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Abstract

We consider the problem of constructing a minimum-length 2-connected network for a set of
terminals in a graph where edge-weights satisfy the triangle inequality. As a special case of the
problem, we have the Euclidean 2-connected Steiner network problem in which a set of pointsin
the plane should be interconnected by a 2-connected network of minimum length. These problems
have natural applicationsin the design of surviable communication networks.

In this paper we give a number of structural results for the problem. We show that al cycles
must have at least four terminals, and that these terminals must be distributed in groups of two. Fur-
thermore, we give atight lower bound on the minimum size of any problem instance that requires
a Steiner vertex.

Keywords: Survivable networks, 2-connected Steiner networks.

1 Introduction

The well-known Steiner tree problem asks for a shortest possible network spanning a set Z of terminals
in the plane. The solution to the problem is a tree, referred to as a Seiner minimal tree (SMT). Apart
from the terminals that must be spanned, the SMT may contain additional, so-called Sieiner points,
where exactly three edges meet at 120° angles. SMTs are unions of full Seiner trees spanning subsets
of terminals all having degree 1.

When the objective is to design low cost survivable networks, the problem of constructing 2-
connected Steiner minimal networks in the plane arises. In a 2-edge-connected (resp. 2-vertex con-
nected) Steiner network there are a least two edge-disjoint (resp. vertex-disjoint) paths between every
pair of terminals. When the distance function satisfies the triangle inequality, there is no need to
distinguish between 2-vertex and 2-edge connected problems since 2-edge-connected solutions will
automatically be 2-vertex-connected [2].

The 2-connected Steiner network problem in the plane has been studied by Luebke and Provan [4],
who proved that it is NP-hard and gave a number of structural properties. Additional structural prop-
erties for the generalized graph version where distances fulfill the triangle inequality were given by
Luebke [3].

In this paper we significantly improve and generalize the results given in [4, 3]. We show that all
cycles must have at least four terminals and that no cycles can consist of edges solely from full Steiner



trees spanning three or more terminals. This allows us to give a tight lower bound on the number
of terminals needed in any instance that requires a Steiner vertex in a minimum-length solution. Our
results will be applied in a new exact algorithm that is described in an accompanying paper [7].

The paper is organized as follows. In Section 2 we formally define the problems that are considered;
also we review some of the results known for these problems. In Section 3 we prove some properties
for so-called chord-paths, and in Section 4 we give our main results on the distribution of terminals in
cycles of Steiner networks. Lower bounds (and tight examples) on the size of Steiner networks that
require Steiner vertices are given in Section 5; a discussion of applications of our results and concluding
remarks are given in Section 6.

2 Préliminaries

Let G = (V, E) be a complete undirected graph with a distance function defined on its vertices. For
a pair of vertices u,v € V, let |uv| denote the distance between « and v. The distance function is
assumed to fulfill the requirements of a metric, i.e., it is non-negative, symmetric and satisfies the
triangle inequality. Finally, let Z C V be a set of terminals; the remaining vertices V' \ Z are denoted
Seiner vertices.

The 2-connected Seiner network problem (2-SNPG) is to find subgraph G’ = (V', E') of G such
that

e (' is 2-edge-connected
o« ZCV'
e G’ has minimum total length wrt. the distance function

Since a 2-edge-connected minimum-length network necessarily is 2-vertex-connected when the dis-
tance function is a metric [1], we use the shorthand 2-connected in the following.

This problem was studied by Monma et al. [1] — however mainly for the case when Z = V/, that
is, when all vertices should be interconnected. They proved that there always exists an optimal solution
in which all terminals have degree 2 or 3, and all Steiner vertices have degree 3.

Hsu and Hu [2] and Luebke and Provan [4] considered a special case of the graph problem, namely
the Euclidean 2-connected Seiner network problem in the plane (2-SNPP). In this problem the ter-
minals Z are points in the plane, and the task is to construct a minimum-length 2-connected network
that interconnects Z. For this problem it was proved that Steiner points are incident to three edges
meeting at 120° angles (as for the Euclidean Steiner tree problem in the plane), and that no cycles in
a minimum-Ilength network consist entirely of Steiner points. As a consequence, a shortest network is
a union of full Steiner trees (FSTs), in which all terminals are leaves and all Steiner points are interior
vertices.

