Technical Report DIKU-TR-02/17
Department of Computer Science
University of Copenhagen
Universitetsparken 1
DK-2100 KBH O
DENMARK

August 2002

B-splines

Kenny Erleben and Knud Henriksen

Abstract: In this paper we will work our way through classical B-spline theory with focus on efficient
implementation. Afterwards we will look into a few advanced details, such as curve decomposition and
regular nonuniform B-splines.

CONTENTS

Contents
1 Introduction
2 The B-spline Basis Functions

2.1 Definition and Properties of B-spline Basis Functions

2.2 Implementing The Basis Functions . . .
2.3 The Derivatives of The Basis Functions

2.4 TImplementing The Derivatives of The Basis Functions

The B-spline

3.1 Definition of B-spline
3.2 Implementing The B-spline
Global Interpolation

Cubic Curve Decomposition

5.1 The Cubic Bezier Curve and the B-Spline Connection
5.2 Global and Local Parameter Conversion of Derivatives

5.3 Knot Insertion
5.3.1 Divided Difference
5.3.2 Leibniz’ Formula
5.3.3 The Funny Equation

5.3.4 The Ordinary B-spline Basis Function

5.3.5 The Knot Insertion Algorithm .
Accumulated Arc Length Table

The Regular Cubic Nonuniform B-spline
7.1 First Order Derivatives at Knot Values .

7.2 First Order Derivatives between Knot Values

7.2.1 Two Linear Dependent A’s . . .
7.2.2 Three Linear Dependent A’s . .
7.2.3 Conclusion on Linear Dependency

Conclusion

A The de Boor Algorithm

Repeated Knot Insertion

15

17
17
19
20
20
20
21
21
23

26

26
27
29
30
30
31

31

31

32

1 INTRODUCTION 2

1 Introduction

In this paper we will present the classical theory of nonuniform B-splines and while we do it we will derive
a c-style pseudocode for efficient implementation of the theory.

The theory represented in this paper is spawn from another project we worked on about “Scripted
Motion and Spline Driven Animation” [8]. Due to this the topics we present in this paper are orientated
towards regular nonuniform open B-splines and efficient implementation of the spline theory.

The theory of B-splines is a much wider area than the treatment we give in this paper, we therefore
encourage the reader to look at our references if a wider coverage is wanted.

We believe this paper is perfect for those, just wanting to implement and use open nonuniform B-
splines or for those in need of a regular nonuniform open B-spline.

2 The B-spline Basis Functions

Before we actually look at the B-splines we will treat the B-spline basis functions.

2.1 Definition and Properties of B-spline Basis Functions

Let us start by defining the normalized basis function for the B-spline. The normalized basis functions
are defined recursively by the Cox de Boor definition. For k > 1:
U % i+k (% . (1)

Nip=——*
¢ tivk—1—t;i tivk — tit1

)

and for k = 1:

N — 1 ift; <u<tipr
&1 7Y 0 otherwise

The index k is called the order of the basis function. For a given value of k this definition results in a
polynomium of degree k — 1. All the ¢;’s are called knot values, and are usually arranged in a so called
knot vector, T'.

T =l tion,tistip tiga,..]”

Now let us assume we have a value u such that
ti <u <ty

That is the value of the index ¢ is known. Looking at the definition of the B-spline basis functions we can
esily derive the “dependency” table, shown in Table 1. The table should be read in a bottom-up fashion,

N;_23 Ni_13 N; 3
Ni_1,2 N2
N1
ti—1 t; u tit1 tito

EE S
[l
=N W

Table 1: Depedency Table.

starting at the bottom with the knot vector, one can track all non-zero basis functions up to any wanted
k-value. The patteren is obvious and we could easily have extended the table to any value of k. There
are three properties, which can be seen immediately from the table and which we are going to put to
practical use later on.

1. At the k’th order there are exactly k basis functions, which are different from zero.

2 THE B-SPLINE BASIS FUNCTIONS 3

2. From the table we can derive that if
ti <u <ty

then only
Ni_py1,k5--+5 Nik

will be nonzero.

3. Computing the basis functions bottom-up, instead of top-down, will make it possible to reuse
previously computed results.

We will use properties 1 and 2 to make a sort of fast rejection on which basis functions we need to
compute. The third property is obvious from the table, but it requires some work before it can be applied
efficiently in a practical implementation.

