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Abstract 

Clusters are now composed of non-uniform 
nodes with different CPUs, disks or network 
cards so that customers can adapt the cluster 
configuration to the changing technologies and to 
their changing needs. Such modular clusters 
challenge parallel databases. The load balancing 
techniques used by existing parallel databases 
partition data across a set of nodes that all run the 
same relational operations. We show in this 
paper that this form of load balancing is ill suited 
for modular clusters because running the same 
operation on different subsets of the data does 
not fully utilize non-uniform hardware resources.  
We propose and evaluate new load balancing 
techniques that blend pipeline parallelism with 
intra-query parallelism. We consider relational 
operators as pipelines of fine-grained operations 
that can be located on different cluster nodes and 
executed in parallel on different data subsets to 
best exploit non-uniform resources. Our new 
techniques thus partition both operations and 
data across cluster nodes. They can be 
incorporated in the architecture of existing 
parallel database systems. We present an 
experimental study that confirms the feasibility 
and effectiveness of the new techniques in a 
parallel execution engine prototype based on the 
open-source DBMS Predator. 

1. Introduction 
Now that clusters are commonplace, customers want to 
progressively scale-up their configurations. Not all 
customers are ready to wait until their cluster is outdated 
to replace it by a newer, larger one (as it has been the case 
in the research community for years). Typically, 
customers want to add (or remove) computing or storage 
capacity as their business evolves and as technology 
changes.  

A flexible and cost-effective way to adapt a cluster 
configuration to changing needs as well as changing 
technology is to assemble a cluster as a collection of non-
uniform nodes with different CPUs, disks or network 

cards. Dell for instance supports modular clusters of non-
uniform nodes with their modular blades [GO2]. 

In this paper, we recognize that modular clusters 
challenge one of the key assumptions that were made 
when parallel databases were designed, namely that all 
cluster nodes are uniform1. We propose new load 
balancing techniques that leverage non-uniform resources 
in a modular cluster. Before we describe the problem we 
tackle in this paper and our contributions, let us briefly 
review essential parallel query processing notions. 

1.1. Parallel Query Processing   
Parallel databases are popular now that scalability has 

become a key issue2. This is particularly true for very 
large data warehouses (the top results of the on-line 
analytical processing benchmark TPC-H are obtained 
with parallel databases [TPC]). 

Parallel query processing relies on the following forms 
of parallelism: 

Independent parallelism: multiple queries are executed 
on different nodes in parallel. The number of queries that 
need to be processed at any time limits the number of 
nodes that can be used in parallel, i.e., the degree of 
parallelism. Only a very large number of small queries 
make independent parallelism scalable, for example in 
transaction processing applications. 

Pipeline parallelism: single queries are executed by 
executing their operators on different nodes. Every query 
consists of a number of such operators that are connected 
with each other via a producer-consumer pipeline. 
Operators can be executed on separate nodes. Because 
different operators consume different resources, pipeline 
parallelism allows the balancing of resource consumption 
on different nodes. This form of parallelism is however 
limited in its degree by the number of operators employed 

                                                           
1 A limited form of non-uniformity, due to diskless nodes and 

skew, was envisaged in Gamma [D+90]. The load balancing 
techniques that were devised in this context simply refine the 
data partitioning across the nodes, while our techniques adapt 
the usage of individual resources (see Related Work Section). 

2 Research on parallel database systems started in the late 80s, 
and nowadays all major database vendors propose a parallel 
version of their system. 



in a query. It also poses problems matching operators to 
nodes.  

Intra-operator  parallelism, also commonly known as 
dataflow parallelism: a single relational operator is 
executed on several nodes on different subsets of the data. 
Relational operators are connected via data streams 
established between pairs of cluster nodes (operators such 
as join, aggregates, sort require data to be repartitioned 
across all nodes while select, project and merge can be 
performed on the local data subset). This form of 
parallelism is a very powerful solution because it 
leverages the fact that relational query processing is 
performed on large sets of uniform data that can be 
arbitrarily partitioned. It is virtually unlimited in its 
degree because the processed data sets can be partitioned 
into arbitrary small subsets.  

Existing parallel database systems rely on these 
different forms of parallelism, but use them in separation. 
Typically, small queries are dispatched to different nodes 
using independent parallelism. Expensive query 
fragments with operators such as joins and aggregates, are 
parallelized on a large set of nodes using dataflow 
parallelism. Depending on the kind of workload (either 
transactional or analytical), a parallel database system 
either uses independent or dataflow parallelism to make 
query execution scalable. The use of pipeline parallelism 
is limited due to the small number of operators in a typical 
query.  

Load balancing is achieved by attributing large subsets 
of the data to the nodes whose resource usage is low. This 
form of load balancing relies on data partitioning (while 
all nodes execute the same relational operations).   

Load-balancing techniques only based on data 
partitioning however ignore (1) hardware heterogeneity in 
a modular cluster, as well as (2) the skew of resource 
usage and availability3 and (3) interferences between 
various tasks executed on the same node (e.g., 
background OS services consume resources at varying 
rates)4.  

