

Solution of Large-size
Problems Through A

David Pisinger, Ande
Rune S

DI
University of Copenhag

DK-2100 Cope

d Quadratic Knapsack
ggressive Reduction

rs Bo Rasmussen and
andvik

 ort no. 2004/11

107-8283

Technical Rep

ISSN: 0
CR Subject Classification:
KU
en • Universitetsparken 1

nhagen • Denmark

Solution of Large-sized Quadratic Knapsack
Problems Through Aggressive Reduction

�

David Pisinger, Anders Bo Rasmussen, Rune Sandvik
DIKU, Univ. of Copenhagen, Univ.parken 1, Copenhagen, Denmark

e-mail: pisinger@diku.dk, fuzz@fuzz.dk, mail@runesandvik.dk

October 2003

Abstract

The Quadratic Knapsack Problem (QKP) calls for maximizing a quadratic objective
function subject to a knapsack constraint. All coefficients are assumed to be nonnegative
and all decision variables are binary.

A new exact algorithm is presented, which makes use of aggressive reduction techniques
to decrease the size of the instance to a manageable size. A cascade of upper bounds is
used for the reduction, including an improved version of the Caprara-Pisinger-Toth bound
based on upper planes and reformulation, and the Billionnet-Faye-Soutif bound based on
Lagrangian decomposition. Generalized reduction techniques based on implicit enumera-
tion are used to fix variables at their optimal values. In order to obtain lower bounds of
high quality for the reduction, a core problem is solved, defined on a subset of variables.
The core is chosen by merging numerous heuristic solutions found during the subgradient
optimization phase. The upper and lower bounding phases are repeated several times, each
time improving the subgradient method used for finding the Lagrangian multipliers associ-
ated with the upper bounds. Having reduced the instance to a (hopefully) reasonable size, a
branch-and-bound algorithm based on the Caprara-Pisinger-Toth framework is applied.

Computational experiments are presented showing that several instances with up to 1500
binary variables can be reduced to less than 100 variables. The remaining set of variables
are easily handled through the exact branch-and-bound algorithm. In comparison to previous
algorithms the framework does not only solve larger instances, but the algorithm also works
well for instances with smaller densities of the profit matrix, which appear frequently when
modeling various graph problems as quadratic knapsack problems.
Keywords: 0-1 Quadratic Programming, Knapsack Problem, Aggressive Reduction, La-
grangian Relaxation, Branch-and-Bound.

�
Tech. Report 2004, DIKU, University of Copenhagen, Denmark

1

1 Introduction

The binary Quadratic Knapsack Problem (QKP) is defined as follows: Assume that a set N ��
1 ��������� n � of items is given where item j has a positive integer weight w j. In addition we are given

a n � n nonnegative integer matrix P � �
pi j � , where pi j 	 p ji is a profit achieved by selecting

two different items i and j . Furthermore the profit pii is achieved if item i is chosen.
The QKP calls for selecting an item subset whose overall weight does not exceed a given

knapsack capacity c, so as to maximize the overall profit. By introducing binary variables x j to
indicate whether item j is selected, the problem may be formulated:

maximize ∑
i
 N

∑
j
 N

pi jxix j

subject to ∑
j
 N

w jx j � c (1)

x j �
�
0 � 1 �
� j � N �

Without loss of generality we assume that max j
 N w j � c � ∑ j
 N w j If the first inequality is
violated, i.e. if w j � c for some j, we may fix the decision variable x j to 0. If the second
inequality is violated a trivial solution exists with all items chosen. Negative weights can be
handled by flipping the variable x j to 1 � x j for each item with w j � 0.

We may assume that the profit matrix is symmetric, i.e., pi j � p ji for all j � i. If pi j � 0
for all coefficients i �� j the QKP is denoted the super-modular knapsack problem. In the sequel
we will rely on the stronger assumption that all coefficients pi j � 0, i � j � N which is not made
without loss of generality. QKP in all the above mentioned forms is N P -hard in the strong sense,
which can be seen by reduction from the clique problem.

As one might expect, due to its generality, QKP has a wide spectrum of applications in
e.g. telecommunications [18], location problems [17], compiler design [11, 10], VLSI design
[7]. Moreover numerous graph problems can be formulated as QKP, e.g. the dense subgraph
problem, the weighted maximum b-clique problem [14], and QKP appears when solving the
graph partitioning problem [11].

Numerous upper bounds have been presented for the QKP. A family of upper bounds based
on upper planes were presented by Gallo, Hammer Simeone [8], while a bound based on La-
grangian relaxation of the capacity constraint was presented by Chaillou, Hansen, Mahieu [5].
Caprara, Pisinger, Toth [4] presented upper bonds based on Lagrangian relaxation and refor-
mulation. Billionnet, Calmels [2] presented a bound based on Linearisation. Bounds based on
Lagrangian decomposition have been presented by Michelon Veuilleux [13] and Billionnet, Faye,
Soutif [3]. For a recent survey on knapsack problems and also the corresponding upper bounds
see Kellerer, Pferschy, Pisinger [12]. A comprehensive experimental comparison of the above
bounds is presented in Rasmussen and Sandvik [16].

