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Abstract

We consider the problem of finding a minimum spanning and Steiner tree
for a set of � points in the plane where the orientations of edge segments are
restricted to � uniformly distributed orientations, �����
	��
	���	������ , and where
the coordinate system can be rotated around the origin by an arbitrary angle.
The most important cases with applications in VLSI design arise when �����
or ����� . In the former, so-called rectilinear case, the edge segments have to
be parallel to one of the coordinate axes, and in the latter, so-called octilinear
case, the edge segments have to be parallel to one of the coordinate axes or to
one of the lines making ����� with the coordinate axes (so-called diagonals).
As the coordinate system is rotated — while the points remain stationary —
the length and indeed the topology of the minimum spanning or Steiner tree
changes. We suggest a straightforward polynomial-time algorithm to solve
the rotational minimum spanning tree problem. We also give a simple algo-
rithm to solve the rectilinear Steiner tree problem in the rotational setting,
and a finite time algorithm for the general Steiner tree problem with � uni-
form orientations. Finally, we provide some computational results indicating
the average savings for different values of � and � both for spanning and
Steiner trees.
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1 Introduction

Suppose that we are given a set � of � points in the plane. We are interested in
finding a minimum spanning tree (MST) or a Steiner minimum tree (SMT) for
� under the assumption that the edge segments are permitted to have a limited
number of orientations. In fact, we will assume that these orientations are evenly
spaced. More specifically, let � be a non-negative integer, ����� . Let �	��

��� .
Legal orientations are then defined by the straight lines passing through the origin
and making angles ��� , ������������������������� with the  -axis. Finding an MST in this
so-called � -geometry is not a challenging problem since it can be defined as a min-
imum spanning tree problem in a complete graph with appropriate edge lengths.
On the other hand, computing an SMT in this setting is known to be an NP-hard
problem [1].

Suppose that we are permitted to rotate the coordinate system, that is, to rotate
all legal orientations simultaneously. Rotation by � (or a multiple of � ) will have
no impact on the lengths of the edges. But for any angle !#"#$ ���%�&$ , the edge
lengths will change. What is the value of ! minimizing the length of an MST or
SMT for � ? Once ! is fixed, finding an MST is straightforward, while determining
similar SMTs clearly remains NP-hard.

Our interest in rotated MSTs and SMTs with bounded orientations was mo-
tivated by recent developments in VLSI technology. It will soon be possible to
manufacture chips with wires having more than two orientations. This makes the
case �'�)( important in practice. Furthermore, additional length savings seem to
be available when the coordinate system can be rotated. This is in particular useful
for small values of � and for nets with limited number of terminals.

In this paper we give a straightforward polynomial-time algorithm for the rota-
tional MST problem. Also, we give a finite time algorithm for the rotational SMT
problem. In particular, for the most important rectilinear case ( ���*� ), we show
that no more than +-,.�
/�0 rotation angles need to be considered in order to compute
a rotationally optimal rectilinear SMT.

Our results on the structure of rotationally optimal MSTs and SMTs appear to
give insight into the problem of determining the Steiner ratio in � -geometry for all
values of � (consult the book by Cieslik [3] for a comprehensive survey).

The paper is organized as follows. As a warm up, in Section 2 we determine
how the length of a single edge changes under rotation. In Section 3 we present
our polynomial-time algorithm for the MST problem and in Section 4 a finite time
algorithm for the SMT problem is given. Computational results for both randomly
generated instances and instances from VLSI design are presented in Section 5.
Finally, in Section 6 we give some concluding remarks and discuss related and
open problems.
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2 Length of a Segment

Consider a given � and rotation angle !	" $ ���%�&$ . In this section we examine the
situation where there are only two points � � , ��� � ��� 0 and � � ,�� � ��� � 0 . We let	 � � 	 
 denote the length of the shortest path between � and � with the restriction
that the straight line segments of the path only use one of the � legal orientations.
We may restrict our attention to the cases where this path consists of either one or
two line segments [10]. In the former case we say that the edge between � and �
is straight (and

	 � � 	�
 is equal to the Euclidean distance � � �
� between � and � );
otherwise the edge is bent and the two line segments form the half-edges of the
edge between � and � . The two half-edges meet at the corner point of the bent
edge, and the smaller meeting angle is 
�� � [10].

