
Leveraging Non-Uniform Resources
for Parallel Query Processing

Tobias Mayr

IBM Almaden
tmayr@us.ibm.com

Philippe Bonnet
University of
Copenhagen

bonnet@diku.dk

Johannes Gehrke
Cornell University

johannes@cs.cornell.edu

Praveen Seshadri
Microsoft

pravse@micosoft.com

Abstract

Clusters are now composed of non-uniform
nodes with different CPUs, disks or network
cards so that customers can adapt the cluster
configuration to the changing technologies and to
their changing needs. Such modular clusters
challenge parallel databases. The load balancing
techniques used by existing parallel databases
partition data across a set of nodes that all run the
same relational operations. We show in this
paper that this form of load balancing is ill suited
for modular clusters because running the same
operation on different subsets of the data does
not fully utilize non-uniform hardware resources.
We propose and evaluate new load balancing
techniques that blend pipeline parallelism with
intra-query parallelism. We consider relational
operators as pipelines of fine-grained operations
that can be located on different cluster nodes and
executed in parallel on different data subsets to
best exploit non-uniform resources. Our new
techniques thus partition both operations and
data across cluster nodes. They can be
incorporated in the architecture of existing
parallel database systems. We present an
experimental study that confirms the feasibility
and effectiveness of the new techniques in a
parallel execution engine prototype based on the
open-source DBMS Predator.

1. Introduction
Now that clusters are commonplace, customers want to
progressively scale-up their configurations. Not all
customers are ready to wait until their cluster is outdated
to replace it by a newer, larger one (as it has been the case
in the research community for years). Typically,
customers want to add (or remove) computing or storage
capacity as their business evolves and as technology
changes.

A flexible and cost-effective way to adapt a cluster
configuration to changing needs as well as changing
technology is to assemble a cluster as a collection of non-
uniform nodes with different CPUs, disks or network

cards. Dell for instance supports modular clusters of non-
uniform nodes with their modular blades [GO2].

In this paper, we recognize that modular clusters
challenge one of the key assumptions that were made
when parallel databases were designed, namely that all
cluster nodes are uniform1. We propose new load
balancing techniques that leverage non-uniform resources
in a modular cluster. Before we describe the problem we
tackle in this paper and our contributions, let us briefly
review essential parallel query processing notions.

1.1. Parallel Query Processing
Parallel databases are popular now that scalability has

become a key issue2. This is particularly true for very
large data warehouses (the top results of the on-line
analytical processing benchmark TPC-H are obtained
with parallel databases [TPC]).

Parallel query processing relies on the following forms
of parallelism:

Independent parallelism: multiple queries are executed
on different nodes in parallel. The number of queries that
need to be processed at any time limits the number of
nodes that can be used in parallel, i.e., the degree of
parallelism. Only a very large number of small queries
make independent parallelism scalable, for example in
transaction processing applications.

Pipeline parallelism: single queries are executed by
executing their operators on different nodes. Every query
consists of a number of such operators that are connected
with each other via a producer-consumer pipeline.
Operators can be executed on separate nodes. Because
different operators consume different resources, pipeline
parallelism allows the balancing of resource consumption
on different nodes. This form of parallelism is however
limited in its degree by the number of operators employed

1 A limited form of non-uniformity, due to diskless nodes and

skew, was envisaged in Gamma [D+90]. The load balancing
techniques that were devised in this context simply refine the
data partitioning across the nodes, while our techniques adapt
the usage of individual resources (see Related Work Section).

2 Research on parallel database systems started in the late 80s,
and nowadays all major database vendors propose a parallel
version of their system.

in a query. It also poses problems matching operators to
nodes.

Intra-operator parallelism, also commonly known as
dataflow parallelism: a single relational operator is
executed on several nodes on different subsets of the data.
Relational operators are connected via data streams
established between pairs of cluster nodes (operators such
as join, aggregates, sort require data to be repartitioned
across all nodes while select, project and merge can be
performed on the local data subset). This form of
parallelism is a very powerful solution because it
leverages the fact that relational query processing is
performed on large sets of uniform data that can be
arbitrarily partitioned. It is virtually unlimited in its
degree because the processed data sets can be partitioned
into arbitrary small subsets.

Existing parallel database systems rely on these
different forms of parallelism, but use them in separation.
Typically, small queries are dispatched to different nodes
using independent parallelism. Expensive query
fragments with operators such as joins and aggregates, are
parallelized on a large set of nodes using dataflow
parallelism. Depending on the kind of workload (either
transactional or analytical), a parallel database system
either uses independent or dataflow parallelism to make
query execution scalable. The use of pipeline parallelism
is limited due to the small number of operators in a typical
query.

Load balancing is achieved by attributing large subsets
of the data to the nodes whose resource usage is low. This
form of load balancing relies on data partitioning (while
all nodes execute the same relational operations).

Load-balancing techniques only based on data
partitioning however ignore (1) hardware heterogeneity in
a modular cluster, as well as (2) the skew of resource
usage and availability3 and (3) interferences between
various tasks executed on the same node (e.g.,
background OS services consume resources at varying
rates)4.

As a result, existing load balancing techniques fail to
adapt to the resources situation on individual cluster
nodes. They under-utilize resources and thus fail to avoid
bottlenecks. We further discuss this problem in Section 2.

In the rest of the paper, we address the following issues:
1. How can existing load balancing approaches based

on data partitioning be complemented with new
techniques that allow the needed fine-grained

3 Resource availability varies with the local component’s

performance. For example, each disk delivers varying
bandwidths depending on track position and data
fragmentation. Network interface cards vary in the actual
bandwidth depending on switch topology and scheduling. (see
also [A+99])

4 Note that the former point is a characteristic of modular
clusters while the latter two points are related to dynamically
changing phenomena occurring in any cluster node.

adaptation to individual node resources in a modular
cluster? We should avoid techniques that are hard to
implement, involve high overheads, and do not allow
adaptations for individual resources.

2. How feasible and effective are the new techniques
when implemented in a prototype? We seek effective,
low-overhead execution techniques that allow trade-
offs in the utilization of individual resources. The
techniques should be usable in existing parallel
database systems without major redesigns.

