positive effect on the instruction cache, might 
have effects on data cache, and might be easier for compiler and CPU to 
optimize due to the reduced complexity. But not all side-effects increase 
speed: On the P4, the OEL is so good at diminishing the effects of division 
latency that a small loop won’t have sufficient instructions to keep the CPU-
pipeline full while waiting for a division to complete. See sections 5.5 and 
6.5 for a further discussion on how we examine the effect of this. 
 
Wall-clock time and time spent in the changed functions are also interesting 
metrics for this benchmark, but should be complemented by CPU-statistics, 
cache-statistics, etc. Especially cache-statistics should be interesting, since 
one of the changes we’ve made changes the access pattern when scan-
ning Memory tables.  
 
These statistics are very difficult to obtain hard measurements for, since 
both system-wide and application-wide statistics will tend to include too 
much noise. In the following sections we will describe how the different 
measurements are designed to also uncover the changes in cache utiliza-
tion. 
 
4.5 CHOICE OF TIMERS 

In MySQL we intend to use the built-in timer functionality, which is based on 
the system timer with a precision of 10-55 ms. In the simulations on the 
Pentium 4-platform we can use the high-resolution Windows-timer Query-
PerformanceCounter with a resolution in the order of nanoseconds. In the 
simulations on the Itanium 2-platform we intend to use the gprof-tool with a 
10ms-resolution. 
 
While not altogether optimal, these timers suffice because we can ensure 
sufficiently long running times to eliminate any influence from a timer with 
ms-resolution. 
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5 .  EXPERIMENTS 

As mentioned in section 4.1 we have decided to both benchmark the 
changes in MySQL and simulate the changes in order to shed light on all 
relevant aspects. 
 
The performance improvement due to the two changes mentioned in sec-
tions 3.1 and 3.2 depends on a number of factors. The experiments must 
be designed in a way that allows us to control or at least predict the effect 
of these factors. It is furthermore essential that the experiments make it 
possible to draw conclusions regarding the extent of the speedup in a real-
istic setting. 
 
The factors affecting performance can be extracted from the questions in 
sections 3.1 and 3.2: 
 

1. Reuse of the division remainder in the modulo computation 
2. Division operator speed vs. bit-shifting speed 
3. Effect of out-of-order/parallel execution 
4. Cost of cache misses 

 
Before discussing how to measure the effect of each factor it is useful to 
investigate the instruction dependencies in the tree traversal. 
 

 

fig. 5.1 - Dependency graph for tree traversal 
 
Each iteration in the tree traversal loop consists of a division operation, a 
load operation and a modulo operation. It follows from fig. 5.1 that the load 
depends both on the result of the division and on the result of the load in 
the previous iteration. After moving down one level in the tree structure a 
new division computation is needed and it depends on the result of the 
modulo computation in the preceding iteration. Furthermore the new 
modulo depends on the modulo computation of the previous iteration. 
 
5.1 REUSE OF DIVISION COMPUTATION IN MODULO COMPUTATION 

In a simulation of the tree traversal we can alter the algorithm such that the 
divisor or dividend in the division computation differs from the divisor or 
dividend in the modulo computation. If the running time changes as a result 
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5.2 Division Operator Speed vs. Bit-shifting Speed 

of this modification we know that the processor reuses the value in the re-
mainder register when computing modulo. 
 
If the processor is capable of reusing the remainder value from division in 
the modulo computation, the dependency graph must be modified as illus-
trated in fig. 5.2. 
 

 

fig. 5.2 - Modified dependency graph for tree traversal 
 
5.2 DIVISION OPERATOR SPEED VS. BIT-SHIFTING SPEED 

According to the Intel P4-processor documentation [6] the integer division 
instruction IDIV has a latency of 56-70 cycles and a throughput of 23 cy-
cles. The Intel C++ Compiler on the other hand converts the division opera-
tor to a series of smaller floating-point instructions, which leads to a latency 
of 43 cycles and a throughput of 5.5 cycles. In any case, if no cache misses 
occur during the tree traversal, the division operation is the bottleneck in 
the tree traversal loop because the other tree traversal instructions depend 
on the result of the division.  
 