2.2 Implementing The Basis Functions

Let us look at an example. Let us assume that we have
t; <u <ty

Then by the the definition of the basis functions and the properties 1 and 2 we can write up all the
nonzero basis functions for k =1

Nip=1
and for k =2
u—ti_1 tit1—u tiv1 — U
Niip = ———N;_11+ N1 = Niq
’ tivo —tii1 tip1 —ti tip1 —ti
U—tz’ ti+2—u u—tz-
Nip = ———Nji1+———Nijj11=——N;;
’ tivi —t;i tito — tit1 " tivi —ti
and for k =3
u—t;_2 tiy1 —u tit1 —u
N;_93 = ————F—N; 90+ ———N;_10=———"—N;_12
’ tivo —ti—a tiv1 —tic1 tiv1 —tic1
u—t;_1 tiya —u
Ni_13 = —N;_ 120+ ——N;o
o tivt —tic1 tiva —ti
u—ti t,'+3—'u u—ti
N;3 —Nijo+ ———Niy10=——N;»
“ tive —t; tit3 — tit1 v tiva —t;

We can immediately make some observations if we for instance look at N;_; 3 then we observe that the
part
— N,
tiva —ti
of the second term reapperas in the first term of IV; 3. Another observation we can make is that the first
part of V;_» 3 is allways zero and the same goes for the last part of N; 3. This is seen directly from our
dependency table in Table 1. These two observations can we use to speed up our computations, but we
can do even better. Looking at the fractions of knot differences we see that they appear to be similar for
increasing values of k. Let us try to see if we can put some system into these fractions. We will start by
introducing two new auxilliary functions called le ft and right. These are defined as follows

left(]) = U—tH_l_J‘
right(j) = tiy;—u

2 THE B-SPLINE BASIS FUNCTIONS

With these new methods we can write up the equations in our example like we have done below (for the

case where k = 3).

N left(3)
23 right(0) + left(3)
N 3 left(2)
T right(1) — left(2)
N, left(1)

3T Tight(2) + left()

right(1)

22 right(1) + left(2) o2
right(2)

o2 right(2) + left(1) 2
right(3)

2,2 i+1,2

right(3) + left(0)

From this we can derive the following general relation

M(r k) =

Ni_(k—r—1),k

left(k—r)

right(r) — left(k —r)
right(r + 1)

i—1,k—1

right(r + 1) + left(k —r — 1)

Where

Nip—1

0<r<k

If we closely examine our equations from earlier we notice that when we begin a computation on a new
k’th level then the only left and right values we do not allready have computed are

left(k)

and

right(k)

We are now ready to write up the pseudo code, which computes the values of all nonzero N; j

2 THE B-SPLINE BASIS FUNCTIONS 5

Algorithm BasisFunc(i,u,K,T)
left = array(K+1)
right = array(K+1)

M = array(K)

left[0] = u - T[i+1]
right[0] = T[i] - u
left[1] = u - T[i]
right[1] = T[i+1] - u
M[0] =1

For k = 2 to K do
left[k] = u - T[i+1-k]
right[k] = T[i+k] - u

saved = 0

For r=0 to k-2
tmp = M[r]/(right [r+1]+left[k-r-1])
M[r] = saved + right[r+1]*tmp
saved = left[k-r-1]*tmp;

Next r

M[k-1] = saved
Next k

return M
End algorithm

2.3 The Derivatives of The Basis Functions

We will start out by showing the result of computing the first order derivative of a basis function

dNip k-1 . _ k=1
du i1 —ti TN bk — tin

Nit1,k-1 (2)

Now let us try to prove that this equation is infact true. We will prove the equation by induction on k.
Setting k = 2 we see by direct differentiation of equation (1) that the derivative would be