As a result, existing load balancing techniques fail to 
adapt to the resources situation on individual cluster 
nodes. They under-utilize resources and thus fail to avoid 
bottlenecks. We further discuss this problem in Section 2.  

In the rest of the paper, we address the following issues: 
1. How can existing load balancing approaches based 

on data partitioning be complemented with new 
techniques that allow the needed fine-grained 

                                                           
3 Resource availability varies with the local component’s 

performance. For example, each disk delivers varying 
bandwidths depending on track position and data 
fragmentation. Network interface cards vary in the actual 
bandwidth depending on switch topology and scheduling. (see 
also [A+99]) 

4 Note that the former point is a characteristic of modular 
clusters while the latter two points are related to dynamically 
changing phenomena occurring in any cluster node. 

adaptation to individual node resources in a modular 
cluster? We should avoid techniques that are hard to 
implement, involve high overheads, and do not allow 
adaptations for individual resources. 

2. How feasible and effective are the new techniques 
when implemented in a prototype? We seek effective, 
low-overhead execution techniques that allow trade-
offs in the utilization of individual resources. The 
techniques should be usable in existing parallel 
database systems without major redesigns.  

1.2. Contr ibutions 
This paper shows new ways in which parallel query 

processing can be adapted to non-uniform resources – 
resources such as CPU, disk or network bandwidth which 
vary across the components of a modular cluster. The 
problems posed by non-uniform cluster resources have 
been studied for a few years (e.g., 
[DF+98][AP+00][BK+02]); this paper is the first to study 
them in the context of parallel query processing. 

We focus on the execution of complex read-only queries 
over object-relational data that characterize data 
warehouse workloads. The complexity of these queries 
stems from the combination of relational operators, e.g., 
equi-joins, with expensive type-specific operations, like 
analysis methods over time series. Parallelism is critical to 
improve the execution time of such queries. 

We demonstrate the limitations of load balancing 
techniques based on data partitioning, and we recognize 
that, in order to leverage non-uniform resources, it is 
necessary to adapt the kind of work that is performed on 
each cluster node in addition to adapting the amount of 
data that is performed.  

We propose a new query execution framework that 
combines the scalability of dataflow parallelism with the 
scheduling of resources made possible by pipeline 
parallelism. We consider that expensive relational 
operators are themselves a pipeline of fine-grained 
operations. The data streams established across cluster 
nodes to support dataflow parallelism, allow these fine-
grained operations to be added, reordered and moved 
from one cluster node to another to optimize the resource 
usage of individual cluster nodes. The proposed new 
framework combines two known form of parallelism 
(dataflow and pipeline) in a unique way that is far more 
powerful than each of them separately. Our load 
balancing techniques complement traditional balancing 
techniques based on data partitioning. 

This paper makes the following contributions: 
1. We show that the traditional data-flow paradigm, 

which executes the same operation on balanced data 
subsets in parallel, is limited in its adaptivity to non-
uniform resources. 

2. We introduce an execution paradigm in which fine-
grained operations can be applied individually to data 
streams that transfer data between individual nodes. 



To allow for finer grained adaptations, we introduce 
the notion of ‘virtual substreams’– identifiable 
subsets of a data stream that can each be processed 
differently. 

3. We present load-balancing techniques for this new 
parallel query execution paradigm. For individual 
data streams, these techniques migrate processing 
between sender and receiver, add extra processing 
like compression, employ alternative algorithms, or 
reroute data to a third node.  

4. We presents performance results that show the 
effectiveness of the proposed migration and rerouting 
techniques These results were obtained using a 
prototype environment based on the open-source 
DBMS Predator. 

This paper is a necessary first step towards parallel 
database systems adapted to modular clusters. Further 
work is under way to understand the relative importance 
of the load balancing techniques we propose and to get 
insights on appropriate load-balancing strategies. We 
recognize also that our load balancing techniques 
introduce a great deal of complexity because they deal 
with individual node resources. Resource monitoring and 
dynamic query optimization techniques need to be 
developed to handle this complexity. These are great 
topics for future work.  

2. Traditional Parallel Execution 
In this Section, we show the limitations of data flow 

parallelism and the limitations of load balancing 
technique solely based on data partitioning  in the context 
of clusters with non-uniform resources. 

2.1. Data Flow Parallelism 
Data Flow Parallelism is the classical form of intra-

operator parallelism ([DG92]) – parallelism is achieved 
by executing the same operation on different data subsets 
in parallel. On each node, relational operators process the 
local  partition, i..e, the subset of the data present on the 
node. 

Some operations, like joins or aggregates, cannot be 
correctly executed on arbitrary partitions. For example, an 
equality join has to process together all tuples that are 
possibly equal on the join column. All data that could 
possibly be combined by an operation have to be 
collocated in the same partition, i.e., on the same node. 

For this reason, partitions usually have to be changed 
between two such operations. In addition, the number and 
the sizes of the partitions might need readjustment 
[C+88,MD93,MD97,RM95]. This process of changing 
partitions is called repartitioning. It involves a data 
stream between each pair of involved nodes: Every node 
splits its existing partition according to the new 
partitioning, and sends each fragment to its new location. 
On the receiver side, every node receives such fragments 
from all nodes and merges them to form its new partition.  

