Using Decomposition Techniques and
Constraint Programming for Solving the
Two-Dimensional Bin Packing Problem

David Pisinger and Mikkel Sigurd

Dept. of Computer Science, University of Copenhagen,
Universitetsparken 1, DK-2100 Copenhagen, Denmark

Abstract

The two-dimensional bin packing problem is the problem of orthogonally packing
a given set of rectangles into the minimum number of two-dimensional rectangular
bins. The problem is NP-hard and very difficult to solve in practice as no good mixed
integer programming (MIP) formulation has been found for the packing problem.

We propose an algorithm based on Dantzig-Wolfe decomposition where the master
problem deals with the production constraints on the rectangles while the subproblem
deals with the packing of rectangles into a single bin. The latter problem is solved as
a constraint satisfaction problem (CSP), where forward propagation is used to prune
inferior arrangements of rectangles. Unsuccessful attempts to pack rectangles into a
bin are canalized back to the master model as valid inequalities. Hence, CSP is not
only used to solve the pricing problem but also to generate valid inequalities in a
branch-and-cut system.

Using delayed column generation, we obtain lower bounds of very good quality
in reasonable time. In all instances considered, we obtain similar or better bounds
than previously published in the literature. In the computational study, quite large
instances are solved to optimality through the developed branch-and-price-and-cut
algorithm.

The work can be seen as a practical study on merging techniques from MIP and
CSP. Each solution technique has its benefits and drawbacks, but decomposition
techniques make it possible to use the techniques where most appropriate.

1 Introduction

During the last two decades mathematical optimization techniques have helped the industry
in solving very complex planning problems. In particular two techniques have demonstrated

1 INTRODUCTION 2

their advantages: Integer linear programming problems (ILP) dealing with optimization
problems formulated in linear form, and constraint satisfaction problems (CSP) dealing
with decision problems formulated as logic problems. Solvers for CSP and ILP are based
on branch-and-inferior techniques [15], but ILP solvers use bounds from linear programming
to prune the search tree while CSP algorithms rely on advanced constraint propagation
techniques and graph theoretical results for pruning the search tree.

Despite progress in both fields, several industrial problems cannot be solved by present
techniques. This typically includes problems which cannot be formulated efficiently in lin-
ear form, or where the number of decision variables are so large, that CSP techniques are
not able to deal with the exponential growth of the solution space. Such problems include
manpower scheduling problems (e.g. of cabin crew to airplanes), machine scheduling prob-
lems (e.g. of tasks in a huge factory), timetabling problems (e.g. of trains and busses),
and packing/cutting problems (e.g. cutting metal with minimum waste at a shipyard).

The appearance of journals like Constraints indicates a growing interest in using CSP
techniques for solving combinatorial problems, and several research projects have worked on
merging techniques for CSP and ILP [3|. In the present paper we focus on decomposition
techniques, where ILP and CSP may be combined in solving the very difficult 2D bin
packing problem (2DBPP). ILP is the tool of choice when dealing with large-sized models
in linear form, while CSP on the other hand is ideal for modeling and solving complicated
restrictions. Dantzig- Wolfe decomposition [28] is a recognized technique for splitting a
suitable problem into a linear master model and a more complicated subproblem where the
two approaches, ILP and CSP, can be used at their best premises. The decomposed model
leads to tighter bounds in a branch-and-bound algorithm, and delayed column generation
may be used to limit the number of subproblems solved. The resulting branch-and-price
approach is used in this paper to solve the two-dimensional knapsack problem.

The dual approach, based on the so-called branch-and-cut algorithms, may also benefit
from combining ILP and CSP. In a classical branch-and-cut algorithm additional, globally
valid, constraints are generated during the search. The constraints are redundant to the
original model but they tighten the bounds obtained through continuous relaxation. The
problem of separating a valid constraint may in our situation be formulated as a CSP
problem.

The 2DBPP is the problem of packing a set R of n rectangles with dimensions w; x h;
into identical larger rectangular bins with dimensions W x H using fewest bins possible, so
that the rectangles do not overlap. The rectangles are required to be parallel to the sides
of the bin and they may not be rotated. The 2DBPP is a straightforward generalization
of the one-dimensional bin packing problem (1IDBPP) in which a set of weights have to be
packed into the minimum number of bins. Both problems are known to be NP-hard and
are also in practice very difficult to solve [19].

Numerous heuristic algorithms for 2DBPP have been presented during the last decades.
Greedy heuristics based on concepts like next-fit, first-fit, best-fit, and their performance
ratios are surveyed in Lodi, Martello, Vigo [18]. The first method that may be characterized

1 INTRODUCTION 3

as a local search algorithm was given by Bengtson [2]. Starting with a packing of a subset
of the pieces (boxes in 3D), the remaining pieces are iteratively packed into the bin having
maximum unused space. Metaheuristics based on tabu search were presented in Lodi,
Martello, Vigo [17], while Faroe, Pisinger, Zachariasen [8] used the concept of guided local
search. Dowsland [7| presented a simulated annealing algorithm for the strip packing
problem in 2D. The algorithm tries to pack the pieces into one containing rectangle. When
a feasible packing has been found, the height of the containing rectangle is reduced and
a new feasible packing is sought. Recently, Monaci |20| presented a heuristic based on
column generation and set covering. The algorithm works in two phases: First a large
number of feasible single bin packings are generated by four different heuristics. Then the
set, covering problem involving the generated packings is solved by the heuristic algorithm
proposed in [4]. Both the set covering heuristic and the guided local search algorithm yield
very good results.

Exact algorithms for the 2DBPP have recently been presented in Martello and Vigo
[19] and Fekete and Schepers [9]. Both papers present several lower bounds on the solution
value. Although the bounds from many respects are good — having polynomial running
times and providing quite tight bounds — their major disadvantage is that they cannot
use information from the branching process to tighten the bounds. This means that the
same lower bound is obtained throughout the whole branch-and-bound tree, except if
some special auxiliary properties (like the closing of a bin) can be used to strengthen the
bound. The column generation lower bound described in this paper does not share this
disadvantage which makes it well suited to tackle the challenging problems where the lower
bound in the root node of the branch-and-bound tree does not equal an initial upper bound
calculated by a heuristic algorithm.

Lower bounds based on column generation were presented in [11, 12] through a straight-
forward generalization of the techniques developed for the IDBPP problem. To the best of
our knowledge, no practical algorithms using these bounds have been presented. A possible
explanation is, that the pricing problem for IDBPP is a simple knapsack problem for which
several good algorithms are available [23], while the pricing problem of 2DBPP becomes a
two-dimensional knapsack problem which is much harder to solve due to the geometrical
structure. Hadjiconstantinou and Christophides [13] studied the two-dimensional knapsack
problem, but were only able to solve instances of moderate size.

In this work we tackle the pricing problem in a new way by splitting the problem into a
multi-constrained 1D knapsack problem and a simple decision problem of two-dimensional
packing. The latter problem is solved through constraint programming, based on the
successful results of Pisinger et.al. [22] for solving three-dimensional packing problems in
the decision form.

