I at-a -l 0. o-d o ke Tonrs b 4ot

Do Linux Asynchronous I/0 Really Matters?

Christoffer Hall, Bjarke Mortensen, Philippe Bonnet,
Heikki Tuurli, Peter Zaitsev

Technical Report no. 04/03
ISSN: 0107-8283

DIKU

University of Copenhagen e Universitetsparken 1
DK-2100 Copenhagen e Denmark

Do Linux Asynchronous I/O Really Matter?

Christoffer Hall', Bjarke Mortensen!, Philippe Bonnet!, Heikki Tuuri?, Peter Zaitsev®

! University of Copenhagen, ?Innobase Oy Inc., SMySQL AB
{hall, rodaz, bonnet}Qdiku.dk, heikki.tuuriQinnodb.com, peter@mysql.com

Abstract

The newly released Linux 2.6 kernel sup-
ports asynchronous I/O. This evolution
corresponds to the wishes of established
database vendors. The question is though:
What kind of impact do asynchronous I/0O
actually have on database performance?
This depends on the performance charac-
teristics of the Linux I/O subsystem, but
also on the way the database server utilize
it. In the context of the Badger project, a
collaboration between MySQL AB and Uni-
versity of Copenhagen, we evaluated how
MySQL/InnoDB can best take advantage of
Linux asynchronous I/0. This paper docu-
ments our analysis and our proposals. We
present a simple tool that we use to ex-
tract the key performance characteristics
of Linux asynchronous I/O. We show that
MySQL/InnoDB does not utilize their full
potential (neither does Oracle 9.2), and we
propose modifications of the InnoDB stor-
age manager to remedy these limitations.
Finally, we make the case that database per-
formance could be further improved if Linux
supported prioritized asynchronous I/0.

1 Introduction
1.1 Linux, Databases and I/0

Established database vendors are promoting Linux
as a platform of choice for commodity servers. In
addition to crafting marketing messages, they are in-
volved in the evolution of the Linux kernel [13, 10].

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the VLDB copyright notice
and the title of the publication and its date appear, and no-
tice is given that copying is by permission of the Very Large
Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

Oracle and IBM in particular have argued that ker-
nel support for asynchronous I/O! was critical for
database performance [19]. Their efforts have re-
sulted in the adoption of asynchronous I/O in Linux
2.6.

In the context of the Badger project, a collabora-
tion between University of Copenhagen and MySQL
AB, we studied how MySQL equipped with the Inn-
oDB? storage manager could best take advantage of
Linux asynchronous I/O: What are the performance
characteristics of Linux asynchronous I/O? Does the
MySQL/InnoDB storage manager take best advan-
tage of them? Can the Linux kernel be further en-
hanced to support database I/O? This paper docu-
ments our analysis and our proposals.

But why even bother with I/O? As all other
database vendors, MySQL and InnoDB developers
regularly interact with clients who want to get the
best performance out of their I/O devices. Ide-
ally, it is the hardware configuration that lim-
its I/O performance, but does the software layers,
MySQL/InnoDB (or as a comparison point Oracle)
on top of Linuz, utilize the underlying I/O devices
as efficiently as possible? This is the question that
underlies this study.

1.2 The Promises of Asynchronous I/O

In the rest of the paper, we adopt a classic represen-
tation of the software layers on top of I/O devices
(see Figure 1): The database server relies on OS
kernel services to access the underlying I/O devices.
Kernel services are typically organized in three lay-
ers [21]. At the bottom, device drivers abstract the
actual communication with the hardware devices.
On top of these drivers, the I/O subsystem is re-
sponsible for the execution of I/O requests. The top
layer consists of the file services (e.g., layout and

L According to Open Group definition: An asynchronous
I/0O operation is an I/O operation that does not of itself cause
the thread requesting the I/O to be blocked from further use
of the processor [14].

2MySQL can accomodate various storage managers. In
this paper we focus on InnoDB, whose structure is similar to
Oracle’s storage manager.

Database System

USER SPACE

Page Cache File Services
Manager

‘ submission/completion ‘

KERNEL j 1
10 Subsystem (Wt fuss

O

Y
i
‘ 10 Scheduler i ‘
i

j
;
<In(errup§)

Device Driver

HARDWARE .
10 Device

Figure 1: Software Layers (database and kernel ser-
vices) on top of I/O Devices

metadata management, caching). We detail the in-
ternals of the Linux kernel services in Section 2.
Before we discuss the potential impact of asyn-
chronous I/O on database performance, let us briefly
review the I/O requests generated by a database sys-
tem:

e Random reads to data files (as well as system or
temporary files) at query processing time when
a user transaction requests a page which is not
found in the database buffer (these are called
physical 1/0).

e Sequential read requests to prefetch pages from
a data file when scanning a table.

e Sequential writes to the log files when log
records are forced to disk (on one or several log
files).

e Random write requests to lazily write dirty
pages to data files whenever the amount of free
pages in the database buffer is too low or possi-
bly whenever the checkpoint procedure requires
it to do so.

To efficiently support database I/0, the OS kernel
must efficiently support concurrent I/ O requests on
multiple files®. This is why asynchronous I/O are, in

3In addition, the file system should provide backup capa-
bilities (specially for the data and index files).

principle, very attractive for database servers. They
allow to:

1. Accumulate reads or write requests so that the
I/0 subsystem can optimize performance. The
file system can group and reorder I/O requests
in order (i) to favor sequential access to disk
and (ii) to favor larger requests. This benefits
all I/O issued by the database server.

2. Parallelize reads and write requests to multiple
files. This benefits concurrent requests on log
and data files.

3. Overlap I/O and CPU work. This benefits
physical I/O in particular when prefetching (or
sorting) data.

Historically, Unix has implemented I/O requests as
synchronous operations [12]. Kernel support for
asynchronous I/O was introduced on raw devices in
the mid-90s on Solaris 2.4 and other versions of Unix
later on [24]. The problem with raw devices is that
they are not practical to manage. To alleviate this
problem, Veritas among others provide disk man-
agers offering file system interfaces and fine grained
backup capabilities on top of raw devices[26]. Linux
Volume managers [22] also provide some manage-
ment and backup capabilities when using raw de-
vices. We use raw devices as a point of reference in
our experiments.