Figure 1 shows this data flow for a pipeline of three 
operations with two interleaved repartitionings. The 
operations are ‘SPJ operators’ , each consisting of a select, 
a project and a join. It is assumed that the data are initially 
distributed so that tuples that might be joined in the first 
operation are collocated on one node. The two 
repartitionings will establish semantically correct 
distributions for the other two joins. 
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Figure 1: The Classical Data Flow Paradigm. Each 
node executes a select-project-join (SPJ)  operator (that 

regroups a join,  projection (
  ) and selection ( �  )) 

2.2. Non-Uniform Resource Environments 
We use a simplified, bandwidth-centric view to discuss 

the resource environment of parallel query processing (for 
realistic models, as used to monitor and predict 
availability, see related work in Section 5). In our 
example in Figure 2, each node has CPU, Disk and 
Network Access resources while all nodes share their 
interconnect5 - each resource’s bandwidth is shown as a 
vertical bar. Servers 1 and 2 are of an earlier hardware 
generation than 3 and 4, which is why the latter have 
faster CPUs. Server 4’s variation to 3 is non-uniform – 
each resource varies independently. For example, its disk 
delivers at a higher bandwidth. At the same time, its CPU 
is slower. We recall that non-uniform resources are due to 
hardware heterogeneity in a modular cluster as well as 
resource skew or interference. 
With uniform resources, different nodes can be fully 
characterized by simply giving their relative capacity – 
they are not distinguished by the proportion in which their 
resources are available. But hardware differences as well 
as skew and interference do not allow this abstraction and 
as a consequence we consider each resource individually. 
The next section will demonstrate the problems of 
traditional techniques in this new environment.  

                                                           
5 The networking bandwidth corresponds to the node’s 

specific bandwidth limitations for inter-node 
communication, while the interconnect represents the 
bandwidth limitations on the accumulated communication 
between all nodes.  



The presented model should not insinuate that resource 
availability could statically be predicted with any 
precision. Dynamic monitoring and ad-hoc adaptivity are 
needed to apply our techniques. Our focus here is to 
develop and validate query execution techniques. 
Resource monitoring and query optimization are topics 
for future work.  
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Figure 2: Example Architecture. Server1 and  
Server  2 have uniform resources; while Server  3 and 

Server  4 have non-uniform resources. 

2.3. Existing Load Balancing Techniques 
In contrast to pipeline and multi-query parallelism, 

which afford flexibility in scheduling the different 
operations across the available nodes, data parallelism 
executes the same operation on all nodes. Fortunately, 
data repartitioning not only ensures the collocation of 
related records, it also allows adjusting the volumes of 
data processed on each node. This is called workload 
balancing. The size of the partitions is optimal if the 
overall execution time is minimized6. This is the case only 
if all nodes need the same amount of time to process their 
workload. If certain nodes would need more time than 
others, distributing some of their workload among the idle 
nodes could reduce execution time.  
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Figure 3: Traditionally Balanced Execution on the 
System of Figure 2 

 

Figure 3 shows such a balanced execution: The vertical 
dimension represents utilization time for each resource, 
with the maximum utilization time being the overall 

                                                           
6 In the context of this article we do not consider the overheads 

of full declustering [C+88] or the throughput issues in the 
context of multiple parallel queries [C+88,RM95,MD93]. 

execution time. It can be seen that the balancing of the 
local amounts of data across the nodes can only adapt to 
uniform resource distribution. For example, if all of a 
node’s resources are uniformly reduced by 10%, as for 
Server 2 compared with Server 1 in Figure 2, a 
corresponding reduction of the workload can lead to 
balanced utilization. But workload balancing will not 
prevent the under-utilization of resources that are 
distributed non-uniformly, as for Server 3 and Server 4 in 
Figure 3. Some of their resources are underutilized 
because the workload does not match the local resource 
availability. To determine the execution time of a node 
with respect to the given operation, only the resource that 
is utilized most matters. In our bandwidth-centric view, 
this bottleneck resource dominates the execution time and 
its bandwidth becomes the effective bandwidth of the 
node.  

The problem with workload balancing is that we can 
only vary the workload per node, not per resource. To 
fully leverage non-uniform resources it is necessary to 
adapt the kind of work and not only its amount.  

3. A New Execution Paradigm 
Consider the data flow scheme shown in Figure 4: It 

shows all opportunities to execute algorithms on the data 
as ellipses. We speak of the execution scopes of 
algorithms, viewed as a combination of the place and the 
timing of the execution, and the set of processed data. 
Possible data sets are the data partitions and the data 
streams between the nodes. Possible execution places are 
simply the nodes of the system. Possible execution times 
are the stages of the pipeline, subdivided into the five 
different phases that we introduce in the following. 
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Figure 4: M igrating Operations. Each node executes a 
pipeline of operations equivalent to an SPJ operator (the 
shown operations are joins, partitionings (  V ), projections 
(W ), selections (X ), and unions(U)). The projection and 

selection operations are regrouped on node Y.  

Say we have n nodes, then the execution scopes are, for 
each stage of the pipeline and for each node:  



1) The incoming phase: On each of the n received 
fragments of the new partition on the data streams.  