The paper is organized as follows: In the following section we formulate the problem in
integer-linear form using O(n?) binary variables. Unfortunately the proposed formulation
contains several symmetric solutions, and hence bounds from LP-relaxation are generally
weak. A tighter formulation based on Dantzig- Wolfe decomposition is proposed in Sec-

2 PROBLEM FORMULATION 4

tion 2.1. The master problem is a set covering problem, solved through delayed column
generation, while the pricing problem becomes a two-dimensional knapsack problem. In
Section 4 it is shown how the pricing problem may be solved through a combination of
constraint programming and branch-and-cut. The two-dimensional knapsack problem is
split into a multi-constrained 1D knapsack problem selecting the most profitable rectangles
to pack, and a two-dimensional packing problem in the decision form. Section 5 describes
a heuristic algorithm for solving the pricing problem, which is used to speed up the column
generation. Finally, Section 6 describes how an initial feasible solution may be obtained
through heuristic methods, and how the primal bound is improved during the search, while
section 7 describes the branching strategy. The paper concludes with an extensive com-
putational study in Section 8 where the developed branch-and-price algorithm is tested
on a set of randomly generated test instances originating from [16]. The bounds obtained
through column generation are tighter than any bounds previously presented in the liter-
ature, and hence the developed algorithm is also able to solve moderately large problems
to optimality.

2 Problem Formulation

Assume that a set R = {1,...,n} of rectangles are given, rectangle 7 having width w; and
height h;. An infinite number of bins are available, each having width W and height H. We
use the modeling technique proposed by Onodera e.a. [21] and Chen e.a. [5] to formulate
the 2DBPP as an IP model. The following decision variables are used: The binary variable
¢;; is 1 iff rectangle 7 is located left to j, and similarly b;; is 1 iff rectangle ¢ is located below
J- The binary variable p;; attains the value 1 iff rectangle 7 is located in a bin preceding
the bin holding rectangle j. Finally, (z;,y;) are the lower left coordinates of rectangle i,
m,; is the bin number where rectangle 7 is packed, and v is the number of bins used.

To ensure that no two rectangles overlap, the following inequality must hold
Cij + Lji + bij + bji + pij + pji 2 1 i,j € Ri <] (1)

If ¢ is located left to j, i.e. £;; = 1 then we have that x; + w; < ;. In general we have the
constraints
Eij=1 = xi—l-wigaej
bij=1 = yi+h <y, (2)
Dij = 1 = m+1< m;

No part of the rectangles may exceed the bin, hence 0 < x; <W —w; and 0 < y; < H — h;.
Moreover, no more than v bins may be used in total so 1 < m; < v.

2 PROBLEM FORMULATION 5

The 2DBPP problem can now be formulated as the following MIP problem

min v

s.t. Eij-l—fji-i—bij-i-bﬁ-i-pij +pj,~21 i,jER,i<j
x,——xj—i-WZ,—ng—w,- ,] €ER
Yi —y; + Hbyy < H — by i,j €R
m; —mj +npi; <n—1 1,] €ER
1<m; <w 1€R
Eij,bz-j,pij € {0,1} ’L,] eR
in,’yieR 1€R
m;,v € N 1€R

The model has 3n? binary variables and 3n continuous variables. The number of constraints
is 7/2n? + 6n. Unfortunately the formulation contains several symmetric solutions hence
being very difficult to solve by ordinary MIP-solvers. To break some of the symmetries we
may add the additional constraints

demanding that rectangle 1 is placed in the first bin, rectangle 2 is placed in one of the
two first bins, etc.

2.1 Set Covering Model

Assuming that P is the set of all feasible packings of a single bin, we may reformulate the
2DBPP as a set covering problem. For every feasible packing p € P, we use the binary
variable z, to indicate whether packing p is chosen in the solution of the set covering model.
For every rectangle r € R and every feasible packing p € P we set 0¥ = 1 iff packing p
contains rectangle r. In this way the set covering formulation of the 2DBPP becomes

minimize Z Tp (5a)

peEP

subject to » xp0f >1 Vr € R (5b)
peEP
z, € {0,1} Vpe?. (5¢)

The object function minimizes the number of bins used in the solution while the constraints
(5b) state that every rectangle must be included in some bin in the solution.

The LP relaxation of the set covering model is

minimize Z T, (6a)

peP

3 DELAYED COLUMN GENERATION 6

subject to préf >1 VreR (6b)
pe?P
z, >0 Vp € P. (6¢)

The set covering model is very simple and the LP relaxation gives a fairly tight lower bound
on the IP solution. In particular (6) yields a tighter lower bound than the LP relaxation of
the first model proposed (3). This is the case since every solution to (6) is also a solution
to the LP relaxation of (3) while the opposite is not true in general.

However, the set covering model contains a variable for every feasible packing of a single
bin. In general there exists an exponential number of feasible single bin packings, and even
for a small number of rectangles, model (6) would be too big to solve. Fortunately, by
using delayed column generation we can solve the linear program without considering a
majority of the variables explicitly.

3 Delayed Column Generation

In delayed column generation we solve the linear problem (6) for a subset P’ of the feasible
packings, gradually adding new packings p € P\ P’ based on the Dantzig rule for solving
the linear problem. The restricted master problem (RMP) is

minimize Z T, (7a)
peEP

subject to Z zp0f > 1 VreR (7b)
peEP
z, >0 Vp e P (7c)

Here P’ is a small set of variables so that a feasible solution exists for RMP. Initially we
choose P as those packings found by a greedy heuristic (see Section 6) for the 2DBPP. Since
we will only add packings to the RMP in the following iterations, the linear program will
always have a feasible solution. (Branching may render the RMP infeasible, but infeasible
branch-and-bound nodes can safely be pruned).

In every iteration of the column generation we will solve the RMP. Let 7., » € R be
the dual variables of the optimal dual solution to the RMP. The dual linear program of
(6) is given by:

maximize Zwr (8a)
reR

subject to Y w0 <1 Vpe P (8b)
reR
>0 Vr e R. (8¢)

If the dual variables 7, to (6) is a feasible solution to (8) we know from the weak duality
theorem that z, is an optimal solution to (6). Otherwise the dual solution 7, must violate

4 SOLVING THE PRICING PROBLEM 7

some constraint of (8). The violation of a constraint of type (8b) corresponding to a packing
p € P by the dual variables 7, is

a=1-) &m

reR

which is called the reduced cost of packing p with respect to the dual variables 7,. Clearly,
if ¢j > 0 for all p € P, m, is a feasible solution to the dual LP, which means that z, is an
optimal solution to (6).

In every iteration of the column generation procedure we find a feasible packing p € P
with smallest reduced cost cj. If ¢j > 0 the LP problem has been solved to optimality.
Otherwise we add the packing to the RMP. This is the same as adding the most violated
constraint of (8) to the dual LP of the RMP, improving feasibility of (8). Finding a packing
with smallest reduced cost is known as the pricing problem of the column generation
procedure. An exact and a heuristic algorithm for this problem will be described in Section
4.

The next iteration of the column generation procedure starts by solving the slightly
larger RMP, obtaining new dual variables. The procedure continues until at some point no
packing with negative reduced cost can be found. Clearly, the column generation procedure
will terminate at some point, since there are only a finite number of feasible packings, and
since packings that are already in the RMP have reduced cost > 0, no packings are added
more than once. In practice the column generation procedure adds only a small fraction of
the feasible packings before terminating, hence the procedure has a much better average
performance than should be expected from the worst-case complexity.

4 Solving the Pricing Problem

The pricing problem is the problem of finding a feasible packing p of a single bin with the
smallest reduced cost cj. If we define the profit p; of every rectangle i € R: p; = —m; then
the pricing problem is a 2D knapsack problem with respect to the profits p;, the rectangle
sizes w; and h; and the knapsack size W and H. The 2DKPP can be modeled using the
following variables: w; is a binary variable having the value 1 iff rectangle 7 is packed in
the bin. The variable ¢;; = 1 iff rectangle 7 is located left to j, and b;; = 1 iff rectangle 7 is
located below j. Finally (z;,y;) are the lower left coordinates of rectangle i.

