
 

 

Experiences with redu
Problems

Jesper Dangaard Brouer a

DI
University of Copenhag

DK-2100 Cope
 

 
 

cing TCP performance 
 on ADSL 
 
nd Jørgen Sværke Hansen
 

Technical Report no. 2004/07 
ISSN: 0107-8283 

CR Subject Classification: C.2.1, C.2.6 
KU 
en • Universitetsparken 1 

nhagen • Denmark 



1

Experiences with Reducing TCP Performance
Problems on ADSL
DIKU - Technical Report 04/07

May 14, 2004

Jesper D. Brouer, Jørgen S. Hansen

Abstract—This paper presents practical studies of the TCP performance
problems caused by the asymmetric nature of ADSL connections. Previ-
ously, it has been shown through simulation, wireless and satellite links that
TCP throughput may be reduced by asymmetric links due to ack compres-
sion and that ack filtering and prioritizing acks can increase TCP through-
put. The uplink capacity of ADSL products in general does not result in ack
compression unless the uplink is congested. For a single user ADSL instal-
lation this is manageable but for larger networks connected to the Internet
by ADSL the rise of peer-to-peer file sharing applications may result in a
permanently congested uplink.

We document the TCP throughput problem both through artificial and
real world traffic from a network with approximately 200 users. We report
on experiences with reducing this problem using the packet scheduler of
a Linux based middle-box between the network and the ADSL link. We
show how prioritizing acks improves throughput but hurts interactive traf-
fic and that using hierarchical link-sharing and classifying the traffic into
interactive, acknowledgments, well-known services and peer-to-peer traf-
fic provides a reasonable solution. However, in order to reliably control
latency, it is important to account for the variable ATM/AAL5 overhead
when scheduling packets on the uplink. Finally, we show that the ack traf-
fic on the uplink can be significant implying that ack filtering is interesting
for ADSL.

We are currently refining the ack filtering, implementing methods for
detecting peer-to-peer traffic, and implementing more accurate overhead
estimations in the packet schedulers.

Keywords— Transmission Control Protocol (TCP), asymmetric links,
ADSL, link-sharing

I. INTRODUCTION

This paper reports on experiences with TCP performance
problems on one category of asymmetric links: ADSL (Asym-
metric Digital Subscriber Line) connections. The TCP conges-
tion control [1] based on receiving feedback from the acknowl-
edgments may cause throughput problems when used on asym-
metric links [2] as the smaller link may delay or bundle together
the TCP acknowledgments (ack compression). This causes the
feedback on link conditions supplied by the acknowledgment to
be inaccurate and may also result in bursty traffic. Even though
ADSL connections have a downstream capacity that is at least a
factor two higher than the upstream capacity, the upstream ca-
pacity can handle the acknowledgment traffic necessary to en-
sure maximum utilization of the downstream line. However, in
case of heavy upstream traffic TCP throughput on the down-
stream line may suffer due to large queuing delays and ack com-
pression. The primary target group of ADSL was viewed as

Jesper is a research assistant / graduate student and Jørgen is assistant pro-
fessor both working at the distributed systems research group at Department of
Computer Science, University of Copenhagen, Universitetsparken 1, DK-2100
Copenhagen. Email:

�
hawk � cyller � @diku.dk.

This extended abstract have been submitted May 14, 2004, to ACM Internet
Measurement Conference 2004, but have not yet been approved.

home users using the World Wide Web, but the increased use
of peer-to-peer file sharing applications has changed the usage
pattern dramatically. Now an ADSL upstream line can be per-
manently congested. A single user can deal with this on the
application level but if an ADSL connection is shared by a large
group of users other methods are necessary.

The work presented in this paper has been motivated by prob-
lems experienced in a real network of about 200 autonomous
users connected to the Internet by an ADSL connection. Our
goal is to allow peer-to-peer traffic on the upstream line while re-
ducing the negative effects on both interactive traffic and down-
stream throughput. Due to the nature of the network, it is not a
viable solution to modify software on the end hosts in the net-
work nor on the other side of the ADSL connection.