1.2. Contr ibutions
This paper shows new ways in which parallel query

processing can be adapted to non-uniform resources –
resources such as CPU, disk or network bandwidth which
vary across the components of a modular cluster. The
problems posed by non-uniform cluster resources have
been studied for a few years (e.g.,
[DF+98][AP+00][BK+02]); this paper is the first to study
them in the context of parallel query processing.

We focus on the execution of complex read-only queries
over object-relational data that characterize data
warehouse workloads. The complexity of these queries
stems from the combination of relational operators, e.g.,
equi-joins, with expensive type-specific operations, like
analysis methods over time series. Parallelism is critical to
improve the execution time of such queries.

We demonstrate the limitations of load balancing
techniques based on data partitioning, and we recognize
that, in order to leverage non-uniform resources, it is
necessary to adapt the kind of work that is performed on
each cluster node in addition to adapting the amount of
data that is performed.

We propose a new query execution framework that
combines the scalability of dataflow parallelism with the
scheduling of resources made possible by pipeline
parallelism. We consider that expensive relational
operators are themselves a pipeline of fine-grained
operations. The data streams established across cluster
nodes to support dataflow parallelism, allow these fine-
grained operations to be added, reordered and moved
from one cluster node to another to optimize the resource
usage of individual cluster nodes. The proposed new
framework combines two known form of parallelism
(dataflow and pipeline) in a unique way that is far more
powerful than each of them separately. Our load
balancing techniques complement traditional balancing
techniques based on data partitioning.

This paper makes the following contributions:
1. We show that the traditional data-flow paradigm,

which executes the same operation on balanced data
subsets in parallel, is limited in its adaptivity to non-
uniform resources.

2. We introduce an execution paradigm in which fine-
grained operations can be applied individually to data
streams that transfer data between individual nodes.

To allow for finer grained adaptations, we introduce
the notion of ‘virtual substreams’– identifiable
subsets of a data stream that can each be processed
differently.

3. We present load-balancing techniques for this new
parallel query execution paradigm. For individual
data streams, these techniques migrate processing
between sender and receiver, add extra processing
like compression, employ alternative algorithms, or
reroute data to a third node.

4. We presents performance results that show the
effectiveness of the proposed migration and rerouting
techniques These results were obtained using a
prototype environment based on the open-source
DBMS Predator.

This paper is a necessary first step towards parallel
database systems adapted to modular clusters. Further
work is under way to understand the relative importance
of the load balancing techniques we propose and to get
insights on appropriate load-balancing strategies. We
recognize also that our load balancing techniques
introduce a great deal of complexity because they deal
with individual node resources. Resource monitoring and
dynamic query optimization techniques need to be
developed to handle this complexity. These are great
topics for future work.

2. Traditional Parallel Execution
In this Section, we show the limitations of data flow

parallelism and the limitations of load balancing
technique solely based on data partitioning in the context
of clusters with non-uniform resources.

2.1. Data Flow Parallelism
Data Flow Parallelism is the classical form of intra-

operator parallelism ([DG92]) – parallelism is achieved
by executing the same operation on different data subsets
in parallel. On each node, relational operators process the
local partition, i..e, the subset of the data present on the
node.

Some operations, like joins or aggregates, cannot be
correctly executed on arbitrary partitions. For example, an
equality join has to process together all tuples that are
possibly equal on the join column. All data that could
possibly be combined by an operation have to be
collocated in the same partition, i.e., on the same node.

For this reason, partitions usually have to be changed
between two such operations. In addition, the number and
the sizes of the partitions might need readjustment
[C+88,MD93,MD97,RM95]. This process of changing
partitions is called repartitioning. It involves a data
stream between each pair of involved nodes: Every node
splits its existing partition according to the new
partitioning, and sends each fragment to its new location.
On the receiver side, every node receives such fragments
from all nodes and merges them to form its new partition.

Figure 1 shows this data flow for a pipeline of three
operations with two interleaved repartitionings. The
operations are ‘SPJ operators’ , each consisting of a select,
a project and a join. It is assumed that the data are initially
distributed so that tuples that might be joined in the first
operation are collocated on one node. The two
repartitionings will establish semantically correct
distributions for the other two joins.

�������
�

:

�
:

�
:

 	 π	 σ	
 π
 σ

 	 π	 σ	
 π
 σ

 	 π	 σ	
 π
 σ

�� � �� �

���

 � π� σ�

 � π� σ�

 � π� σ�
�� �

Figure 1: The Classical Data Flow Paradigm. Each
node executes a select-project-join (SPJ) operator (that

regroups a join, projection (
) and selection (�))

2.2. Non-Uniform Resource Environments
We use a simplified, bandwidth-centric view to discuss

the resource environment of parallel query processing (for
realistic models, as used to monitor and predict
availability, see related work in Section 5). In our
example in Figure 2, each node has CPU, Disk and
Network Access resources while all nodes share their
interconnect5 - each resource’s bandwidth is shown as a
vertical bar. Servers 1 and 2 are of an earlier hardware
generation than 3 and 4, which is why the latter have
faster CPUs. Server 4’s variation to 3 is non-uniform –
each resource varies independently. For example, its disk
delivers at a higher bandwidth. At the same time, its CPU
is slower. We recall that non-uniform resources are due to
hardware heterogeneity in a modular cluster as well as
resource skew or interference.
With uniform resources, different nodes can be fully
characterized by simply giving their relative capacity –
they are not distinguished by the proportion in which their
resources are available. But hardware differences as well
as skew and interference do not allow this abstraction and
as a consequence we consider each resource individually.
The next section will demonstrate the problems of
traditional techniques in this new environment.

5 The networking bandwidth corresponds to the node’s

specific bandwidth limitations for inter-node
communication, while the interconnect represents the
bandwidth limitations on the accumulated communication
between all nodes.

The presented model should not insinuate that resource
availability could statically be predicted with any
precision. Dynamic monitoring and ad-hoc adaptivity are
needed to apply our techniques. Our focus here is to
develop and validate query execution techniques.
Resource monitoring and query optimization are topics
for future work.

��� � � �
���	��
��	��

� � �
������
��	�	�

� � �
���	��
����	�

� � �
���	��
��	���

�����	����� ��� � �	��!�" ��� ��! �

Simple bandwidth model with per-site resources CPU (#), disk ($), and
network access (%), and one shared resource, the interconnect (&'#)

Figure 2: Example Architecture. Server1 and
Server 2 have uniform resources; while Server 3 and

Server 4 have non-uniform resources.