Several reduction methods, used for fixing some of the decision variables at their optimal
value, have been presented for the QKP, see e.g. [9, 4]. Recent advances in the solution of diffi-
cult N P -hard optimization problems have shown the importance of good reduction techniques,
see e.g. the seminar work of Polzin and Vahdati [15] for the Steiner Problem. Following this

2

direction of research, we present an exact algorithm for the QKP, where reduction plays a key
role in the solution process.

We introduce the term aggressive reduction to denote preprocessing techniques with the fol-
lowing properties

1. The reduction does not run in polynomial time.

2. A cascade of different upper and lower bounds are used for fixing variables.

3. Implicit enumeration techniques are used in the reduction.

Although property 1. may not seem very attractive, it gives a good characterization of aggressive
reduction. Most textbooks define “normal” reduction techniques as a set of cheap (i.e. polyno-
mial) preprocessing steps, which can be used to fix some of the variables at their optimal value.
In aggressive reduction, the preprocessing steps are the main solution approach, and hence the
time complexity need not be polynomially bounded. Property 2. emphasizes the need of tight
upper and lower bounds in a reduction algorithm. In aggressive reduction, numerous bounds are
used. If one bound fails in reducing a variables, the algorithm should not give up, but instead try
to use other bounds for the reduction. The last property 3. generalizes the ordinary dichothomic
reduction for binary variables, to a general framework where one may enumerate up to a given
depth in the search tree when trying to reduce a variable.

We present an exact algorithm based on aggressive reduction followed by branch-and-bound.
The reduction algorithm is an iterative process which is repeated as long as at least one variable
was reduced. Two different upper bounds are used for the reduction: The upper bound U 2

CPT
by

Caprara, Pisinger and Toth [4] based on upper planes and U 2
BFS

by Billionnet, Faye and Soutif [3]
based on Lagrangian decomposition.

As observed in the computational study by Rasmussen and Sandvik [16], the upper bound
U2

CPT
has low computation time and good quality for randomly generated instances with high

density of the profit matrix. The slower upper bound U 2
BFS

returns on average tighter upper bounds
than U2

CPT
, especially on low density instances. We alternate between using U 2

CPT
and U2

BFS
, using

the fast bound U2
CPT

to reduce the instance to a manageable size, before employing the slower
bound U2

BFS
. An additional motivation for alternating between the bounds is that U 2

BFS
does not

dominate U2
CPT

as shown in [16]. To further strengthen the U 2
CPT

bound, we solve all associated
knapsack subproblems to integer optimality as opposed to the original bound, where only the
LP-relaxation of the subproblems was solved.

Several new approaches are used to determine tighter lower bounds. This includes local
search technique, and the solution of a core problem based on a merging of sub-optimal solutions.

Even though we try to use the best available upper and lower bounds from the literature, this
may not be sufficient to reduce the problem. In this case our use of enumerative reduction may
enhance the reduction. The traditional way of reducing binary decision variables is to branch
on the variable at the root node of an enumerative tree, and see if one of the child nodes can
be fathomed through any bounding methods. If one of the child nodes is fathomed, we may
fix the variable to the value of the opposite child node. Enumerative reduction is basically a

3

generalization of this approach, where we enumerate all nodes up to a given depth. If bounding
methods are able to fathom all nodes in the left subtree, we may fix the variable to the value
associated with the right child node (and vice-versa).

The reduction algorithm terminates when no more variables can be fixed by any variant of the
two bounds, and no improvements of the bounds can be done through subgradient optimization.
In this case, we switch to a branch-and-bound algorithm proposed by Caprara, Pisinger, Toth [4].
The algorithm first finds a reformulation of the profit matrix P such that the objective function
∑i
 N ∑ j
 N pi jxix j is unchanged for any integer solution, but such that upper bounds based on
so-called upper planes gives tighter bounds for the reformulated problem. These bounds are then
used in the branch-and-bound algorithm. We improved the latter in two respects: The algorithm
makes use of a new branching order, and we are able to find a better reformulation of the profit
matrix P due to improved methods for finding the associated Lagrangian multipliers.

In Section 2 we will present a number of upper bounds, used in the reduction of the problem,
and also used for pruning the branch-and-bound tree. Despite the good quality of the upper
bounds, they are of little use if not matched by correspondingly good lower bounds. Hence
Section 3 presents several heuristics used for obtaining a lower bound of high quality. Section 4
describes the aggressive reduction algorithm which is used to fix most possible variables at their
optimal values, before proceeding to the branch-and-bound part, described in Section 5. Finally,
Section 6 presents a number of computational experiments with the developed algorithm solving
instances with up to 1500 variables. The paper is concluded in Section 7 with a discussion of the
obtained results and a summary of the theoretical ideas.

2 Upper Bounds

The choice of upper bounding procedures to be used is based on a tradeoff between the tightness
of the bound obtained and the time required for its computation. The good tradeoff between
computation time and quality of the bound suggested by Caprara, Pisinger, Toth [4] makes it
well suited for the branch-and-bound algorithm. In order to reduce the instance as much as
possible before proceeding to the branch-and-bound phase, we also apply the slower but tighter
bound by Billionnet, Faye and Soutif [3] in the reduction phase.