4 SOLVING THE PRICING PROBLEM 8

The problem can now be formulated as follows:

maximize Y . pit;

s.t. &j—i—fji—i-bij-l—bji-i—(1—uz~)+(1—uj)21 1,1 €ER 1<
.’Ei—.Tj‘f‘WEijSW—wi Z.,jE:R
0<x; <W —w; 1 €R
Ez‘j,bij S {0,1} 1,] eRrR
u; € {0,1} ieR

If u; = u; = 1 for two rectangles 7 # j, i.e. both of the rectangles are packed in the bin,
then the first type of constraints ensure that rectangle ¢ is placed left, right, below or above
rectangle j. If at least one of the variables u;, u; is zero, then the first type of constraints
have no effect. The following four types of constraints ensure a non-overlapping packing
within the bin dimensions as earlier stated in (2). The IP-model (9) is difficult to solve in
practice through general IP-solvers as it has the same adverse properties as model (3).

4.1 Constraint Programming

Pisinger et. al. [22] showed that constraint programming may be used for solving the
decision problem of packing a given set of three-dimensional boxes into a single bin of fixed
dimensions. The same approach may be used in two dimensions, answering the question
whether a given subset of rectangles can be arranged into a single bin.

In order to formulate the problem as a CSP we associate with each pair of rectangles
i,j the set M;; = {{,r,b,a} of possible relative placements (relations) among which we
should choose at least one. To avoid symmetric solutions, the rectangles 1 and 2 have the
restricted domain My, = {£,b}. This leads to the formulation:

|Mz]|21 Z,]ER,Z<]
Mijj={r} = zj+wj<z i,jeR (10)
Myj={a} = yj+hj<y; ,jER

Problem (10) is solved recursively by an algorithm CSPBIN, where two rectangles 7 and
J are considered in each iteration and one of the values in M;; is selected, removing all
other values from the set. The feasibility of the imposed relations is then checked, and if it
can be proved that no solution exists, the algorithm backtracks. Otherwise the algorithm
calls itself recursively. If all sets have cardinality |M,;| =1 (i.e. the relative placement of
all rectangles have been fixed) and a feasible assignment of coordinates to the rectangles
exists, the algorithm terminates with a positive answer.

4 SOLVING THE PRICING PROBLEM 9

The feasibility of a problem with a subset of the relations imposed, is checked the
following way: Considering the horizontal coordinates first, the rectangles are ordered in
topological order according to the partial ordering

Then, running through the rectangles from left to right, z; is defined as
Tj = max {xz +w; : My ={r} or M;; = {E}}
i<j

If z;4+w; > W for some rectangle j then the relations cannot be satisfied and the procedure
returns a false answer. The constraint graph has size O(n?), and the topological ordering
can be found in linear time, hence the total running time is O(n?). The same approach is
used for the vertical coordinates using a topological ordering based on values b and a in

To further speed up the solution algorithm, domain restriction and constraint prop-
agation is applied. Domain restriction is obtained by the FC (forward check) approach

proposed by [14], which means that each time we choose a relation in M;; we immediately
discard all other relations.

We use the MAC (maintaining rc consistency) approach proposed by [10] to propagate
the chosen constraints. Although this means that the time complexity of each node in the
search tree grows considerably, it has been shown in [24] that the additional effort pays
off when dealing with hard problems. The MAC strategy is implemented as follows: For
each recursive call of CSPBIN (i.e. for each new assignment of a relation) we run through
all pairs of rectangles 7 and j and temporarily select a relation in M;; by deleting all other
relations in the set. If the problem becomes infeasible with the additional relation imposed,
the relation is removed from Af;;. If M;; in this way becomes empty, we may conclude that
no feasible solution can be obtained by following this branch, and thus we may backtrack
in CSPBIN. If only one relation is left in a domain M;; then this relation is fixed. All
reductions in the domain achieved by the forward propagation are pushed to a stack, such
that the domains can be restored quickly upon backtracking from CSPBIN.

The best performance of algorithm CSPBIN was obtained sorting the rectangles accord-
ing to non-increasing volume, and then considering pairs of rectangles as (1, 2), (1, 3), (2, 3),
(1,4), (2,4), (3,4), (1,5).... In this way the largest rectangles were placed relatively to
each other at an early stage of the algorithm and infeasibility could quickly be detected.
This complies with the fail first strategy proposed by [1].

4.2 Solving the Pricing Problem Through CSP and Branch-and-
Cut

The cSPBIN algorithm solves the decision problem of arranging a set of rectangles into
a single bin. The pricing problem (9) is however an optimization problem. Using the

4 SOLVING THE PRICING PROBLEM 10

technique from Fekete and Schepers [9] we split the problem into a 1D optimization problem
and a 2D packing decision problem. The 1D optimization asks to choose a subset of the
rectangles with the largest profit sum subject to a restriction on the available area. This
model is recognized as a one-dimensional 0-1 knapsack problem (1IDKPP) of the form:

max .. Dil
S.t. ZiefR wzhzxz S WH (11)
x; € {0, 1} 1€ R

Let D = {i € R: x; = 1} be those rectangles selected in (11). The 2D packing problem
now attempts to arrange the rectangles D into a bin of size W x H. This decision problem
is solved through the CSPBIN algorithm.

If the decision problem cannot be satisfied, we may add the following inequality

d z <D -1 (12)

t€D

to the knapsack problem (11). The inequality cuts off the present solution to (11) and
it can easily be proved that repeating the above process will lead to an integer optimal
solution to the pricing problem. The set of all generated valid inequalities is denoted C.

Unfortunately, the branch-and-cut process may converge very slowly if the generated
inequalities in € are weak. Hence, instead of adding inequalities of the form (12) whenever
the rectangles D do not fit into the a bin, we would like to identify the smallest subset
D' C D which do not fit into the bin, giving rise to the tighter inequality >, 5, x; < |D'|—1.
The latter separation problem may be solved through a modification of the CSP algorithm
to avoid aggressive forward propagation. The disadvantage of forward propagation is, that
information from all rectangles ¢ € D is used to deduce that the rectangles do not fit into
a single bin, hence leaving no information about the “core of the problem” D'. If on the
other hand we used the CSP algorithm without forward propagation, we could register the
maximum depth d of the search tree, hence in case of ONEBIN returning false, knowing
that rectangles D' = {1,2,..., a?} do not fit into a single bin.

Omitting the forward propagation also makes the search less efficient, hence a com-
promise technique was developed, using limited depth forward propagation. Initially, no
propagation is made, but as the CSP search develops we register the current maximum
depth d of the search tree. At any node of the CSP algorithm, we only use forward propa-
gation involving rectangles {1,..., cZ} In this way, when the algorithm terminates with a
negative answer, a subset D' = {1,2,..., cf} of rectangles has been identified which do not
fit into the bin.

To further improve the efficiency of the above approach, we initially sort the rectangles
according to decreasing area. Then the above CSP algorithm is run, returning the set
D' ={1,2,..., CZ} D' is minimal in the sense that removing the last rectangle will leave a
subset of rectangles which fit into a single bin. Still, a subset of D’ may have the property

4 SOLVING THE PRICING PROBLEM 11

that they do not fit into a single bin, hence we prune D' by repeatedly testing whether
D'\ {i} still cannot be packed. The tests are performed for i =1,...,d — 1 in a recursive
way, until a minimal subset has been identified.