In this paper we study the structure of minimume-length solutions for the general graph problem (2-
SNPG) — which contains 2-SNPP as a special case. More specifically, we will study the structure of
minimume-length solutions in which the total degree of all vertices is minimized. In this way we avoid
trivial degeneracies. We denote by SMN an arbitrary minimum-length 2-connected network for which
the total degree of all vertices has been minimized. (For 2-SNPP an arbitrary 2-connected minimum-
length network is denoted by SMNP). Luebke [3] proved that the following properties hold for any
SMN:

e All vertices have degree 2 or 3, and all Steiner vertices have degree 3.



e All edges are of multiplicity one.
e No cycle is composed entirely of Steiner vertices.

e For |Z| > 4 there are no cycles with exactly three vertices.

3 Chord-path properties

Let G denote an arbitrary undirected graph. Given a cycle C and two distinct vertices u and v on C in
G, a chord-path between « and v is a path P(u,v) in G between v and v that, except from « and v,
shares neither vertices nor edges with C. Note that the interior vertices in P(u,v) are not required to
have degree 2 in G. When P(u,v) consists of a single edge, the chord-path reduces to a simple chord
edge of C.

It is well-known [1, 3] that a SMN cannot have any chord edge: Consider a cycle C having a
chord edge (u,v). Clearly, the subgraph C U (u,v) is 2-connected. If we delete edge (u,v) from this
subgraph, the total length of the network does not increase and the total degree decreases. Furthermore,
since the remaining subgraph (which is C) is still 2-connected, the resulting overall network remains
2-connected [1].

As a consequence, any chord-path in a SMN must have at least two edges. The following lemma
strengthens this result.

Lemmal Any chord-path in a SMN must have at least three edges.

Proof. Assume that there exists a cycle C with a chord-path P(u,v) consisting of two edges (u,t)
and (¢,v). Let a and b be the neighbours of » on C, and let ¢ and d be the neighbours of v on C' (see
Figure 1a). Neither vertices a and d nor vertices b and c are required to be distinct.

Assume w.l.o.g. that [tv| < |tu|. Remove the edges (¢,u) and (v,c), and add the edge (¢, c),
as shown in Figure 1b. The network remains 2-connected and its length does not increase: |tc| <
|tv| + |ve| < |tu| + |vc|. Both vertices u and v have reduced their degree with one, while the degree
of all other vertices is unchanged. Thus we have arrived at a contradiction to the (length and degree)
minimality of SMN. ]

a) b)
Figure 1. A chord-path consisting of two edges.

Luebke and Provan [4] showed for 2-SNPP that a SMNP cannot have a chord-path that has only
Steiner points in its interior. Using Lemma 1, we can now generalize this result.



Theorem 1 Any chord-path in a SMN must have a pair of consecutive terminals of degree 2 in its
interior.

Proof. Consider a cycle C and a path-chord P(u,v) without two consecutive terminals of degree 2 in
its interior. Among all such path-chords, let P(u,v) be one with the minimum number of edges.

By Lemma 1, P(u,v) has at least two interior vertices, and hence at least one interior vertex w of
degree 3. Let x be the third vertex adjacent to w and not on P(u,v) (Figure 2a). Edge (w, z) must be
on some cycle C,, in SMN; this cycle uses one of the two edges on P(u,v) incident to w, since w has
degree 3. As a consequence, C,, will share at least one vertex with C'U P(u, v), and distinct from w.

a) b) c)
Figure 2: A chord-path with a degree 3 vertex.

Follow cycle C,,, starting in z and moving away from w. Let y be the first vertex on C U P(u,v)
that is encountered. Assume first that y is some vertex on P(u, v). Then the subpath of P(u,v) from w
to y is a chord-path of another cycle in SMN, as shown in Figure 2b. This chord-path has fewer edges
than P(u,v). Furthermore, it has no pair of consecutive degree 2 terminals. This is a contradiction to
the choice of P(u,v).