The possibility of throughput problems caused by ack com-
pression on links with two-way traffic was first recognized by
[3]. Bottleneck problems for the ack traffic including ack com-
pression have been examined for several varieties of asymmet-
ric links. Kalampoukas et al. [4] provide analytic and simulated
evidence that TCP throughput can be increased by transmitting
acknowledgments at a higher priority but that bandwidth allo-
cation mechanisms are necessary to ensure fair sharing of the
link. Balakrishnan et al. [2] propose to reduce the number of
acknowledgments that cross the smallest link either by having
the receiver reduce the number of acknowledgments sent or by
having a middle-box remove acks when several acks are queued
for the same connection. If bursty traffic is to be avoided these
schemes should be combined with a sender that emits data pack-
ets at a smooth rate. Alternatively, acks can be regenerated at the
other side of the low bandwidth link. They also show that prior-
itizing acks reduces the problem. Samaraweera [5] also employ
an ack filtering technique for the low bandwidth terrestrial re-
turn link for satellite based Internet access, where the remaining
acks are forwarded across the low bandwidth link in an IP tun-
nel and a suitable number of acks are regenerated at the end of
the IP tunnel. Many of the ideas mention above have found their
way into an RFC [6] providing guidelines for the use of TCP on
asymmetric network paths.

As we only consider solutions that do not depend on changes
to the end hosts, we have chosen to introduce a middle-box be-
tween the network and the ADSL connection that uses a com-
bination of prioritizing acknowledgments and link-sharing tech-
niques. Our experiences with a 8 Mbit/512 Kbit ADSL line con-
necting a 200 user network to the Internet show that:

� giving TCP acknowledgments highest priority results in high



2

downstream utilization but may significantly increase the la-
tency experienced by interactive users.

� link-sharing based on traffic classes for interactive, acknowl-
edgments, well-known services, peer-to-peer applications and
default traffic provides both good downstream utilization and
low latency for interactive use.

� a simple ack packet dropping scheme on the upstream traffic
can reduce bandwidth consumption of TCP acknowledgments
with 40% but only reduces downstream line utilization by 17%.

� to reliably control traffic accurate estimates of link layer over-
head must be accounted for in the middle-box.

The rest of this paper is organized as follows. Section II
describes the TCP throughput problem in more detail. In sec-
tion III we describe our experiences with reducing the problems
in practice, and finally we conclude in section IV.

II. TCP THROUGHPUT PROBLEMS

The TCP throughput problems experienced on asymmetric
links have their origin in the TCP congestion avoidance and con-
trol algorithm [1], where the sender uses acknowledgments to
clock the transmission of new data segments. To ensure con-
gestion free transmission of data segments, the sender should
receive the acknowledgments with a temporal spacing close to
that of the receipt of the data segments by the receiver, as this
spacing reflects the capacity of the network path from sender to
receiver. This is based on the assumption that the return path
has little effect on the average spacing of the acknowledgments.
However, it has been shown [3] that in the case of a network path
with two-way traffic, router packet queues may cause several
acknowledgments from the same connection to be grouped to-
gether (known as ack compression) thereby canceling the spac-
ing of the acks and resulting in bursty traffic patterns with a
higher risk of packet loss. Furthermore, throughput may drop
due to increased queuing delays. This can be handled by in-
creasing the TCP window size, but doing so can negatively af-
fect the throughput in the opposite direction as a result of even
longer bursts and thereby packet queue lengths. An additional
impact of ack congestion is that the slow start period of a TCP
connection is unnecessarily prolonged.

A variation of this problem is experienced on asymmetric net-
work paths. If the capacity of the network path is insufficient
for carrying the acknowledgments for a TCP bulk transfer, TCP
throughput will be limited in the opposite direction. Balakrish-
nan et al. [2] define the normalized bandwidth ratio k, as the
ratio of the raw bandwidth of the two directions divided by the
ratio of the packet sizes used in the two directions. For exam-
ple, if k = 4 the smallest link will be congested if it has to cope
with more than one acknowledgment for every 4 data packets
in the other direction. As described in the introduction, it is
possible to perform ack filtering on the low bandwidth link to
increase throughput in the other direction. For ADSL connec-
tions, k is less than one meaning that the link can support max-
imum throughput on the downstream line. However, due to the
asymmetry an ADSL connection is still vulnerable to ack com-
pression and large queuing delays in the case of upstream traffic.