2.3. Existing Load Balancing Techniques
In contrast to pipeline and multi-query parallelism,

which afford flexibility in scheduling the different
operations across the available nodes, data parallelism
executes the same operation on all nodes. Fortunately,
data repartitioning not only ensures the collocation of
related records, it also allows adjusting the volumes of
data processed on each node. This is called workload
balancing. The size of the partitions is optimal if the
overall execution time is minimized6. This is the case only
if all nodes need the same amount of time to process their
workload. If certain nodes would need more time than
others, distributing some of their workload among the idle
nodes could reduce execution time.

() * () * () * () *() *+,)
-�.�/102.�/43 -�. /,05.�/76 -8. /10�.�/�9 -�.�/:0�. /7;

<

=?>2@5ACBED?F G�H�IJF K7@

Figure 3: Traditionally Balanced Execution on the
System of Figure 2

Figure 3 shows such a balanced execution: The vertical
dimension represents utilization time for each resource,
with the maximum utilization time being the overall

6 In the context of this article we do not consider the overheads

of full declustering [C+88] or the throughput issues in the
context of multiple parallel queries [C+88,RM95,MD93].

execution time. It can be seen that the balancing of the
local amounts of data across the nodes can only adapt to
uniform resource distribution. For example, if all of a
node’s resources are uniformly reduced by 10%, as for
Server 2 compared with Server 1 in Figure 2, a
corresponding reduction of the workload can lead to
balanced utilization. But workload balancing will not
prevent the under-utilization of resources that are
distributed non-uniformly, as for Server 3 and Server 4 in
Figure 3. Some of their resources are underutilized
because the workload does not match the local resource
availability. To determine the execution time of a node
with respect to the given operation, only the resource that
is utilized most matters. In our bandwidth-centric view,
this bottleneck resource dominates the execution time and
its bandwidth becomes the effective bandwidth of the
node.

The problem with workload balancing is that we can
only vary the workload per node, not per resource. To
fully leverage non-uniform resources it is necessary to
adapt the kind of work and not only its amount.

3. A New Execution Paradigm
Consider the data flow scheme shown in Figure 4: It

shows all opportunities to execute algorithms on the data
as ellipses. We speak of the execution scopes of
algorithms, viewed as a combination of the place and the
timing of the execution, and the set of processed data.
Possible data sets are the data partitions and the data
streams between the nodes. Possible execution places are
simply the nodes of the system. Possible execution times
are the stages of the pipeline, subdivided into the five
different phases that we introduce in the following.

L�MJN�O
P

:

Q
:

R
:

S T ∪∪∪∪UUU UUU UUU
UUU

S
 ∪∪∪∪UUU UUU UUU

UUU

S ∪∪∪∪UU U UUU UUU
UUUUUU UUUUUU UU U

σσσσππππ

σσσσππππ
σσσσππππ
σσσσππππ

σσσσππππ

σσσσππππ

σσσσππππ

σσσσππππ

σσσσππππ
 T

T

Figure 4: M igrating Operations. Each node executes a
pipeline of operations equivalent to an SPJ operator (the
shown operations are joins, partitionings (V), projections
(W), selections (X), and unions(U)). The projection and

selection operations are regrouped on node Y.

Say we have n nodes, then the execution scopes are, for
each stage of the pipeline and for each node:

1) The incoming phase: On each of the n received
fragments of the new partition on the data streams.

2) The merging phase: While merging these fragments
into one partition.

3) The merged phase: On the whole partition, after
merging.

4) The splitting phase: While splitting the partition into
the n outgoing fragments for the following
repartitioning.

5) The outgoing phase: On each of the n fragments of
the partition that go out onto the data streams.

Figure 4 shows the five phases of each stage with their
execution scopes. The scopes of the merged phases are
those of the original data flow paradigm and form only a
subset of the scopes in the extended paradigm.

Per pipeline stage, there are 2n2+3n scopes –
independent opportunities to apply algorithms to parts of
the data. In contrast, the traditional data flow paradigm
applied algorithms identically on all nodes during the
merged phase, only varying the amounts of data on each
node.

Our proposed solutions fall into four different
categories7:
• Migration of processing: We migrate algorithms that

use specific resources from nodes that overutilize
these resources to nodes that underutilize them.

• Additional processing: We introduce additional
processing, like compression, which trades off
available resources against overutilized ones.

• Alternative processing: We use alternative
implementations of the same operations in different
resource environments.

• Rerouting: We reroute the data transfer between
certain overutilized nodes to allow processing other
nodes that have available resources

We present techniques from all areas, but the focus of
our experimental work will be on the first and the last
one, which promise the greatest improvements over the
traditional approach8.

3.1. Migrating Operations
Considering the operations in Figure 4, we realize that
only the joins have to be executed on each partition as a
whole – in the merged phase. Selections and projections
can also be correctly executed on each of the fragments of

7 The techniques discussed in this section are important points

in the new execution space, but they do not exhaust this space.
The formal model presented in [M+00] allows us to map out the
complete space, showing all possible ways to apply given
operations to data on a given architecture.
8 The presented techniques will attempt to use underutilized

resources as much as possible to reduce the usage on other
resources. In the larger context of pipelined, independent and
multi-query parallelism, there will actually be a tradeoff
between the amount of underutilized resources used and the
amount of utilized resources freed.

the partitions that are sent out to other nodes. They are not
bound to any particular partitioning of the data and can be
applied separately to the subsets of the partition on the
outgoing data streams – i.e., they can be applied in the
outgoing phase and migrate across the data streams.
Moving selections and projections is relevant because
they include complex type-specific methods applied to the
data (e.g., user-defined functions).

We migrate operations along the data streams by
applying them on the sending node for some streams and
on the receiving node for others. Figure 4 illustrates this
for a simple case, where selections and projections are
migrated away from the upper two nodes. Once the
streams are merged on the receiver nodes, the operations
must have been applied to all of them. We evaluated this
option in our experiments in Section 4.4.