4.3 Multi-Constrained Knapsack Problem

Having extended the model (11) with valid inequalities (12) we obtain a one-dimensional
multi-constrained knapsack problem of the form

max) ..q Pil

s.t. Zz’eﬂ% wlhzxz S WH
Diec; Li < |05l =1 Cj€€
z; € {0,1} ieR

(13)

This problem may be solved through a general IP-solver but as the number of constraints
may grow very large, this approach soon becomes inappropriate. Hence, a simple branch-
and-bound algorithm was developed for this purpose. The algorithm sorts the items accord-
ing to non-increasing efficiencies p;/(w;h;), and repeatedly branches on the most efficient
free variable z;. Upper bounds are derived from the LP-relaxation of (11) in which both
the integrality constraints and the cardinality constraints have been relaxed. Backtracking
occurs whenever the upper bound does not exceed the current incumbent solution, or when
some of the constraints are violated.

4.4 Adding Multiple Cuts

Whenever the CSPBIN algorithm returns a negative result we obtain a valid inequality on
the form (12), which says that the rectangles in D cannot be packed in the same bin. By
lifting the inequality we can derive additional valid constraints which tighten the 1IDKPP
further without solving the computationally expensive CSPBIN

Assuming a call to CSPBIN has produced a valid inequality) ... z; < |C| — 1 we may
add another valid inequality for every substitution of a rectangle r;, i € C' with a larger or
equal rectangle r; (i.e. w; > w; and h; > h;), j € R\ C. An example of this is shown in
Figure 1. If a rectangle 7, is larger or equal than all rectangles r;, ¢« € C we can add the
valid inequality) ..~ #; + 25, < |C| — 1 instead of adding |C| inequalities of the previous
type. Clearly, this means adding several extra inequalities to the constrained 1D knapsack
problem making it more time consuming to solve, but since calls to CSPBIN are quite time
consuming we prefer to add as many valid inequalities as possible to reduce the number of
times we need to solve CSPBIN.

4 SOLVING THE PRICING PROBLEM 12

Figure 1: If we call CSPBIN on the rectangles in the figure, we get a negative answer and the
equation 1 + o + 3 < 2 is returned saying that rectangles 1, 2, and 3 can not be packed in
a single bin. But since rectangle 4 is larger or equal to 3 (i.e. wy > w3 and hy > hg), clearly
rectangles 1, 2, 4 cannot be packed in the same bin either, revealing a new valid inequality
1 + 9 + x4 < 2 which may be added to the multi-constrained 1D knapsack problem.

4.5 Dominance

Whenever we add a valid inequality it may happen that this inequality is dominated by an
existing valid inequality or that it dominates one or more of the existing valid inequalities.
For example, assume we have added the inequality z1+x < 1 to the set of valid inequalities
and we find out that x1+x5+2x9 < 1is also a valid inequality. Clearly the second inequality
dominates the first and we can therefore delete the first inequality. The dominance criterion
for inequalities is stated below. To keep the set of valid inequalities as small as possible,
we delete all dominated inequalities by this criterion.

Proposition 1 (Dominance) An inequality X :), s2; < dx,¥i € J : x; € {0,1}
dominates another inequality Y =), g xp < dy,Vk € X : 2 € {0,1} iff dx < dy —[K\
INXK)|.

Proof: Let M = INK. Assume dx < dy —|K\M|. We want to prove that if inequality X is
satisfied then inequality Y is also satisfied. Assume inequality X is satisfied, i.e. Y, 4 x; <
dx. Since M C J we have D5 2i < dx = D 4 one Tk + D pegon Tk < dx + [K\M| < dy,
since Vk € K : x;, < 1. This proves that inequality Y is also satisfied.

The other implication is proved by contradiction. Assume dx > dy — [K \ M|. We
now want to show that we can find an example where inequality X is satisfied without
inequality Y being satisfied. Assume that X # () and that M =INK =0. If dxy = dy =0
then assumption dx > dy — |X \ M| holds. But in the point where Vi € J : z; = 0 and
Vk € X : z; = 1 inequality X is satisfied but inequality Y is not. Thus inequality X does
not dominate inequality Y, which concludes the proof by contradiction. [

4 SOLVING THE PRICING PROBLEM 13

4.6 Early Termination of the Column Generation

Delayed column generation has the disadvantage that the last pricing problems may have
an objective value close to 0. This is known as the tailing-off problem, which results in a
huge number of columns generated without changing the optimal value of the restricted
master problem significantly. If the column generation is terminated before completion,
this will result in a non-valid lower bound.

Lagrangian relaxation on the other hand has the advantage that one gets a valid lower
bound for any set of nonnegative Lagrangian multipliers. Hence we will use Lagrangian
relaxation to obtain a valid lower bound based on the present restricted master problem
[28]. For this purpose, we write up the problem (3) in an alternative way. The set of bins
is K = {1,...,m} where m is an upper bound on the number of bins used. The binary
variable u;, is 1 iff rectangle 7 is placed in bin k, binary variable ¢;; is 1 iff rectangle ¢ and j
are placed in the same bin, and finally vy, is 1 iff bin & is used. This leads to the MIP-model

min), g Uk

s.t. ZkEK Uik = 1 1€R
Y ien Uik < N ke K
uik+ujk—tij§1 ,jER1<j ke K

Gj+ L +bij+bj >t; §,j€ERI<]

yi—y; +Hbyy <H-—h; 1,7€R (14)
0<x; <W —w; 1€R

Eij,b,-j,uij,tij S {0,1} 1,] €ER

v, € 10,1} ieR

Ti, i 2 0 ieR

The first type of constraints say that every rectangle should be placed in some bin. The
second type of constraints pushes v, to 1 if any rectangles are placed in bin k. The third
type of constraints say that if u;; = 1 and u;;, = 1 for two rectangles ¢, 7 and a bin k then
ti; = 1, hence ?;; becomes one only if the two rectangles are placed in the same bin. The
next type of constraints demand that £;; +¢;; +b;; +b;; > 1if ;; = 1. Le. if two rectangles
are placed in the same bin, then they must be located left, right, below, or above each
other. The remaining constraints are similar to those in (3).

Relaxing the first type of constraints in (14) in a Lagrangian way using multipliers

5 A HEURISTIC PRICING ALGORITHM 14

A; > 0 leads to the model

min ZkEK U — Zz’EZR Ai (ZkeK Uik — 1)

st D ieq Uik < Nk ke K
uik—l—ujk—tijgl i,jER,kEK
Kij-l'fji-i‘bij-}-bjiztij 1, €ER 1<
.Ii—.fj-f-WEijSW—wi 1,7 €R
Ez-j,bij,u,-j,tij € {0,1} 1,] €R
v € {0,1} ieR
T3, Y 2> 0 ieR

The objective function may be rewritten
L) =min Y pcp (v — Pien Aittie) + Dier Ai (16)
We wish to maximize the lower bound, hence the Lagrangian dual problem should be solved
Ina,X)\Z()L()\) (17)

The Lagrangian dual problem may be quite time-consuming to solve, so instead we “guess”
some appropriate values of the Lagrangian multipliers. Choosing); as the dual variables
m; corresponding to the present restricted master problem, we solve the problem

min Y, g (“k =D e Wiuik) + D iex i (18)

subject to constraints (15) where the first part of the objective function has a solution
equal to |K| = m times the pricing problem (9). This leads to the following lower bound

a:mr—i-Zm (19)

1ER

where m is an upper bound on the number of bins used (typically obtained through a
heuristic or the incumbent solution in the branch-and-price algorithm), r is the reduced
cost of the last pricing problem solved, and 7; > 0, 7 € R are the dual variables of the
present restricted master problem. If [a] = m we may terminate the column generation,
knowing that the present upper bound equals the lower bound.