Kalampoukas et al. [4] analyze this situation and conclude
that prioritizing acks higher on the smallest link does indeed re-
sult in maximum utilization of the larger link (if ����� ). How-

ever, the ack traffic on the smaller link can cause starvation of
other traffic and they instead propose a bandwidth allocation
scheme for the smallest link, where the bandwidth is divided
between acks and other traffic. Kalampoukas et al. consider
these algorithms for implementation in end hosts but they may
as well be implemented as router-based solutions.

Our focus is on networks with multiple autonomous users
connected to the Internet by an ADSL connection. In order to be
easily deployable, a solution should be based on techniques that
can be implemented in a router or middle-box placed between
the network and the ADSL connection. Such a solution provides
us with control of the upstream traffic. In the following, we will
therefore concentrate on the different forms of bandwidth allo-
cation schemes for TCP acknowledgment traffic, as they can be
applied to our middle-box solution. Additionally, we will exam-
ine a limited use of ack filtering.

III. EXPERIENCES WITH PACKET SCHEDULING

In this section, we describe our experiences with improving
downstream line utilization and interactive latency on a real net-
work with approximately 200 users. We begin by describing the
physical setup. Then we document the TCP throughput prob-
lems of the network and thereafter we describe our approach
to reducing these problems. Finally, we describe our problems
with precisely mimicking the transmit rate of the physical link.

A. Environment

The real world network in this paper is a student residence1

connected to the Internet with an 8 Mbit/512 Kbit ADSL line,
using a fully qualified C-class IP-range.

The Internet Service Provider (ISP, TeleDanmark) delivers a
Cisco 1401 router which has a 10Mbit/s Ethernet connection
and an ATM (ATM25) connection. The ATM connection is con-
nected to the ADSL modem. The router encapsulates the traffic
over ATM according to RFC1483[7] / RFC2684[8]2 in routed
mode. Our middle-box is acting as a normal router and is placed
between the LAN and the Internet ADSL router.

All performance measurements performed below are done be-
tween a local host in the network and a couple of well connected
external hosts. All hosts used the standard TCP/IP implementa-
tion of Linux 2.4.

B. Documenting the problem

We document the effects of upstream traffic on the down-
stream line using both artificial and real traffic. The artificial
traffic experiment was conducted so that no other traffic was
present on the ADSL connection. It consists of one contin-
uous TCP bulk transfer of 200 MB on the downstream line
and two non-overlapping TCP bulk transfers of 4 MB each on
the upstream line. Figure 1 shows the impact on downstream
throughput from using the upstream line. It is very clear that
the upstream traffic has a negative impact on the performance
of the downstream throughput, illustrated by the dips in the
downstream throughput around time 60 to 144, and time 204
�
Kollegiegården, with 307 permanent residents.�
The manual and Cisco IOS refers to rfc1483 mode, even though rfc2684

obsoletes rfc1483



3

to 289, where the two upstream TCP connections are transfer-
ring data. The downstream throughput is reduced from approxi-
mately 7 Mbit/s to approximately 250 Kbit/s (jumping between
150 Kbit/s and 300 Kbit/s). The window size from our down-
stream TCP transfer (Figure 1) is 34752 bytes. On an 8 Mbit line
with a window size of 34752 bytes, the ack latency has to be un-
der 34.75 msec to utilize the full capacity. The average round
trip time on the ADSL connection increases to around 300 msec
during the upstream transfers, corresponding well with a down-
stream throughput of 250 Kbit/s given the window size.

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

0 50 100 150 200 250 300 350 400 450

bi
ts

/s

seconds

Upstream/Downstream throughput (bits/s)

Upstream
Downstream

Fig. 1. Illustrating the problem on a clean 8Mbit/512Kbit ADSL line. One
continuous downstream bulk TCP transfer (200Mb), and two upstream bulk
TCP transfers (4MB each).