In a simulation of the tree traversal we can exclude all cache misses and 
compare the running time of the version using a division operator with the 
version using bit-shifting. This shows the maximal speedup due to bit-
shifting. 
 
5.3 OUT-OF-ORDER/PARALLEL EXECUTION 

If an instruction causes a data cache miss two scenarios are possible. Ei-
ther it causes the processor to stall and not resume until the data is avail-
able in cache or out-of-order/parallel execution is utilized in which case the 
processor executes other instructions that are independent of the result of 
the instruction causing a cache miss. As the illustrations above show, the 
subsequent modulo and division computations are independent of the re-
sult of the load and can be executed while the load instruction waits (as-
suming a cache miss). Speeding up the division computation in this sce-
nario is less beneficial since even the slow division operation might be able 
to finish during a cache miss. Thus, bit-shifting is only worth the effort when 
the load results in a hit. 
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5.4 Cache Misses 

We can test the out-of-order/parallel execution capabilities of the processor 
by adjusting the number of cache misses in the simulation. If the difference 
in running time between the division-operator version and the bit-shifting 
version is unaffected by the number of cache misses, then no out-of-
order/parallel execution has occurred. If the difference shrinks when adding 
more cache misses then it has likely occurred. 
 
5.4 CACHE MISSES 

We have already discussed how to determine the effect of cache misses on 
tree traversal. The optimization consisting of following a pointer to the next 
leaf instead of doing a tree traversal is expected to be beneficial because 
the allocation of the next-leaf pointer just after the end of the leaf ensures 
that it is present in cache when needed. Thus, we do not expect cache 
misses to affect the next-leaf pointer optimization. Benchmarking table scan 
in MySQL will assist in clarifying this issue. 
 
5.5 LOCATING THE NEXT LEAF IN MYSQL 

Table scan, record insertion/update/deletion and hash index operations are 
all affected by tree traversal. Hence we want to measure how our changes 
affect the time it takes to locate the next leaf in MySQL. 
 
The query processor requests one record at a time from the Memory stor-
age engine. If the record matches the condition(s) of the query it is further 
processed, otherwise it is discarded. Since we only focus on locating 
leaves, we want to disable all further row processing in the query proces-
sor. Consequently the query processor will discard all rows in the bench-
marks and no rows will be sent to the client. Furthermore we intend to ex-
clude the pre-processing of the query (parsing, execution planning etc.) 
from the measured running time. When the Memory storage engine has 
identified the location of the next record it copies the record to the current 
record-buffer in the query processor. We exclude this operation from the 
benchmarks as well. Hence the benchmark will only measure the time it 
takes to locate each leaf in the Memory table, i.e. the part of the heap af-
fected by our changes. 
 
Normally several records are stored in each leaf in the tree structure. To 
maximize the number of tree traversals we have modified the heap such 
that only one record is stored in each leaf and with a record size of 8 bytes. 
This way the amount of memory in the benchmark computers does not se-
verely limit the size of the tree structure and the (performance-affecting) 
tree height. We intend to repeatedly fetch all the leaves until the total re-
sponse time reaches a level that makes it possible to rule out timer resolu-
tion as the cause of the difference in response time. 
 
It should be noted that the row processing of matching rows in the query 
processor affects the instruction cache, data cache, TLB etc. Disabling row 
processing might artificially speed up the heap response time in general 
and this might be in favour of the original version and in particular the bit-
shifted heap because it is expected to benefit the most from improved data 
cache performance.  
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5.6 Table Scan in MySQL (tree traversal optimized) 

Eliminating the copying of a record to the current record-buffer might also 
affect the benchmark validity. When copying, the record also becomes 
available in cache and some of the inner nodes in the tree structure might 
consequently be “swapped out” of several or all cache levels. Once again 
our benchmark strategy improves cache performance and thus favours the 
original version and in particular the bit-shifted version. In addition, running 
the benchmarks in a single-user environment further improves the cache 
utilization. 
 