3.2. Migrating Joins
Joins have to happen on each merged partition as a

whole. If they were executed separately on fragments of
the partition, not all possibly joinable tupels would be
combined. Nevertheless, the incoming data can be
prepared on their source nodes. For example, for a sort-
merge join, the incoming fragments could already be
sorted and would simply be merged when the partition is
constructed. Only nodes that have available resources
would sort before sending off their partitions, while others
would leave the sorting to the receiver.

This technique allows migrating part of the join from
one node to another despite of the mentioned constraints.
Its applicability strongly depends on the available join
algorithms. Preferably, these algorithms should be
structured to allow preprocessing on parts of the data.

3.3. Migrating Data Par titioning
The last two subsections discussed how to migrate

selections, projections, and parts of the join. The other
operation consuming resources is the splitting of the
partition into fragments for the outgoing data streams.
This splitting prepares the next join, by partitioning the
local subset of the data with respect to the new join
column. It can be prepared by tagging all data with its
future partitions. Splitting would then simply dispatch the
data according to the tag. We can migrate tagging across
incoming data streams to some of the sending nodes.

3.4. Selective Compression
This technique trades off CPU bandwidth on a pair of

nodes against the network bandwidth between the nodes.
Compression and decompression can be applied to the
partition fragments sent to other nodes during
repartitioning. Thus the decision about compression can
be made individually for each pair of nodes, utilizing only
the underutilized resources to relieve the network.

3.5. Alternative Algor ithms
There are usually many different implementations for a

given operation that has to be processed in parallel on
multiple nodes. Implementations can be chosen for each
node independently, as long as the partitioning of the
workload before the operation and the repartitioning of
the results work independent of the particular
implementation. This technique finds its limitation in the
variety of resource usage of different implementations of
the same operation. Presumably, the operation will
determine the usage to a large degree.

3.6. Rerouting
Assume an operation can be migrated on a data stream,

but both involved nodes are overutilized on the relevant
resources (compared to other nodes). In this case
migration between the nodes leaves us only the choice
between two bottlenecks. Instead, we can trade off
network resources and the resources of a third node
against the overutilized ones on that particular stream.
This can be done through rerouting.

The sender redirects its outgoing stream to a third node
that has the needed resources available. This node
receives the stream, processes the problematic operation
on it, and forwards it to the original receiver node. This
technique is useful whenever the interconnect is
underutilized and a whole group of nodes9 is short on
resources required for a certain operation.

Rerouting complements migration: the latter applies
when the receiver can do the sender’s work, the former
applies when only a third node can do it. We evaluated
this option in our experiments in Section 4.5.

3.7. Summary: Streams and Substreams
In our discussion so far, the new techniques are

applicable to individual data streams between pairs of
nodes. In contrast to uniform pipelining across all
streams, each stream is viewed as an individual pipeline,
independent in its ordering of operators, its timing of the
network transfer, its additional operations, and its
implementation alternatives. This results in a finer
granularity for adaptations to the specific resource
situation on each individual node.

In principle, it is possible to extend the techniques
presented in this Section to process differently subsets of
records within a stream. We call these subsets virtual
streams. The granularity of these substreams is only
constrained by the necessity for sender and receiver to
identify the substream to which each record belong, e.g.,
using tagging or a counting mechanism.

For example, an expensive function that filters records
can be applied to some records before a network transfer,

9 This group could be the original core of a cluster that was

incrementally upgraded with more powerful machines.

to others afterwards. The choice might be motivated by
the dynamically changing CPU availability on the sender
and receiver nodes. The receiver node has to distinguish
records that have already been processed from those on
which processing has been delayed. To allow this
distinction, the headers of unprocessed records could be
tagged by the sender, or alternatively, the sender could
interleave marker records that turn filtering on the
receiver on or off. Each such mechanism introduces
specific overheads that have to be weighed against the
benefits of the finer granularity of resource scheduling10.
To summarize our approach, we introduce processing
adjustments on subsets of the data to adapt the resource
usage on each node to its specific availability. We do this
with increasingly fine granularity – on smaller and
smaller subsets – by considering data in partitions on
individual nodes, data in streams between pairs of nodes,
and data in ‘virtual substreams’ of streams (on subsets of
the stream data that are identifiable by both sender and
receiver).

4. Exper imental Evaluation
This section presents an experimental study of two load
balancing techniques introduced in Section 3. This study
illustrates the potential benefits of our new parallel query
processing framework. We implemented a prototype and
performed an experimental study of their feasibility and
effectiveness.

4.1. Parallel Execution Engine Prototype
Figure 5 shows our prototype architecture: Independent

instances of a non-parallel database server are running on
the two depicted nodes. They execute query plans whose
in- and outputs are redirected to a communication layer
that exchanges the data streams through the
interconnecting network.

We used the existing Predator OR-DBMS for the local
execution engines and implemented the communication
layer. The control mechanism is a shared client that
scripts the execution for the database engines on the
different nodes.

The communications layer is a simple version of a river
system [A+99]. A river is a communications abstraction
that connects programs on different nodes of a cluster
through data sources and sinks. All data sent through the
sinks are redistributed by the river to the different sources
across the cluster nodes. Rivers encapsulate all issues of
parallelism and data flow balancing in parallel programs,
quite similar to the ‘exchange operators’ of parallel
database systems [G94]. The specifics of our
implementation of streams of database records in terms of
the underlying OS (Windows 2000) and network

10 For a similar approach, using tagging of records to allow

individual ordering of join operations, compare ‘Eddies’
[AH00].

abstractions are described in [MG00]. The key feature of
our river is that data streams can be manipulated
independently: operations can for example be migrated or
added individually on each single stream between two
nodes.

Predator
Server

Local Query
Execution

Output

Input Input

Site 1

Predator
Server

Local Query
Execution

Output

Input Input

Site 1

Communications Layer Communications Layer

Figure 5: Architecture of the Parallel Execution
Prototype

The control and monitoring of the parallel execution is
based on Predator’s existing client-server architecture. A
special ‘controller client’ contacts all involved servers and
sends each the necessary requests for the execution of its
local fragments and for the proper connections of its sinks
and sources. The client thus executes scripts that control
the parallel execution across all nodes and then collects
the resulting performance reports. Once initiated, the data
flow between the different nodes does not require any
centralized control.