Before kernel asynchronous I/O were available, Unix
databases emulated non blocking I/O on top of
the available synchronous primitives, with ancil-
lary threads spawned to submit synchronous re-
quests without directly blocking the threads manag-
ing user transactions (i.e., log writers, lazy writers
and prefetchers). These ancillary threads provided
an overlap between I/0 and CPU work but still pro-
ceeded one I/0 request at a time. As of version 7,
Unix versions of Oracle could be configured to uti-
lize asynchronous I/0. So far, MySQL/InnoDB still
emulates asynchronous I/O on Linux. In the con-
text of this study, we extended InnoDB to support
native Linux asynchronous I/O. We describe our im-
plementation in Section 3.

Interestingly, asynchronous I/O have always been
available on Windows NT. In 2000, L.Chung and
J.Gray studied the performance characteristics of
the Windows NT file system from a database per-
spective [11]. Such a comprehensive study still has
to be conducted for Linux.

1.3 Contribution

To study how InnoDB can best take advantage of
Linux asynchronous I/O, we decided to tackle the
following issues:

1. What are the performance characteristics of
Linuzx asynchronous I/0¢ Our goal is to identify
the regime where Linux asynchronous I/O pro-
vide best performance in terms of latency and
throughput.

2. Does MySQL/InnoDB (and as a point of com-
parison Oracle) utilize Linuz asynchronous I/0
to their full potential? A database server typi-
cally submits a mix of read and write requests.
Some of those block the threads executing user
transactions (writes to log, physical I/0) and
should complete as quickly as possible, others
are executed in the background (prefetch reads,
lazy writes) and should be executed in batches
that maximize throughput. Does the actual I/O
workload generated by MySQL/InnoDB corre-
spond to the optimal regime for Linux asyn-
chronous I/O performance? If not, how can Inn-
oDB be modified to better utilize Linux asyn-
chronous I/O performance?

3. Can Linuz asynchronous I/O be improved to
support database workload? More precisely:
Can the OS kernel help the database server
control the trade-off between I/0 latency and
throughput? For example, if we push the idea
of lazy writing, the database server should be
able to submit a batch of write requests and
tell the OS to schedule them so that they do
not block any other I/O request.

This paper documents our analysis and our propos-
als. More specifically, we make the following contri-
butions:

e We evaluate the capacity of Linux to accumu-
late asynchronous I/O requests and schedule
them efficiently, and we discuss the potential
impact on database performance. The simple
tool we used to run our experiments is avail-
able on-line* so that system administrators can
evaluate the key performance characteristics of
Linux asynchronous I/O on their own installa-
tion.

e We show that MySQL/InnoDB does not utilize
the full potential of Linux asynchronous I/0O
(and that neither does Oracle). We propose
modifications of InnoDB to remedy these prob-
lems.

e We argue that asynchronous I/O could be
enhanced with priorities to control the la-
tency/throughput trade-off for the mix of I/0
requests that characterize a database workload.

4http://www.distlab.dk/badger/

We would like to note that the emergence of com-
mercially viable open source systems empowers the
database research community (and not just a few
industrial labs) to impact the design and implemen-
tation of actual products. This paper is a first step
in this direction.

2 Linux Asynchronous I/O

Before we focus on the performance of Linux asyn-
chronous I/0, let us describe the internals of the
Linux kernel that are relevant for our study.

2.1 Linux Kernel Internals

Let us zoom in on the Linux kernel services [1] il-
lustrated in Figure 1. The file system provides the
file abstractions that the database storage manager
relies on® and implements a set of services including
the file system cache. This cache stores pages that
have previously been read from files and it stores
pages that have just been written. The fsync sys-
tem call flushes all buffered write requests to disk.
In addition, a lazy writer (called pdflush) forces
dirty pages to disk regularly or as a result of mem-
ory pressure. When a sequential pattern is detected
among read requests, a read ahead mechanism is ac-
tivated to prefetch pages (the number of prefetched
pages depends on memory pressure). Because the
file system cache is in kernel space, buffered pages
are copied between kernel and user space whenever
they are read or written.

Linux supports direct I/O that bypass the file system
cache when reading or writing to a file. Direct I/O
requests manipulate pages allocated in user space.
Whether read and write operations are buffered or
direct is specified for each file when it is opened (e.g.,
using the 0_DIRECT parameter for direct I/0O). Note
that I/O devices can also be opened as raw devices,
in which case the application directly interacts with
the I/O subsystem®.

As of version 2.6, the Linux I/O subsystem fully
relies on asynchronous I/O. Synchronous I/O are
implemented on top of asynchronous I/0. When
an I/0 request is submitted, it is associated to a
completion queue. A worker thread then progresses
through an asynchronous state machine, and ends
up sending a page request to the disk scheduler.
When the page request completes, an interrupt is
raised (within the I/O device driver). In case of di-
rect I/0O, the I/O completion is notified from the

5We ignore memory-mapped operations as they are not an
option for database systems, at least on 32 bits architectures.

6By default, Linux supports buffered access to raw devices.
As of Linux 2.6, direct access to raw devices is possible us-
ing the 0_DIRECT parameter. Previously, a specific raw driver
needed to be used to avoid buffering accesses to a raw device.
In our experiments we used direct access to raw devices using
the deadline scheduler.

interrupt context. In the case of buffered read, the
I/O completion is notified after the page is added to
the file system cache.

A request to the disk scheduler logically consist of a
number of contiguous sectors and a flag that states if
the blocks should be read or written. These requests
are typically sorted in order to minimize disk seeks.
Another way to minimize seeks is to merge smaller
requests into a larger one to exploit disk through-
put and to minimize the number of DMA transfers.
Note that Linux uses one disk scheduler per I/O de-
vice. As a consequence, I/O requests submitted to
different disks are actually treated in parallel.
Linux 2.6 implements a deadline-based scheduler”.
When a request enters the disk scheduler it is as-
signed a deadline using a fixed time offset. Differ-
ent time offsets are used for reads (0,5 second) and
writes (5 seconds). This deadline describes a point
in time by which the request should be submitted to
disk. This is done to avoid starvation (requests that
are never submitted if the scheduler only focuses on
minimizing seeks). The disk scheduler arranges the
requests it receives both in a Red-Black tree, that
sorts requests on the first sector they access and in
two lists (one for read, the other for write) sorted by
timestamp (or deadline) associated to each request.
Because the deadlines are simply defined using time
offset, those sorted lists are simply FIFO queues. A
dispatch queue is used to store the requests sched-
uled for submission.