2.1 Caprara, Pisinger, Toth

The bound by Caprara, Pisinger, Toth [4] can be described within the framework of upper planes
as follows. The objective function can be rewritten as

∑
i
 N

∑
j
 N

pi jxix j � ∑
j
 N

�
p j j 	 ∑

i
 N ��� j � pi jxi � x j

Noting that the expression inside the parenthesis cannot exceed

π j : � p j j 	 max � ∑
i
 N ��� j � pi jxi : ∑

i
 N ��� j � wixi ��� c � w j 	 � xi �
�
0 � 1 � for i � N
 � j ��� (2)

4

then an upper bound U1
CPT

is derived as the optimal solution value to

maximize ∑
j
 N

π jx j

subject to ∑
j
 N

w jx j � c (3)

x j �
�
0 � 1 �
� j � N �

If we relax the integrality constraints in the above subproblems we obtain the bound U 1 �
CPT

which
can be derived in O � n2 	 time by solving the n LP-relaxed knapsack problems (2), and one LP-
relaxed knapsack problem (3).

Caprara, Pisinger, Toth [4] further strengthened the bound by noting that the objective func-
tion can be reformulated as

∑
i
 N

∑
j
 N

pi jxix j � ∑
i
 N

∑
j
 N

� pi j 	 λi j 	 xix j (4)

for any skew-symmetric matrix Λ (i.e. λi j � � λ ji). Let QKP(Λ) denote the problem

maximize ∑
i
 N

∑
j
 N

� pi j 	 λi j 	 xix j

subject to ∑
j
 N

w jx j � c (5)

x j �
�
0 � 1 �
� j � N �

and U1 �
CPT � Λ 	 the corresponding upper bound obtained by solving the n continuous KP on the form

(2) and the continuous KP on the form (3). In order to obtain the tightest bound we solve the
Lagrangian dual problem

U2
CPT

� min� λi j:λi j ��� λ ji � U1 �
CPT � Λ 	 (6)

The latter problem may be solved through subgradient optimization leading to the bound Û
2
CPT

for

some near-optimal matrix Λ of Lagrangian multipliers. Obviously U 2
CPT � Û

2
CPT � U1 �

CPT � 0 	 .
To further tighten the bound, we use a variant of Û

2
CPT

where (2) and (3) are solved as integer
knapsack problems. Solving integer KP instead of continuous KP leads to a slightly longer
computation time of the bound, but the total running time of the algorithm is frequently decreased
due to the better quality of the bound.

2.2 Billionnet, Faye, Soutif

The bound by Billionnet, Faye and Soutif [3] is based on a partitioning of N into m disjoint
classes

�
I1 ��������� Im � satisfying

� m
k � 1Ik � N. The main idea in the bound by Billionnet, Faye,

Soutif is to use Lagrangian decomposition to split the problem into m independent subproblems.
Each subproblem is solved by enumerating all decision variables in class Ik. For a fixed solution

5

vector xIk the subproblem is an ordinary linear 0-1 knapsack problem which may be solved in
O � n 	 time.

In order to partition the problem we notice that the objective function of QKP may be written

∑
i
 N

∑
j
 N

pi jxix j �
m

∑
k � 1

�
∑
i
 Ik

∑
j
 Ik

pi jxix j 	 ∑
i
 Ik

∑
j
 N � Ik

pi jxix j �
Using Lagrangian decomposition we introduce binary copy variables yk

j � x j for j � N
 Ik

and add k redundant capacity constraints. Moreover we add copy constraints concerning the
quadratic terms xix j � xiyk

j, getting the following formulation. The function set � i 	 returns the set
index of the class to which item i belongs, i.e. the index k for which i � Ik. Since the sets Ik are
disjoint set � i 	 is well defined. Hence, we get the formulation

maximize
m

∑
k � 1

�
∑
i
 Ik

∑
j
 Ik

pi jxix j 	 ∑
i
 Ik

∑
j
 N � Ik

pi jxiy
k
j �

subject to x j � yk
j k � 1 ������� � m � j � N
 Ik

xiy
set � i �
j � x jy

set � j �
i i � N � j � N � set � i 	 �� set � j 	

∑
i
 Ik

wixi 	 ∑
j
 N � Ik

w jy
k
j � c k � 1 ������� � m

xi �
�
0 � 1 � i � Ik � k � 1 ��������� m

yk
j �

�
0 � 1 � k � 1 ������� � m � j � N
 Ik

(7)

Lagrangian relaxing the two first constraints using multipliers Λ � �
λk

j � , k � 1 ��������� m � j � N
 Ik

respectively M � �
µi j � , i � N � j � N � set � i 	 �� set � j 	 we can decompose (7) into m independent

problems (see [3] or [12] for details). The m problems Lk � Ik � Λ � M 	 � k � 1 ������� � m are on the form

maximize ∑
i
 Ik

∑
j
 Ik

pi jxix j 	 ∑
i
 Ik

�
∑
h �� k

λh
i � xi 	

∑
j
 N � Ik

�
∑
i
 Ik

pi jxi � yk
j � ∑

j
 N � Ik

λk
jy

k
j 	 ∑

j
 N � Ik

�
∑
i
 Ik

� µi j � µ ji 	 xi � yk
j

subject to ∑
i
 Ik

wixi 	 ∑
j
 N � Ik

w jy
k
j � c

xi �
�
0 � 1 � i � Ik � k � 1 ��������� m

yk
j �

�
0 � 1 � j � N
 Ik

(8)