On the other hand our benchmark strategy makes it possible to rule out 
influence from the MySQL-environment, which we consider important as we 
expect the differences to be small in terms of wall-clock time. 
 
5.6 TABLE SCAN IN MYSQL (TREE TRAVERSAL OPTIMIZED) 

Table scan is the only operation in MySQL that relies heavily on the tree 
traversal algorithm. Consequently we want to benchmark how our changes 
affect the total running time of table scan, without costs incurred by external 
factors such as I/O and communication between the server and client.  
 
In contrast to the leaf-locating benchmark this benchmark displays more 
realistic cache behaviour because all parts of the table scan execution is 
included. As we expect the total running time to be affected by the record 
size we want to measure the speedup due to our changes while varying the 
record size. To make the figures comparable we need to keep the number 
of leaves constant, i.e. we have to adjust the number of records when ad-
justing the record size. We furthermore ensure that the number of records 
pr. leaf is a power-of-2 in all three versions because we want to exclude 
differences in records pr. leaf as the cause of differences in running time. 
Once again, we intend to repeat the table scan until “random noise” can be 
ruled out as the cause of the difference in response time. 
 
5.7 SIMULATION VALIDITY 

Before running any of the described tree traversal simulations we need to 
verify that the running times in the simulations are sufficiently close to the 
running times in MySQL. Specifically, we need to verify that the difference 
in running time between division-operator-tree-traversal and bit-shifted-tree-
traversal in the simulation is comparable to the difference in running time in 
MySQL. 
 
The simulation of the tree traversal differs from the MySQL-version only in 
the data access pattern. While the MySQL-version reads data from a node 
at the calculated position, the simulation reads data from an array instead. 
When reaching the end of the array the simulation moves to the start of the 
array and rereads the elements. Only every 32nd array element is read as 
this ensures the elements are not already available in cache7. Furthermore 
the array is sufficiently large to ensure that the first array elements are 
swapped out of cache before the simulation moves to the start of the array 

                                                 
 
7 Otherwise it could have been part of the cache line when reading the previous 
element 
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5.8 Taking Timer-resolution into Account 

again. This way we do not need to allocate large amounts of data in RAM 
and we can specify precisely how many cache misses should occur. 
 
In our MySQL-benchmarks we expect each inner node to generate a few 
cache misses until the entire node is available in cache and we expect that 
when an inner node is present in cache it will stay there while needed be-
cause it is unlikely to be “swapped out” as mentioned in section 5.5. Given 
these assumptions we are able to accurately calculate the expected num-
ber of cache misses during a full table scan and we can distribute these 
misses such that at most one miss occurs pr. tree traversal in our simula-
tion. 
 
5.8 TAKING TIMER-RESOLUTION INTO ACCOUNT 

The duration of a single tree traversal is so brief that we have no choice but 
to measure the time it takes to perform a large number of tree traversals. 
By repeatedly calling the tree traversal and scan functions we are able to 
obtain measurements in the order of seconds. This essentially eliminates 
the need for high precision timers.  
 
5.9 TABLE SCAN IN MYSQL (MEMORY COPYING OPTIMIZED) 

In the original version the current record is copied from storage engine to a 
fixed location in the query processor. Consequently the query processor 
does not have to rely on offset computations when accessing the fields in 
the current record. Instead field pointers containing an exact memory ad-
dress are used in all parts of the query processor. Without the copying of 
the current record to a fixed location we have to compensate by updating 
the field pointers in the query processor such that they point to fields in the 
current record located inside the storage engine. Note that we only update 
a field pointer if it is part of the query. 
 
We want to examine the following factors that determine the benefit of hav-
ing removed the copying of records: 
 
1. The fraction of the total number fields that is part of the query 
2. The size of the fields that are part of the query 
 
In these benchmarks we once again intend to exclude costs incurred by 
external factors such as I/O and communication between the server and 
client. 
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6 .  RESULTS 

Unless otherwise indicated we have run the tests with 300000 leaves. Each 
table scan was repeated 100 times and hence we have divided all running 
times by 100. We have compiled MySQL with the same options and flags 
as is used to compile the official MySQL-binaries [7] unless otherwise indi-
cated. The simulations have been compiled with compiler-default release 
flags on both platforms. The only exception is that the simulations on Ita-
nium were compiled with the –O1 option (compiler-default is –O2) because 
this is the optimization level used when compiling the official MySQL-
binaries on Itanium. On P4 we compiled with the MySQL default -O2 op-
tion. 
 