1 1
titk—1 — & titk — tit1

depending on what interval u lies within. By direct substitution into equation (2) we can easily verify
that equation (2) is true in the case of k = 2. Now let us assume that equation (2) is true for k¥ — 1 and
that we have k > 2. Now we are ready to try to prove that equation (2) is true for the k’th case. We start
by applying the product rule to equation (1) and get the following equation

dNi 1 1 1
= Nig—1 — ————
du tivk—1 — tivk — tit1

u—1t; dNjp_1 tivk —u dNjy1p—1

Nit1,k—1

tivk—1—t; du tivk — tit1 du

2 THE B-SPLINE BASIS FUNCTIONS 6

Now we will substitute equation (2) for the terms N, _, and N/ , ,_,. This gives the following equation
ik—1 i+1,k—1 g geq

dN; 1 1 1
—— = —————N;jp 1———F—Nij111
du tivk—1 —ti ik —tisn T
u— t,' (k—2 k—2)
+ k-2 — T Nit1,k-2
tivh—1 —ti \tipho2 —ti k1 —tiz1
tivk —u (k-2 k—2
+ Nigrp—2 = ————Nijar
tivk — tiv1 \Citvk—1 — i1 " titk — tit2 "

Now this looks rather complicated, so let us try to make it a little more readable by rearranging the
equation.

dNi 1 1Ly
= ik—1— —————Nijp1,5-
du tivk—1 —t; tigk —tign TR
k—2 u—t;
+ Nk 2
tigk—1 —titign—2 — 1t
k—2 tivk — U u—t;
+ (as — !) Nit1,k-2
titk—1 — tit1 \Titk —tit1 Tirk—1 — &

k—2 tz’+k —Uu
- Nijop_o
titk — Cit1 titk — tig2

Now we do a little mathematical manipulation. We add zero to the equation, by adding 1 and subtracting
1.

dN; i 1 1

= ik—1 — —N; Jk—
du tigkhot —ti TN bigp —tign TR
k—2 u—t;
+ *— N2
tivk—1 —titign—2 —1t;
k—2 tivk — U u—t;
. (oot ya vt Yy,
tivk—1 — tix1 \Girk — tit1 titk—1 — &
k—2 tivk — U
- ax Niyo k-2

tivk — i1 tigr — Tig2
Now we express the ones we have added and subtracted as fractions

dN; 1 1
= k=1 — T
du tivk—1 — i tivk — tit1
k—2 u—t;
+ L N 2
tiyh—1 —ti tigp—2 —
k—2 (tivk —u tipk — tigr
tivk —tit1 tixr — tig1

Nit1p-1

titk—1 — tit1

bivk—1 — 1 u—t
- Nit1,5-2
titk—1 —t; tiyk—1 — b
k—2 tivk — U
- itk Nipop—2
titk — i1 titrk — Civ2

2 THE B-SPLINE BASIS FUNCTIONS 7

Setting on common denominators we get

dN; i 1 1
L = Nig—1 — ———Nij16-1
du tigk—1 — b tivk — tit1
k—2 u — t;
+ *—Nik—2
tigk—1 —t; tigp—2 — 1

k—2 (ti+k —u—tirp + tig1
+
titk—1 — tit1 titk — tit1
tivhot —ti—u+1;
+ i+k—1 i z) Ni+1,k—2
titk-1— 1t

k—2 tivk — U
Niyo k-2
tigk — tig1 tigr — tiqo

Cleaning up a bit we get the following

dN; i 1 1

ko Nipot — ——— Nip1 4

du k1 —ti TN g — iy TR
k—2 u—t;
+ N k-2

tivk—1 —titign—2 — 1

k—2 (ti+1 —u tz’—{—kfl —Uu
titk—1 —tip1 \1

k—2 tivk — U
- Nijop—2
tigk — tig1 tigr — tiga

+

Nij1,p—2
itk — bit1 titk—1 — ti)

Now we are almost at our goal. All that we have to do is to rearrange the equation a little bit more.

dN; i 1 1
—= = ——— — Nig1—————Nit15 1
du tivk—1 — b tivk — tit1
k—2 u—t; Livk—1 — U
+ Nigp—o+ ———Nit11-2
titk—1 — & (ti+k—2 -t titk—1 — tit1 "
k-2 (U — ti41 tivk — U
— Nijig—2+ ———Niyo 12
tivk —tir1 \bith—1 — tit1 " tivk — tiy2 o

Now if we look at the terms in the parenteses we immediately recognize equation (1), and if we apply it
we get the following

dN; 1 1
LA Nig1————Nij1p1
du tigk—1 — b tivk — tip1
k—2 k—2
+ oS Nk — o Nigipe
tivk—1 —t; ! tivk — tip1 wHLk
Cleaning up a bit more we get
dN; (k—2)+1N (k—2)+1
= ih—1 — ————Nij11 -1
du tivk—1 —t; ik —tig1 T
k-1 k-1
= 71\7'7]9_1 - —N; 1,k—-1
tivk—1 —ti tivk —tig1 o+