4.2. Exper iments
Given the described parallel execution prototype it is

fairly easy to set up different scenarios of parallel query
executions. We present two scenarios to explore the
feasibility of the new execution techniques presented in
Section 3. Our experiments cover the following two cases:
• Migration of operations to vary the usage of

resources across different nodes

• Rerouting of data streams to leverage additional
resources.

We present these experiments as prototypical studies of
the various possibilities for adaptive techniques in our
extended parallel framework. The results that we show
prove the soundness and feasibility of the concepts
described in Section 3, but they are certainly not
exhausting the technical possibilities or the scenarios for
their application.

4.3. Exper imental Setup
We chose a small parallel system with a particular set of

executed operations as starting point for all the following
scenarios. Our focus is on the specific features of each

examined technique and not on the layout of realistic,
complex setups.

Figure 6: Exper imental Setup

Figure 6 shows the basic architecture and the operations
executed: A relation, R, of 100,000 records is distributed
between two ‘sender’ nodes, while a second much smaller
relation, S, is distributed between two other, ‘ receiver’
nodes. The size of the second relation is chosen for each
experiment to generate the desired join costs between the
local partitions on each node. R is initially distributed
evenly across the two sender nodes and needs to be
repartitioned for the join. The resulting partitions area
again balanced. A complex user defined function (UDF)
has to be applied to each record before the join. In each
scenario the basic setup is to apply the UDF early, i.e., on
the sender nodes before transferring them to the receiver
nodes. This setup expresses the assumptions that the
receiver nodes are fully utilized by the join and that the
initial distribution of R across the sender nodes is
balanced with respect to the UDF application costs. Each
scenario introduces deviations from these ‘balance’
assumptions and shows how the exemplified techniques
can be employed to adapt to these deviations.

4.4. Migration of Operations
In this experiment we show how we can react to

performance perturbations on an individual node by
moving operations across its data streams. Figure 7 shows
our experimental setup with Sender 1 and its outgoing
data streams highlighted. In this experiment, the UDF cost
on this sender is varied from that on Sender 2 to simulate
performance skew that was not considered in the original
setup of the execution.

Migration of operations allows individual decisions on
each data stream to apply certain operations before or
after the network transfer. In our scenario, we would
delay the CPU-intensive UDF on the streams that
originate from the first sender to deal with a higher CPU
usage of the UDF on that node. This trades off CPU usage
on Receiver 1 and 2 against usage on the overutilized
Sender 1.

Sender 1
50% of Relation R

Applies UDF

Sender 2
50% of Relation R

Applies UDF

Receiver 2
Partition 2 of S

Joins R and S

Receiver 1
Partition 1 of S

Joins R and S

• Scan local data
• Apply UDF
• Partition
• Send to

join node

• Receive
• Merge
• Join
• Write results

Figure 7: M igration Scenar io

0

2

4

6

8

10

12

14

16

18

20

25% 75% 125% 175% 225% 275% 325% 375%

UDF Cost (on Sender 1 relative to Sender 2)

Ex
ec

ut
io

n/
Pr

oc
es

si
ng

 T
im

e
(s

ec
s)

Firs t Sender Proces s Tim e
Second Sender Pr oces s Tim e
Firs t Receiver Pr oces s Tim e
Second Receiver Proces s Tim e
Overall Elaps ed Execution Tim e

Figure 8: Effect of UDF Cost Deviation on Sender 1

We start with a graph that shows the effect of the UDF
cost deviation without any adaptations. Figure 8 plots the
overall execution time and the processing times on each
of the nodes on the vertical axis, while the UDF cost on
Sender 1 is varied along the horizontal axis. The times are
shown in seconds while the UDF cost is given relative to
the constant cost for the UDF on Sender 2.

It can be seen that the processing time on the first sender
is linear in the UDF cost while that on the second and on
both receivers is constant. The CPU cost on the sender
(extended to the left of the shown graph) does not pass
through the origin because there is a constant cost
component involved that results from reading the records
from disk and sending them to the receivers. Only at
100% the two senders’ CPU costs are balanced. Before
that point the overall elapsed time apparently results from
the receiver CPU cost. The constant distance between the
receiver and the overall time curve is explained through
an additional cost component on the receiver: A large part
of I/O work is done by the operating system in kernel

threads and not by the measured process in either kernel
or user mode. This work happens in deferred procedure
calls (DPCs) that handle the completion of I/O operations.

Another interesting observation is that the elapsed time
actually decreases as the utilization of the first sender
increases. This could be explained by the adjustment of
the rate at which data are sent to the rate at which they can
be received. Sending data faster than the receiver can
process them causes additional costs on the receiver due
to buffer flooding. This observation is not relevant to our
demonstration of the migration technique.

After 100%, the elapsed time is dictated by the first
sender as the bottleneck of execution. The CPUs of the
other nodes are underutilized, even considering the
constant DPC overhead for the receivers. In this
experiment, we attempt to leverage the underutilized
receiver resources to lower the utilization of the first
sender and thus lowering the overall execution time.

To do this we delay UDF application on a fraction of the
records on each of the streams that originate from Sender
1. Using identical counting mechanisms for the records on
the sender and on each receiver, both can identify the
records that belong into this fraction. Accordingly, the
sender will let them go unprocessed while the receiver
will apply the UDF. If a filter operation were to drop
records after the UDF application on the sender but before
that on the receiver, a more sophisticated mechanism, for
example tagging, would be necessary to identify the
delayed records. In our setup, a receiver incurs a cost per
UDF application identical to the deviating one on the first
sender.

Along the vertical axis, Figure 9 shows the same times
as Figure 8, while this time not the UDF cost but the
delayed fraction is varied from 0% to 60% along the
horizontal axis. The cost deviation on Sender 1 is fixed at
200% of the cost on Sender 2. The situation at 0%
delayed fraction corresponds to that in Figure 8 for 200%
UDF cost. For larger delayed fractions, the CPU
utilization on Sender 1 decreases because more and more
of the UDF applications happen on the two receivers. As
the bottleneck cost on Sender 1 decreases, and with it the
execution time, the CPU usage on each receiver nodes
increases at half that rate. We redistribute processing from
an overloaded node to two underutilized nodes.