5 A Heuristic Pricing Algorithm

The 2D knapsack problem described in the previous section is NP-hard, hence to speed up
the column generation the pricing problem is solved heuristically whenever possible. We

5 A HEURISTIC PRICING ALGORITHM 15

fo ! f1 -

r1

=

To To fo To

T9

(a) (b) ()

Figure 2: An example of the greedy filling by the heuristic pricing algorithm. The r;’s are the
rectangles placed and the f;’s are the free space rectangles in the bin.

use a heuristic that solves the 2D knapsack problem in polynomial time, however without
giving a guarantee of finding a packing with lowest reduced cost. We will use this algorithm
in every iteration of the column generation procedure, and only when it fails to find a single
bin packing with negative reduced cost will we apply the exact 2D knapsack algorithm from
Section 4.

The heuristic pricing algorithm is based on the greedy paradigm. It starts out with
an empty bin and greedily places rectangles in the bin until no more rectangles can be
placed. The algorithm keeps track of all the free space rectangles in the bin. The free
space rectangles is a collection of mazimal rectangles f satisfying f Nr = for all r € R.
Mazimal means that a free space rectangle is bounded on all sides by rectangles or the bin
sides. Notice that the free space rectangles may overlap and that Jf =W x H\{Jr. In
every iteration a rectangle is placed in one the free space rectangles where it fits and the
set, of new free space rectangles is determined for the bin. An example is shown in Figure
2.

In every iteration, the heuristic pricing algorithm selects a rectangle to place in the bin
and a free space rectangle in which it should be placed. Two different strategies for selecting
a rectangle and two different strategies for selecting a free space have been considered.

Choosing a Rectangle

The objective of the heuristic pricing algorithm is to determine a 2D packing which min-
imizes the corresponding reduced cost. Since we are only interested in packings with
negative reduced cost we can discard all rectangles with nonnegative reduced price. A nat-
ural, greedy strategy is thus to add the rectangle with lowest reduced price/area ratio in
every iteration, since this gives us the lowest reduced cost compared to the area. The above

5 A HEURISTIC PRICING ALGORITHM 16

Heuristic_filling
R {1,...,n}; F« {(WxH)}
while(R # ()
select a rectangle r from R
let p, be the reduced cost associated with r
if(p, < 0)
select a free space rectangle f from JF in which r fits
if(f exists) place r at f; update F
R R\ {r}

Figure 3: Pseudo-code for the heuristic pricing algorithm

strategy may tend to add smaller rectangles before larger ones, since the small rectangles
may often have a better price/area ratio. This may, however, prevent the larger rectangles
from being added, since there may not be room for them later on. Another strategy is
to disregard the area of the rectangles and simply choose the rectangle with the lowest
reduced price in every iteration.

Randomized versions of both strategies are also considered. In the randomized versions
the probability of choosing a rectangle is proportional to respectively the reduced price/area
ratio and the reduced price of the rectangle.

Choosing a Free Space Rectangle

Having chosen a rectangle r to place into the bin, we need to choose a free space rectangle
to place it in. Two strategies have been considered:

1. Smallest Rectangle. Choose the smallest free space rectangle f that can hold 7.

2. Maximize Largest. Choose the free space rectangle f, that maximizes the largest free
space rectangle in the bin after placing r in f .

If no free space rectangle exists that can hold the chosen rectangle r, we discard r and
choose another rectangle. When there are no more rectangles left, the heuristic terminates.
Figure 3 shows the pseudo-code for the heuristic pricing algorithm.

Combining the strategies for choosing a rectangle and free space rectangle we obtain
eight variants of the heuristic pricing algorithm. In every step of the column generation
procedure, we successively run one of the eight variants until a single bin packing with
negative reduced cost is found. Only if none of the eight variants produces such a packing,
the exact pricing algorithm is applied. The randomized heuristic pricing algorithms may
be run several times before applying the exact pricing algorithm.

6 THE PRIMAL BOUND 17

6 The Primal Bound

The column generation procedure provides fairly tight lower bounds for the optimal so-
lution to 2DBPP. To bound the optimal solution from above we start out by running a
heuristic algorithm which finds very high quality solutions. Although the column genera-
tion in principle can start up with the identity matrix as initial columns, our computational
experiments showed that the computational effort could be decreased considerably by feed-
ing the algorithm with a near-optimal set of columns. Hence a state-of-art heuristic from
Faroe, Pisinger, Zachariasen [8] was chosen to provide the initial columns as well as an
initial upper bound.

The heuristic is based on Guided Local Search (GLS) as described in Voudouris and
Tsang [26, 27| and attempts to pack all the rectangles into a fixed number m of bins.
A feasible packing will have no overlap between rectangles, hence the objective function
minimizes the sum of overlaps between each pair of rectangles. The neighborhood of the
local search algorithm is based on selecting a rectangle and sliding it either in horizontal
direction, vertical direction, or moving it to another bin. The GLS framework is based on
a “hill-climbing” approach which repeatedly performs an improving local search iteration
until the algorithm is trapped in a local minima. At this moment, the GLS algorithm
selects a pair of rectangles which posses the overlap feature, assign a punishment to this
feature, and reoptimize the problem with respect to a modified objective function. In order
to minimize the number of bins used, the GLS algorithm is called for decreasing values of
m, until a feasible packing cannot be found within a given number of iterations.

During the execution of the branch-and-price algorithm we may improve the primal
bound. During the column generation numerous instances of the restricted master problem
(7) are solved to LP-optimality. Any IP-solution to this problem provides a valid solution
for the 2DBPP and hence may be used for tightening the upper bound. The IP variant
of (7) may be solved by CPLEX, but since it is quite time consuming, we only solve the
problem to integer optimality every M3 iterations. A proper value of M3 was experimentally
found as M5 = 50.

7 Branching

The LP-solutions to (6) found by column generation are not necessarily integral. In order
to obtain optimal integral solutions we apply a branching rule which excludes fractional
solutions. As always when designing a branch-and-bound algorithm we want a branching
scheme which divides the solution space fairly even in order to ensure progress in the
algorithm. But when designing a branching scheme for a branch-and-price algorithm, we
also have to make sure that the branching scheme works well with the pricing algorithm.

We use the following branching rule: Choose two rectangles r; and r;, ¢ # j. Divide
the solution space into two branches. On one branch we demand that rectangles r; and r;

8 COMPUTATIONAL RESULTS 18

may not be in the same bin and on the other branch we demand that r; and r; have to
be in the same bin. By applying the branching rule we get two new subproblems in the
branch-and-bound tree. The first branch corresponds to adding the constraint

D a6t =0

peP

to the LP model, and the second branch corresponds to adding the two constraints

D zpf(1—48) =0 D (11— =0

pe?P pEP

to the LP model.