Assuming that the sets Ik are small we may enumerate all solutions of Ik in problem Lk � Ik � Λ � M 	 .
For a fixed value of xi � i � Ik the problem can be recognized as a 0-1 knapsack problem defined
in the variables yk

j by setting p̃ j � ∑i
 Ik
pi jxi � λk

j 	 ∑i
 Ik � µi j � µ ji 	 xi hence getting Lk � Ik � Λ � M 	
6

in the form

maximize d j 	 ∑
j
 N � Ik

p̃ jy
k
j

subject to ∑
j
 N � Ik

w jy
k
j � c � ∑

i
 Ik

wixi (9)

yk
j �

�
0 � 1 �
� j � N �

where d j � ∑i
 Ik ∑ j
 Ik
pi jxix j 	 ∑i
 Ik

�
∑h �� k λh

i � xi is a constant. The objective function may
hence be written U1

BFS � Λ � M 	 � ∑m
k � 1 Lk � Ik � Λ � M 	 . The tightest bound U 2

BFS
is now found as a

solution to the Lagrangian dual problem

U2
BFS

� min
Λ � M U1

BFS � Λ � M 	 (10)

A sub-optimal choice of Lagrangian multipliers Λ and M can be found through subgradient
optimization, leading to the bound Û

2
BFS

with U2
BFS � Û

2
BFS � U1

BFS � 0 � 0 	 .
In order to make the computation of U1

BFS � Λ � M 	 faster we solve the continuous relaxation of
(9) which can be done in O � n 	 time.

The time complexity of the bound in this case for given values of Λ � M is derived as follows.
If we assume that the set N was partitioned into m sets Ik of equal size n � m then the time con-
sumption for solving problem Lk � Ik � Λ � M 	 for a given choice of λ � µ is O � 2n � mn 	 . As we have to
solve m subproblems the total time consumption is O � 2n � mmn 	 . The time complexity should be
multiplied by the number of iterations used for iterating the Lagrangian multipliers in the bound
Û

2
BFS

. In their computational experiments, Billionnet, Faye, Soutif used relatively small sets of
size n � m � 5 to keep the computational times at a reasonable level.

We note that the quality of the bound depend not only on the size of the groups and the quality
of the Lagrangian multipliers but also on how elements are assigned to groups. It is however not
clear which assignment of elements to groups that result in the tightest bound. The assignment
of elements to groups is therefore done at random.

In the reduction phase of the algorithm it is required to add constraints of the type xi � v
where v �

�
0 � 1 � to the bound. Suppose we add the constraint xi � v to the reformulation (7).

The constraint x j � yk
j then implies yk

j � v for k � 1 ��������� m and j � N
 �
Ik � . We can therefore

enforce the additional constraint by fixing yk
i � v and xi � v in (9).

3 Lower bounds

In the reduction phase of the algorithm several heuristics are used to search for good initial
solutions.

In order to derive an initial solution, we implemented the heuristic devised by Billionnet
and Calmels [2]. This algorithm first generates a greedy solution by initially setting x j � 1
for j � N, and then iteratively setting the value of a variable from 1 to 0, so as to achieve the
smallest loss in the objective value, until a feasible solution is obtained. In the second step a

7

sequence of iterations is performed in order to improve the solution by local exchanges. Let
S � �

j � N : x j � 1 � be the set of the items selected in the current solution. For each j � N
 S, if
w j 	 ∑ �
 S w � � c set I j � /0 and let the quantity δ j be the objective function increase when x j is
set to 1. Otherwise, let δ j be the largest profit increase when setting x j � 1 and xi � 0 for some
i � S such that w j � wi 	 ∑ �
 S w � � c, and let I j �

�
i � . Choosing k such that δk � max j
 N � S δ j, the

heuristic algorithm terminates if δk � 0, otherwise the current solution is set to S
 Ik
� �

k � and
another iteration is performed. The above heuristic is applied as the first step of our algorithm.
In every second step in the subgradient algorithm in the bound suggested by Caprara, Pisinger,
Toth the local exchanges part of the above algorithm is performed. The initial solution for the
local exchange heuristic is given by the solution of the integer version of the knapsack problem
(3).

To improve on the lower bound found by this heuristic we suggest a simple method based
on tabu search. We use the same neighborhood as described above. A move � i � j 	 in the neigh-
borhood is defined by removing an item i from the solution and adding an item j. Clearly a
move � i � j 	 is only legal if w j � wi 	 ∑ �
 S w � � c. Define the change in the objective function by
applying the move � i � j 	 by δi j. We maintain a tabu list T of moves temporarily disallowed. In
each iteration the legal move is located that gives the greatest increase in the objective function
without being temporarily disallowed. That is we choose � h � k 	 such that

δhk � max� i
 N � j
 N � S � w j � wi � ∑ ��� S w ��� c and � i � j � �
 T � δi j

The current solution is set to S
 � h � � �
k � and � h � k 	 is added to the list of temporarily disallowed

moves T . A move is removed from T after 500 iterations and the algorithm is terminated after
having completed 5000 iterations.

Both the local exchange heuristic and tabu search based heuristic only search solutions with
the same cardinality as the initial solution given to the heuristic. We therefore restart these
heuristics with different initial solutions. The local exchange heuristic is restarted every sec-
ond iteration of the subgradient algorithm while the tabu search heuristic only runs in the first
iteration.