The shortest MST or SMT for � and � is obtained when the coordinate system
is rotated so that the orientation of the line segment � � overlaps with one of the
legal orientations, i.e., the edge between � and � is straight. So our problem is
trivial. However, it is still interesting to determine how the length of the edge � �
changes as the coordinate system is rotated.

Assume that � and � are on the horizontal  -axis and � ��� � � . When the
coordinate system is rotated by increasing angle ! , ��� !�� � , the length of� � increases until !�� � ��� , and then decreases until !�� � (Figure 1). More
specifically, 	 � � 	 
 ��� � ����� ��� !�� � ��� , � � ! 0� ��� , � 0
In particular, if ��� � and ��� 

��� , then

	 � � 	 
 ��� � �
� , � ��� !���� � � ! 0
It is obvious that the function !#"%$ , ! 0 � 	 � � 	 
 is periodically strictly concave (for
!*" $ ��� ��
 $ and with period �*� 

��� ). Furthermore, the minimum is attained
when the orientation of the line segment � � overlaps with one of the legal orienta-
tions.

3 Minimum Spanning Tree

Consider a collection & of ' edges �)( � ( ��������� �+* � * . Their total length as a func-
tion of the rotation angle ! is

	 & 	�
 �-, *.0/ ( 	 � . � . 	 
 .

Lemma 3.1 The total length
	 & 	�


of the edges in & is minimized when one of the
edges � . � . is straight, i.e., when the orientation of the line segment from � . to � .
overlaps with one of the legal orientations.
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Figure 1: ! "%$ , ! 0 � 	 � � 	 
 for � � ��� � � and ! " $ �������� , � � � ��� � ( ��� .

Proof. Since
	 & 	 


is a sum of piecewise strictly concave functions,
	 & 	 


is also
piecewise strictly concave. Therefore, the minimum is attained at one of the non-
concave points (or breakpoints), that is, when one of the edges is straight.

Consider a set � of � points in the plane. Assume that the coordinate system
has been rotated in such a way that an MST � for � is shortest possible.

Theorem 3.2 One of the edges in a rotationally optimal MST � overlaps with one
of the legal orientations.

Proof. Follows immediately from Lemma 3.1.

The algorithm to determine � is therefore straightforward. For each pair of
points � and � of � , consider the edge � � . Rotate the coordinate system so that the
orientation of one of the legal orientations overlaps with the line segment from �
to � . Compute an MST for � and store it provided that it is shorter than any MST
found so far. Figure 2 shows how the lengths of MSTs for a set of 10 points and � �
( changes when the coordinate system is rotated. The histogram was generated by
computing 1000 MSTs for values of ! evenly distributed in the interval $ ��� � � � . The
vertical dashed lines indicate a subset (see Section 5) of the MSTs computed by the
algorithm, corresponding to those for which the MST length might not be a strictly
concave function of the rotation angle. The optimum is on the  -axis.

4



��� ���

�������

�	� ���

�	�����


�� ���


������

� ��
 ��� ��
�� ����
 ��� ��
��

��������� ��!�"$#&%('�)$*+'("$*�,	�
- #���.0/213,	*��4"05

6 1�"$*�798�7

Figure 2: MST length variation as a function of rotation angle.

For a fixed rotation of the coordinate system, an MST can be computed in
+ ,.�;:0�2< � 0 time [10]. Since it is only necessary to consider + ,.� /�0 different ro-
tation angles, the total running time for computing a rotationally optimal MST is
+ ,.�>=�:0�2< � 0 . In Section 5 we will address the issue of making this algorithm much
more efficient in practice.

4 Steiner Minimum Tree

Consider the problem of interconnecting the set � of points by a tree of minimum
total length, but allowing additional junctions, so-called Steiner points. When a set
of � uniformly spaced legal orientations is given, this is denoted the Steiner tree
problem in uniform orientation metrics [1, 6].