6.1 VALIDITY OF SIMULATIONS 

We initiate this section with an evaluation of the validity of the simulations 
since it form the basis of most of the subsequent benchmarks. We have 
measured the difference in speed between the original MySQL-
implementation and the bit-shifted MySQL-version (DIFF-M) with the num-
ber of leaves as the independent variable. These results are compared to 
the difference in speed between the simulation of the original MySQL-
implementation and the simulation of the bit-shifting optimized MySQL-
version (DIFF-S). We tested the validity with both processors: Pentium 4 
(P4) and Itanium 2 (I2). 
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fig. 6.1 - Comparing simulations to MySQL 
 

The simulations appear to be a good approximation at least when the num-
ber of leaves is in the range [50000; 300000]. The number of leaves is 
within this range in all the subsequent benchmarks and thus the tree height 
is 3 in all benchmarks. The difference in the simulation is 6% larger than 
the difference in MySQL on both platforms. By proper use of constants we 
have been able to take this into account in the measurements below. 

22 of 38 
 



6.2 Reuse of Division Computation in Modulo Computation 

 
6.2 REUSE OF DIVISION COMPUTATION IN MODULO COMPUTATION 

In this simulation benchmark of the original MySQL-implementation (ORI-S) 
we ensured that the data access instruction always requested the same 
data and hence we practically excluded all cache misses without excluding 
any instructions from the simulations. 
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fig. 6.2 - Reusing the division remainder to compute modulo 
 
The result is somewhat surprising. The P4 processor reuses the result of 
the division computation in the subsequent modulo computation and it is 
clearly beneficial. On the other hand, the Itanium 2-processor does not 
benefit from reusing. 
 
To determine the reason for this, let us first look at the no-reuse case in the 
P4 processor. Since no cache misses occur, the division computation is the 
bottleneck. The integer division instruction IDIV is used for both division 
and modulo and it has a throughput of 23 cycles in the P4 processor [6], i.e. 
the processor has to wait for 23 cycles before it is able to process another, 
independent, IDIV instruction. The processor cannot be kept busy for 23 
cycles between the division computation and modulo computation. Conse-
quently it stalls for some time before initiating the modulo computation. 
When looping (next iteration), it has to execute division again. Now the divi-
sion computation depends on the result of the modulo computation as illus-
trated in fig. 5.2. Thus the processor stalls again due to the IDIV latency of 
56-70 cycles.  
 
Now let us look at the reuse case in P4. The modulo computation has to 
wait for the result of IDIV which takes up to 56-70 cycles but then the 
modulo computation only takes a few cycles and after looping the next IDIV 
can start straight away. Consequently it is beneficial for the P4 processor 
when the divisor and dividend are the same. 
 

23 of 38 
 



6.3 Division Operator Speed vs. Bit-shifting Speed 

After inspection of the assembly code we have verified that the Itanium 2-
processor does reuse when possible. Thus in the reuse case, the proces-
sor waits for the division computation to finish and reuses the result to im-
mediately compute the result of modulo. 
 
In case of no-reuse the processor can execute the division and modulo 
computations partly in parallel because the processor only has to wait for 
5,5 cycles from initiation of the first division operation to the initiation of the 
second division operation (that calculates modulo). Hence, the Itanium 2-
processor does not really benefit from reuse because of its near-optimal 
division throughput. 
 