The device driver always accesses the dispatch queue
first. If there are requests on it they will be sent to
the I/O device. If there are no requests on the dis-
patch queue, then the driver will look to the deadline
list. If the earliest deadline is reached then the asso-
ciated requests are moved to the dispatch queue. If
no deadline is reached, then requests are moved to
the dispatch queue from the sector-sorted Red-Black
tree.

2.2 Performance Characteristics

We ran a set of experiments to find out (a) whether
Linux asynchronous I/O did a good job at utilizing
the capacity of the underlying I/O device in terms of
latency and throughput, and (b) what kind of over-
head they incurred in terms of CPU usage. Based
on the results of our experiments, we discuss how
databases could take best advantage of Linux asyn-
chronous I/O.

TLinux 2.6 actually provides several disk schedulers. The
default scheduler is called anticipatory, as it waits for some
predefined I/O patterns, e.g., when a page is read the disk
scheduler waits for a contiguous page before scheduling other
requests. Those patterns do not fit the needs of database sys-
tems. There is also a no-op disk scheduler that basically seri-
alizes the incoming requests and hands over the responsability
of scheduling to an underlying RAID or SAN controller.

2.2.1 Experimental Set-up

Our experiments focus on the capacity of Linux
asynchronous I/O to optimize performance by ac-
cumulating read or write requests. We conduct two
sets of experiments:

e pure: We consider pure workloads, consisting of
either random read, random write, sequential
read, or sequential write. We vary the num-
ber of outstanding requests. We expect that
increasing the number of outstanding requests
will improve throughput at the cost of increased
latency. We conduct these experiments with
buffered I/0, direct I/0, and raw I/O. The pure
experiments are a baseline that characterize the
performance of Linux asynchronous I/O.

e miz: We consider workloads where random and
sequential I/O requests are mixed. We vary
the amount of random requests to find out
how much perturbation mix workloads intro-
duce with respect to the pure baseline.

We run our experiments using a simple tool that sub-
mits I/O requests, so that the number of outstand-
ing requests remains constant over the duration of
each experiment. Requests are issued against a 1
GB file. Each request manipulates 16KB (i.e., the
size of an InnoDB page). Sequential requests scan
the file, while random requests cover the whole file
randomly. We measure latency for each request and
throughput as the ratio of the total amount of data
transferred (1 GB) over the total time for all re-
quests. We measure CPU usage using mpstat. We
remounted the file system (ext3) between runs to
enforce a cold cache.

The I/0 devices in our experiments are just a bunch
of disks (IBM Ultrastar 36LZX), directly connected
to a dual 1GHz Pentium III server via a SCSI bus on
two different channels (Dual chanal Adaptec AHA-
3960D controller). The disks are configured with
read ahead and write back enabled. The server has
1GB of RAM. This simple hardware configuration
(no RAID) allows us to reduce the number of pa-
rameters as we focus on the Linux kernel services.
Running hdparm, we measured a sustained data rate
of 34,5 MB/sec which matches the disk specifica-
tion [2]. This is the sequential throughput we can
hope for.

2.2.2 Results

Pure Workload

We expect that increasing the number of outstand-
ing requests will improve throughput and increase
latency.

Figure 2 shows the throughput of random requests
for buffered and direct I/O as we increase the num-
ber of outstanding requests. We should note that

Write buffered —@—

Write/fsync buffered --¢}--
Read buffered --4p--
Write direct

Read direct —

Throughput in MB/s

0 L L L L L L L L L L L
1 2 4 8 16 32 64 128 256 512 1024 2048 4096

Number of outstanding requests

Figure 2: Throughput of random requests (buffered
vs. direct I/0)

Write buffered —@—
Write/fsync buffered --€3--
45 Read buffered --4p-- 4
Write direct
Read direct ,g,
40 F g
2
@
=
£
2oy [CR- q
5 G O ©
£ 20 o i
=
15 e B
o
10 | g
5 e g
s .
1 2 4 8 16 32 64 128 256 512 1024 2048 4096
Number of outstanding requests
Figure 3: Throughput of sequential requests

(buffered vs. direct I/0)

we issue a single fsync for write buffered, while for
write/fsync buffered we issue an fsync command ev-
ery N request we submit (e.g., when we maintain
64 outstanding requests, we issue a fsync every 64
requests).

Throughput remains constant at around 2,5 MB/sec
for buffered reads and at around 6 MB/sec for
buffered writes (with a single fsync). The frequency
of fsync has a significant impact on performance.
Throughput remains lower than 4 MB/sec until
fsync commands are issued every 1024 requests or
more®. The good performance of buffered write is
not surprising as requests are submitted to disk in
large chunks by the lazy writer. The poor perfor-
mance of buffered reads is mainly due the unnec-

8The disk controller maintains a number of outstanding
requests and schedules them to minimize access time, i.e., the
combination of seek and rotational latencies required to bring
the desired physical block under the head.