2) The merging phase: While merging these fragments 
into one partition. 

3) The merged phase: On the whole partition, after 
merging.  

4) The splitting phase: While splitting the partition into 
the n outgoing fragments for the following 
repartitioning. 

5) The outgoing phase: On each of the n fragments of 
the partition that go out onto the data streams.  

Figure 4 shows the five phases of each stage with their 
execution scopes. The scopes of the merged phases are 
those of the original data flow paradigm and form only a 
subset of the scopes in the extended paradigm. 

Per pipeline stage, there are 2n2+3n scopes – 
independent opportunities to apply algorithms to parts of 
the data. In contrast, the traditional data flow paradigm 
applied algorithms identically on all nodes during the 
merged phase, only varying the amounts of data on each 
node.  

Our proposed solutions fall into four different 
categories7: 
• Migration of processing: We migrate algorithms that 

use specific resources from nodes that overutilize 
these resources to nodes that underutilize them.  

• Additional processing: We introduce additional 
processing, like compression, which trades off 
available resources against overutilized ones. 

• Alternative processing: We use alternative 
implementations of the same operations in different 
resource environments. 

• Rerouting: We reroute the data transfer between 
certain overutilized nodes to allow processing other 
nodes that have available resources 

We present techniques from all areas, but the focus of 
our experimental work will be on the first and the last 
one, which promise the greatest improvements over the 
traditional approach8.  

3.1. Migrating Operations 
Considering the operations in Figure 4, we realize that 
only the joins have to be executed on each partition as a 
whole – in the merged phase. Selections and projections 
can also be correctly executed on each of the fragments of 

                                                           
7 The techniques discussed in this section are important points 

in the new execution space, but they do not exhaust this space. 
The formal model presented in [M+00] allows us to map out the 
complete space, showing all possible ways to apply given 
operations to data on a given architecture.  
8 The presented techniques will attempt to use underutilized 

resources as much as possible to reduce the usage on other 
resources. In the larger context of pipelined, independent and 
multi-query parallelism, there will actually be a tradeoff 
between the amount of underutilized resources used and the 
amount of utilized resources freed. 

the partitions that are sent out to other nodes. They are not 
bound to any particular partitioning of the data and can be 
applied separately to the subsets of the partition on the 
outgoing data streams – i.e., they can be applied in the 
outgoing phase and migrate across the data streams. 
Moving selections and projections is relevant because 
they include complex type-specific methods applied to the 
data (e.g., user-defined functions). 

We migrate operations along the data streams by 
applying them on the sending node for some streams and 
on the receiving node for others. Figure 4 illustrates this 
for a simple case, where selections and projections are 
migrated away from the upper two nodes. Once the 
streams are merged on the receiver nodes, the operations 
must have been applied to all of them. We evaluated this 
option in our experiments in Section 4.4. 

3.2. Migrating Joins 
Joins have to happen on each merged partition as a 

whole. If they were executed separately on fragments of 
the partition, not all possibly joinable tupels would be 
combined. Nevertheless, the incoming data can be 
prepared on their source nodes. For example, for a sort-
merge join, the incoming fragments could already be 
sorted and would simply be merged when the partition is 
constructed. Only nodes that have available resources 
would sort before sending off their partitions, while others 
would leave the sorting to the receiver.  

This technique allows migrating part of the join from 
one node to another despite of the mentioned constraints. 
Its applicability strongly depends on the available join 
algorithms. Preferably, these algorithms should be 
structured to allow preprocessing on parts of the data.  

3.3. Migrating Data Par titioning 
The last two subsections discussed how to migrate 

selections, projections, and parts of the join. The other 
operation consuming resources is the splitting of the 
partition into fragments for the outgoing data streams. 
This splitting prepares the next join, by partitioning the 
local subset of the data with respect to the new join 
column. It can be prepared by tagging all data with its 
future partitions. Splitting would then simply dispatch the 
data according to the tag. We can migrate tagging across 
incoming data streams to some of the sending nodes.  

3.4. Selective Compression 
This technique trades off CPU bandwidth on a pair of 

nodes against the network bandwidth between the nodes. 
Compression and decompression can be applied to the 
partition fragments sent to other nodes during 
repartitioning. Thus the decision about compression can 
be made individually for each pair of nodes, utilizing only 
the underutilized resources to relieve the network. 



3.5. Alternative Algor ithms  
There are usually many different implementations for a 

given operation that has to be processed in parallel on 
multiple nodes. Implementations can be chosen for each 
node independently, as long as the partitioning of the 
workload before the operation and the repartitioning of 
the results work independent of the particular 
implementation. This technique finds its limitation in the 
variety of resource usage of different implementations of 
the same operation. Presumably, the operation will 
determine the usage to a large degree. 

3.6. Rerouting 
Assume an operation can be migrated on a data stream, 

but both involved nodes are overutilized on the relevant 
resources (compared to other nodes). In this case 
migration between the nodes leaves us only the choice 
between two bottlenecks. Instead, we can trade off 
network resources and the resources of a third node 
against the overutilized ones on that particular stream. 
This can be done through rerouting. 