6.3 DIVISION OPERATOR SPEED VS. BIT-SHIFTING SPEED 

Once again the data access instruction always requested the same data in 
this benchmark. Hence the difference in speed between the simulation of 
the original MySQL-implementation (ORI-S) and the bit-shifting implemen-
tation (BIT-S) indicates the maximal possible speedup due to our change. 
In a MySQL-context this corresponds to the unlikely situation in which all 
inner nodes are available in cache at all times. 
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fig. 6.3 - Maximal speedup due to bit-shifting 
 
While the maximal speedup on the platform using the P4 processor is app. 
440%, it is no less than app. 660% on the platform using the Itanium 2 
processor which indicates that the division operation is quite slow in the 
Itanium 2 processor. 
 
6.4 OUT-OF-ORDER/PARALLEL EXECUTION 

We now turn to the opposite case in which every data access generates a 
cache miss. In this situation the difference in speed between the simulation 
of the original MySQL-implementation (ORI-S) and the bit-shifting imple-
mentation (BIT-S) indicates the minimal possible speedup due to our 
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6.5 Locating a Leaf in MySQL 

change. In a MySQL-context it corresponds to the just as unlikely situation 
in which a cache miss happens every single time an inner node is visited. 
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fig. 6.4 - Minimal speedup due to bit-shifting 
 
With the data cache access as the constant bottleneck only a small 
speedup can be expected on a computer using the P4 processor because 
the division instruction almost manages to finish during a cache miss. This 
reveals that cache misses are quite expensive and that the P4 processor is 
obviously capable of utilizing the cache miss time through out-of-order exe-
cution by, for instance, performing a division operation. 
 
On the Itanium, the cache miss reduces the benefit from bit-shifting, but a 
speedup is still expected because both division and modulo cannot finish 
during the cache miss. The benchmark does however indicate that the Ita-
nium 2 processor is capable of parallel execution. 
 
6.5 LOCATING A LEAF IN MYSQL 

On the basis of the previous benchmarks we are at last prepared for the 
interpretation of the results from the MySQL-benchmarks. The benchmarks 
have been run on both platforms with the number of leaves as the inde-
pendent variable. The query processor and the Memory storage engine 
were modified as described in section 5.5 and the benchmarks only contain 
table scan measurements. 
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6.5 Locating a Leaf in MySQL 
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fig. 6.5 - Comparison in MySQL on both Pentium 4 and Itanium 2 
 

 Pentium 4 Itanium 2 
Speedup due to bit-shifting 26% 64% 
Speedup due to next-leaf-pointers 72% 113% 

table 6.1 - Speedup of locating a leaf in MySQL due to changes 
 
On both platforms the MySQL-version using next-leaf pointers (NLP) is the 
winner. This indicates that looking up a pointer to the next leaf does not 
generate a cache miss. 
 
The cache utilization in this benchmark might be slightly better than in a 
real MySQL-setting as mentioned in section 5.5. This might have sped up 
the two tree traversal versions (the bit-shifting version in particular) be-
cause the risk of an inner node being “swapped out” of cache while still 
needed is minimal. Consequently the relative NLP-speedup might be even 
larger in a real setting. 
 
Section 6.2 revealed that the Pentium 4 benefits from reusing the division 
result in the modulo computation. Thus the bit-shifting operations have to 
compete with a single division instruction and this somewhat limits the po-
tential speedup due to bit-shifting as we also showed in section 6.3. 
 
Although the official MySQL-binaries are compiled with the –O1 optimiza-
tion level on Itanium we decided to rerun the MySQL-benchmark after 
compiling with the compiler-default –O2 level. Only the bit-shifted tree tra-
versal benefits from this. 
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6.5 Locating a Leaf in MySQL 

MySQL-benchmark on Itanium 2 - O1 vs. O2
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fig. 6.6 - Comparison in MySQL on Itanium 2. Compiled with –O2 vs. –O1 
 

Itanium 2 O1-flag O2-flag 
Speedup due to bit-shifting 64% 71% 
Speedup due to next-leaf-
pointers 

113% 113% 

table 6.2 - Compile-flag dependent speedup in MySQL on Itanium 2 
 
The speedup due to bit-shifting has increased from 64% to 71% on Itanium 
2 while the speed of the original tree traversal and following a next-leaf 
pointer is unchanged. 
 