A Steiner minimum tree (SMT) is a union of full Steiner trees (FSTs) in which
all terminals are leaves (and all interior nodes are Steiner points). In � -geometry
FSTs are denoted � -FSTs. Our aim in this section is to prove that for a rotationally
optimal SMT there exists a � -FST with no bent edges. We first prove this for the
case where � is a multiple of � . The proof relies on an elegant theorem showing the
relationship between the lengths of such � -FSTs and equivalent FSTs in Euclidean
geometry. This theorem is likely to be of independent interest.
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We then prove the result for general � . Note that a separate proof for the
rectilinear case ( � � � ) appears in [8].

4.1 The case where � is a multiple of �
A Simpson line for a Euclidean FST � is a line segment extending one of the edges
of � such that the Euclidean distance between the endpoints equals ��� � , the total
(Euclidean) length of edges in � . It is well known that a Simpson line for � can
be constructed in linear time [4, 5]. For � being a multiple of � it turns out that
the � -geometry distance between the endpoints of the Simpson line also equals the
length of the corresponding � -FST:

Theorem 4.1 Suppose that � is a multiple of � . Let � be a Euclidean FST with
terminal set � and topology � , and let � � be a � -FST, also with terminal set �
and topology � . Let � ( � / be a Simpson line of � of length ��� ( � / � � ��� � , and
let

	 � ( � / 	 be the distance in � -geometry between � ( and � / , the endpoints of the
Simpson line. Then the length of � � is

	 � ( � / 	 .
Proof. The result is clearly true if

	 � 	 � � ; in this case the endpoints of the
Simpson line coincide with the two terminals in � . So we may assume that

	 � 	 �
� and that � contains at least one Steiner point. By [7], we can choose � � so that
the Steiner points of � � exactly coincide with the Steiner points of � (Figure 3).

Consider an edge � � of � and the corresponding � -edge � � � in � � . Let� ( � � / " $ ���%�&$ be the smaller angles that the two half-edges of � � � make with
the straight edge between � and � . Since � is a multiple of � and the edges of the
Euclidean FST � use exactly � equally spaced orientations (separated by angles
which are multiples of 

� � ), the angles

� ( and
�
/ will be the same for all edges in

� � . Furthermore, if an edge � � is rotated through any multiple of 

� � , the rotated
half-edges still overlap with legal orientations.

Consider a transformation of the edges of � , composed of rotations and trans-
lations, such that they are placed end-to-end along the Simpson line. Since ��� � ���� ( � / � , the edges will exactly cover the Simpson line. Now, consider the corre-
sponding transformation of � -edges. In view of the above, all transformed edges
will use the same two (neighbouring) legal orientations. Therefore, their total
length will be exactly

	 � ( � / 	 , the � -geometry distance between the endpoints of
the Simpson line.

Theorem 4.2 Suppose � is a multiple of � . A rotationally optimal SMT in � -
geometry is a union of � -FSTs, at least one of which contains no bent edges.
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Figure 3: Illustration of Theorem 4.1. Straight edges between terminals and/or
Steiner points belong the � while half-edges belong to � � .

Proof. Replace each � -FST in the SMT by a geodesic in � -geometry between the
endpoints of a Simpson line for the corresponding Euclidean FST. (Note that this
replaces each � -FST by a simple � -edge between two fixed points.) By Theo-
rem 4.1, for any fixed rotation angle, the sum of the lengths of these geodesics in
� -geometry equals the length of the SMT. Hence, we can apply exactly the same
argument as in the MST case.

4.2 The case for general �

In this subsection we show that Theorem 4.2 holds for arbitrary � . First, assume
that the coordinate system is rotated by a fixed angle !�"	$ ���%�&$ . In this case the
problem to be solved is the Steiner tree problem in uniform orientation metrics [1,
6]. Brazil et al. [1] proved that for any given instance of this problem, there exists
an SMT for which every � -FST has at most one bent edge.

Now let us assume that the rotational � -geometry Steiner tree problem has an
optimal solution for a given rotation angle !�� " $ ���%�&$ . We wish to show that at
least one of the � -FSTs in the SMT contains no bent edge. First we note that if an
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SMT contains a Steiner point � with degree more than � , then the � -FST for which
� is an internal node contains no bent edges [1]. Thus we may restrict our attention
to SMTs for which all Steiner points have degree 3.