When solving the pricing problem in some subproblem of the branch-and-bound tree,
the packings produced by the pricing algorithm must comply with all the branching con-
straints of the subproblem. As described in Section 4, the pricing algorithm consists of
relaxing the 2D knapsack problem to a constrained 1D knapsack problem and checking if
the solution from the 1D knapsack problem is valid. If a branching constraint saying that
rectangles r; and 7; have to be in the same bin is present in the subproblem, we simply
merge the two rectangles into one r;;. The area of r;; is thus w;h; + w;h;, which is used
when the constrained 1D knapsack problems are solved during the column generation in
this subproblem. If on the other hand r; and r; have to be in different bins, we simply
add the inequality z; +x; < 1 to the constrained 1D knapsack problem. Observe that this
inequality is only locally valid in contrast to the other inequalities of the constrained 1D
knapsack problem which are globally valid.

As mentioned the branching scheme should divide the solution space evenly. Unfortu-
nately our branching rule does not, since it is a stronger constraint to demand that two
rectangles have to be in the same bin, than demanding that two rectangles have to be in
different bins. This means that the solution space of the second branch is bigger than on
the first branch. However, if we branch on two rectangles from a bin with high fractional
value in the LP solution, we are given two rectangles which probably should be in the same
bin in an optimal solution. This makes the second type of branching constraint stronger,
balancing the division of the solution space.

8 Computational Results

We have implemented a branch-and-price algorithm to solve 2DBPP as described in the
previous sections. For this purpose we used ABACUS (“A Branch-And-CUt System”) [25]
which is a collection of C++ classes that significantly reduces the work of implementing
branch and bound like algorithms. ABACUS provides an interface to CPLEX 7.0 6]
which we have used to solve the linear programs resulting from the column generation. To
evaluate the quality of the lower bounds obtained by the column generation procedure, we

8 COMPUTATIONAL RESULTS 19

have implemented the lower bounds of Martello and Vigo [19] and of Fekete and Schepers
[9]. All tests have been carried out on an Intel Pentium I11-933 with 1 GB of memory.

We have tested our algorithm on the test instances provided by Lodi, Martello and
Vigo in [16]. These instances consist of ten classes of problems. In each problem class
there are 50 instances: 10 with 20 rectangles, 10 with 40 rectangles, 10 with 60 rectangles,
10 with 80 rectangles and 10 with 100 rectangles. Problem class I-VI have been proposed
by Berkey and Wang while the last four classes have been proposed by Lodi, Martello and
Vigo in [16]. The first 6 problem classes have the following characteristics:

Class I: w, and h, uniformly random in [1,10], W = H = 10.
Class II: w, and h, uniformly random in [1,10], W = H = 30.
Class III: w, and h, uniformly random in [1,35], W = H = 40.
Class IV: w, and h, uniformly random in [1,35], W = H = 100.
Class V: w, and h, uniformly random in [1,100], W = H = 100.
Class VI: w, and h, uniformly random in [1,100], W = H = 300.

In the last four problem classes four types of rectangles are used in the problems:

Type I: w, uniformly random in [2W, W], h, uniformly random in [1, 1 H].
Type II: w, uniformly random in [1, W], h, uniformly random in [2H, H].
Type III: w, uniformly random in [;W, W], h, uniformly random in [3H, H].

Type IV : w, uniformly random in [1, W], h, uniformly random in [1, H].

The last four problem classes all have W = H = 100 and the rectangles are as follows:
Class VII: type 1 with probability 70%, type 2, 3, 4 with probability 10% each.
Class VIII: type 2 with probability 70%, type 1, 3, 4 with probability 10% each.
Class IX: type 3 with probability 70%, type 1, 2, 4 with probability 10% each.
Class X: type 4 with probability 70%, type 1, 2, 3 with probability 10% each.

8.1 Results

In tables 1 and 2 we have shown the results of our branch-and-price algorithm on the 10
problem classes. Each row in the tables is summation of 10 problems of the specified type.
We present the number of improved lower bounds in the root node of the branch-and-bound
tree compared to the lower bound by Fekete and Schepers, the number of problems solved
to optimality, the average CPU time used, the average number of columns generated, the
average number of cuts generated, the average number of branch-and-bound nodes, and
the average CPU time used for the obtaining the lower bound in the root node.

In tables 3 and 4 we have summarized the results for different classes and different
problem sizes. From Table 3 we see that the hardest problem classes to solve are classes

8 COMPUTATIONAL RESULTS

20

Improved # Solved Avg. CPU Avg. # Avg. # Avg. # Avg. CPU

Class | # Items | Low. Bounds | Optimally | (seconds) | Col. Gen. | Cuts Gen. | B&B nodes | Low. Bound
I 20 2 10 13 6 17 1 0
I 40 3 10 19 27 166 1 1
I 60 1 10 345 49 5552 4 318
I 80 0 10 51 0 0 1 0
I 100 0 10 836 288 20502 22 583
II 20 0 10 1 0 0 1 0
II 40 0 10 275 160 3 1 360
II 60 0 10 1357 698 81 18 1797
II 80 0 9 2523 1319 214 204 3225
II 100 0 9 2256 1399 295 108 2857
II1 20 4 10 16 37 83 1 1
II1 40 1 10 270 161 4565 7 173
IIT 60 4 10 646 339 14672 7 600
II1 80 2 10 1201 645 26204 67 1156
111 100 3 8 2336 963 32500 110 2371
vV 20 0 10 1 0 0 1 0
v 40 0 10 193 252 9 5 230
v 60 0 8 2085 1033 94 28 2490
v 80 0 7 2970 1592 191 197 3488
v 100 1 9 2537 1834 183 55 3013
\% 20 5 10 17 9 29 1 0
\ 40 3 10 50 55 2004 1 26
\% 60 3 10 415 208 5289 7 365
\' 80 6 9 892 344 17940 8 842
\ 100 4 7 1853 793 34112 35 1584
VI 20 0 10 0 0 0 1 0
VI 40 0 8 1304 883 20 1 1455
VI 60 0 9 2384 1093 89 28 2211
VI 80 0 10 2690 1206 33 228 204
VI 100 0 8 2880 206 0 65 0

Table 1: Results for problem classes I - VI

Improved # Solved | Avg. CPU Avg. # Avg. # Avg. # Avg. CPU

Class | # Items | Low. Bounds | Optimally | (seconds) Col. Gen. | Cuts Gen. | B&B nodes | Low. Bound
VII 20 2 10 11 11 286 1 1
VII 40 0 8 744 74 4371 2 716
VII 60 0 7 1317 164 18265 23 1239
VII 80 0 2 2909 357 34520 111 2742
VII 100 0 8 1484 342 22107 34 1200
VIII 20 3 10 14 10 150 1 0
VIII 40 0 9 388 19 2601 1 358
VIII 60 0 8 871 90 10887 83 789
VIII 80 0 9 584 69 7983 8 432
VIII 100 0 7 1823 363 32881 81 1440
IX 20 0 10 0 0 0 1 0
IX 40 3 10 13 4 113 1 0
IX 60 2 10 19 1 190 1 0
IX 80 3 10 40 2 472 1 2
IX 100 2 10 66 3 629 1 4
X 20 1 9 371 49 235 1 365
X 40 2 9 389 121 798 1 365
X 60 1 7 1722 673 22972 11 1625
X 80 1 5 2719 1088 24738 28 2675
X 100 3 1 3510 1605 30830 31 3447

Table 2: Results for problem classes VII - X

8 COMPUTATIONAL RESULTS 21

Improved # Solved
Class | Low. Bounds | Optimally
I 6 50
I 0 48
III 14 48
v 1 44 # Improved # Solved
\' 21 46 7+ Items | Low. Bounds | Optimally
\%! 0 45 20 17 99
VII 2 35 40 12 94
VIII 3 43 60 11 89
IX 10 50 80 12 81
X 8 31 100 13 77
Sum 65 440 Sum 65 440
Table 3: Summarized results Table 4: Summarized results
for different problem classes for different problem sizes

VII, VIII, and X which all contain many medium sized items. For problems with many
small items, the continuous lower bound is tight and these problems are therefore quite
easy to solve. For problems with many large items each bin only has room for a relatively
small number of items, which means that the number of different single bin packings is
relatively small. It makes sense that our algorithm solves these types of problem more
easily since we explicitly generate single bin packings to obtain an optimal packing of all
items.