The sender redirects its outgoing stream to a third node 
that has the needed resources available. This node 
receives the stream, processes the problematic operation 
on it, and forwards it to the original receiver node. This 
technique is useful whenever the interconnect is 
underutilized and a whole group of nodes9 is short on 
resources required for a certain operation.  

Rerouting complements migration: the latter applies 
when the receiver can do the sender’s work, the former 
applies when only a third node can do it. We evaluated 
this option in our experiments in Section 4.5. 

3.7. Summary: Streams and Substreams 
In our discussion so far, the new techniques are 

applicable to individual data streams between pairs of 
nodes. In contrast to uniform pipelining across all 
streams, each stream is viewed as an individual pipeline, 
independent in its ordering of operators, its timing of the 
network transfer, its additional operations, and its 
implementation alternatives. This results in a finer 
granularity for adaptations to the specific resource 
situation on each individual node.  

In principle, it is possible to extend the techniques 
presented in this Section to process differently subsets of 
records within a stream. We call these subsets virtual 
streams. The granularity of these substreams is only 
constrained by the necessity for sender and receiver to 
identify the substream to which each record belong, e.g., 
using tagging or a counting mechanism.  

For example, an expensive function that filters records 
can be applied to some records before a network transfer, 

                                                           
9 This group could be the original core of a cluster that was 

incrementally upgraded with more powerful machines. 

to others afterwards. The choice might be motivated by 
the dynamically changing CPU availability on the sender 
and receiver nodes. The receiver node has to distinguish 
records that have already been processed from those on 
which processing has been delayed. To allow this 
distinction, the headers of unprocessed records could be 
tagged by the sender, or alternatively, the sender could 
interleave marker records that turn filtering on the 
receiver on or off. Each such mechanism introduces 
specific overheads that have to be weighed against the 
benefits of the finer granularity of resource scheduling10. 
To summarize our approach, we introduce processing 
adjustments on subsets of the data to adapt the resource 
usage on each node to its specific availability. We do this 
with increasingly fine granularity – on smaller and 
smaller subsets – by considering data in partitions on 
individual nodes, data in streams between pairs of nodes, 
and data in ‘virtual substreams’  of streams (on subsets of 
the stream data that are identifiable by both sender and 
receiver).  

4. Exper imental Evaluation 
This section presents an experimental study of two load 
balancing techniques introduced in Section 3. This study 
illustrates the potential benefits of our new parallel query 
processing framework. We implemented a prototype and 
performed an experimental study of their feasibility and 
effectiveness.  

4.1. Parallel Execution Engine Prototype 
Figure 5 shows our prototype architecture: Independent 

instances of a non-parallel database server are running on 
the two depicted nodes. They execute query plans whose 
in- and outputs are redirected to a communication layer 
that exchanges the data streams through the 
interconnecting network.  

We used the existing Predator OR-DBMS for the local 
execution engines and implemented the communication 
layer. The control mechanism is a shared client that 
scripts the execution for the database engines on the 
different nodes. 

The communications layer is a simple version of a river 
system [A+99]. A river is a communications abstraction 
that connects programs on different nodes of a cluster 
through data sources and sinks. All data sent through the 
sinks are redistributed by the river to the different sources 
across the cluster nodes. Rivers encapsulate all issues of 
parallelism and data flow balancing in parallel programs, 
quite similar to the ‘exchange operators’  of parallel 
database systems [G94]. The specifics of our 
implementation of streams of database records in terms of 
the underlying OS (Windows 2000) and network 

                                                           
10 For a similar approach, using tagging of records to allow 

individual ordering of join operations, compare ‘Eddies’  
[AH00]. 



abstractions are described in [MG00]. The key feature of 
our river is that data streams can be manipulated 
independently: operations can for example be migrated or 
added individually on each single stream between two 
nodes.  
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Figure 5: Architecture of the Parallel Execution 
Prototype 

The control and monitoring of the parallel execution is 
based on Predator’s existing client-server architecture. A 
special ‘controller client’  contacts all involved servers and 
sends each the necessary requests for the execution of its 
local fragments and for the proper connections of its sinks 
and sources. The client thus executes scripts that control 
the parallel execution across all nodes and then collects 
the resulting performance reports. Once initiated, the data 
flow between the different nodes does not require any 
centralized control. 

4.2. Exper iments 
Given the described parallel execution prototype it is 

fairly easy to set up different scenarios of parallel query 
executions. We present two scenarios to explore the 
feasibility of the new execution techniques presented in 
Section 3. Our experiments cover the following two cases: 
• Migration of operations to vary the usage of 

resources across different nodes 

• Rerouting of data streams to leverage additional 
resources. 

We present these experiments as prototypical studies of 
the various possibilities for adaptive techniques in our 
extended parallel framework. The results that we show 
prove the soundness and feasibility of the concepts 
described in Section 3, but they are certainly not 
exhausting the technical possibilities or the scenarios for 
their application.  

4.3. Exper imental Setup 
We chose a small parallel system with a particular set of 

executed operations as starting point for all the following 
scenarios. Our focus is on the specific features of each 

examined technique and not on the layout of realistic, 
complex setups. 