Finally we can conclude that equation (2) is true. Now let us try to look at higher order derivatives. If
we differentiate equation (2) then we get

BN k-1 dNiy k=1 dNij1p1

du? tivk—1 —t; du tivk —tiy1 du

2 THE B-SPLINE BASIS FUNCTIONS 8

From this it is not hard to see that a general formula can be written for the j’th derivative.

djNi’k . k—1 dj_lNi’k_l k-1 dj_lNi_H’k_l (4)
dul tipk1 —t; dui! tivk — tig1 dui—t
Our results can be generalized into the following equation.
&N 1
aw _] _ 1 1 Zaj,p it+p,k—j (5)
With
j<k
and
agp = 1 (6)
aj—1,0
aj0 = ———— 7
’ tivk—j — ti @)
Aj—1,p — AQj—1,p—1
ajp, = — =% (8)
bitk+p—j — titp
aj-1,j-1
aj; = ——— 9
» tivk — titj ®)

We will now try to prove equation (5) by induction on j. Let us start out by examining if the equation
holds for j = 1. From direct substitution into equation (5) we get the following result.

d];:i’k = EZ : ;;' (a1,0N5,k—1 + a1,1 Nit1,5-1)
= (k-1 (%Ni,kl + %Ni+1,k1>
i+k—1 i i+k i+1
1 1
= k-1 (ﬁN } tTN)
k-1 k-1
R Nig—1 - —— Nit1,k—1

We immediately recoginize equation (2) and conclude that equation (5) is true for j = 1. Now, let us
assume that equation (5) is true for the case of j = j — 1 and let us try to prove that it also is true in
the j’th case. We have

FIN; (k-1 =2
dt]—lz = (k. _ (] . 1) _ 1 ZOG’J 1aPN’l+Pak Jj+1
p=

If we differentiate this once more we get the j’th derivative, that is

djNi,k (k sz—HD,k —j+1
ati (k- (j— —1'2M1”

Now let us apply equation (2) to the derivative inside the summation

Nitpr—j

INye (k=11iS k—j
dti (k—j) &= %-tr (7

= i+p+k—j — titp

k—j

— : o Nitprih
i+p+k—j+1 — Litp+1

2 THE B-SPLINE BASIS FUNCTIONS 9

Rearranging yields

djNik (aj—1,p
= = - s F N ki
dt’ —J- 1 ! Z tivprh—j — litp ke

a;_1

i—1.p

7 : . Nz’-‘rp-‘rl,k—j)
i+p+k—j+1 = litp+1

Let us write up the summation into explicit terms. This results in the following rather lengthy equation

dsz' k (k‘ — 1)' aj—1,0 aj—1,0
—j’ = - | ; Nz’,k—j - —Nz’+1,k—j
dt (k=3 = D! \tiyk—j — t; bitk—j+1 — big1
aj—1,1 aj—-1,1
Jj—1, Jj—1,
—Ni-',-l,k—j - Ni+2,k—j
tit14k—j — tig1 titk—j+2 — Lita
aj—1,2 aj—1,2
Jj—1, N Jj—1,
F 7 Nij2p—j — —Nz'+3,k7j

titotrk—j — tiy2 titk—j+3 — tit3

aj—1,5—-1 aj—1,j—1

Jj—1.j N, J—1,j

+ N j-1k—j — 71Vi+j,k—j)
titk—1 — bitj—1 titk — bty

This equation can be rewritten by collecting terms of equal N-factors

dJNi’k _ (k — 1)' (a;—1,0 .
j - N 17 _J
dti (k’ e 1)' ti—l—k—j —t;
aj—1,1 — aj-1,0
J k) .] bl
—————— N1 k—j
titi+k—j — tit1
aj—1,2 — Gj—1,1
i=1, i=1,
Nijop—j
tito+k—j — tit2
aj—1,j—1 — Aj—-1,j—2
J—1. i—1,
+ Nitj—1,k—j

titk—1 — titj—1
aj—1,j—1
i1,
gt Nisas)
itk — bitj

Looking at how the a-coefficients in equations (6)-(9) are defined we can esily rewrite the equation into
the following form.