As a third heuristic we suggest an algorithm that solves a core problem. The core of the
problem is defined by merging several high-quality solutions. Those variables which have the
same solution values in nearly all heuristic solutions are fixed, while the remaining variables
define a core of the problem, which is solved to optimality using the same algorithm. This
approach corresponds to the Tour Merging approach presented by Cook and Seymour [6], and
somehow also the the ordinary core problem for a Knapsack Problem as presented by Balas and
Zemel [1].

To be more specific, the core of the QKP is defined as follows. During the calculations of
the upper planes in the subgradient procedure, we obtain some statistical information from the
corresponding knapsack problems solved. Let f 1

j be the number of times a variable x j was set to

1 in the KP, and similarly f 0
j the number of times it was set to 0. Obviously, if f 1

j � f 0
j we may

assume that x j � 1 in an optimal solution, while if f 0
j � f 1

j we may assume that x j � 0, and hence

we tentatively fix the variables at the corresponding value. Among the variables with f 1
j 	 f 0

j

8

���
���

���
���

���
���

12 11

�
�
� �

�
�x j � 0 x j � 1

���
���

���
���

���
���

12 11

���
���

���
���

10 12

���
���

���
���

9 10

�
�
� �

�
�x j � 0 x j � 1

xk � 0 xk � 1

x � � 0 x � � 1

�
�
� �

�
�

�
�
� �

�
�

�� � �
� �� �

Figure 1: Illustration of ordinary (left) and generalized (right) reduction. We assume that an
incumbent solution of value z � 10 has been found at the root node, and that we try to reduce
variable x j. Upper bounds u are written inside each node. In the ordinary reduction we branch
on x j � 0 and x j � 1 finding upper bounds 12 and 11 respectively, which means that we cannot
fix x j to any of the values. In the generalized reduction, we start a branch-and-bound algorithm
with x j at the root node which explores the search tree up to three levels of depth. Since all nodes
in the left search tree could be fathomed we may conclude that x j can be fixed at 1.

we choose n � 4 variables with f 1
j closest to f 0

j which define the core C of the problem. The QKP
defined on the core C is solved to optimality if this can be accomplished in under 2 � 000 � 000
iterations in the branch-and-bound algorithm. If not the best solution found so far is returned.
This heuristic succeeds in finding a better lower bound than previously suggested heuristics in
some of the very hard instances. The core algorithm is fairly computationally expensive, and is
therefore only used when the algorithm has failed in reducing the instance to a manageable size,
indicating that the algorithm might lack a good quality lower bound in order to reduce further.

4 Reduction algorithm

The size of a QKP instance may be considerably reduced by using some reduction rules to fix
variables at their optimal value. As mentioned in the introduction we use aggressive reduction
for this phase.

Assume that we have an incumbent solution x 	 of value z. In its simplest form, the reduction
algorithm branches on a given variable x j and derives the upper bounds u0

j and u1
j corresponding

to the two branches x j � 0 and x j � 1. If one of the branching nodes can be fathomed, e.g. since
u0

j � z, then we may fix the decision variable to the value which corresponds to the other branch,
e.g. x j � 1. We call this method single fix since we fix variables by only looking one variable
ahead.

In the generalized reduction, we may look more nodes ahead in the reduction. So, in order

9

to reduce variable xv1 we start a branching process with xv1 at the root node, and branching up
to a fixed depth d on variables xv2 ��������� xvd (see Figure 1 for an example). If all branches in one
subtree can be fathomed, we may conclude that any improving solution must follow the opposite
branch and hence can fix the variable at the corresponding value.

Our experimental results have shown that generalized reduction with a depth of the search
tree of two, gives a good trade-off between reduction strength and computational time. We try to
reduce the variable x j by first branching on x j and then on x j � 1. Variable x j � 1 is then reduced by
branching on x j � 1 and then x j. A few modifications to the implementation of enumerative reduc-
tion have been made. Firstly, we do not calculate bounds at level one in the branching tree. That
is, we only consider the four subproblems corresponding to the leaves in a level two branching
tree. Secondly, we take advantage of the fact that the four subproblems for reducing variable x j

overlap with the four subproblems for reducing variable x j � 1. e.g when reducing variable x j we
calculate the bound with x j � 0 and x j � 1 � 1 and when reducing x j � 1 the bound is also calculated
with x j � 1 � 1 and x j � 0. This effectively halves the number of bound calculations required, to
reduce variables x j and x j � 1. We call this reduction double fix. It should be clear that double fix
dominates single fix reduction.

In the general case with a depth of the search tree of m one may consider clusters of items
x j � x j � 1 ��������� x j � m � 1 to branch on. Due to the overlap of subproblems when reducing variables
x j � x j � 1 ��������� x j � m � 1, we only need to derive the 2m upper bounds at the leave nodes once. On
average 2m � m bounds are derived for each item.

If variable x j is fixed at any value we remove the corresponding row and column. Moreover,
if it is fixed at 1, we also increase diagonal entry pii by pi j 	 p ji, for i � N
 � j � , and decrease c
by w j.

We use the two bounds U 2
CPT

or U2
BFS

for the reduction. For each of the bounds we first compute
the Lagrangian multipliers by solving the Lagrangian dual (6) and (10) and then for each variable
try to fix it at its optimal value using the method described above.