Let � be a � -FST with a single bent edge. Consider a rotation of the coordinate
system through an angle ! . We define � 


to be a � -FST under this rotated coordi-
nate system on the same terminals as � such that 1) the topology of � 


is the same
as the topology of � , and 2) the angles between edges at every Steiner point of � 

are the same as the corresponding angles of � . It is clear that � 


always exists for
a sufficiently small angle ! (i.e., until the length of some edge or half edge goes to
� ). In fact, below we give a construction that proves the existence of � 


. Let
	 � � 	 


be the length of some straight edge or a half-edge � � in � 

as a function of ! (for

! "���� � � ! � ����� ! � ��� $ where ��� � is sufficiently small).

Lemma 4.3 Let � � be a straight edge or a half-edge in an FST � with a single
bent edge. Then

	 � � 	 
 is a strictly concave function of ! in a sufficiently small
neighbourhood � � of ! � .

Proof. In the following we assume that the FST � contains at least one Steiner
point, otherwise the lemma is trivially true by our discussion in Section 2.

By the definition of � , we know that � contains exactly one bent edge. We
consider � to be a binary tree rooted at the corner point of the bent edge. Note that
all edges in this tree are straight edges.

There exists a pair of terminals (leaves) 	 ( and 	 / adjacent to a common Steiner
point (parent) � in the binary tree. Let 
 ( be the circle through 	 ( , � and 	 / (Fig-
ure 4). Since the angle ��	 ( �
	 / is fixed, � moves along the circumference of the
circle 
 ( as ! varies.

Let � be the third vertex adjacent to � . Since � contains a bent edge, � must
be either a Steiner point or the corner point. We next show that we can replace 	 (
and 	 / by a single point � ( , which we will refer to as a pseudo-terminal, such that
� ( lies on the extension of � � for all !�"���� . As indicated in Figure 4, we choose
� ( to be the intersection of the extension of � � with 
 ( . Since ��	 ( �%� is fixed, it
follows that ��� ( �
	 ( is fixed (since it equals 
'����	 ( � � ). Hence the length of the
arc 	 ( � ( of 
 ( is fixed (since, by elementary trigonometry, equal subtended angles
in a circle must come from equal length arcs). But, since 	 ( is fixed, it now easily
follows that � ( must also be fixed for all !�"��
� .

This construction can be recursively repeated bottom-up in the binary tree until
we end up with a single bent edge between two points, each of which is a terminal
or pseudo-terminal.

Consider any straight edge or half-edge � � in the tree, where � is the parent of� in the binary tree. If � is a terminal, then the construction given above shows that
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Figure 4: Replacing a pair of terminals with a pseudo-terminal.

� moves along some fixed circle that also passes through � . Therefore, in this case	 � � 	 
 is strictly concave.
Now assume that � is a Steiner point, and � is either a Steiner point or the

corner point. Let � ( be the pseudo-terminal that lies on the extension of the edge� � , and assume that � moves along the circle 
 ( that passes through � ( (Figure 5).
The construction above shows that � moves along another circle 
 / that also passes
through � ( .

By rescaling, translating and rotating, we can assume, without loss of gener-
ality, that 
 / is a unit circle, centered at ,%��� � 0 , such that the point � ( is at the
origin (Figure 5). In terms of polar coordinates, the equation of 
 / is � � � � � � � .
If the centre of 
 ( in polar coordinates is ,�� �
	 0 then 
 ( has the polar equation
� � ��� � � � , � ��	 0 , since � ( also lies on 
 ( . Hence

	 � � 	 � � � � � � �-��� � � � , � ��	 0 ,
and 


/ 	 � � 	
 � / � � � � � � � � ��� � � � , � ��	 0 � � 	 � � 	
which is strictly negative whenever � � exists. It immediately follows that

	 � � 	 
 is
strictly concave over a sufficiently small interval � � .

Theorem 4.4 A rotationally optimal SMT in � -geometry is a union of � -FSTs, at
least one of which contains no bent edges.

Proof. Assume that every � -FST of an SMT contains a bent edge. Lemma 4.3
shows that the length of every edge in the SMT is strictly concave under sufficiently
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Figure 5: Computing length of edge � � using polar coordinates.

small rotations. Hence, the same holds for the sum of all edge lengths. Therefore,
the SMT can in fact be shortened, which is a contradiction.