Write buffered —@—

i i

Write/fsync buffered --€:-- i
Read buffered --4p-- i 1
Write direct i i

Read direct —

Latency in sec

o Y - WY, - . 4 L L L
2 4 8 16 32 64 128 256 512 1024 2048 4096

Number of outstanding requests

Figure 4: Latency of random requests (buffered vs.
direct I/0)

essary read ahead. The throughput of direct reads
increases quickly with the number of outstanding re-
quests: from 3 MB/sec for 1 outstanding request to 6
MB/sec for 64 outstanding requests. In comparison,
the throughput of direct writes increases slowly: it
reaches 5 MB/sec for 512 outstanding requests. As
expected, the increased throughput is due to the or-
dering of requests in the disk scheduler. Requests
spread over a larger file (or a fragmented file) would
result in a more modest throughput increase.
Figure 3 traces the throughput of sequential requests
as a function of the number of outstanding requests.
We could expect that increasing the number of out-
standing requests would lead the scheduler to merge
requests into large blocks and thus favour through-
put. However, we observe that throughput remains
constant for buffered and direct requests (at around
30MB/sec for writes and 33 MB/sec for reads). In
general throughput is slightly higher for read com-
pared to writes. This is because the disk controllers
implement a form of read ahead [2] that benefits
read requests. Those results show that for sequen-
tial requests, the number of outstanding requests is
irrelevant. The key parameter is the rate at which
requests are submitted. The frequency of fsync has a
very significant impact on performance: throughput
improves from 1 to 25 MB/sec when the frequency
of fsync increases from one per request to one per
4096 requests.

Figure 4 traces the average latency of random re-
quests as a function of the number of outstanding
requests. The latency increases linearly with the
number of outstanding requests. The latency of
buffered writes is significantly lower than the latency
of buffered reads. The latency of direct requests lies
in between. For direct requests, average latency be-
comes noticeably high (above 0,5 second) when the
number of outstanding requests reaches 128.

Write buffered —@—

Write/fsync buffered --€}--

Read Buffered --4p--
Write direct

Read direct —<g—

Latency in sec

- 4 .
32 256 1024
Number of outstanding requests

16 512 2048 4096

Figure 5: Latency of sequential requests (buffered
vs. direct I/0)

20

Write buffered —@—

Write/fsync buffered --€3--

Read buffered --4p>--
Write direct

Read direct —<g—

CPU usage in msec/MB

5%1’.’.’.’.’.;;.’.’;’.“ .'_'.'_'.'_'.0".'_'_‘_‘_' :_':_'_"9‘;; ;;;; g ------ O ek
[L L - 9 _______ 9_ Q‘I"'_Q’”Q’ _____ 4}
1 2 4 8 16 2 64 128 256 512 1024 2048 4096

Number of outstanding requests

Figure 6: CPU usage for sequential requests
(buffered vs. direct I/0)

Figure 5 traces the latency of sequential requests
as a function of the number of outstanding requests.
The latency of sequential requests is lower compared
to the latency of random requests but has a similar
pattern. A latency of 0,5 seconds is reached when
the number of outstanding requests is higher than
1024.

Figure 6 traces CPU overhead as a function of
the number of outstanding requests. CPU usage
is high for buffered writes, because of contention
between our benchmark tool and the lazy writer.
For the other requests, CPU usage is lower than 3
msec/MB (this is comparable to the CPU overhead
measured by Chung et al. for direct I/O on Windows
2000 [11]).

Additional experiments showed that direct I/O and
raw I/O exhibit similar characteristics in terms of
throughput and latency. The only minor difference
we observed was a slightly higher CPU overhead for

Read direct (64 rq,
Write direct (128 rq,
Read direct (128 rq

Write direct (32 rq)
Read direct (32 rq) -
Write direct (64 rq) -
) -5
s &
) O

Throughput in MB/s

P TR T R
0O 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 MM
Percentage of random I/0 submitted

Figure 7: Throughput of a mix of sequential and
random requests

05
Write direct(32 rq) +
Read direct (32 rq) -
Write direct (64 rq) ---0---
Read direct (64 rq) - i
Write direct (128 rq) —-#-~ H
04 Read direct (128 rq) ---0--- 4

02

Average latency in sec

P e S RS T e
f
JO ER R - R B oL s p s [ERRER = S s e
Lot
P A S S S SR
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 MHME

Percentage of random I/O submitted

Figure 8: Latency of a mix of sequential and random
requests

direct writes compared to raw writes.
Mix Workload

Figure 7 (resp. 8) traces the throughput (resp. la-
tency) of a mix of sequential and random requests.
The x-axis represents the percentage of random re-
quests in the mix. As expected, throughput de-
creases sharply as soon as random I/O are mixed
with sequential I/O. However, troughput remains al-
most constant until 50% of the requests are random.
Throughput falls sharply when the pecentage of ran-
dom requests is higher than 75%. As our pure ex-
periments indicated, throughput increases with the
number of outstanding requests. Latency follows a
similar pattern: it increases significantly as soon as
random requests are submitted in addition to se-
quential requests, it then remains stable until the
percentage of random requests reaches 70% after
which latency increases very sharply.

2.2.3 Discussion

Our experiments focused on the capacity of Linux
asynchronous I/O to accumulate I/O requests and
schedule them efficiently. Our results show that:
Near optimum random read throughput is achieved
with only 32 outstanding requests, near optimum
random write throughput is achieved with 512 out-
standing requests, latency of random requests is
higher than 0,5 seconds if the number of outstand-
ing requests is greater than 128 outstanding re-
quests. Our benchmarking tool can be used by sys-
tem administrators to gather key characteristics of
the Linux asynchronous I/O on their own installa-
tion.

The experiments we ran do not represent an ex-
tensive study of the performance characteristics of
Linux asynchronous I/O. We did not evaluate the
performance impact of varying the data size of the
I/0 requests®. Also, our experiments are run with
a single thread issuing requests on a single file: We
did not conduct scalability experiments. IBM Linux
Technology Center is conducting such experiments.
Preliminary results are presented in [9, 7].

We draw the following conclusions from our experi-
ments:

1. Linuz databases should use direct I/O Direct
I/O offer best performance for the mix of se-
quential and random request that character-
ize database workloads. Compared to buffered
I/0, direct I/O provide better random read,
better CPU utilization, and equivalent scan per-
formance. And if the number of outstanding
requests is high enough, direct I/O approaches
the performance of buffered I/O for random
writes. Direct I/0O provides equivalent perfor-
mance compared to a raw device while provid-
ing a file system abstraction.

2. The rate of submission is key for sequential op-
erations. This impacts prefetching (sequential
reads) and log writing (sequential writes). Both
operations should result in a sustained flow of
request submissions. These operations will be
most efficient if they succeed in maintaining at
least one outstanding I/O request. Through-
put drops significantly as soon as random re-
quests are mixed with the sequential requests.
They should be kept separated as much as pos-
sible (separate disks for log and data that are
scanned extensively).