 
 
 
 
 

 

Figure 6: Exper imental Setup 

Figure 6 shows the basic architecture and the operations 
executed: A relation, R, of 100,000 records is distributed 
between two ‘sender’  nodes, while a second much smaller 
relation, S, is distributed between two other, ‘ receiver’  
nodes. The size of the second relation is chosen for each 
experiment to generate the desired join costs between the 
local partitions on each node. R is initially distributed 
evenly across the two sender nodes and needs to be 
repartitioned for the join. The resulting partitions area 
again balanced. A complex user defined function (UDF) 
has to be applied to each record before the join. In each 
scenario the basic setup is to apply the UDF early, i.e., on 
the sender nodes before transferring them to the receiver 
nodes. This setup expresses the assumptions that the 
receiver nodes are fully utilized by the join and that the 
initial distribution of R across the sender nodes is 
balanced with respect to the UDF application costs. Each 
scenario introduces deviations from these ‘balance’  
assumptions and shows how the exemplified techniques 
can be employed to adapt to these deviations.  

4.4. Migration of Operations 
In this experiment we show how we can react to 

performance perturbations on an individual node by 
moving operations across its data streams. Figure 7 shows 
our experimental setup with Sender 1 and its outgoing 
data streams highlighted. In this experiment, the UDF cost 
on this sender is varied from that on Sender 2 to simulate 
performance skew that was not considered in the original 
setup of the execution.  

Migration of operations allows individual decisions on 
each data stream to apply certain operations before or 
after the network transfer. In our scenario, we would 
delay the CPU-intensive UDF on the streams that 
originate from the first sender to deal with a higher CPU 
usage of the UDF on that node. This trades off CPU usage 
on Receiver 1 and 2 against usage on the overutilized 
Sender 1. 

Sender 1 
50% of Relation R 

Applies UDF 

Sender 2 
50% of Relation R 

Applies UDF 

 

Receiver 2 
Partition 2 of S 

Joins R and S 

 

Receiver 1 
Partition 1 of S 
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Figure 7: M igration Scenar io 
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Figure 8: Effect of UDF Cost Deviation on Sender  1 

We start with a graph that shows the effect of the UDF 
cost deviation without any adaptations. Figure 8 plots the 
overall execution time and the processing times on each 
of the nodes on the vertical axis, while the UDF cost on 
Sender 1 is varied along the horizontal axis. The times are 
shown in seconds while the UDF cost is given relative to 
the constant cost for the UDF on Sender 2. 

It can be seen that the processing time on the first sender 
is linear in the UDF cost while that on the second and on 
both receivers is constant. The CPU cost on the sender 
(extended to the left of the shown graph) does not pass 
through the origin because there is a constant cost 
component involved that results from reading the records 
from disk and sending them to the receivers. Only at 
100% the two senders’  CPU costs are balanced. Before 
that point the overall elapsed time apparently results from 
the receiver CPU cost. The constant distance between the 
receiver and the overall time curve is explained through 
an additional cost component on the receiver: A large part 
of I/O work is done by the operating system in kernel 

threads and not by the measured process in either kernel 
or user mode. This work happens in deferred procedure 
calls (DPCs) that handle the completion of I/O operations.  

Another interesting observation is that the elapsed time 
actually decreases as the utilization of the first sender 
increases. This could be explained by the adjustment of 
the rate at which data are sent to the rate at which they can 
be received. Sending data faster than the receiver can 
process them causes additional costs on the receiver due 
to buffer flooding. This observation is not relevant to our 
demonstration of the migration technique. 

After 100%, the elapsed time is dictated by the first 
sender as the bottleneck of execution. The CPUs of the 
other nodes are underutilized, even considering the 
constant DPC overhead for the receivers. In this 
experiment, we attempt to leverage the underutilized 
receiver resources to lower the utilization of the first 
sender and thus lowering the overall execution time. 

To do this we delay UDF application on a fraction of the 
records on each of the streams that originate from Sender 
1. Using identical counting mechanisms for the records on 
the sender and on each receiver, both can identify the 
records that belong into this fraction. Accordingly, the 
sender will let them go unprocessed while the receiver 
will apply the UDF. If a filter operation were to drop 
records after the UDF application on the sender but before 
that on the receiver, a more sophisticated mechanism, for 
example tagging, would be necessary to identify the 
delayed records. In our setup, a receiver incurs a cost per 
UDF application identical to the deviating one on the first 
sender.  

Along the vertical axis, Figure 9 shows the same times 
as Figure 8, while this time not the UDF cost but the 
delayed fraction is varied from 0% to 60% along the 
horizontal axis. The cost deviation on Sender 1 is fixed at 
200% of the cost on Sender 2. The situation at 0% 
delayed fraction corresponds to that in Figure 8 for 200% 
UDF cost. For larger delayed fractions, the CPU 
utilization on Sender 1 decreases because more and more 
of the UDF applications happen on the two receivers. As 
the bottleneck cost on Sender 1 decreases, and with it the 
execution time, the CPU usage on each receiver nodes 
increases at half that rate. We redistribute processing from 
an overloaded node to two underutilized nodes.  