At 34% the minimum execution time is achieved
because after this point the increasing receiver utilization
will also increase the execution time. The constant
distance between the CPU times on the receiver and the
execution time are again explained by the ‘hidden’ costs
of network receiving, incurred in kernel threads that we
do not measure. We ran these experiments for different
CPU costs on Sender 1, and as expected, the observations
are qualitatively the same as in the shown graph, but for
higher costs shifted upwards and to the right. For any cost
deviation, we can thus experimentally determine an
optimal delay – which can also be confirmed by a simple

Sender 1
Deviating
UDF Costs

Sender 2

Receiver 2

Receiver 1

UDF Application
is delayed on a
fraction of the
first sender’s
records

analysis of the balancing of costs on the sender and the
receivers.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

0% 10% 20% 30% 40% 50% 60%
Fraction w ith Delayed UDF Application

 E
xe

cu
ti

o
n

/P
ro

ce
ss

in
g

 T
im

e
(s

ec
s)

Firs t Sender Proces s Tim e
Second Sender Proces s Tim e
Firs t Receiver Proces s Tim e
Second Receiver Proces s Tim e
Overall Elaps ed Execution Tim e

Figure 9: Effect of Delayed UDF Application for
200% UDF Cost

0

2
4

6

8
10

12

14

16
18

20

25% 75% 125% 175% 225% 275% 325% 375%
UDF Cost (on Sender 1 relative to Sender 2)

E
la

p
se

d
 /

P
ro

ce
ss

in
g

 T
im

e
(s

ec
)

��� � �����
	��
��	��
��� ����	�������� ��	
��	������
���
	�����	������ ����	�������� ��	
��� � ������	���	�� ��	������ ����	�������� ��	
��	������
����	���	�� ��	������ ����	�������� ��	
� ��	�� �! !�"�! �#
��	���"�$�	���%
�&� ������� ��	
"�$
	���%
� � ������� ��	�'�� � (
��%
��)�	�! �*�� �
+

Figure 10: Increasing UDF Cost Deviation with
Optimal M igration

In Figure 10, we summarize the possibilities of operator
migration by varying the UDF cost along the horizontal
axis while using an estimated optimal delayed fraction for
each cost. In addition to the resulting execution time, we
show the original execution time from Figure 8 as an
interrupted line. The difference between these two lines is
the benefit derived from the migration technique. It can be
observed that delaying balances the cost on the first

sender with the cost on each of the two receivers so that
both equally affect the overall execution time and neither
forms a bottleneck (again, the actual receiver cost
contains constant kernel thread costs that are not shown).
On the right side of the graph, beyond 250% it becomes
apparent that the second sender is underutilized, as it is
not part of the balancing through UDF migration. The
next experiment will focus on leveraging the second
sender to alleviate overload on Sender 1.

4.5. Rerouting of Data Streams
Rerouting introduces new intermediate nodes into an

existing data stream to put their resources to use for
operations that can be migrated along that stream. In our
setup all records are rerouted, no matter what fraction of
them will actually be processed on the intermediate node,
which we called Sender 2. Similarly to the last scenario,
we will vary the fraction of records that is ‘delayed’ , but
this time delaying leads to processing on Sender 2.
Receiver 1 and Receiver 2 will not do any processing.

Figure 11: Rerouting Scenar io

To emphasize the specific benefits of rerouting, we use
a different scenario than the one in the last section. The
cost of the UDF on Sender 1 is again being modified,
while the UDF on Sender 2 is this time cheaper in
comparison to the join costs on the receivers. This simply
means that Sender 2 is more apt to relieve the bottleneck
Sender 1 than the receivers, which were used in the last
scenario. Figure 12 shows the effect of UDF cost
deviation on the first sender: Along the x-axis we increase
the UDF cost on Sender 1 relative to that on Sender 2. We
plot the processing times on the four components and the
overall execution time as in Figure 8. A key feature in this
modified scenario is that the stream between Sender 1 and
Receiver 1 is rerouted through Sender 2. This happens for
all records, even when no processing is delayed and
everything is processed on Sender 1, as here in Figure 12.
Sender 2 is affected in its CPU usage by this rerouting:
We plotted the usage excluding rerouting as an
interrupted line, running at about 80% of the overall usage
on Sender 2. It can be observed that the processing time
on Sender 1 dominates the overall execution time as it
becomes higher than the execution time on the receiver
nodes.

Sender 1
Deviating
UDF Costs

Receiver 2

Receiver 1

The UDF is
applied on
Sender 2 for a
fraction of the
rerouted records

All records
from Sender 1 to
Receiver 1 are
rerouted through
Sender 2

Sender 2

0
2
4
6
8

10

12
14
16
18
20

0% 100% 200% 300% 400% 500% 600% 700% 800%

UD F C o s t (o n Sender 1 re la t iv e t o Sender 2)

Ex
ec

ut
io

n
/ P

ro
ce

ss
in

g
Ti

m
e

(s
ec

s)

Fir s t Sender Proces s Tim e
Second Sender Proces s Tim e
Over all Elaps ed Execution Tim e
Second Sender w ithout Routing
Fir s t Receiver Proces s Tim e
Second Receiver Proces s Tim e

Figure 12: Effect of UDF Cost Deviation on Sender 1

0

2
4

6
8

10

12
14

16
18

20

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100

%
F rac t io n wi t h UD F A ppl ied o n R ero ut e S i t e

E
la

p
se

d
/P

ro
ce

ss
in

g
 T

im
e

(s
ec

s)

First Sender Process Time
Second Sender Process Time
Overall Elapsed Execution Time
Second Sender without Routing
First Receiver Process Time
Second Receiver Process Time

Figure 13: Effect of Delayed UDF Application for
800% UDF Cost

Figure 13 shows the execution and processing times for
an arbitrary fixed UDF cost of 800%. The fraction of
records that is processed on the reroute node Sender 2 is
varied along the horizontal axis. We observe that, while
the receivers are this time not affected, the cost on the
bottleneck Sender 1 is reduced while the rerouting costs
(above the fragmented line) on Sender 2 increases at the
same rate. Below 80% processing on the reroute node this
reduces the execution time because Sender 1 is the

bottleneck. Beyond that point Sender 2 becomes a new
bottleneck, increasing the execution time.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

0% 100% 200% 300% 400% 500% 600% 700% 800%

UDF Cost (on Sender 1 relative to Sender 2)

El
ap

se
d

/ P
ro

ce
ss

in
g

Ti
m

e
(s

ec
s)