To estimate the effects of real upstream traffic on downstream
transfers, we performed the 200 MB downstream TCP trans-
fer during the afternoon concurrently with real traffic from the
network. As figure 2 shows, the downstream transfer still ex-
periences throughput problems during the bulk transfer started
at 15:20, as the link utilization during the TCP bulk transfer is
only 1.98 Mbit/s instead of 7 Mbit/s. The TCP bulk transfer it-
self only achieves an average of 1.1 Mbit/s. The average round
trip time of the ADSL connection was approximately 380 msec.
This shows that the real upstream traffic consisting of several
TCP connections to a number of different hosts has lower overall
link utilization than our artificial upstream transfer, but that the
effects are still significant. As our experiments show an increase
in RTT, we increased the maximum window size of the down-
stream TCP bulk transfer to 2 MB (Linux adjusted the window
size to 1497 Kbytes) as this should be sufficient for fully utiliz-
ing the downstream bandwidth. Figure 3 shows our expectations
fulfilled. However, the large window size allows considerable
bursts of packets, which triggers packet losses as illustrated by
the regular drops in throughput.

C. Prioritizing Acknowledgments and Interactive Traffic

Our first approach to increasing the throughput on the down-
stream line was to prioritize TCP acknowledgments higher than
all other traffic. This ensures, that upstream transfers will im-
pose a maximum delay of one packet transmission on an ac-
knowledgment. This scheme resulted in maximum utilization
of the downstream line, but had the negative side effect that in-
teractive traffic experienced large delays as all upstream traffic

Fig. 2. Real world traffic and a 200 MB downstream transfer on a
8Mbit/512Kbit ADSL connection without prioritizing.

Fig. 3. Using a very large TCP window size (1497 Kbytes), makes it possible
to utilize the downstream bandwidth without any prioritizing.

was squeezed into the remaining capacity (approx. 30%).
To improve the latency of interactive traffic, we further refined

the traffic categories into the following five classes:
Interactive consisting of secure shell traffic and various chat
protocols.
Acknowledgments consisting of pure TCP acknowledgments
from all traffic classes. The ack packets influence the down-
stream utilization, thus every ack packet is given high priority
as we are trying to maximize the downstream throughput.
Good traffic consisting of as many well-known services as
possible including protocols such as http, ftp, dns, and tcp-
handshake.
Bad traffic consisting of peer-to-peer traffic that can be identi-
fied from know port numbers. This includes protocols such as
eDonkey, Kazaa/Fasttrack and BitTorrent.
Default consisting of traffic not matched by the other cate-
gories.
The bad class is traffic that has little real value to local users.
The obvious example are external peer-to-peer clients receiving
data, which add load to the upstream line. Experiences with real
world traffic show that our current classification of bad traffic
based on default port numbers of known peer-to-peer services



4

only captures part of the real peer-to-peer traffic. This is because
current peer-to-peer protocols include a number of evasive tech-
niques for avoiding classification and firewalling. These evasive
techniques result in peer-to-peer traffic being classified as ei-
ther good traffic when they use standard port numbers or default
traffic when random port numbers are used. In practice, it has
been necessary to manually figure out local users peer-to-peer
port numbers based on the traffic patterns of a local host. More
specifically, if the bandwidth consumption of a local host in-
creases above a certain threshold, all connections between that
host and external hosts are examined. If any of the external hosts
use known peer-to-peer ports, all traffic from the local node is
assumed to be peer-to-peer traffic. We are currently implement-
ing a way to categorize the bad traffic and the interactive traf-
fic [9], [10] based on its network behavior.

The actual packet scheduling uses the Hierarchical Token
Buckets (HTB) implementation under Linux, which is a class-
based queuing implementation inspired by [11]. Traffic is
marked and classified into the different classes with the use of
Linux’s Netfilter. The class hierarchy is illustrated in Figure 4.
The classes good, bad and default are grouped together to mini-
mize their effect on the delay of the two other classes [12], [13].