At 34% the minimum execution time is achieved 
because after this point the increasing receiver utilization 
will also increase the execution time. The constant 
distance between the CPU times on the receiver and the 
execution time are again explained by the ‘hidden’  costs 
of network receiving, incurred in kernel threads that we 
do not measure. We ran these experiments for different 
CPU costs on Sender 1, and as expected, the observations 
are qualitatively the same as in the shown graph, but for 
higher costs shifted upwards and to the right. For any cost 
deviation, we can thus experimentally determine an 
optimal delay – which can also be confirmed by a simple 
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analysis of the balancing of costs on the sender and the 
receivers.  
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Figure 9: Effect of Delayed UDF Application for  
200% UDF Cost 
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Figure 10: Increasing UDF Cost Deviation with 
Optimal M igration 

In Figure 10, we summarize the possibilities of operator 
migration by varying the UDF cost along the horizontal 
axis while using an estimated optimal delayed fraction for 
each cost. In addition to the resulting execution time, we 
show the original execution time from Figure 8 as an 
interrupted line. The difference between these two lines is 
the benefit derived from the migration technique. It can be 
observed that delaying balances the cost on the first 

sender with the cost on each of the two receivers so that 
both equally affect the overall execution time and neither 
forms a bottleneck (again, the actual receiver cost 
contains constant kernel thread costs that are not shown). 
On the right side of the graph, beyond 250% it becomes 
apparent that the second sender is underutilized, as it is 
not part of the balancing through UDF migration. The 
next experiment will focus on leveraging the second 
sender to alleviate overload on Sender 1. 

4.5. Rerouting of Data Streams 
Rerouting introduces new intermediate nodes into an 

existing data stream to put their resources to use for 
operations that can be migrated along that stream. In our 
setup all records are rerouted, no matter what fraction of 
them will actually be processed on the intermediate node, 
which we called Sender 2. Similarly to the last scenario, 
we will vary the fraction of records that is ‘delayed’ , but 
this time delaying leads to processing on Sender 2. 
Receiver 1 and Receiver 2 will not do any processing. 

 
 
 
 

 

Figure 11: Rerouting Scenar io 

To emphasize the specific benefits of rerouting, we use 
a different scenario than the one in the last section. The 
cost of the UDF on Sender 1 is again being modified, 
while the UDF on Sender 2 is this time cheaper in 
comparison to the join costs on the receivers. This simply 
means that Sender 2 is more apt to relieve the bottleneck 
Sender 1 than the receivers, which were used in the last 
scenario. Figure 12 shows the effect of UDF cost 
deviation on the first sender: Along the x-axis we increase 
the UDF cost on Sender 1 relative to that on Sender 2. We 
plot the processing times on the four components and the 
overall execution time as in Figure 8. A key feature in this 
modified scenario is that the stream between Sender 1 and 
Receiver 1 is rerouted through Sender 2. This happens for 
all records, even when no processing is delayed and 
everything is processed on Sender 1, as here in Figure 12. 
Sender 2 is affected in its CPU usage by this rerouting: 
We plotted the usage excluding rerouting as an 
interrupted line, running at about 80% of the overall usage 
on Sender 2. It can be observed that the processing time 
on Sender 1 dominates the overall execution time as it 
becomes higher than the execution time on the receiver 
nodes.  
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Figure 12: Effect of UDF Cost Deviation on Sender  1 
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Figure 13: Effect of Delayed UDF Application for  
800% UDF Cost 

Figure 13 shows the execution and processing times for 
an arbitrary fixed UDF cost of 800%. The fraction of 
records that is processed on the reroute node Sender 2 is 
varied along the horizontal axis. We observe that, while 
the receivers are this time not affected, the cost on the 
bottleneck Sender 1 is reduced while the rerouting costs 
(above the fragmented line) on Sender 2 increases at the 
same rate. Below 80% processing on the reroute node this 
reduces the execution time because Sender 1 is the 

bottleneck. Beyond that point Sender 2 becomes a new 
bottleneck, increasing the execution time.  
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Figure 14: Increasing UDF Cost Deviation with 
Optimal Rerouting 

With similar experiments the optimal reroute fractions 
can be determined for various UDF costs. Our 
experiments confirm the analytical result that (C1-C2) / 
UC1 is the optimal fraction, where C1 is the overall cost 
on Sender 1, C2 that on Sender 2, and UC1 the UDF costs 
on Sender 1. C1 is constituted by the basic sending cost 
and UC1, C2 by the same basic cost, the rerouting cost 
and UC2. UC1 is 800% of UC2 in the example above. 
The formula  (C1-C2) / UC1 determines the fraction that 
the overhead of Sender 1 forms  relative to the overall 
UDF cost on Sender 1. Actually, only half of the UDF 
cost is on the stream to Receiver 1 and thus reroutable, 
but this factor is neutralized by the fact that only half of 
the overhead fraction should be rerouted to balance both 
costs: (C1-C2) / UC1 = ((C1-C2) / (UC1/2))/2. We used 
these analytical and experimental results to optimally 
balance an increasing UDF cost using rerouting, 
analogously to what we did for migration in Figure 10. 
The results are shown in Figure 14. Again, the benefit of 
rerouting can be seen as the difference between the 
original execution time, shown as an interrupted black 
line, and the adapted execution time, shown as a thorough 
black line. 