The software pipelining optimization comes into play when moving from O1 
to O2 [8]. This optimization explains why the speedup due to bit-shifting 
increases from 64% to 71%. By software pipelining we refer to the concept 
of overlapping the loop iterations, i.e. to execute instructions from two or 
more iterations concurrently as illustrated in fig. 6.7. 
 

 

fig. 6.7 - Software pipelining8 
 

                                                 
 
8 As seen at http://www.cs.nyu.edu/courses/fall04/G22.2243-
001/lectures/lect7-1up.pdf 
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6.6 Table Scan in MySQL (tree traversal optimized) 

In the original MySQL-version the division operation must be executed prior 
to the load and modulo operations as both depend on the division result (as 
verified in section 6.2). The division in the next loop iteration has to wait for 
the completion of the modulo operation in the current iteration as was illus-
trated in fig. 5.2. Thus software pipelining cannot occur. 
 
In the bit-shifting version software pipelining is possible. The bit-shifting 
operations used to perform modulo do not depend on the division-by-bit-
shifting operation as illustrated in fig. 5.1. Furthermore the Itanium 2-
processor is capable of executing the bit-shifting operations in parallel. As 
illustrated in table 6.3 the division and modulo operations in iteration x+1 
can execute concurrently with the load operation in iteration x. The table 
clearly simplifies the execution but it illustrates the concept. 
 
Cycle number Instructions executed in parallel 
0 Division1 Modulo1  
1 Load1 Division2 Modulo2 

2 Load2 Division3 Modulo3 

… … … … 
X Loadx   

table 6.3 - Software pipelining the bit-shifted loop 

 
As none of the versions benefit from compiling with optimization level O3 
we have not included the results from that benchmark. 
 
6.6 TABLE SCAN IN MYSQL (TREE TRAVERSAL OPTIMIZED) 

Having estimated how the changes affect the time it takes to fetch the next 
leaf, the next and final step is to investigate the impact of our changes on 
the total running time. The running times in this benchmark correspond to 
table scans in which no records satisfy the selection criterion. The number 
of leaves (3125) is held constant because we double the number of records 
when the record size is halved. Hence the amount of data is constant as 
well (app. 400MB). The table scan has been repeated 1000 times to ensure 
sufficiently large differences in running time. 
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6.6 Table Scan in MySQL (tree traversal optimized) 
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fig. 6.8 – Total running time in MySQL for different record sizes 
 
The graph in fig. 6.8 indirectly indicates that the running time is nearly dou-
bled when the number of records is doubled – despite the fact that the re-
cord size is divided by two. This is primarily due to the record-size inde-
pendent iteration overhead (return to query processor; examine record; 
request next record). The running times are virtually identical for all three 
versions of MySQL. 
 
By “zooming in” on the running times in fig. 6.8 we can examine the differ-
ences between the three versions of MySQL. We add a constant to each 
running time such that the running time of the original implementation is 
always 1. 
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fig. 6.9 – The differences in running time when table scanning on Itanium 
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6.7 Table scan in MySQL (memory copying optimised) 

 
Since the number of leaves is constant one would expect the speed differ-
ences to be constant as well, i.e. unaffected by the record size. With 16 
bytes as the only exception, none of the record sizes are a power of 2. 
Hence it is unlikely that looking up next-leaf pointers caused any cache 
misses as explained in section 3.2. The speedup due to following next-leaf 
pointers is nearly constant for all record sizes. Except for record sizes 
around 1000 bytes, the speedup due to bit-shifting is nearly constant as 
well and less beneficial than NLP. Although the irregular behaviour of bit-
shifting is reproducible we have not been able to identify the cause.  
 
The chosen record sizes may seem rather small but it should be noted that 
the maximal column size is 255B and hence 4104B corresponds to a table 
of at least 17 columns.  
 
We expect the speed-differences to be even smaller on the P4-platform for 
two reasons: First, the figures in table 6.1 indicates a smaller speedup on 
P4 and second, the amount of RAM on the P4-platform is only 256MB lead-
ing to a maximum of app. 1000 leaves of 128KB in practice (3125 leaves in 
the Itanium-benchmark). Hence we consider it unrewarding to repeat this 
time-consuming test on the P4-platform. 
 