3. The throughput of random reads increases
sharply with the number of outstanding requests.
In a database workload, random reads corre-
spond to physical I/O directly issued by the

9InnoDB performs I/O using 16KB pages

query thread, which means that latency is of
the essence. As a consequence, it does not seem
reasonable to consider more than 64 or 128 out-
standing read requests in our set-up. Fortu-
nately, 32 outstanding requests already achieve
close to optimal throughput. Also, the mix ex-
periments show that throughput and latency
remain high if few random requests are mixed
with sequential requests. As a consequence, the
database system should control the number of
outstanding random read requests.

4. The throughput of random writes increases
slowly with the number of outstanding requests.
In a database workload, random writes corre-
spond to lazy writes of dirty pages. It should be
possible for the database server to collect large
number of dirty pages and submit them in large
batches of random writes in the background.
The high latency is not a problem as long as
random writes do not interfere with other I/O
requests. Ideally, the random writes are sched-
uled when no other I/O request is pending. This
would require that the disk scheduler integrates
the notion of priority. We discuss this issue in
Section 4.

3 InnoDB and Asynchronous I/O

InnoDB is the most classical of MySQL storage man-
agers as its model is comparable to Oracle’s: Sup-
port for multi-read consistency, separation of redo
and undo log, utilization of tablespaces as abstrac-
tion for data files. We focus on I/0O, see [16] for more
details.

3.1 InnoDB and I/O

Before we present how InnoDB issues I/O requests,
let us review how files are organized. InnoDB ma-
nipulates log and data files (temporary files are or-
ganized as data files). Log files are managed as a
circular structure to which redo log records are ap-
pended!®. A tablespace consists of one or several
operating system files. Fach tablespace is structured
in segments. Segments are associated to tables. For
example, a table with a primary index is stored us-
ing a data segment and an index segment. Each
segment is organized in extents of 64 pages. Page
size is fixed at 16KB.

InnoDB issues following the I/0 requests:

o Sequential writes of log records. A write request
containing log records is submitted by a query
thread at commit time, or if the cache that
stores log records in memory is 50% full. In

10 As Oracle, InnoDB manages the circular log over several
files.

addition, the background server thread forces
log records to disk every second.

e Random writes of dirty pages. Dirty pages
are flushed to disk in batches of tunable size
whenever there is not enough free pages in the
database buffer. In addition, the background
server collects up to 100 dirty pages and submits
them as a batch if the observed I/O activity is
low.

e Random reads for physical I/0. Random reads
are submitted by query threads if the page they
access is not in the database cache.

o Sequential reads during prefetching. The query
thread performs prefetching as follows. If it ac-
cesses pages with a sequential pattern then it
prefetches extents, one at a time. Otherwise,
if a query thread accesses more than a tunable
number of pages from a same extent, then the
whole extent is prefetched. Pages are allocated
in the database cache as soon as I/O requests
are submitted. A query thread might access a
page for which the I/O request has not yet com-
pleted. In that case the query thread waits on
a latch and is notified when the I/O completes.

InnoDB uses native asynchronous I/O on Windows,
while it uses simulated AI/O on Linux and other
Unix systems. Simulated I/O rely on dedicated
threads (I/O handler threads) that accumulate I/0
requests and process them while the query thread
is running. The I/O threads merge I/O requests on
consecutive pages and submit them in sequence us-
ing synchronous I/0.

We modified MySQL/InnoDB v4.1 to utilize Linux
asynchronous I/O. Support for Linux asynchronous
I/0 is modeled on InnoDB’s support for Windows
asynchronous I/0. That means that asynchronous
I/O are submitted from the query threads directly.
The completion mechanism in Linux is a bit dif-
ferent than on Windows. On Windows, InnoDB
uses WaitForMultipleObjects to wait for events.
This funtion returns when a given event is ready
for processing. This is not the case in Linux as
get_event returns with a list of events. Instead
an eventprocessing thread is created, that pro-
cesses completion events and signals any thread that
is waiting for the completion of a given I/O request.

3.2 Utilization of Asynchronous I/0

We conducted a set of experiments to establish how
efficiently MySQL/InnoDB v4.1 uses asynchronous
I/0. We used Oracle 9.2 as a comparison because
it has similar characteristics. We configured both
systems to use native direct asynchronous I/0O.
Prefetching

100% — oEEEE T

80%

O3 outs. req.
@2 outs. req.
M1 outs. req.
O 0 outs. req.

60%

40% -

Distribution in %

20%

0%

MySQL MySQL Oracle
simulated AIO native AIO

Figure 9: Distribution of outstanding requests when
performing a scan

Using asynchronous I/0, a scan of 800 MB takes
29 seconds as opposed to 33 seconds with simulated
asynchronous I/O. The gain can be explained as fol-
lows. Using simulated asynchronous I/O, when a
request completes there is no outstanding request in
the kernel, it is InnoDB’s I/O thread that submits
the next request. Using native asynchronous I/0O,
64 requests are submitted at once so each extent is
prefetched efficiently. But could InnoDB do even
better? The answer is yes.

Figure 9 shows the distribution of outstanding
requests when scanning a 800 MB table with
MySQL/InnoDB using simulated asynchronous I/0O,
MySQL/InnoDB wusing native asynchronous I/O,
and with Oracle 9.2. We measured the outstand-
ing requests by sampling the kernel data structure
managed by the disk scheduler. We calibrated the
sampling rate using our benchmarking tool from Sec-
tion 2.

We saw in the previous section that the key to good
sequential read performance is to maintain at least
one outstanding request. Oracle does a good job:
There is at least one outstanding request for 96%
of the scan duration. InnoDB is much less effi-
cient: There is no outstanding request for 22% of the
scan duration using native asynchronous I/O (and
for 42% of the scan duration using simulated asyn-
chronous I/0). This is due to the fact that each ex-
tent is prefetched independently. InnoDB would im-
prove performance by adopting a prefetching strat-
egy similar to Oracle’s.