The branch-and-bound algorithm by Martello and Vigo was also able to solve many of
the problems with either many small items or many large items. However the algorithm did
not perform well on problems with an even distribution of small, medium sized and large
items (classes I, III, and V). For these problem classes the present algorithm is performing
very well.

From Table 4 we see, as we would expect, that problems with more items are harder
to solve than problems with fewer items. We also see that the number of lower bounds
improved by our algorithm seems to be independent of the number of items in the problems.
On the other hand we see from Table 3 that the number of improved lower bounds varies
between different problem classes. Classes III, V, and IX have the largest numbers of
improved lower bounds. These are the classes with mixed item sizes, on which the Martello
and Vigo algorithm did not perform well.

In Table 5, 6, and 7 we show the lower bound calculations in greater detail. The values
of the column generation lower bounds are compared to Martello and Vigo’s Ly, Ly, Lo,
L, and to Fekete and Schepers’ lower bounds F'S which have been proved to dominate
Martello and Vigo’s. In the table we have also shown the best known upper bounds for
comparison. We see that the column generation lower bounds are greater or equal to Fekete
and Schepers’ in all cases, however, the improvement varies with the problem classes. For
problem classes II, IV, and VI the two lower bounds are very similar. These are the classes
with many small items and for these classes the simple Ly lower bounds actually match
Fekete and Schepers’ lower bounds. The largest improvement of Fekete and Schepers’

8 COMPUTATIONAL RESULTS 22

Class | Size Lo L1 Lo Ly FS Col. gen. UB
I 20 6.4 5.9 6.7 6.7 6.9 7.1 7.1
I 40 12.0 11.7 12.8 12.8 13.1 13.4 13.4
I 60 18.5 17.8 19.3 19.3 19.9 20.0 20.0
1 80 25.3 24.7 26.9 26.9 27.5 27.5 27.5
I 100 30.5 28.6 31.4 31.4 31.7 31.7 31.8
II 20 1.0 0.0 1.0 1.0 1.0 1.0 1.0
11 40 1.9 0.0 1.9 1.9 1.9 1.9 2.0
11 60 2.5 0.0 2.5 2.5 2.5 2.5 2.6
11 80 3.1 0.0 3.1 3.1 3.1 3.1 3.3
11 100 3.9 0.0 3.9 3.9 3.9 3.9 4.0

III 20 4.4 4.4 4.6 4.6 4.7 5.1 5.1
111 40 8.2 8.2 8.8 8.8 9.2 9.3 9.4
11T 60 12.5 12.7 13.3 13.3 13.5 13.9 14.0
111 80 17.3 17.6 18.4 18.4 18.7 18.9 19.0
111 100 20.5 21.0 21.7 21.7 22.0 22.3 22.8
v 20 1.0 0.0 1.0 1.0 1.0 1.0 1.0
I\ 40 1.9 0.0 1.9 1.9 1.9 1.9 1.9
v 60 2.3 0.0 2.3 2.3 2.3 2.3 2.5
v 80 3.0 0.0 3.0 3.0 3.0 3.0 3.3
v 100 3.7 0.0 3.7 3.7 3.7 3.8 3.8
\% 20 5.4 5.9 6.0 6.0 6.0 6.5 6.5
A\ 40 10.1 11.0 11.4 11.4 11.6 11.9 11.9
\% 60 15.7 16.7 17.2 17.2 17.6 17.9 18.0
Vv 80 21.5 23.2 23.6 23.6 24.0 24.6 24.8
\% 100 25.9 271 27.3 27.3 27.7 28.1 28.8
VI 20 1.0 0.0 1.0 1.0 1.0 1.0 1.0
VI 40 1.5 0.0 1.5 1.5 1.5 1.5 1.9
VI 60 2.1 0.0 2.1 2.1 2.1 2.1 2.2
VI 80 3.0 0.0 3.0 3.0 3.0 3.0 3.0
VI 100 3.2 0.0 3.2 3.2 3.2 3.2 3.4
VII 20 4.7 5.1 5.3 5.3 5.3 5.5 5.5
VII 40 9.7 10.4 10.8 10.8 10.9 10.9 11.1
VII 60 14.0 14.9 15.5 15.5 15.5 15.5 15.8
VII 80 19.7 21.7 22.3 22.3 22.4 22.4 23.2
VII 100 23.8 25.7 26.8 26.8 26.9 26.9 27.3

VIII 20 4.8 5.3 5.5 5.5 5.5 5.8 5.8

VIIT 40 9.6 10.2 11.1 11.1 11.2 11.2 11.3

VIII 60 14.1 15.3 15.9 15.9 15.9 15.9 16.1

VIII 80 19.5 21.3 22.2 22.2 22.3 22.3 22.4

VIII 100 241 26.5 27.3 27.3 27.4 27.4 27.8

IX 20 9.4 14.3 14.3 14.3 14.3 14.3 14.3
X 40 18.0 27.4 27.4 27.4 27.5 27.8 27.8
IX 60 27.6 43.3 43.3 43.3 43.5 43.7 43.7
X 80 37.1 56.9 56.9 56.9 57.4 57.7 57.7
X 100 45.0 68.9 68.9 68.9 69.3 69.5 69.5
X 20 3.8 3.4 4.0 4.0 4.0 4.1 4.2
X 40 6.9 6.1 7.1 7.1 7.1 7.3 7.4
X 60 9.4 7.8 9.7 9.7 9.7 9.8 10.2
X 80 12.2 9.8 12.3 12.3 12.3 12.4 13.0
X 100 15.3 11.9 15.3 15.3 15.3 15.6 16.5
Sum 598.0 | 642.7 | 706.4 | 706.4 | 712.9 719.4 | 727.6

Table 5: Lower bounds: Martello and Vigo’s Ly, L1, L2, L4 and Fekete and Schepers’ FS and the
column generation lower bound calculated in this article

8 COMPUTATIONAL RESULTS 23

Class Lo Ly Lo Ly FS Col. gen. UB
I 92.7 88.7 97.1 97.1 99.1 99.7 99.8
1I 12.4 0.0 12.4 12.4 12.4 12.4 12.9
111 62.9 63.9 66.8 66.8 68.1 69.5 70.3
v 11.9 0.0 11.9 11.9 11.9 12.0 12.5
A% 78.6 83.9 85.5 85.5 86.9 89.0 90.0
VI 10.8 0.0 10.8 10.8 10.8 10.8 11.5

VII 71.9 77.8 80.7 80.7 81.0 81.2 82.9

VIII 72.1 78.6 82.0 82.0 82.3 82.6 83.4
IX 137.1 210.8 210.8 210.8 212.0 213.0 213.0
X 47.6 39.0 48.4 48.4 48.4 49.2 51.3

Table 6: Summarized lower bound calculations for the ten problem classes

Size Lo Ly Lo Ly FS Col. gen. UB
20 41.9 44.3 49.4 49.4 49.7 51.4 51.5
40 79.8 85.0 94.7 94.7 95.9 97.1 98.1
60 | 118.7 | 128.5 | 141.1 | 141.1 | 142.5 143.6 | 145.1
80 | 161.7 | 175.2 | 191.7 | 191.7 | 193.7 194.9 | 197.2

100 | 195.9 | 209.7 | 229.5 | 229.5 | 231.1 232.4 | 235.7

Table 7: Summarized lower bound calculations for the five problem sizes

lower bounds is seen for classes III and V. These are the classes where we have an evenly
distributed amount of small, medium sized and big items. It seems reasonable that the
column generation lower bound has the greatest advantage over Fekete and Schepers’ lower
bounds for these problem classes since neither Ly or bounding by considering the big items
yields a tight bound in this case.