When calculating the Lagrangian multipliers, we wish to compute them to such an accuracy,
that the resulting bound can be used to reduce variables. In order to determine if the multipliers
have been calculated with sufficient accuracy, we reduce the instance using the suboptimal mul-
tipliers at different stages of the subgradient algorithm. If the instance can not be reduced, the
Lagrangian multipliers are improved further.

In the reduction algorithm we employ the strategy of trying to reduce the instance with the
bounds that are the least computationally expensive first. By first reducing some variables using
a fast bound, the instance is smaller when the computationally expensive bound is employed.
This greatly diminishes the time used in the reduction phase.

We start by reducing the instance using the relatively fast bound U 2
CPT

. If the reduction pro-
cedure fixes at least one variable, we apply subgradient optimization to the reduced problem,
followed by a new reduction. If unfixed variables remain we reduce using U 2

BFS
, increasing the

group size n � m (and thereby the computation time required) after each pass. The group sizes
used, are 2, 4 and 8. Whenever reduction with the U 2

BFS
bound succeeds in fixing some variables,

the instance is again reduced using the U 2
CPT

bound before proceeding. This is repeated until no
variables can be fixed, and we proceed to branch-and-bound.

10

5 The Branch-and-Bound Algorithm

Our branch-and-bound algorithm is based on the upper bounding procedure suggested by Caprara,
Pisinger, Toth and summarized in section 2.1. At the root node of the branching tree, we apply
subgradient optimization to find a good problem reformulation. The nodes of the branching
tree other than the root are processed quite fast, without any heuristic, reduction, or updating
of the Lagrangian multipliers. We simply solve one Lagrangian relaxed subproblem (associated
with the best multipliers found at the root node), possibly updating the incumbent solution and
applying branching.

We next describe in detail each part of the branch-and-bound algorithm outlined above. Let N
denote the set of variables that were not fixed by the reduction procedure. Moreover, let P̂ � � p̂i j 	
be the Lagrangian profit matrix associated with the best upper bound found by the subgradient
procedure for Û

2
CPT

.
Like in the algorithm by Caprara, Pisinger, Toth [4] our branch-and-bound algorithm is based

on a depth-first search, where the order in which variables are fixed by branching is determined in
advance at the root node, allowing for a considerable speed-up of the computation at each node,
as described in the following. We branch first on the variables which have a high probability of
taking the value 1 in the optimal solution. To this aim, for each item i, i � N, we compute the
quantity

πi � pii 	 max � ∑
j
 N � � i � � pi j 	 p ji 	 x j : ∑

j
 N � � i � w jx j � c � wi � 0 � x j � 1 � j � N
 � i ��� (11)

which represents an upper bound on the profit obtained by setting variable xi to 1. Notice that
we make use of profits from rows as well as columns in (11) as opposed to [4] which used
πi analogous to (2) just with i and j interchanged. The expression (11) is unaffected by the
reformulation and hence give a more correct estimate on the profit obtained by setting variable
xi to 1.

We reorder the variables according to non-increasing values of πi, and systematically branch
on the variable with the smallest index among the unfixed ones. The branching scheme follows
the framework of the algorithm by Caprara, Pisinger, Toth [4], hence we refer to this paper for a
more detailed description.

The upper bound computation is the most time-consuming operation at any node of the
branching tree. It is therefore extremely important to have a very efficient implementation of
this part in order to limit the overall computing time. Using appropriate data structures Caprara,
Pisinger, Toth [4] showed that if the upper bound is calculated by the LP-relaxation of (3) then
the following hold:

Proposition 1 Every node of the branching tree is processed in linear (in n) expected time.

As we derive the upper bound in each node by solving (3) as an integer knapsack problem, the
above proposition does not hold for our implementation. The n continuous knapsack problems
corresponding to the LP-relaxation of (2) can however be solved in linear expected time.

11

6 Computational Experiments

We considered the classical classes of QKP instances presented in the literature. Gallo, Hammer
and Simeone [8] solved some randomly generated instances, which form also the benchmark for
the algorithms by Billionnet and Calmels [2] and Michelon and Veilleux [13].

The randomly generated instances by Gallo, Hammer and Simeone are constructed as fol-
lows. Let ∆ be the density of the instance, i.e., the percentage of non-zero elements in the profit
matrix P. Each weight w j is randomly distributed in � 1 � 50 � while the profits pi j � p ji are nonzero
with probability ∆, and in this case randomly distributed in � 1 � 100 � . Finally, the capacity c is ran-
domly distributed in � 50 � ∑n

j � 1 w j � . (Notice that Gallo, Hammer and Simeone actually chose the
capacities in � 1 � ∑n

j � 1 w j � but later papers have increased the lower limit.)
In the following tables we consider instances with densities ∆ � 25% � 50% � 75% and 100%

and with n up to 1500. For each size and density we have calculated 10 instances. The entries
in the table are average values out of the instances, that could be solved within the time limit
of 12 hours. For each density, we report results for n up to 1500 in multiple of 100. All tests
where conducted using gcc 3.2.2 on an Intel Pentium4 processor at 2.4 GHz. Table 1 reports the
number of instances solved. For density 50% and above most instances were solved, while for
∆ � 25 some unsolved instances remain.