Now assume that y is a vertex on C, distinct from » and v. The subpath of P(u,v) from u to w
is a chord-path of another cycle, as shown in Figure 2c. Again, this chord-path has fewer edges than
P(u,v) and has no pair of consecutive degree 2 terminals. Once again this is a contradiction to the
choice of P(u,v). In conclusion, chord-path P(u,v) cannot exist. []

4 Cycleproperties

In this section we use the properties of chord-paths to prove a number of fundamental structural prop-
erties for cycles in solutions to 2-SNPG.

Theorem 2 Consider a cycle C that contains a vertex of degree 3 in a SMN. Then C' must have two
pairs of consecutive terminals, both of degree 2 in SVIN. Furthermore, these two terminal pairs must
be separated on C' by a pair vertices of degree 3.

Proof. Let w be a vertex on C of degree 3. Let x be the third vertex adjacent to w and not on C.
Edge (w,z) must be on some cycle C,, in SMN; this cycle uses one of the two edges on C' incident
to w, since w has degree 3. As a consequence, C,, will share at least one vertex with C', and distinct
from w. Follow cycle C,,, starting in z and moving away from w. Let y be the first vertex on C that is
encountered, and define P; to be the path from w to y following cycle C,,.
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Let P, and P; denote the two edge-disjoint paths from y to w following cycle C'. Note that the paths
Py, P, and Pj5 share no vertices nor edges except from their endpoints. Consider the cycle Py U P,.
The path Pj is a chord-path of this cycle and by Theorem 1 it has a pair of consecutive terminals of
degree 2 in SMN. Now consider the cycle P; U P3. The path P, is a chord-path of this cycle and must
also have a pair of consecutive terminals of degree 2 in SMN. The theorem follows. [

Consider an instance of 2-SNPG with at least four terminals. Either the SMN for this problem is
a simple cycle through all terminals, or every cycle has a vertex of degree 3. In both cases we get the
following:

Corollary 1 If the total number of terminalsin a SMIN is at least four, then every cycle in SMN has at
least four terminals of degree 2.

A SMN is a union of full Steiner trees (FSTs) [4]. Consider a cycle C in a SMN in which every
edge is from an FST spanning at least three terminals (Figure 3). Thus every terminal in C' has two
Steiner vertices as neighbours, that is, cycle C has no pair of consecutive terminals of degree 2 as
required by Theorem 2. We have the following corollary:

Corollary 2 No cyclein a SVIN has edges solely from full Seiner trees spanning three or more termi-
nals.

i

/

Figure 3: A cycle with edges solely from FSTs spanning three or more terminals. In this example, the
cycle contains 6 terminals; the remaining vertices on the cycle are Steiner vertices in FSTs spanning
three or more terminals.

5 Smallest networkswith Steiner vertices

In this section we will show that a SMN cannot have vertices of degree 3 unless it contains at least
6 terminals. We will also show that this bound is tight for 2-SNPG. We conjecture that the smallest
number of terminals needed for an SMNP (i.e., in the Euclidean plane) to have vertices of degree 3 is
8. We also give a problem instance with 8 terminals where the SMNP in fact has 2 Steiner points.

Throughout this section, we extensively use the fact that cycles of SMNs cannot have chord-paths
with less than 3 edges. Furthermore, we also use a straightforward fact that a SMN must have an even
number of vertices of degree 3.



Lemma2 Let N bean SMN. If N has two adjacent vertices of degree 3, then N has at least 8 termi-
nals.

Proof. Assume that N has two adjacent vertices u and v of degree 3. Let a and b denote the other
two vertices adjacent to w and let ¢ and d denote the other two vertices adjacent to v. Let C,, denote
a cycle through the edges (a,u) and (u, b). Let C, denote a cycle through the edges (¢, v) and (v, d).
C, and C, must be distinct. If not, (u,v) would be a chord in C,, = C,, contradicting the (length and
degree) minimality of N. We claim that C,, and C,, must be disjoint. Assume that this is not the case.
Let u’ denote the first vertex of C,, encountered when traversing C,, in one direction and let " denote
the first vertex of C, when traversing C,, in the other direction. ' and »” must be distinct; otherwise
N would contain a vertex of degree 4, contradicting the minimality of N. The traversed paths from v
to respectively u' and u” together with the portion of C,, between v’ and »” containing « forms a cycle
with (u, v) as a chord. This contradicts the minimality of N. From Corollary 1 it follows that NV has at
least 8 terminals. [

Lemma3 Let N be an SMN. If N has two vertices of degree 3 adjacent to a common terminal of
degree 2 then N hasat least 9 terminals.