1:1

Root


1:20

ACK


1:50

default


1:30

Good


1:666

Bad


1:10

Interactive


1:2


Fig. 4. Hierarchical Token Bucket class hierarchy

The actual upstream line capacity is 500 Kbit/s (and not 512
Kbit/s) and subtracting the fixed ATM overhead (see section III-
D) results in 432 Kbit/s, which is used as the HTB maximum
rate. The ack class is assigned a rate of 380 Kbit/s and given
high priority (prio 0), to ensure low delay by avoiding the class
ever being backlogged (Figure 8 shows an ack usage of 313K
bit/s including overhead). The remaining bandwidth is assigned
by ratios among the other classes. The ceil rate is limited for
some of the classes to avoid starvation of low priority classes.
The interactive class is assigned 30% (15.6 Kbit/s) rate, but is
limited to a ceil rate of 20% (86 Kbit/s) due to its high prior-
ity (prio 0, highest). The good class (prio 3) is assigned a rate
of 35% (18.2 Kbit/s), but is limited to a ceil rate of 80% (346
Kbit/s) to avoid starvation of the default class. The default class
is assigned a rate of 25% (13 Kbit/s) and allowed to use 100% of
the ceil rate (prio 5). The bad class is assigned a rate of 10% (5.2
Kbit/s) and allowed to use 100% of the ceil rate, but is assigned
the lowest priority (prio 7).

Repeating the experiment from the previous section with a 1
GB downstream TCP bulk transfer concurrently with real traf-
fic shows that the HTB solution gives high priority to the ack
packets resulting in a high downstream utilization of 5.77 Mbit/s
(see Figure 5). The TCP throughput of the downstream transfer
is still below the maximum capacity as the TCP window size
is 63712 bytes and the round trip time occasionally exceeds the
maximum value (approximately 73 msec) for fully utilizing the
downstream line.

The round trip time measurements were obtained by having
our middle-box classify ICMP packets to a set of different hosts
into our different traffic classes, and then measure the average
round trip time for a series of 10 ping packets every 10 seconds.
The obtained round trip times for the interactive, acknowledg-
ment and good classes on the link are shown in Figure 6, where it
can be seen that the acknowledgment traffic experiences an aver-
age delay of 110 msec resulting in an average throughput of 4.63
Mbit/s for the bulk transfer. This corresponds to the average uti-
lization of 5.77 Mbit as the bulk transfer coexists with real world
downstream traffic. The increased average round trip time for
acknowledgments and to a certain extent interactive traffic has
two causes: (1) the increase in ack traffic causes longer queues
when acks have to wait for the transmission of a lower priority
packet to complete and (2) increases in packet queue lengths on
the downstream line due to higher utilization. The downstream
line may experience bursty traffic caused by ack compression on
the upstream line as the bandwidth ratio is 1/16 meaning that up
to 8 acks (one for every two data segments) may get queued be-
hind a low priority data packet. Figure 6 also shows the impact
of the ack traffic on the good traffic, that experiences an average
delay of 628 msec with a maximum of 4.48 seconds. This was
also the condition for interactive traffic when only ack traffic
was assigned a high priority which is clearly unacceptable.

Fig. 5. Link utilization of real world traffic and 1 GB downstream transfer on a
8Mbit/512Kbit ADSL connection with HTB packet scheduling.

The good downstream throughput is achieved at the expense
of the lower priority traffic classes on the upstream line, as the
ack traffic is allowed to use a maximum of 380 Kbit/s (76%
of the total bandwidth). We therefore conducted an experiment
where we reduced the allocated bandwidth for ack traffic by
50% to 190 Kbit/s. When performing the downstream TCP bulk
transfer, the ack traffic uses 82% of its traffic rate. The band-



5

Fig. 6. Round trip time for interactive, acknowledgments and good traf-
fic classes using real world traffic and 1 GB downstream transfer on a
8Mbit/512Kbit ADSL connection with HTB packet scheduling.

width reduction will therefore cause a reduction in the number
of acks by close to 40% with a proportional drop in the down-
stream utilization. An alternative to only delaying the acks is
to perform ack filtering. We can emulate ack filtering by com-
bining the reduced ack traffic rate with dropping ack packets.
We therefore tried to limit the length of the ack FIFO to 5. In
theory, this should provide better throughput as long as not all
acks for a given TCP connection are dropped. Figure 7 shows
the result of these experiments. It can be seen that reducing the
ack rate by 50% results in a drop in downstream line utilization
by 50%. After a while, we reduce the queue length to five pack-
ets, resulting in a packet drop rate of 100 acks per second (the
40% reduction). This improves throughput significantly without
reaching the level of the higher ack rate. This lower utilization
is to be expected, as the FIFO drop scheme results in dropping
acks of higher sequence numbers. We are currently working on
implementing a better ack drop policy, that can drop acks of the
lowest sequence numbers on a per connection basis. Dropping
acks did not result in any TCP retransmissions, so the increased
burstiness did not result in a congested link. This was as ex-
pected, as the window size used by the TCP connections was
only 63712 bytes.