In Table 2, the average computational times are reported. Most instances are solved within
a few hours of cpu-time on average, which is reasonable for these large-sized instances. The
following Table 3 shows the corresponding time used in the reduction phase. By comparing
Table 2 and Table 3 we notice that only a minor amount of time is spent after the reduction phase,
i.e. inside the branch-and-bound algorithm. The reason for this behavior is, that the aggressive
reduction phase generally is able to reduce the instance to a very small size, leaving little work
to do for the branch-and-bound algorithms. This can also be seen from Table 4 which shows the
average number of items remaining after the reduction phase. On average, the instances contain
well below 100 items which is much more manageable for the branch-and-bound algorithm.

Finally, we compare the present algorithm with that of Caprara, Pisinger, Toth in Table 6.
The two algorithms basically contain the same branch-and-bound algorithm, but differ in the
reduction part (upper and lower bounds, iterations of Lagrangian multipliers, reduction). The
computation times are only shown, whenever all 10 instances could be solved within the time
limit of 12 hours. The test setup is the same as previously described. The Caprara, Pisinger, Toth
algorithm solves small instances faster, since it makes use of a much simpler reduction algorithm.
However, it is not able to solve instances of large size, and in particular low-density problems
can only be solved for slightly more than 100 items. These experiments illustrate that reduction
is a key ingredients in solving difficult N P -hard optimization problems.

12

n � δ 25 50 75 100
100 10 10 10 10
200 9 10 10 10
300 10 10 10 10
400 9 10 10 10
500 9 10 10 10
600 9 10 10 10
700 6 10 10 10
800 6 10 10 10
900 6 10 10 10

1000 6 10 10 10
1100 2 9 10 10
1200 5 9 10 9
1300 1 9 10 8
1400 4 10 9 9
1500 3 6 10 10
avg. 6.3 9.5 9.9 9.7

Table 1: Number of instances solved out of 10

n � δ 25 50 75 100
100 210.7 54.2 6.7 2.7
200 860.0 168.9 23.0 76.5
300 4031.9 556.8 94.7 90.3
400 1190.1 978.3 295.0 173.2
500 3865.7 1982.8 266.6 392.2
600 5565.4 3711.1 744.5 794.7
700 10422.0 3158.7 1471.6 575.5
800 2916.5 2939.4 1768.4 1375.2
900 20440.0 2461.9 2585.2 971.7

1000 13281.9 8336.6 2419.7 1809.9
1100 8090.1 5692.1 3929.6 2263.6
1200 446.1 11544.4 4093.2 5002.3
1300 3393.8 15948.2 6644.5 3386.3
1400 6717.0 22606.5 10947.7 5416.3
1500 5077.9 19135.8 12770.7 12771.1
avg. 5767.3 6618.4 3204.1 2340.1

Table 2: Total computation time in
seconds (average of solved instances)

n � δ 25 50 75 100
100 189.2 54.2 6.7 2.7
200 584.0 168.7 23.0 76.5
300 3207.8 556.7 94.7 90.1
400 1189.9 975.6 294.8 173.0
500 3864.6 1982.7 266.6 391.9
600 5564.8 3611.3 743.5 794.5
700 10421.7 3141.9 1470.0 575.2
800 2916.3 2938.6 1764.5 1374.6
900 20439.8 2461.6 2579.2 971.3

1000 13281.1 8298.9 2419.6 1740.8
1100 8089.9 5690.1 3924.0 2246.9
1200 446.0 11538.6 4076.0 4052.8
1300 3393.6 15939.7 6642.0 3385.4
1400 6714.8 22512.9 8305.5 5412.7
1500 4919.9 19115.6 12755.1 12414.4
avg. 5681.6 6599.1 3024.3 2246.9

Table 3: Time used by reduction
phase (average of solved instances)

n � δ 25 50 75 100
100 30.6 5.5 2.8 3.1
200 28.2 8.2 2.4 8.4
300 56.5 14.2 3.4 20.1
400 24.6 40.4 17.4 10.0
500 46.9 11.2 6.9 11.8
600 34.0 19.7 28.3 16.3
700 31.2 63.2 33.1 16.5
800 26.5 49.5 73.5 32.5
900 23.7 11.0 22.3 18.5

1000 37.3 46.2 17.3 28.1
1100 39.0 24.7 43.1 28.0
1200 21.2 37.1 47.6 77.6
1300 45.0 57.6 58.2 40.5
1400 58.0 125.7 58.8 28.2
1500 120.7 39.2 44.6 56.8
avg. 41.6 36.9 30.6 26.4

Table 4: Size of instance after reduction phase (aver-
age of solved instances)

n � δ 25 50 75 100
100 43631.2 91887.9 192668.3 260186.2
200 193798.8 561313.4 448942.6 887270.1
300 599935.6 1093950.3 1968163.6 2546920.8
400 1408773.4 2140089.4 3298495.0 4083908.0
500 1684972.3 2987465.9 4402497.5 7078125.3
600 3488900.1 4084686.4 8384937.0 8475661.0
700 2661969.2 7588377.9 8654936.4 11320611.2
800 3866772.2 6219035.0 11137681.6 19685467.6
900 5155890.5 9998054.0 9526540.9 16137230.3

1000 8886079.3 14464274.4 17338565.3 25372726.9
1100 3644757.5 15561306.1 22334441.4 43524304.8
1200 15216608.0 19180365.4 32351394.2 40863251.4
1300 1389218.0 18301520.0 34343179.1 27058156.2
1400 21651174.5 26857966.2 34111466.4 58407674.9
1500 24252955.0 23208258.3 42625118.1 37499235.4
avg. 6276362.4 10155903.4 15407935.2 20213382.0

Table 5: Objective value (average of solved in-
stances)

n � δ 25 50 75 100
100 18.7 2.1 0.4 0.4
200 - 11.6 2.8 20.5
300 - - 20.4 22.1
400 - - - 587.2

Table 6: Total computation time in
seconds, Caprara, Pisinger, Toth (av-
erage of 10 instances)

13

7 Conclusions

The QKP is an important model with numerous applications. Due to its intrinsic difficulty it has
attained much interest in the last decade. Much of the research is of method developing nature in
which the goal is to develop general techniques which can be applied to a large variety of related
problems.