dNyy (k=1

dti (k—j—l)!(
4 a; i Nitjr—j)

@j,0Nik—j + @1 Niy1k—j + @52 Nijap—j + -+

Which conviently can be written as

djNi,k
a —J ~) |Za1,p i+p,k—j

By comparison with equation (5) we can now conclude that it also holds in j’th case.
2.4 TImplementing The Derivatives of The Basis Functions
Now let us turn our attention towards making an efficient implementation. By equation (5) we have

&N .
dth = k J—l Zaj,p i+p,k—j J<k

2 THE B-SPLINE BASIS FUNCTIONS 10

And from equation (5) we see that the numerators in the equations (7)-(9) are
AT = ti+k+p7j — ti+p for 0 S p S] (10)
By equation (1) we have

U — titp-1 bitkip—j —U o

t: ¢, i+p,k—J
i+k+p—j i+p

Nitp—1k—jt+1 = Nitp-1,k-j +

titkip—j—1 — titp-1
Now if we compare the numerator of the second term to equation (10) we immediately see that they are
identical. In other words we have seen that the knot differences used to compute the N-values can be
reused in the computation of the derivatives. Let us create a table, which we call M, and let us store
values into M as follows, for 0 <r < k:

Ni_ptiq4rk — Mpp_
AT — Mk—l,r

The diagonal is special since we will store N; j in it. In Table 2 we have given an example of an M-table
to help familiarize you with it. Observe that M contains all the non-zero values of IV from the dependency

Nia Ni 19 Ni 23 | Ny 34

tiv1 — Nio2 Ni—13 | Ni—24

tiy1 —tic1 | tigo— 1 N;s Ni_1,4
tiy1r —tio | g2 —ti1 | tigz —t; | Nia

Table 2: M-table example for k = 4.

table and it also stores the corresponding knot differeneces (from the right terms only) in the “transpose”
position of the corresponding N value.

The knot difference we need in the a-coefficient of N;, ;—; is computed by N;;p_1 k—j+1. Where are
these two located relatively to each other in the M-table? N;ip,_1x—j+1 would lie just to the right of
Niyp,k—j- Knowing this we can easily come up with the following rule for looking up the knot difference
we need when we want to compute the a-coeffiecients. The rule is as follows

1. Get the transpose position of the corresponding N-value.
2. Add one to the row index.

If we compute the derivatives in succeding order starting at 0, then 1,2,..,5 — 1, j then we observe that
when we compute the j’th derivative then we only need the a-coefficent values which we found in the
computation of the j — 1’th derivatives (and the knot differences of course). This means that we only
have to remember the a-coeffiencent from the previous iteration. Using a cyclic memory buffer makes it
possible to implement a very effiecient way of computing the a-coefficients.

Looking closely at equation (5) we obviously see that some of the terms involved in the summation
could potentially have a zero N-value. In an implementation we could take advantage of this knowledge.
This could be done as follows. First we split the summation into three parts, each part corresponding to
the three different ways of computing the a-coefficients (equations (7)-(9)). That is, we are going to use
the following index values for the N-values.

t—k+1+7r for ajo
i—k+14+r+1 to i—k+1+r+j-1 for a;1 to aj;-1
i—k+14+r+7j for a;;

Now, since all these N-values are of order k£ — j we know that there are at most k — j non-zero N-values
and we also know that their index range is

i—k+j+1 to i

2 THE B-SPLINE BASIS FUNCTIONS 11

In other words, if

i—k+14r > i—k+j+1
ro>j

then the a;o term have a non-zero N-value and should therefore be included in the summation. Similar
we see that if

i—k+14+r+j i

<
r < k—1—j

Then the a;; term should be included as well. The a;, terms (for p = 1 to j — 1) is handled a little
different. In this case we want to derive the range of p-values, Prin, - - - » Pmaz, Which results of non-zero
values. First we look for a lower limit if

i—k+1+r+1
r+1

> i—k+j+1
> J

then p,in should be set to 1. If not we have to solve for p,,;, such that we find the lowest value of pin
where

i—k+1+7+ppin > i—k+j+1
DPmin Z j—T’
DPmin = j—T
In a similar way we find ppq.. If
t—k+1+r+5-1 < 1
r+j7 < k
r < k—j

then pqe = j — 1, and if not then we need the bigest value of p,,;q, such that
t—k+14+7+pmas <1

which iS pmes = k—1—1.
This concludes our walkthrough of implementation details, and we can now show the entire algorithm.