Fig. 7. Effects of limiting ack rate on link utilization of real world traffic and 1
GB downstream transfer on a 8Mbit/512Kbit ADSL connection with HTB
packet scheduling.

D. Implications of ATM transport

Our packet scheduling for the upstream is performed in front
of the equipment provided by the service provider and as such
has no immediate feedback concerning packet queue lengths in-
ternally in that equipment. In order to be able to control both
latency and throughput of the ADSL upstream line we need to
ensure that we are not emitting packets at a higher rate than the
ADSL equipment supports but at the same time we wish to be
as close to the maximum capacity as possible to fully utilize the
bandwidth. Therefore we need to have a good estimate of the
link size of a given packet. Unfortunately, the Linux queuing
system only accounts for IP overhead, so it is not feasible to use
the hardware bandwidth rate directly, when setting up the HTB
queuing discipline. To specify the correct rate to HTB, the line
overhead needs to be calculated. But unfortunately the overhead
of an ADSL line encapsulating the traffic over ATM using ATM
Adaption Layer type 5 (AAL5) [8], [14] depends on the number
and size of packets.

The ATM overhead can be categorized into three categories,
1) Fixed overhead, 2) Overhead per packet (AAL5) and 3) ATM
cell padding. The fixed overhead is the ATM cell header over-
head, which is 5 bytes out of every 53 bytes ATM cell (9.43%).
Another fixed overhead, at the physical layer one out of every
27 cells is an ATM-OAM (Operations And Maintenance) cell
(3.7%). The AAL5 overhead is 16 bytes (8 bytes header + 8
bytes tail), which is applied to every IP packet. A patch to HTB
makes is possible to specify an overhead per packet. The ATM
cell padding overhead is the most difficult to calculate, as it is
a function of the packet size (plus the AAL5 overhead and pos-
sible TCP options, modulus 48). There is currently no support
to account for this kind of overhead in the Linux queuing sys-
tem, but we are in progress of implementing this3. Until then,
we have to estimate the average ATM padding overhead except
for the ack traffic, where the packet size is fixed (minimum two
ATM cells) . Figure 8 shows the overhead of the ATM encap-
sulation for both the ack traffic and the other kinds of traffic for
the experiment depicted in Figure 5. The bandwidth has been
adjusted for the fixed part of the ATM encapsulation overhead.
Although not surprising when doing the math, it is dispiriting
to see that (at maximum) 313 Kbit/s (63%) of the bandwidth is
consumed by the ack packets, where 160 Kbit/s (32%) is due to
pure overhead. This shows that even for ADSL connections it
might be beneficial to perform some kind of ack filtering.

E. Alternative Packet Scheduling Algorithms

The choice of HTB as our link-sharing mechanism is mainly
based on the overhead calculation feature. We would pre-
fer to use Hierarchical Fair Service Curve (HFSC)4 [15] be-
cause of the ability to decouple delay and bandwidth allocation.
Our practical experiences with HFSC have shown that we can
achieve a better delay bound in our interactive class. However,
we cannot use HFSC currently due to the inability to account
for the variable ATM overhead, without sacrificing to much up-

�

The Linux implementation (of cbq, HTB, police and tfb) uses a rate table,
where a packet size is mapped to a delay via a precomputed table, which makes
it difficult to implement.

�

That has been ported from AltQ to Linux, and recently have been accepted
into the main Linux kernel (from v.2.4.25)



6

Fig. 8. IP traffic size and per IP packet ATM encapsulation overhead for ac-
knowledgments and other traffic using real world traffic and 1 GB down-
stream transfer on a 8Mbit/512Kbit ADSL connection with HTB packet
scheduling.

stream bandwidth. We are in the progress of implementing this
type of overhead accounting, as it seems easier to implement
into HFSC than HTB where packet sizes are mapped to delays
via a table with only 256 entries.