The QKP problem is a difficult N P -hard optimization problem, in the sense that existing
branch-and-bound methods are not able to solve instances of large size. For such problems, re-
duction plays a key ingredients in the solution process. We have presented a framework called
aggressive reduction in which preprocessing techniques become the main solution approach,
while branch-and-bound is a subordinate method. Computational experiments for the QKP
where aggressive reduction is compared to “normal” reduction and branch-and-bound shows
that the framework has a great potential. In many instances, aggressive reduction reduces the
instance to a trivial or at least manageable size.

Of concrete contributions to the QKP we should mention the solution of a core problem
for finding improved lower bounds, tighter variants of the U 2

CPT
, improved methods for finding

Lagrangian multipliers associated with the bounds U 2
BFS

and U2
CPT

, and finally better branching
rules.

From a practical point of view, the developed algorithm is able to solve instances much larger
than previously reported in the literature. Previous approaches [4] have solved dense instances
with up to 400 variables. This limit has now been pushed forward to instances with up to 1500
variables. An even more important achievement is, that the new techniques also work for medium
and low-density instances, where previous techniques mainly worked for high-density instances.

8 Acknowledgements

We would like to thank the August Krogh Institute and Zoological Museum, University of Copen-
hagen for having made the BioCluster supercomputer available for these experiments.

References

[1] E. Balas and E. Zemel. An algorithm for large zero-one knapsack problems. Operations
Research, 28:1130–1154, 1980.

[2] A. Billionnet and F. Calmels. Linear programming for the 0-1 quadratic knapsack problem.
European Journal of Operational Research, 92:310–325, 1996.

[3] A. Billionnet, A. Faye, and E. Soutif. A new upper-bound and an exact algorithm for the 0-
1 quadratic knapsack problem. European Journal of Operational Research, 112:664–672,
1999.

[4] A. Caprara, D. Pisinger, and P. Toth. Exact solution of the quadratic knapsack problem.
INFORMS Journal on Computing, 11:125–137, 1999.

14

[5] P. Chaillou, P. Hansen, and Y. Mahieu. Best network flow bound for the quadratic knapsack
problem. In B. Simeone, editor, Combinatorial Optimization, volume 1403 of lecture notes
in mathematics, pages 225–235. Springer, 1989.

[6] W. Cook and P. Seymour. Tour mergining via branch-decomposition. 2002.
http://www.isye.gatech.edu/ wcook/papers/tmerge.ps.

[7] C.E. Ferreira, A. Martin, C.C. de Souza, R. Weismantel, and L.A. Wolsey. Formulations
and valid inequalities for node capacitated graph partitioning. Mathematical Programming,
74:247–266, 1996.

[8] G. Gallo, P.L. Hammer, and B. Simeone. Quadratic knapsack problems. Mathematical
Programming Study, 12:132–149, 1980. This is the correct journal.

[9] P.L. Hammer and D.J. Rader Jr. Efficient methods for solving quadratic 0-1 knapsack
problems. INFOR, 35:170–182, 1997.

[10] C. Helmberg, F. Rendl, and R. Weismantel. Quadratic knapsack relaxations using cut-
ting planes and semidefinite programming. In W.H. Cunningham, S.T. McCormick, and
M. Queyranne, editors, Proceedings of the Fifth IPCO Conference, volume 1084, pages
175–189. Springer Verlag, 1996.

[11] E.L. Johnson, A. Mehrotra, and G.L. Nemhauser. Min-cut clustering. Mathematical Pro-
gramming, 62:133–152, 1993.

[12] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, 2003.

[13] P. Michelon and L. Veilleux. Lagrangean methods for the 0-1 quadratic knapsack problem.
European Journal of Operational Research, 92:326–341, 1996.

[14] K. Park, K. Lee, and S. Park. An extended formulation approach to the edge-weighted
maximal clique problem. European Journal of Operational Research, 95:671–682, 1996.

[15] T. Polzin and S. Vahdati. Extending reduction techniques for the steiner tree problem: A
combination of alternative-and bound-based approaches. Technical Report MPI-I-2001-1-
007, Max-Planck-Institut für Informatik, 2001.

[16] A.B. Rasmussen and R. Sandvik. Kvaliteten af grænseværdier for det kvadratiske knapsack
problem, 2002. Project 02-09-7, DIKU, University of Copenhagen (D. Pisinger, supervi-
sor).

[17] J. Rhys. A selection problem of shared fixed costs and network flows. Management Science,
17:200–207, 1970.

[18] C. Witzgall. Matematical methods of site selection for electronic message systems (ems).
Technical report, NBS internal report, 1975.

15