A consequence of Theorem 4.4 is that there exists a finite time algorithm for
the rotational SMT problem in � -geometry. For every subset ��� � of terminals,
every topology � on � , and every legal angle distribution around Steiner points
in � , a � -FST without bent edges is constructed (if it exists). For a given terminal
set � , topology � and angle distribution, a bottom-up construction similar to the
one given in the proof of Lemma 4.3 can be used. Whenever such a tree exists, the
orientations used by the edges in the tree give a feasible rotation angle ! for which
the SMT problem in uniform orientation problems is solved in finite time [1].

For general � a super-exponential number of rotation angles must be tried.
However, for � ��� only + ,.� / 0 rotation angles need to be considered — namely
those given by the lines through each pair of terminals. This follows from the
fact that for � � � an SMT can be assumed to consist of Hwang-topology FSTs.
When no bent edge is present in such an FST, it will contain a straight line segment
between a pair of terminals [8].
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It is possible to give a stronger version of Theorem 4.4 using some powerful
characterizations of � -FSTs from [2].

Theorem 4.5 A rotationally optimal SMT in � -geometry is a union of � -FSTs, at
least one of which uses at most 3 edge orientations.

Proof. First we may assume by Theorem 4.4 that a rotationally optimal SMT has
some � -FST with no bent edges. Assume that all FSTs with no bent edges use 4 or
more edge orientations. Let � be one of these � -FSTs. Since the edges of � use
4 or more orientations, there exists a length-preserving perturbation of the Steiner
points (a so-called zero-shift) in � such that exactly two bent edges are created [2].

Consider the path between the two bent edges in � . Let � be one of the half-
edges that is closest to the other bent edge. Pick an interior point on � and fix it
(i.e., make it into a pseudo-terminal). Now we have divided � into two (pseudo)
FSTs, each with one bent edge, and can apply the result of Lemma 4.3 to show that
the total length of both (pseudo) FSTs is strictly concave under sufficiently small
rotations. This holds for all FSTs in the SMT with no bent edges, and therefore the
SMT can in fact be shortened, which is a contradiction.

It should be noted that another consequence of the results in [2] is that there in
fact must be a � -FST that uses 3 edge orientations that have a certain well-defined
distribution. For � being a multiple of � this means that there must exist a � -FST
in a rotationally optimal SMT that uses 3 edge orientations separated by an angle
of 

� � ; such a � -FST will be identical to the Euclidean FST spanning the same set
of terminals and having the same topology.

5 Computational Results

In this section we give some computational results indicating the effect of allowing
rotations of the coordinate system when computing MSTs and rectilinear SMTs.
We used two sets of problem instances: VLSI design instances and randomly gen-
erated instances (uniformly distributed in a square). The VLSI instances were made
available by courtesy of IBM and Research Institute for Discrete Mathematics,
University of Bonn. In this study we have focused on one particular chip from
1996.

5.1 Minimum Spanning Tree

Generally most of the edges for a given point set will not be part of a MST for any
rotation angle. It is a waste of time to consider the rotation angle given by such
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pairs of points (or edges). Fortunately, most of these edges can be pruned by using
so-called bottleneck Steiner distances.

Consider the complete graph ��� where the vertices represent the points in the
plane. Define the weight of the edge between vertices � and � to be the maxi-
mum distance between � and � in � -geometry under any rotation angle. Compute
bottleneck (Steiner) distances in ��� . It is defined as the minimum over the largest-
weight edges in all paths between � and � in ��� , and can be computed in time
+ ,.� / 0 for all pairs of points; see [5, 11] for details. Let � "%$ denote the bottleneck
(Steiner) distance between � and � . Whenever � � ��� ��� "%$ , then the edge � �
cannot be in any minimum spanning tree generated during the rotation of the coor-
dinate system. Figure 6 indicates how many edges survive the pruning for � � ���
and ��� � ��� � ( ��� .

� � � � � �

� ��( � � �

Figure 6: Edges surviving pruning of ���	� for � � � ��� � ( ��� .