Proof. The proof is analogous to the proof of Lemma 2. It exploits the fact that N cannot have
chord-paths with 2 edges. [

Lemma4 Let N bean SMN. If N hasall degree 3 vertices separated by paths with at least 2 terminals
of degree 2, then N has at least 6 terminals.

Proof. Letu and v be two vertices of degree 3 in N. We can always choose u and v such that there is
a path P between « and v containing only terminals of degree 2. Let a and b be the vertices adjacent
to » not on P. N must contain a cycle C,, through the edges (a,u) and (u, b). C, avoids any interior
terminal of P. By Corollary 1, C,, contains 4 terminals. By assumption, P contains 2 terminals. ]

Lemma5 There exist problem instances where SVMIN has 6 terminals and 2 Seiner vertices.

Proof. Consider the problem instance shown in Figure 4. It is a complete graph Kg with 6 terminals
(black circles) which have to be spanned and two additional vertices (white circles). All edges shown
have unit lengths. All other edges have lengths equal to the lengths of shortest paths through unit edges.
The set of edges shown form a 2-connected subgraph of Kg spanning all 6 terminals. Hence, itis a
feasible 2-connected solution. Its length is 9. We will show that this is the only optimal solution.
Suppose that the solution shown in Figure 4 is not optimal. Assume that an optimal solution
contains no vertices of degree 3. Hence it is a traveling salesman tour with 6 edges. It has to contain all
three unit length edges (A4, D), (B, E) and (C, F') connecting the terminals. Otherwise it would contain
4 or more edges of length at least 2 and would not be optimal. Hence, an optimal solution without
degree 3 vertices is forced to contain 3 edges of length 2 connecting pairs of terminals. There are 6
such edges: (4, B), (4,C),(B,C),(D,E),(D,F),(E, F). Itcan be easily verified by inspection that
no three of these edges will together with (A4, D), (B, E) and (C, F') form a 2-connected solutions.
The number of vertices of degree 3 in an SMN must be even. If SMN contains one Steiner vertex
(and at least one terminal of degree 3), the total number of edges must be at least 8. At least 2 of the
edges must have length at least 2. If SMN contains no Steiner vertices (and at least 2 terminals of
degree 2), the total number of edges must be at least 7. At least 4 of the edges must have length at
least 2. [
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Figure 4: SMN with 2 Steiner vertices and 6 terminals.

We conjecture that in the Euclidean plane with the standard Lo metric, no problem instance with 7
or less terminals has an SMNP with degree 3 vertices. In particular, such problem instances have no
Steiner points and have traveling salesman tours as solutions to 2-SNPP. On the other hand, we have
been able to construct a problem instance with 8 terminals which requires two Steiner points. Such an
instance is shown in Figure 5.

Figure 5: 2-connected SMNP in the Euclidean plane with 8 terminals and 2 Steiner points. This SMNP
has two FSTs spanning three terminals and five FSTs spanning two terminals.



6 Conclusion

The structural result presented in this paper have at least two interesting applications. 2-connected
SMNs are unions of FSTs. Therefore the general framework for solving the Euclidean, rectilinear [6]
and uniformly-oriented [5] Steiner tree problems also applies to 2-connected SMNs. Consequently, the
concatenation phase can be made more efficient by adding the constraint that two FSTs can share at
most one terminal (which is a direct consequence of Theorem 2).

The other, even more interesting application is when determining good lower bounds for the prob-
lem. If we replace every FST in a SMN with a minimum spanning tree for the same set of terminals,
this will create a 2-connected network on Z (i.e., without Steiner vertices) in which every edge has mul-
tiplicity one. Furthermore, this network fulfills a number of additional properties that can be employed
in a new lower bounding scheme and exact algorithm for the problem [7].
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