6.7 TABLE SCAN IN MYSQL (MEMORY COPYING OPTIMISED) 

Now we turn our focus to the memory copying optimisation and explore 
how the table scan running time is affected. In this first benchmark we have 
examined the impact of the number of columns (all of 129B) that are part of 
the query for a small and a large record size. The running times in the 
benchmark correspond to table scans in which none of 25,000 records sat-
isfy the selection criterion. 
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6.7 Table scan in MySQL (memory copying optimised) 

fig. 6.10 – Table scan running times with and without memory copying 
 
As we expected the running times of the original version are unaffected by 
the number of columns but substantially affected by the record size (due to 
the copying). On the contrary the running times of the optimized version 
increase proportionally with the number of columns in the query (due to 
field pointer updating) and are only marginally affected by the overall record 
size. Adding one extra column to the query appears to have a larger impact 
on Itanium 2 than on P4. 
 
In the following two benchmarks we aim for a larger perspective by study-
ing how record and column size influences running time. We show best-
case and worst-case behaviour of the optimized version by selecting a sin-
gle column and all columns. The running times correspond to table scans in 
which none of 25,000 records satisfy the selection criterion. 
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 fig. 6.11 – Table scan running times with a fixed column size of 32B 
 
To our surprise the worst-case behaviour (in which all columns are part of 
the query) on Itanium 2 is significantly worse than the original version for 
most record sizes. On the other hand the worst-case on P4 is no worse 
than original version. It strongly suggests that the current field-pointer up-
date routine is sub-optimal on Itanium. On the positive side the best-case 
running time (single-column selection) is nearly constant and radically im-
proves the running time for all but the smallest record sizes. The question is 
whether an “average” column size of 32B is representative. Below we have 
repeated the benchmark with a column size of 128B. 
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6.8 Table scan in MySQL (tree traversal + memcpy optimised) 

Impact of record size (large columns)
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 fig. 6.12 – Table scan running times with a fixed column size of 128B 
 
Quadrupling the column size is evidently in favour of the optimized version 
since fewer field pointers need updating compared to the amount of data 
that needs to be copied and now the worst-case running time of the opti-
mised version is at least as fast as the original version - no matter the 
choice of record size.  
 
According to the last figure the running time can be (best-case) reduced to 
80% of the original running time on Itanium 2 and 38% on Pentium 4 for a 
record size of 520B. By increasing the record size to 4104B the running 
times can be reduced to 12% and 19% respectively. Obviously the results 
would be even better if the column size was further enlarged. 
 
6.8 TABLE SCAN IN MYSQL (TREE TRAVERSAL + MEMCPY OPTIMISED) 

In this final benchmark we combine the next-leaf pointer optimisation with 
the memory copying optimisation. We have already shown that optimising 
tree traversal has a minuscule impact on the total running time of table 
scan. The sole purpose of this benchmark is to examine whether the rela-
tive benefit of the next-leaf pointer optimisation is worth mentioning when 
memory copying is no longer part of table scan. The best-case scenario 
comprises large records (4104B), large columns (255B) and a single-
column, no-match query. The table scan has been repeated 1000 times to 
ensure sufficiently large differences in running time. 
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6.9 Final Remarks 

Combining optimizations
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fig. 6.13 – Table scanning 100.000 4104B-records on Itanium 2  
when combining memory copying optimisation with tree traversal  
optimisation. 

 
The benchmark indicates that a speedup of no more than 1,6% can be ex-
pected in a best-case scenario despite the fact that memory copying has 
been eliminated. 
 