This pruning turns out to be extremely efficient in general. Table 1 shows the
number of edges that survive for different values of � and � . Each entry is an
average over 100 instances.
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� n=3 n=4 n=5 n=10 n=20 n=50 n=100

� 2.76 4.86 7.38 20.12 44.77 122.09 253.84
� 2.34 3.84 5.50 12.62 26.77 71.43 146.81
� 2.22 3.44 4.77 10.77 23.05 60.51 123.05
� 2.13 3.34 4.54 10.17 21.28 56.11 113.59�

2.07 3.27 4.38 9.83 20.54 53.89 108.57�
2.06 3.21 4.28 9.54 20.05 52.50 105.88�
2.03 3.12 4.18 9.36 19.76 51.74 104.49�
2.02 3.09 4.14 9.32 19.64 51.09 103.29���
2.02 3.07 4.10 9.29 19.56 50.69 102.49���
2.01 3.03 4.03 9.08 19.17 49.73 100.33

��� 2.00 3.00 4.00 9.01 19.03 49.14 99.41

Table 1: Number of surviving edges after pruning for randomly generated instances
(averages over 100 instances).

The extraordinary efficiency of pruning makes it possible to solve the problem
of finding the best rotated MST much faster (especially for higher values of � ).
It will on average require + ,.� /�:0�2< � 0 time. However, it should be noted that it is
possible to construct point sets of any size where the number of edges after pruning
is � ,.� / 0 .

Table 2 shows the MST improvement for various values of � and � where each
entry is an average over 100 random instances. The table contains two measures
of improvement. The first one is calculated as � �

� 	�

� ���� 	 

��� � in percent. ������� is the
shortest MST while ������� is the longest MST taken over 600 uniformly distributed
values of ! in the interval $ ���%�&$ . In the second measure of improvement the value
������� has been replaced by the length of the MST without rotating the points ( ! �
� ); a natural alternative.

5.2 Rectilinear Steiner Tree

We used GeoSteiner [9] to compute RSMTs for each of the + ,.� /�0 orientations
given by the pairs of terminals (where � is the number of terminals). The RSMT
improvement obtained by rotating the coordinate system can be seen in Table 3.
The values are percentages which express the improvement compared to not ro-
tating at all. Results for both random and VLSI instances are given. For small
problem instances the improvements are highest for randomly generated instances,
while for large instances, the VLSI problems result in a higher improvement.
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6 Concluding Remarks

We addressed the problem of determining MSTs and SMTs when edge segment
orientations are limited to as set of uniformly distributed orientations and where
the coordinate system is permitted to rotate by any angle. We suggested a sim-
ple polynomial-time algorithm to solve the MST problem. We also provided some
computational results indicating how big the savings can be. As it could be ex-
pected, the savings become negligible when � and � grows. On the other hand, for
all practical applications, � is very small. Nets occurring in VLSI design are also
rather small (in terms of the number of terminals involved). However, when many
nets are to be routed, the overall savings will not be as impressive as for small
isolated nets.

There are several other geometric combinatorial optimization problems which
require a selection of a subset of edges and can in the rotational setting be ap-
proached in the same way as the MST problem. The travelling salesman problem
and the matching problem are probably the most well-known. Another straight-
forward generalization occurs when the orientations are fixed but not necessarily
evenly spaced. Determination of rotated MSTs in higher dimensions seems also to
require a straightforward generalization of the 2-dimensional case.

Computing rotationally optimal SMTs for any fixed, but not necessarily uni-
form set of orientations is still partially an open research problem. However, if
we may limit our attention to FSTs with at most one bent edge and having Steiner
points with degree 3 only, Lemma 4.3 can immediately be applied — resulting in
a finite time algorithm.

Acknowledgments

The authors would like to thank IBM and the Research Institute for Discrete Mathematics,
University of Bonn, for providing industrial benchmarks circuits.

References

[1] M. Brazil, D. A. Thomas, and J. F. Weng. Minimum Networks in Uniform
Orientation Metrics. SIAM Journal on Computing, 30:1579–1593, 2000.

[2] M. Brazil, D. A. Thomas, J. F. Weng, and M. Zachariasen. Canonical Forms
and Algorithms for Steiner Trees in Uniform Orientation Metrics. Technical
Report 02/22, DIKU, Department of Computer Science, University of Copen-
hagen, 2002.

[3] D. Cieslik. The Steiner Ratio. Kluwer Academic Publishers, Boston, 2001.