The rationale for prefetching an extent at a time is
that there is no guarantee that extents of a same
relation are contiguous on disk. It is true that if ex-
tents are not contiguous, a seek has to be performed.
But prefetching one extent at a time, introduces sig-
nificant processing time that could overlap with I/O
processing.

Physical I/0O

In order to study how InnoDB (and Oracle) submit
physical I/0, we submitted range queries that select
1000 out of 3 millions tuples using a secondary index.
We vary the number of client threads submitting

100

80 —&— 1 client
S)
p ——2 clients
= 60 A —A—4 clients |—
% ‘ M 8 clients
2 40 —%—16 clients ——
k]
a

20

Number of Outstanding Requests

Figure 10: Distribution of outstanding requests
when performing range queries on MySQL/InnoDB

100

—&— 1 client
. 80 " _—
S —— 2 clients
c N
= 604 —A—4 clients
2 8 clients
__3 40 —X%—16¢lients| |
2
2 20

0 f T

0 10 20 30 40

Number of Outstanding Requests

Figure 11: Distribution of outstanding requests
when performing range queries on Oracle

these queries. Again, we measure the distribution of
outstanding requests in the kernel by sampling the
kernel data structure used by the disk scheduler.
Figures 10 and 11 trace the distribution of outstand-
ing requests. They reveal similar behaviours. For
both systems, the number of outstanding requests
follows the number of query threads issuing random
reads (one per client thread): Each query thread
traverses the secondary index and accesses one data
page at a time.

In the case of InnoDB, we observe a heavy tail distri-
bution with a peak around 34 outstanding requests.
This is due to the extent read ahead mechanism
that prefetches extents on which random requests
are concentrating. On average however, the number
of outstanding requests is slightly higher than the
number of client threads.

We saw in the previous section that the trade-off be-
tween latency and throughput should be controlled
by the database server. However, fixing one out-
standing random read per query thread is definitely
not the most efficient way to control this trade-off:
(1) A single query thread could issue multiple out-
standing random reads and (2) the number of out-
standing requests should be limited per I/O device
not per query thread. Both InnoDB and Oracle
could improve the performance of multipoint and
range queries by modifying the way physical I/O is
submitted.

100 F

80 1

~—&—|og file
60 —¥—data file

Distribution in %

0 10 20 30 40
Number of Outstanding Requests

Figure 12: Distribution of Outstanding Requests
when performing an update larger than the database
buffer on InnoDB (Oracle displays a similar behav-
ior)

Database Writes

Figure 12 traces the number of outstanding requests
on the log file and on the data file (located on two
different disks) when performing an update of a table
(800 MB) larger than the database cache (600 MB)
using InnoDB. We ran this experiment with Oracle
and observed similar results.

When running a large update, we expect the
database system (a) to write frequently to the log
(as soon as it is full enough), (b) to read data from
the data file and (c) to write once in a while large
batches of dirty pages to the data file. We observe
a very different phenomenon. During 98% of the
update there are no outstanding requests to the log
file. It means that read and write requests to the
data file constitute a bottleneck. More precisely, at
some point during the execution of the update state-
ment, the amount of free pages reaches the threshold
where dirty pages are flushed to disk in batches of
tunable size (around 35 pages in our case, as the ac-
tual number of free pages is taken into account when
submitting the batch of writes).

This is typical of a situation where there is memory
pressure: There are steady flows of (sequential or
random) read and (random) write requests. In order
to achieve a trade-off between throughput and la-
tency, the storage manager submits alternately read
and write requests. Writes are submitted to disk in
batches of limited size in order to reduce latency. In
the meantime, the query thread is blocked on free
pages. As soon as a page is freed a new page is read
in. As we saw in Section 2 though, a mix of se-
quential and random requests achieves a satifactory
throughput even if 50% of the submitted requests
are random. The storage manager should thus give
the kernel a chance to intertwine read and write re-
quests.

3.3 Design Proposals

InnoDB does not utilize asynchronous I/O as well as
it could. Oracle does a better job for scan and writes,
but is still limited for random reads. Unix databases
both systems were initially designed for synchronous
I/0. By contrast, SQLServer was designed for asyn-
chronous I/O and offers solutions that match the
performance problems we pointed out [23].

We propose that InnoDB implements the following
mechanisms (including tunable parameters) to im-
prove its utilization of asynchronous I/0:

o Prefetching. Instead of prefetching one extent
at a time, InnoDB should prefetch data so that
there is always at least one outstanding request.
Whenever MySQL indicates that a scan is to
be performed, the query thread could initially
prefetch a couple of extents and then keep on
prefetching extents as soon as one extent has
been accessed. Such a design requires that the
query thread keeps track of the extent bound-
aries (as it does currently) and keeps track of
the next extent to be prefetched (this can be
accessed from the primary index used to struc-
ture each table in InnoDB).

o Index read ahead. Instead of accessing one page
at a time when traversing an index, InnoDB
could implement an index read ahead similar
to SQLServer’s. The idea is first to traverse
the index and collect the page ids to be ac-
cessed, and then to submit read requests for
these page ids in batches of tunable size (on our
hardware platform, our experiments from Sec-
tion 2 show that 16 outstanding request would
be the ideal size for these batches). If the num-
ber of concurrent threads increases then the size
of the batch should be reduced to maintain the
number of outstanding requests per I/O device
under a tunable maximum (the equivalent of
max_async_io in SQLServer [23]).

o Database writes. InnoDB manages the trade-off
between latency and throughput by submitting
random writes in large batches when I/O ac-
tivity is low and batches of limited size when
there is pressure on the database cache. In-
stead, InnoDB should maintain a steady stream
of outstanding write requests to give the disk
scheduler a chance to optimize throughput. The
problem is that submitting large batches of
random writes might interfere with other I/0
requests. When there is no pressure on the
database cache, writes should be performed
when there is no other request to submit. When
there is pressure on the database cache, writes
should be agressively intertwined with read re-

quests. This underlines the need for prioritized
I/O in the disk scheduler.

4 The Case for Prioritized I/0

Asynchronous I/O empowers the kernel disk sched-
uler to optimize its utilization of the available disk
bandwidth. The disk scheduler takes the decision of
submitting requests based on (a) the placement of
data on disk and on (b) the deadline associated to
each request.