IV. CONCLUSION AND FUTURE WORK

Achieving low latency for interactive traffic and high link uti-
lization on shared ADSL connections can be problematic, un-
less some form of resource control is used on the upstream line.
In this paper, we have shown that TCP throughput problems
are present on ADSL connections in real world networks due
to a high load on the upstream line caused mainly by peer-to-
peer traffic. Our experiences with link-sharing implemented in
a middle-box between the network and the Internet show that
using a class-based scheduler provides both good downstream
utilization and low latency for interactive use. The scheduling is
based on the following five traffic classes: interactive, acknowl-
edgments, well-known services, peer-to-peer applications and
default traffic. However, our experiences tell us that it is dif-
ficult to capture all peer-to-peer traffic as the protocols specifi-
cally try to avoid such classification. Finally, we have described
how accurately estimating the link layer overhead is necessary
to avoid queuing delays in network hardware beyond our con-
trol, and that limited ack filtering may be a way to reduce ack
bandwidth consumption.

Future work includes conducting experiments with other link-
sharing algorithms, especially hierarchical fair service curve.
Furthermore, we are in the progress of implementing more pre-
cise link layer overhead calculations. Finally, we are currently
developing methods for automatically detecting a larger class of
peer-to-peer traffic and interactive traffic, which will allow us to
better enforce link-sharing policies.

V. ACKNOWLEDGMENTS

Walter Karshat has provided the HTB overhead patch and has
in general been a great help concerning the Linux HTB im-
plementation. Patrick McHardy and Oleg Cherevko have pro-

vided valuable advice on configuring HFSC. The use of drraw
by Christophe Kalt has been invaluable in analyzing the data.

REFERENCES

[1] Van Jacobson, “Congestion avoidance and control,” in ACM SIGCOMM
’88, Stanford, CA, Aug. 1988, pp. 314–329.

[2] Hari Balakrishnan, Venkata N. Padmanabhan, and Randy H. Katz, “The
effects of asymmetry on TCP performance,” in Mobile Computing and
Networking, 1997, pp. 77–89.

[3] Lixia Zhang, Scott Shenker, and David D. Clark, “Observations on the
dynamics of a congestion control algorithm: the effects of two-way traf-
fic,” in Proceedings of the conference on Communications architecture &
protocols. 1991, pp. 133–147, ACM Press.

[4] Lampros Kalampoukas, Anujan Varma, and K. K. Ramakrishnan, “Im-
proving TCP throughput over two-way asymmetric links: analysis and
solutions,” in Proceedings of the 1998 ACM SIGMETRICS joint inter-
national conference on Measurement and modeling of computer systems.
1998, pp. 78–89, ACM Press.

[5] N. K. G. Samaraweera, “Return link optimization for internet service pro-
vision using dvb-s networks,” ACM Computer Communications Review
(CCR), vol. 29, no. 3, pp. 4–19, 1999.

[6] H. Balakrishnan, V. N. Padmanabhan, G. Fairhurst, and M. Sooriyaban-
dara, “RFC3449 – TCP performance implications of network path asym-
metry,” Tech. Rep., RFC, Dec. 2002.

[7] Juha Heinanen, “RFC1483 – Multiprotocol encapsulation over atm adap-
tation layer 5,” Tech. Rep., RFC, July 1993.

[8] D. Grossman and J. Heinanen, “RFC2684 – Multiprotocol encapsulation
over atm adaptation layer 5,” Tech. Rep., RFC, Sept. 1999.

[9] Yin Zhang and Vern Paxson, “Detecting stepping stones,” in In Proc. of
9th USENIX Security Symposium, 2000.

[10] Yin Zhang and Vern Paxson, “Detecting backdoors,” in In Proc. of 9th
USENIX Security Symposium, 2000.

[11] Sally Floyd and Van Jacobson, “Link-sharing and resource management
models for packet networks,” IEEE/ACM Transactions on Networking,
vol. 3, no. 4, pp. 365–386, 1995.

[12] Martin Devera, Hierachical token bucket theory, May 2002.
[13] Sally Floyd, Notes of Class-Based Queueing: Setting Parameters, Feb.

1996.
[14] “I.363.5, B-ISDN ATM adaptation layer specification:, Type 5 AAL,”

Standard, ITU-T, Aug. 1996.
[15] Ion Stoica, Hui Zhang, and T. S. Eugene Ng, “A hierarchical fair service

curve algorithm for link-sharing, real-time, and priority services,” IEEE/
ACM Transactions on Networking, vol. 8, no. 2, pp. 185–199, 2000.