From the summation of the lower bounds presented in the bottom line of Table 5 we
get a rough overview of the quality of the different lower bounds. We can see that the
Fekete and Schepers lower bound decreases the gap between L, and the best known upper
bound considerably. The column generation lower bound further decreases this gap by 44%
providing a very tight lower bound. But from the previous section we can also conclude,
that the improvement of the column generation lower bound varies considerably with the
types of problems it is applied to.

8.2 Conclusion

Although Gilmore and Gomory [11] already several decades ago presented the first formu-
lation of 2DBPP based on column generation, the present paper is, to the best knowledge
of the authors, the first to report results on large-sized instances using this approach. The
pricing problem in two dimensions is much more difficult to solve than in one dimension,
hence we proposed a combination of constraint programming and branch-and-cut for solv-
ing the resulting two-dimensional knapsack problem. The computational results show that
the lower bounds obtained through column generation are tighter than any bounds previ-
ously published in the literature. Due to these tight lower bounds we are able to solve to
optimality 2DBPP instances of quite large size.

REFERENCES 24

A second contribution of the present paper is to investigate how the best properties of
CSP and ILP can be used for solving large-scale industrial problems by use of decomposition
techniques. Previous papers have focused on developing unified solution methods and
unified programming languages for ILP and CSP. The present work has shown how the
two techniques may be used at their best premises, using results from one approach to
strengthen the formulation of the other approach.

Finally, several new polynomial IP-formulations of the 2DBPP and related packing
problems have been presented, making it easier to solve small-sized packing problems
through general IP-solvers.

References

[1] R. Barték. Online guide to constraint programming, 1998.
http://kti.mff.cuni.cz/~bartak/constraints/.

[2] B.E. Bengtsson. Packing rectangular pieces — a heuristic approach. The Computer
Journal, 25:353-357, 1982.

[3] S. C. Brailsford, C. N. Potts, and B. M. Smith. Constraint satisfaction problems:
Algorithms and applications. FEuropean Journal of Operational Research, 119:557—
581, 1999.

[4] A. Caprara, M. Fischetti, and P. Toth. A heuristic method for the set covering
problem. Operations Research, 47(5):730-743, 1999.

[5] C.S. Chen, S.M. Lee, and Q.S. Shen. An analytical model for the container loading
problem. Furopean Journal of Operational Research, 80:68-76, 1995.

[6] Cplex. Using the Cplex Callable Library. Cplex Optimization, Inc., 1995.

[7] K. Dowsland. Some experiments with simulated annealing techniques for packing
problems. European Journal of Operational Research, 68:389-399, 1993.

[8] O. Faroe, D. Pisinger, and M. Zachariasen. Guided local search for the three-
dimensional bin packing problem. INFORMS Journal on Computing, 2000. to appear.

[9] S. P. Fekete and J. Schepers. New classes of lower bounds for bin packing problems.
In R. E. Bixby, E. A. Boyd, and R. Z. Rios-Mercado, editors, Integer Programming
and Combinatorial Optimization, Proc. 6th International IPCO Conference, volume
1412 of Lecture Notes in Computer Science, pages 257-270. Springer-Verlag, 1998.

[10] J. Gaschnig. Performance measurement and analysis of certain search algorithms.
Technical Report CMU-CS-79-124, Carnegie-Mellon University, 1979.

REFERENCES 25

[11] P.C. Gilmore and R.E. Gomory. A linear programming approach to the cutting stock
problem. Operations Research, 9:849-859, 1961.

[12] P.C. Gilmore and R.E. Gomory. A linear programming approach to the cutting stock
problem — part II. Operations Research, 13:94-119, 1963.

[13] E. Hadjiconstantinou and N. Christofides. An exact algorithm for general, orthogo-
nal, two-dimensional knapsack problems. Furopean Journal of Operational Research,
83:39-56, 1995.

|14] R.M. Haralick and G.L. Elliot. Increasing tree search efficiency for constraint satis-
faction problems. Artificial Intelligence, pages 263-313, 1980.

[15] J. Hooker, G. Ottosson, E. S. Thorsteinsson, and H.-J. Kim. A scheme for unifying
optimization and constraint satisfaction methods. Knowledge Engineering Review,
Special Issue on Artificial Intelligence and Operations Research, 15, 2000.

[16] A. Lodi, S. Martello, and D. Vigo. Heuristic and metaheuristic approaches for a class
of twodimensional bin packing problems.

[17] A. Lodi, S. Martello, and D. Vigo. Heuristic and metaheuristic approaches for a
class of two-dimensional bin packing problems. INFORMS Journal on Computing,
11:345-357, 1999.

[18] A. Lodi, S. Martello, and D. Vigo. Recent advances on two-dimensional bin packing
problems. Discrete Applied Mathematics, 123:379-396, 2002.

[19] S. Martello and D. Vigo. Exact solution of the two-dimensional finite bin packing
problem. Management Science, 44:388-399, 1998.

[20] M. Monaci. Algorithms for Packing and Scheduling Problems. PhD thesis, University
of Bologna, 2002.

[21] H. Onodera, Y. Taniguchi, and K. Tmaru. Branch-and-bound placement for building
block layout. 28th ACM/IEEE design automation conference, pages 433-439, 1991.

[22] D. Pisinger, E. den Boef, J. Korst, S. Martello, and D. Vigo. Robot packable and
general variants of the three-dimensional bin packing problem. submitted, 2001.

[23] D. Pisinger and P. Toth. Knapsack problems. In D.Z. Du and P. Pardalos, editors,
Handbook of Combinatorial Optimization, vol 1. Kluwer Academic Publishers, 1998.

[24] D. Sabin and E.C. Freuder. Contradicting conventional wisdom in constraint satis-
faction. In A. Borning, editor, Proceedings of the Second International Workshop on
Principles and Practice of Constraint Programming, PPCP’9/4, Rosario, Orcas Island,
Washington, USA, volume 874, pages 10-20, 1994.

REFERENCES 26

[25] S. Thienel. ABACUS — A Branch-And-CUt System. PhD thesis, Universitat zu Koln,
1995.

[26] C. Voudouris. Guided local search for combinatorial optimisation problems. Ph.D.
Thesis, Dept. of Computer Science, University of Essex, Colchester, England, 1997.

[27] C. Voudouris and E. Tsang. Guided local search and its application to the traveling
salesman problem. Furopean Journal of Operational Research, 113:469-499, 1999.

[28] L.A. Wolsey. Integer Programming. Wiley Interscience, 1998.