��� � ������	�

��	������ ����	�������� ��	
��	�����

����	�

��	������ ����	�������� ��	
��� � ������	���	�� ��	������ ����	�������� ��	
��	�����

����	���	�� ��	������ ����	�������� ��	
� ��	�� ��� ����� ���
��	�������	���
�!� �"
#��� ��	
����	��� $� � �"
#��� ��	�%�� � &$��
����	�� ��
�!�
$'
��	�����

����	�

��	���%(� � &
�� $������
� �

'

Figure 14: Increasing UDF Cost Deviation with
Optimal Rerouting

With similar experiments the optimal reroute fractions
can be determined for various UDF costs. Our
experiments confirm the analytical result that (C1-C2) /
UC1 is the optimal fraction, where C1 is the overall cost
on Sender 1, C2 that on Sender 2, and UC1 the UDF costs
on Sender 1. C1 is constituted by the basic sending cost
and UC1, C2 by the same basic cost, the rerouting cost
and UC2. UC1 is 800% of UC2 in the example above.
The formula (C1-C2) / UC1 determines the fraction that
the overhead of Sender 1 forms relative to the overall
UDF cost on Sender 1. Actually, only half of the UDF
cost is on the stream to Receiver 1 and thus reroutable,
but this factor is neutralized by the fact that only half of
the overhead fraction should be rerouted to balance both
costs: (C1-C2) / UC1 = ((C1-C2) / (UC1/2))/2. We used
these analytical and experimental results to optimally
balance an increasing UDF cost using rerouting,
analogously to what we did for migration in Figure 10.
The results are shown in Figure 14. Again, the benefit of
rerouting can be seen as the difference between the
original execution time, shown as an interrupted black
line, and the adapted execution time, shown as a thorough
black line.

4.6. Discussion
These experiments illustrate the potential benefits of the

load balancing techniques we have introduced in Section
3. Further work is needed to evaluate their actual impact
and their relative importance. Questions remaining to be
answered include: When is data rerouting an appropriate

strategy? What are the kinds of resource skews we can
expect (will we regularly reach resource skews of 800%)?
What is the impact of our load-balancing techniques on
the overall performance of the system? These are topics
for future work.

5. Related Work
In parallel systems, data placement is crucial for

workload balancing. The processed relations have to
somehow be partitioned across the parallel nodes of the
system. Gamma [D+90, GD90] uses ‘ full declustering’ :
relations were distributed evenly across all nodes. In
contrast, Bubba [B+90] tried to find the optimal data
placement. [C+88] considered the ‘heat’ of the data, i.e.,
their access frequency. Depending on their heat, relations
should be spread across only a subset of the nodes. Other
systems [T87, D+90], examining multi-query loads, find
near-linear scaleup for declustering relations across as
many nodes as possible. Our focus is on the execution of
a single query without the benefits of locality of data
access. Consequently, the queries in our prototype access
the fully declustered data uniformly.

[D+92, MD93, MD97, SD89] examine the problem of
workload skew within Gamma. Skew can emerge from
hash-based partitioning, from joins, and from duplicate
values [WDJ91]. Virtual processor scheduling [D+92]
(similar to the ‘data cells’ of [HL90, HL91]) uses many
small partitions per processor, some of which can be
migrated between nodes. [RM95] examines how
workloads should be balanced dynamically in a multi-
query environment. We complement both static and
dynamic workload balancing with new fine-grained per-
resource tradeoffs.

Researchers [JM98,NM99] have explored the
parallelization of user-defined functions because purely
relational techniques are unsatisfying for object-relational
systems. The focus is on aggregate UDFs that require a
specific input ordering and that allow special forms of
partitioning of data streams into ‘windows’ (the
granularity of processing of parallel clones).

Dynamic self-regulation of the data flow in general
parallel systems is the goal of the River approach
[A+99,A99]. Rivers deal with performance skew –
dynamic fluctuations in the availability of resources – and
are based on previous work on robustness [HD90,CK89].
This kind of flow control unfortunately does not apply
readily to parallel join processing because the joined data
are partitioned semantically. Depending on the value of
the joined attribute, data is placed on a specific node.
Rivers were successfully applied to simpler operations,
like scans and writes [A99].

DataCutter [BK+02] models data-intensive applications
as sets of filters. Data streams connect filters possibly
located on different cluster nodes. This modular
application architecture allows for a combination of
dataflow and pipeline parallelisms; possibly filters can be

moved to adapt to individual node ressources. We apply
similar ideas to parallel query processing in general.

Abacus [AP+00] considers the skew of resource usage
and availability in a client-server application. They
propose a run-time system that partitions data-intensive
functions between client and server depending on the
resources available. Our load-balancing technique based
on operation or join migration corresponds to the static
placement of an operation in Abacus. Note that our notion
of migration could be extended to cover the dynamic
migration of running operations in the spirit of Gardens
[BK+00] or Emerald [J89].

Recent work examines tools that allow automatic
cost/benefit predictions of task placement in clusters
[K+01]. Although this work targets scientific workloads
based on message passing [OMP] and not on data
streams, similar approaches could be applied to determine
the workload distribution for parallel query processing.
Orthogonally, our techniques add dynamic adaptivity and
increased flexibility in the placement of parallel tasks.

6. Conclusion and Future Work
This paper examined the parallel execution of complex

queries on systems with non-uniformly available
resources. Asymmetry of the available resources and their
usage stems from skew, interference, and hardware
asymmetry. The traditional workload balancing
techniques cannot adapt the usage of individual resources.
To complement them, we introduced a new framework
that treats the data streams that repartition data from node
to node (and their virtual substreams) as individual
pipelines of operators. Within this framework, we were
able to propose adaptivity techniques for individual
resources on a fine granularity. Conceptually, our new
framework combines the variability of pipelined
parallelism with the scalability of intra-operator
parallelism.

We examined the feasibility and effectiveness of the
new framework in the context of a parallel execution
engine prototype based on the Predator OR-DBMS and a
newly implemented communication layer. Our experience
was that the new framework fits well into existing parallel
architectures and our measurements show that new
techniques can provide the adaptivity that is needed for
non-uniform resource environments.