The only possibility for the database server to con-
trol the scheduling of requests is to control their sub-
mission. As we saw in Section 3, this mode of control
is sub-optimal. The database server should be able
to provide the disk scheduler with information so
that it can take the best decision. Ideally, I/O that
block the query thread should be scheduled as fast
as possible, and in any case before I/O performed
in the background. This could be achieved if the
database server could associate priorities to the I/O
requests it submits. We consider the following no-
tion of priority:

e Each request is associated with an absolute
deadline. This would be useful to control the
trade-off between throughput and latency when
prefetching pages during a scan. This is imple-
mented by defining a set of priority levels. Each
priority level is associated to an absolute dead-
line.

e Each request is associated with a relative prior-
ity, i.e., requests blocking the query thread have
a higher priority than requests that donot. This
is implemented by introducing priority classes
and a scheduling mechanism ensuring that (i)
requests from a given priority class are sched-
uled before requests from a lower priority class
and that (ii) requests from low priority classes
do not starve.

The Linux disk scheduler can be modified to account
for priorities as follows. Instead of assigning dead-
line based on fixed time offsets, the scheduler could
assign to each I/O request a deadline based on its
priority: Requests submitted with high priority will
get deadlines that expire within a short time inter-
val and requests with low priority will get deadlines
that will expire within a longer time interval.

Deadlines based on variable time offsets require some
changes to the deadline scheduler. Since time offsets
were fixed, the scheduler maintainted read and write
requests using FIFO queues. First, the fact that
time offsets vary with request priority, invalidates
the use of FIFO queues. This means that the dead-
line queues need to be kept explicitly sorted. This
can be achieved with an insertion sort on the dead-
line queues. However, insertion sorts require scans of

one of the deadline queues and are thus CPU inten-
sive. CPU overhead may be reduced by using other
data structures than queues. B+-trees are good can-
didates. Second, we need to separate requests from
different priority class. This way, the device driver
can schedule requests with high priority before re-
quests with lower priority. This principle guarantees
that requests from the highest priority queue are al-
ways scheduled first and that requests from the low-
est priority queue are scheduled when requests in no
other priority class are submitted. However, it in-
troduces a risk of starvation for low priority queues.
An approach to the starvation problem is actually
to reduce the number of priority classes to three:
Requests in the upper class are serviced as soon as
possible, requests in the middle class are serviced as
soon as there is no upper class request, requests in
the lower class are submitted whenever the sched-
uler has nothing else to do. Starvation might still
take place if there is a constant flow of requests in
the upper class, but we saw that it was unlikely in
the context of a database workload.

Another key aspect of the disk scheduler concerns
the allocation of requests. Linux preallocates a num-
ber of requests available for normal disk I/O (spe-
cial commands for eg. disk flushes do not use the
preallocated requests). There is not much point in
setting different deadlines, if a low priority task is
able to get all the preallocated requests. It reduces
the number of requests that the disk scheduler can
work with and may reduce quality of the scheduling.
This is why priorities should also be considered when
allocating requests. A simple solution is to define al-
location groups associated to priority classes. That
effectively means that higher priority task can get
requests preallocated for lower priority tasks. This
also reduces contention on popular allocation groups
(eg. the allocation group with the default priority).
Incorporating support for priorities in the Linux disk
scheduler and evaluating its benefits for database
workloads is a topic for future research.

5 Related Work

Asynchronous I/0O, and even prioritized I/0, are
commonplace on mainframes. For example, IBM
supports I/O request priorities in the context of its
Enteprise Storage Server [18]. A priority is associ-
ated to each I/O request. Within the fibre chan-
nel adapter, requests are dispatched into different
queues depending on their level of priority. The
scheduled requests are taken from the highest pri-
ority non empty queue. Once the active queue is
empty, requests from lower priorities are promoted
one priority level and the new highest priority non
empty queue becomes active. This queue promotion
process guarantees that low priority requests do not

starve. Our case for prioritized I/O in Linux follows
the downsizing trend from mainframes to commod-
ity servers analyzed by Gray and Nyberg [12].
Recently, McWerther et al. [17] argued that pri-
ority mechanisms were needed inside the database
systems to efficiently support OLTP and transac-
tional web applications. Their study show that Post-
gresSQL with its multi-read consistency model (sim-
ilar to Oracle and InnoDB) exhibits an I/O bottle-
neck when running the TPC-C and TPC-W bench-
marks. The I/O priorities we argue for are a natural
complement to their CPU and lock scheduling poli-
cies.

There are few studies of Linux asynchronous I/O.
The most complete description so far was led at IBM
Linux Center [9, 8]. Jens Axboe posted a version of
the Linux anticipatory disk scheduler that supports
priorities [6]. The priority level of I/O requests is
fixed by the priority of the task that submits them.
This does not correspond to the database needs ex-
pressed in Section 4.

More generally, I/O have not received a lot of at-
tention in the database research community lately.
Most results are published in measurements (CMG,
SIGMETRICS) or high performance computing con-
ferences (HPCA), in white papers (e.g., [25, 15, 3],
or on Jim Gray’s home page (e.g., [11, 12]).

We chose to consider a simple hardware config-
uration involving a server connected to a couple
of disks because our point concerned the way the
database utilize the underlying kernel services. Now,
it will be interesting to study the behaviour of Linux
databases on hardware set-up including large SMP,
and clusters as well as storage area networks (SAN).
Arpaci-Dusseau et al. [4] studied the impact of dif-
ferent architectures (server, SMP and cluster) on
the performance of streaming I/O. They concluded
that none of the architectures were well-balanced
and that CPU was becoming a bottleneck before
any other ressources as they increased the amount
of I/0. Their data processing benchmarks (scan and
insert) issued I/O requests as efficiently as possible.
We showed in Section 3 that this was not the case for
the asynchronous I/O submitted by InnoDB (and to
a lesser extent Oracle).