14



[4] F. K. Hwang. A Linear Time Algorithm for Full Steiner Trees. Operations
Research Letters, 4(5):235–237, 1986.

[5] F. K. Hwang, D. S. Richards, and P. Winter. The Steiner Tree Problem. Annals
of Discrete Mathematics 53. Elsevier Science Publishers, Netherlands, 1992.

[6] B. K. Nielsen, P. Winter, and M. Zachariasen. An Exact Algorithm for the
Uniformly-Oriented Steiner Tree Problem. In Proceedings of the 10th Euro-
pean Symposium on Algorithms, Lecture Notes in Computer Science, volume
2461, pages 760–772. Springer, 2002.

[7] B. K. Nielsen, P. Winter, and M. Zachariasen. On the Location of Steiner
Points in Uniformly-Oriented Steiner Trees. Information Processing Letters,
83:237–241, 2002.

[8] B. K. Nielsen, P. Winter, and M. Zachariasen. Rectilinear Trees under Rota-
tion and Related Problems. In Proceedings of the 18th European Workshop
on Computational Geometry, 2002.

[9] D. M. Warme, P. Winter, and M. Zachariasen. GeoSteiner 3.1.
Department of Computer Science, University of Copenhagen (DIKU),
http://www.diku.dk/geosteiner/, 2001.

[10] P. Widmayer, Y. F. Wu, and C. K. Wong. On Some Distance Problems in
Fixed Orientations. SIAM Journal on Computing, 16(4):728–746, 1987.

[11] P. Winter and M. Zachariasen. Euclidean Steiner Minimum Trees: An Im-
proved Exact Algorithm. Networks, 30:149–166, 1997.

15



����� � ��� ����� � � ���
� ������� � � � ������� � � � ������� � � � ������� � � �
� 21.86 14.48 17.42 9.67 15.86 8.38 10.29 4.89
� 8.86 5.34 7.38 4.34 6.37 3.69 4.31 2.52
� 5.55 3.48 4.32 2.50 3.81 2.14 2.37 1.31
� 3.40 2.10 2.85 1.66 2.42 1.39 1.59 0.89�

2.36 1.46 1.88 1.17 1.55 0.97 1.05 0.67�
1.76 1.12 1.41 0.86 1.21 0.74 0.78 0.42�
1.36 0.85 1.11 0.66 0.94 0.53 0.61 0.33�
1.04 0.66 0.80 0.49 0.73 0.43 0.49 0.28���
0.88 0.52 0.70 0.40 0.58 0.31 0.40 0.21���
0.32 0.20 0.26 0.16 0.22 0.14 0.16 0.10

��� 0.08 0.05 0.07 0.04 0.06 0.04 0.04 0.02

� � � � � � � � ��� � ���
� � ����� � � � � ����� � � � � ����� � � �
� 7.47 3.19 5.03 2.12 3.46 1.51
� 3.01 1.47 1.70 0.78 1.23 0.61
� 1.72 0.93 1.02 0.51 0.72 0.39
� 1.09 0.58 0.72 0.39 0.47 0.25�

0.73 0.39 0.44 0.21 0.30 0.16�
0.57 0.32 0.35 0.19 0.24 0.14�
0.44 0.24 0.25 0.13 0.18 0.09�
0.30 0.16 0.20 0.11 0.15 0.08� �
0.26 0.13 0.18 0.09 0.11 0.05� �
0.11 0.06 0.07 0.03 0.04 0.02

� � 0.03 0.01 0.02 0.01 0.01 0.01

Table 2: MST improvement in percent in relation to two values: The first one is
the length of the worst case MST ( � ����� ) which is the longest MST found among
600 uniformly distributed values of ! . The second one is the length of the MST
when there is no rotation at all ( ! �*� ). All values are averages on 100 random
instances.

n=2 n=3 n=4 n=5 n=10 n=20 n=50 n=100

Random 21.21 11.46 8.19 7.00 3.17 2.17 1.28 0.92
VLSI 14.61 7.01 5.96 7.62 4.88 2.90 - -

Table 3: RSMT improvement in percent obtained by rotating as compared to not
rotating at all. Random: Randomly generated instances (averages over 100 in-
stances). VLSI: VLSI design instances (averages over 100 instances).
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