4.6. Discussion 
These experiments illustrate the potential benefits of the 

load balancing techniques we have introduced in Section 
3. Further work is needed to evaluate their actual impact 
and their relative importance. Questions remaining to be 
answered include: When is data rerouting an appropriate 



strategy? What are the kinds of resource skews we can 
expect (will we regularly reach resource skews of 800%)? 
What is the impact of our load-balancing techniques on 
the overall performance of the system? These are topics 
for future work. 

5. Related Work 
In parallel systems, data placement is crucial for 

workload balancing. The processed relations have to 
somehow be partitioned across the parallel nodes of the 
system. Gamma [D+90, GD90] uses ‘ full declustering’ : 
relations were distributed evenly across all nodes. In 
contrast, Bubba [B+90] tried to find the optimal data 
placement. [C+88] considered the ‘heat’  of the data, i.e., 
their access frequency. Depending on their heat, relations 
should be spread across only a subset of the nodes. Other 
systems [T87, D+90], examining multi-query loads, find 
near-linear scaleup for declustering relations across as 
many nodes as possible. Our focus is on the execution of 
a single query without the benefits of locality of data 
access. Consequently, the queries in our prototype access 
the fully declustered data uniformly. 

[D+92, MD93, MD97, SD89] examine the problem of 
workload skew within Gamma. Skew can emerge from 
hash-based partitioning, from joins, and from duplicate 
values [WDJ91]. Virtual processor scheduling [D+92] 
(similar to the ‘data cells’  of [HL90, HL91]) uses many 
small partitions per processor, some of which can be 
migrated between nodes. [RM95] examines how 
workloads should be balanced dynamically in a multi-
query environment. We complement both static and 
dynamic workload balancing with new fine-grained per-
resource tradeoffs.  

Researchers [JM98,NM99] have explored the 
parallelization of user-defined functions because purely 
relational techniques are unsatisfying for object-relational 
systems. The focus is on aggregate UDFs that require a 
specific input ordering and that allow special forms of 
partitioning of data streams into ‘windows’  (the 
granularity of processing of parallel clones).  

Dynamic self-regulation of the data flow in general 
parallel systems is the goal of the River approach 
[A+99,A99]. Rivers deal with performance skew – 
dynamic fluctuations in the availability of resources – and 
are based on previous work on robustness [HD90,CK89]. 
This kind of flow control unfortunately does not apply 
readily to parallel join processing because the joined data 
are partitioned semantically. Depending on the value of 
the joined attribute, data is placed on a specific node. 
Rivers were successfully applied to simpler operations, 
like scans and writes [A99].  

DataCutter [BK+02] models data-intensive applications 
as sets of filters. Data streams connect filters possibly 
located on different cluster nodes. This modular 
application architecture allows for a combination of 
dataflow and pipeline parallelisms; possibly filters can be 

moved to adapt to individual node ressources. We apply 
similar ideas to parallel query processing in general.  

Abacus [AP+00] considers the skew of resource usage 
and availability in a client-server application. They 
propose a run-time system that partitions data-intensive 
functions between client and server depending on the 
resources available. Our load-balancing technique based 
on operation or join migration corresponds to the static 
placement of an operation in Abacus. Note that our notion 
of migration could be extended to cover the dynamic 
migration of running operations in the spirit of Gardens 
[BK+00] or Emerald [J89]. 

Recent work examines tools that allow automatic 
cost/benefit predictions of task placement in clusters 
[K+01]. Although this work targets scientific workloads 
based on message passing [OMP] and not on data 
streams, similar approaches could be applied to determine 
the workload distribution for parallel query processing. 
Orthogonally, our techniques add dynamic adaptivity and 
increased flexibility in the placement of parallel tasks. 

6. Conclusion and Future Work 
This paper examined the parallel execution of complex 

queries on systems with non-uniformly available 
resources. Asymmetry of the available resources and their 
usage stems from skew, interference, and hardware 
asymmetry. The traditional workload balancing 
techniques cannot adapt the usage of individual resources. 
To complement them, we introduced a new framework 
that treats the data streams that repartition data from node 
to node (and their virtual substreams) as individual 
pipelines of operators. Within this framework, we were 
able to propose adaptivity techniques for individual 
resources on a fine granularity. Conceptually, our new 
framework combines the variability of pipelined 
parallelism with the scalability of intra-operator 
parallelism. 

We examined the feasibility and effectiveness of the 
new framework in the context of a parallel execution 
engine prototype based on the Predator OR-DBMS and a 
newly implemented communication layer. Our experience 
was that the new framework fits well into existing parallel 
architectures and our measurements show that new 
techniques can provide the adaptivity that is needed for 
non-uniform resource environments.  

Future work includes a complete implementation of our 
parallel query execution framework on a modular cluster. 
This work has started at DIKU in collaboration with Dell. 
Such an implementation will allow us to conduct an 
extensive performance study. Other areas of future work 
concern the dynamic resource monitoring and query 
optimisation techniques necessary to develop a full 
fledged system. 
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