SAN raise a set of interesting challenges as they
encapsulate a significant portion of I/O processing
(including cache management and request schedul-
ing) [5]. Our goal with this paper was to study
the collaboration between a database server and
the kernel disk scheduler. When using a SAN, the
scheduling of I/O requests does not take place at
the OS level but within the SAN controller. Improv-
ing the collaboration between a database server and
the SAN controller raises great challenges. Schindler
et al. [20] already proposed to communicate perfor-
mance characteristics from the storage device (e.g.,

preferred access patterns) to the storage manager so
that it can take take informed decisions when sub-
mitting I/O requests. This area should definitely be
investigated further.

6 Conclusion

Our goal was to study how MySQL/InnoDB could
take best advantage of Linux asynchronous I/O. We
first established the capacity of the deadline sched-
uler to accumulate I/O requests and schedule them
efficiently. We showed that (a) direct I/O achieve
better performance than buffered I/0, that (b) the
rate of submission is key for sequential I/O and that
(c) for random I/0, the trade-off between through-
put and latency depends on the number of out-
standing requests. We added support for native
Linux asynchronous I/O to InnoDB. We demon-
strated that MySQL/InnoDB performs better with
native asynchronous I/O than with simulated asyn-
chronous I/0O. However, our experiments show that
MySQL/InnoDB does not utilize the full potential of
asynchronous I/O when scanning a table, accessing a
set of pages through a secondary index, or perform-
ing large amounts of writes. We proposed modifica-
tions of InnoDB to remedy these limitations. We
also proposed to extend Linux asynchronous I/0
with priorities in order to improve the collaboration
between the database server and the disk scheduler.
There is nothing revolutionary about these results.
Our proposals are inspired from existing systems.
We believe however that this study is an interest-
ing contribution to the evolution of MySQL/InnoDB
and Linux.

Support for native Linux asynchronous I/O is being
transferred from a prototype implementation to the
next release of InnoDB. Prototype implementation
of our design proposal is under way at University of
Copenhagen. We are also finishing the implementa-
tion of a priority based deadline scheduler for Linux
2.6.

Improving the collaboration between a database sys-
tem and the underlying storage system presents
plenty of interesting challenges, e.g., how to lever-
age the storage cache hierarchy? How to control the
throughput-latency trade-off when submitting I/0
requests to a SAN? These are topics for future re-
search.

References
[1] Linux Kernel 2.6.3. Home Page. http://www.kernel.org/.

[2] IBM Ultrastar 36LZX. Documentation.

(19]

[20]

[25]

[26]

http://www.hgst.com/tech/techlib.nsf/products/Ultrastar 36 LZX.

[3] Steve Adams. The Mysteries of DBWR Tuning, 1997.
http://www.ixora.com.au/tips/mystery.doc.

[4] Remzi H. Arpaci-Dusseau, Andrea C. Arpaci-Dusseau,
David E. Culler, Joseph M. Hellerstein, and Dave Patterson.

The Architectural Costs of Streaming I/O: A Comparison of
‘Workstations, Clusters, and SMPs. In Symposium on High-
Performance Computer Architecture (HPCA ’98), Febru-
ary 1998.

Mark Cohen Austrowiek and Pierluigi Grassi. UNIX IO Per-
formance Measurement Methodologies Applied to Old and
New Storage Technologies. In EuroCMG, 2002.

Jens Axboe. Cfq + 10
http://www.kerneltrap.org/comment/reply/1596.

Priorities.

Suparna Bhattacharya. Linux Asynchronous IO.
http://www.kernel.org/pub/linux/kernel /people/suparna/aio/.

Suparna Bhattacharya. Personal Communication.

Suparna Bhattacharya, Steven Pratt, Badari Pulavarty, and
Janet Morgan. Asynchronous I/O support in Linux 2.5. In
Proceedings of the Ottawa Linuz Symposium, 2003.

IBM Linux Technology Center. Home
http://www.ibm.com/linux/tlc/.

Page.

Leonard Chung, Jim Gray, Bruce Worthington, and Robert
Horst. Windows 2000 Disk IO Performance. Technical Re-
port MS-TR-2000-55, Microsoft Research, 2000.

Jim Gray and Chris Nyberg. Desktop batch processing. In
Proceedings of COMPCON 94, 1994.

Oracle’s Linux Project Development Group. Home Page.
http://oss.oracle.com/.

The Open Group. Base Specifications Issue 6, 2003.
http://www.opengroup.org/onlinepubs/007904975/.

Oracle Performance Tuning Tips: Use asynchronous I/O.
http://www.ixora.com.au/tips/use_asynchronous_io.htm.

MySQL Reference Manual. InnoDB Storage Manager.
http://www.mysql.com/doc/en/InnoDB.html.

David McWherter, Bianca Schroeder, Anastassia Ailamaki,
and Mor Harchol-Balter. Priority Mechanisms for OLTP and
Transactional Web Applications. In ICDE 2004.

A.S. Meritt, J.A. Staubi, K.M. Trowell, G. Whistance, and
H.M. Yudenfriend. z/OS support for the IBM TotalStorage
Enterprise Storage Server. IBM Systems Journal, July 2003.

Oracle Technical White Paper. Oracle 9iR2 on Linux: Per-
formance, Reliability and Enhancements on Red Hat Linux
Advanced Server 2.1, 2002.

Jiri Schindler, Anastassia Ailamaki, and Gregory Ganger.
Matching Database Access Patterns to Storage Characteris-
tics. In VLDB 2003 PhD Workshop, 2003.

Abraham Silberschatz, Greg Gagne, and Peter Baer Galvin.
Operating System Concepts. Wiley Text Books, 6th edition,
2002.

Sistina. Logical Volume Manager. http://www.sistina.com/.

Ron Soukup and Kalen Delaney. Inside Microsoft SQL

Server 7.0. Microsoft Press, 1999.

Gaja Krishna Vaidyanatha, Kirtikumar Deshpande, and
John A. Kostelac. Oracle Performance Tuning 101.
McGraw-Hill Osborne Media, 4th edition, 2001.

Nitin Vengurlekar. Oracle Disk Manager. White
paper, Oracle Solutions Support Center, 2002.
http://otn.oracle.com/deploy/availability /pdf/nitin ODM.pdf.

Veritas. Storage Foundation. http://www.veritas.com/.