Future work includes a complete implementation of our
parallel query execution framework on a modular cluster.
This work has started at DIKU in collaboration with Dell.
Such an implementation will allow us to conduct an
extensive performance study. Other areas of future work
concern the dynamic resource monitoring and query
optimisation techniques necessary to develop a full
fledged system.

Bibliography
[A+99] R. H. Arpaci-Dusseau, et al.: Cluster I/O with River:

Making the Fast Case Common. IOPADS 1999: 10-22.
[A99] R. H. Arpaci-Dusseau: Performance Availability for

Networks of Workstations. PhD Thesis, Univ. of California
at Berkeley 1999.

[AP+00] K. Amitri, D.Petrou, G.Ganger and G.Gibson.
Dynamic Function Placement for Data-intensive Cluster
Computing. Usenix 2000.

[B+90] Haran Boral, et al.: Prototyping Bubba, A Highly
Parallel Database System. TKDE 2(1): 4-24. 1990.

[BK+00] Ashley Beitz, Simon Kent and Paul Roe. Optimising
Heterogeneous Task Migration in the Gardens Virtual
Cluster Computer. Proc. 9th Heterogenous Computing
Workshop (HCW 2000).

[BK+02] M.Beynon, T.Kurc, U.Catalyurek, A.Sussman and
J.Saltz. Efficient Manipulation of Large Datasets on
Heterogeneous Storage Systems'. HCW 2002. April
2002

[C+88] George P. Copeland, William Alexander, Ellen E.
Boughter, Tom W. Keller: Data Placement In Bubba.
SIGMOD Conference 1988: 99-108

 [CW79] J. Lawrence Carter, Mark N. Wegman: Universal
Classes of Hash Functions STOC 1977: 106-112

[D+90] David J. DeWitt, et al.: The Gamma Database
Machine Project. TKDE 2(1): 44-62 (1990).

[D+92] David J. DeWitt, Jeffrey F. Naughton, Donovan A.
Schneider, S. Seshadri: Practical Skew Handling in Parallel
Joins. VLDB 1992: 27-40

[DF+98] T. Decker, M.Fischer, R.Luling and S.Tschoke. A
Distributed Load Balancing Algorithm for Heterogeneous
Parallel Computing Systems. Proc of the 1998 Int. Conf. on
Parallel and Distributed Processing Techniques and
Applications.

[DG92] David J. DeWitt, Jim Gray: Parallel Database
Systems: The Future of High Performance Database
Systems. CACM 35(6): 85-98 (1992)

[G94] Goetz Graefe: Volcano - An Extensible and Parallel
Query Evaluation System. TKDE 6(1): 120-135. 1994.

[G02] Randy Groves. Gaining Flexibility with Modular Blades
Architectures. Dell Power Solutions. August 2002.

[GD90] Shahram Ghandeharizadeh, David J. DeWitt: A
Multiuser Performance Analysis of Alternative
Declustering Strategies. ICDE 1990: 466-475.

[GD93] Goetz Graefe, Diane L. Davison: Encapsulation of
Parallelism and Architecture-Independence in Extensible
Database Query Execution. TSE 19(8): 749-764 (1993)

[HD90] Hui-I Hsiao, David J. DeWitt: Chained Declustering:
A New Availability Strategy for Multiprocessor Database
Machines. ICDE 1990: 456-465

[HL90] Kien A. Hua, Chiang Lee: An Adaptive Data
Placement Scheme for Parallel Database Computer
Systems. VLDB 1990: 493-506

[HL91] Kien A. Hua, Chiang Lee: Handling Data Skew in
Multiprocessor Database Computers Using Partition
Tuning. VLDB 1991: 525-535

[J89] Eric Jul. Migration of light-weight processes in
Emerald. Operating Systems Technical Committee
Newsletter, 3(1):25--30, 1989.

[JM98] M. Jaedicke and B. Mitschang. On parallel processing
of aggregate and scalar functions in objectrelational dbms.
In Proc. of ACM SIGMOD, 1998.

[K+01] Dimitrios Katramatos et al.: Developing a
Cost/Benefit Estimating Service for Dynamic Resource
Sharing in Heterogeneous Clusters: Experience with SNL
Clusters. IEEE CCGrid 2001

[M+00] T. Mayr, P. Bonnet, J. Gehrke, P. Seshadri: Query
Processing with Heterogeneous Resources. Technical
Report TR00-1790, Cornell University, March 2000.

[MD93] Manish Mehta, David J. DeWitt: Dynamic Memory
Allocation for Multiple-Query Workloads. VLDB 1993:
354-367

[MD97] Manish Mehta, David J. DeWitt: Data Placement in
Shared-Nothing Parallel Database Systems. VLDB Journal
6(1): 53-72 (1997)

[MG00] Tobias Mayr, Jim Gray: Performance of the 1-1 Data
Pump. See http://www.research.microsoft.com/~gray/River

[NM99] Kenneth W. Ng, Richard R. Muntz: Parallelizing
User-Defined Functions in Distributed Object-Relational
DBMS. IDEAS 1999: 442-445.

[RM95] Erhard Rahm, Robert Marek: Dynamic Multi-
Resource Load Balancing in Parallel Database Systems.
VLDB 1995: 395-406

[S86b] Michael Stonebraker: The Case for Shared Nothing.
Database Engineering Bulletin 9(1): 4-9, 1986.

[SD89] Donovan A. Schneider, David J. DeWitt: A
Performance Evaluation of Four Parallel Join Algorithms in
a Shared-Nothing Multiprocessor Environment. SIGMOD
Conference 1989: 110-121

[T87] Tandem Database Group: NonStop SQL: A Distributed,
High-Performance, High-Availability Implementation of
SQL. HPTS 1987: 60-104

[TPC] Top Ten TPC-H Results by Performance.
http://www.tpc.org/tpch/results/tpch_perf_results.asp

[UAS98] M.Uysal, A.Acharya, J.Saltz: An Evaluation of
Architectural Alternatives for Rapidly growing Datasets:
Active Disks, Clusters, SMPs. Technical Report TRCS98-
27. University of California at Santa Barbara. 1998.

[WDJ91] Christopher B. Walton, Alfred G. Dale, Roy M.
Jenevein: A Taxonomy and Performance Model of Data
Skew Effects in Parallel Joins. VLDB 1991: 537-548