6.9 FINAL REMARKS 

The experimental results show a significant speedup of locating the next 
leaf expressed in percentages. However, with a table size in the order of 
400MB the reduction of the original table scan running time on Itanium 2 is 
0,25% at best and the speedup is unlikely to be more than 1,6% in the 
memory copying optimised version. As 50000 leaves of 128KB correspond 
to a Memory table of no less than 6.1 GB, the MySQL-benchmark in sec-
tion 6.5 suggests that the wall-clock speedup due to next-leaf-pointers (on 
the Itanium 2-platform with a 6.1 GB Memory table) is 14 ms. Late in the 
process of writing this report we managed to get a profiling tool up and run-
ning. It confirmed that less than 0,5% of the time is spent in the tree tra-
versal code and it furthermore confirmed that the copying of each record to 
the current record-buffer is the salient bottleneck indeed. Hence, the benefit 
of optimizing the leaf-locating part is hardly worth mentioning. 
 
Memory copying optimisations are far more important as the gap between 
CPU speed and memory speed has been constantly growing, making the 
memory relatively slower over time and hence making excessive copying 
more costly. Even though the problem is somewhat alleviated by caches 
and their increasing size, the current situation where all data processed is 
copied in memory will flood most, if not all, caches. The best one can hope 
for is that where a prefetching algorithm is available, it will be strong 
enough to reduce the waiting period. Also, as cache-sizes grow, so will the 
number of primitives to explicitly change cache-behaviour. For instance, the 
Itanium offers an API for explicitly prefetching data into cache. This is an 
interesting development because cache misses are so expensive that they 
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6.9 Final Remarks 

can severely degrade an application’s performance. At the same time, it is 
important to keep the cache management algorithms simple since time 
spent in these just add to the overall cache latency.  
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7 .  CONCLUSION 

In this paper we first set out to investigate the practical value of optimizing 
the application of the tree data structure in the Memory storage engine in 
MySQL 4.1. Our optimizations consisted of speeding up tree traversal 
through bit-shifting and minimizing the number of tree traversals by using 
next-leaf pointers. Through simulations we examined the potential of the 
optimizations on fetching the next leaf node. Then, by benchmarking table 
scan in MySQL we succeeded in measuring the practical value of the op-
timizations. This led us to investigate the cost of what seemed to be super-
fluous copying between different areas in RAM. 
 
In case of optimal cache behaviour the simulations suggested that tree tra-
versal based on bit-shifting is 400-700% faster than the current tree tra-
versal algorithm based on the division-operator. In practice for finding 
leaves in the tree, the tree traversal speedup due to bit-shifting is probably 
in the range 25%-75% while following next-leaf pointers appears to result in 
a speedup in the range 70%-120%. 
 
Unfortunately, the total time spent in the tree traversal area is too small 
compared to, for instance, copying of records between the storage engine 
and the query processor. This means that even if our relative speedup for 
the tree traversal is significant, the effect on total running time is not im-
pressive, i.e. a speedup in the order of milliseconds. Even when we remove 
the copying, which is the primary time-consumer, and could be expected to 
have absorbed some of the initial tree-scan costs, the impact on the total 
running time of table scan in MySQL is minuscule (a speedup of < 1,6%).  
 
In contrast we have shown that there is great speedups to be gained if the 
query processor’s access to records is redesigned, i.e. elimination of the 
copying of records between storage engine and query processor. In optimal 
cases the table scan running time can be reduced to 1/8 on Itanium 2 and 
1/5 on Pentium 4. The worst-case running time matches the original run-
ning time on Pentium 4. However, the worst-case behaviour is awful on 
Itanium 2 because the field-pointer update routine is based on a ListItera-
tor-implementation that performs poorly on Itanium 2. 
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8 .  FURTHER WORK 

As we have previously pointed out the copying of records between the 
Memory storage engine and the query processor is the major time-
consumer when table scanning. It might be beneficial to insert explicit pre-
fetching instructions in the source code or to adjust the implementation in 
ways that urge prefetching-enabled compilers to automatically insert data-
cache prefetching instructions. This way the records will be readily avail-
able in cache when the copying takes place. 
 
The current field-pointer update routine that we used in the memcpy-
optimized version appears to be sub-optimal on Itanium 2. It might be bene-
ficial to re-implement or circumvent the applied MySQL-ListIterator (which 
is commonly used in MySQL). 
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