2 THE B-SPLINE BASIS FUNCTIONS

Algorithm initializeM(i,u,K,T)
left = array(K+1)
right = array(K+1)
M = array(K,K)
left[0] = u - T[i+1]

right[0] = T[i] - u
left[1] = u - T[i]
right[1] = T[i+1] - u
M[0o][0] =1

For k = 2 to K do
left[k] = u - T[i+1-k]
right[k] = T[i+k] - u

saved = 0

For r=0 to k-2
M[k-1][r] = (right[r+1]+left[k-r-1]1)
tmp = M[r][k-2]/M[k-1] [r]

M[r][k-1] = saved + right[r+1]*tmp
saved = left[k-r-1]*tmp;
Next r
M[k-1] [k-1] = saved
Next k
return M
End Algorithm

12

3 THE B-SPLINE 13

Algorithm derivatives(i,u,K,T,J)
D array(J+1,K) // DL[jl1[r] = j’th derivative of N;_jpt14rk
a = array(2,K)
M = initializeM(i,u,K,T)

For r=0 to K-1
DL0] [r] = M[r][K-1]
Next r

For r=0 to K-1
sl =0, s2 =1, a[0][0] =1
For j=1 to J
djN =0
If r >= j then
a[s2][0] = als1]1[0]1/M[K-j][r-j]
djN += a[s2][0] * M[r-j][K-j-1]

End if

If r + 1 >= j then pMin = 1
Else pMin = j-r End if

If r <= K -j then pMax = j - 1

Else pMax = K - 1 -r End if
For p=pMin to pMax
a[s2] [pl=(als1][pl-als1][p-11)/M[K-j] [r+p-j]
djN+=a[s2] [p]*M[r+p-j] [K-j-1]
Next p
If r <= (K-1-j) then
als2][j] = -als1][K-1]/M[K-j][r]
djN += a[s2][j] * M[r][K-j-1]

End if
D[j1[r] = djN
swap(s1,s2)
Next j
Next r

factor = K-1;
For j=1 to J
For r=0 to K-1
D[j1[r] = factor * D[j][r]
Next r
factor = factor * (K-1-j)
next J
return D
End Algorithm

3 The B-spline

Having taken care of the basis functions we are now ready for the actual B-spline.

3 THE B-SPLINE 14

3.1 Definition of B-spline

A non-periodic non-uniform k-order B-spline is defined by

C(u) =Y NixP; (11)
=0
Where
a<u<b

The n + 1 points {F;|i = 0,...,n} are called the control points and the functions {N;x|i =0,...,n} are
the k’th order normalized basis functions, which were treated in the previous sections. These are defined
on a knot vector T', such that
T=[a,...,a,tg,...,tn,b,...,b]"
—— ——’

k k

Notice that the knot vector have a total of n + k + 1 elements and the first k-elements all have the same
value and the last k elements also have the same value. Succeding values in the knot vector should be
non-decreasing.

Now let us differentiate equation (11) with respect to u. By the product rule we get

n
C'(u) = > Nj,Pi+ NiiP
=0
And since {P;} are all constants and independent of u this reduces to
C'(u) = ZNzlsz
=0
From this it is easily seen that

CY(u) = Z N9, k)P, (12)
i=0

3.2 TImplementing The B-spline

Recalling our very first algorithm for computing the basis functions (see section 2.2) we can easily derive
an algorithm for computing a single point on a B-spline.

Algorithm curvePoint (u,K,T,P)
i = knot index, such that ¢; <u < tj41
N = BasisFuncs(i,u,K,T)
cC=0
For r=0 to K-1
C = C + N[r]xP[i-K+1+r]
Next r
return C
End Algorithm

From equation (12) it is not hard to see how we can put our previously algorithm for computing the
derivatives of the basis functions (see section 2.4) to practical use.

4 GLOBAL INTERPOLATION 15

Algorithm curveDerivatives(u,K,T,P,J)
i = knot index, such that ¢{; <u <4
J = Min(J,K-1)
dC = array(J+1)
dN = derivatives(i,u,K,T,J)
For j=0 to J
dc[jl =0
For r=0 to K-1
dC[j] = dC[j] + N[j][rl#P[i-K+1+r]
Next r
Next j
return d4dC
End Algorithm

4 Global Interpolation

In this section we will look at the “inverse” problem of computing points on a B-spline. Instead we will try
to compute the B-spline given some points on it. The approach we will take is called global interpolation.

Now let us call the initial given points on the spline we want to compute for break points and introduce
the notation {X;} for them. The indices have the meaning that if j < ¢ then we should encoutner X;
before X; if we walk along the wanted spline as the parameter u increases.

With the introduced formalism we can state our task at hand quite simple: Given a set of break
points and a knot vector, we need to find the control points {P;} of the nonuniform B-spline, which
passes through all the break points. Assume that we have a knot vector consisting of the following knot
values

tost1st2, e s b1tk s tns bnttstnt2s oo s tngk
Where
to="+.=tp—1
And
tagl = -+ =ty

Given such a knot vector we know

Q
~~
~
3
+
s
N—r
Il
;u
~
[
w
N—r

Each (unique) knot value will correspond to a single break point. From this we see that we must have a
total of n — k + 3 break points.

XO; Xl; X27 “ee 7Xn7k+1; Xn7k+2
For each of these break points we will require that
Ctivr-1) = X; for 0<i<n—-k+2 (15)

That is, we have a total of n — k + 3 equations, but we have n + 1 unknowns, and a spline with n + k + 1
knot values must have n+ 1 control points. In short we might need a few more equations in order to solve
our problem. Typically ¥ = 4 and two more equations are needed in this case. We could simply pick

P0:P1 and Pn: n—1

4 GLOBAL INTERPOLATION 16

as the two extra equations. Now we can solve the system of linear equations given by equation (15). This
strategy could be applied for an arbitary value of k. However, we wish to work in the case where k = 4,
s0 let us set the value of & to 4 and see if we can derive an efficient way of solving equation (10). We start
out by writting up C(t;43).

n
C(tiys) = Z PiN; 4
=0

Only k = 4 of the basis functions are potentially nonzero, since they have a support that overlaps with
ti+3. That is

n
Cltiys) = Z PiN;j4 = PiN; 4+ Piy1Nit14 + PiyoNipo s + PiisNiys s
=0

Now let us examine each of the 4 N-terms. We start out by looking at N; 4. By our definition of a basis
function we can construct the following tree, which shows how N; 4 is computed.

Nia
/\
u-t, N t,,-u N
foa ™t ? tia = G s
/\ /\
t':_:[itl N, t:;"f_tlil Nis12 t.»ruz_fitl Nis2 t::‘-l-tliz Nii2oz
t:_fitl Nis ti+i2+f-ti+1 Nii11 ti: flzllﬂ Nii11 t:ij :ﬂ N1 ti:-flziil I\ ti+:?-:+2 Nisz1 ti:-fl;; Nis21 tﬁ;ﬂj-:ﬂ Nis1

Figure 1: The computation of the basis function.

Since we know that N; 4 should be evaluated at ¢;3, we can easily write up an explicit expression for
Nj 4, from the tree in figure 1 we see that it would be the terms along the path from the rightmost leaf
up to the root of the tree.

Niy= (tiva —tiys)®

YU (biga — tig1) (figa — tiyo)
If we write up similar trees for Niji1 4, Nit2,4, and Niy3 4 and evaluate them at ¢;43 then we would derive
the remaining expressions we need.

(tits — tivs)(tivs — tiv2) | (fivs — tiy1)(fiya — tiys)

(tirs — tiv2)(tiva — tiy2) (tiva —tiy1)(tiya — tiy2)
(tiys — tiya)®

(tivs — tiz2)(tiva — tiza)

Niysa = 0

Nij1q4 =

Niyo4

5 CUBIC CURVE DECOMPOSITION 17

Now let us write up all the equations that determine the break points.

1 =0 : C(t3) = P = Xo
i=1 : Cts) = aaPi+/P+mbPs = Xi
=1 i Cltiys) = aiPi+BiPia +7viPiy2 = X;
t=n—2 : C(tn+1) = Pn—l = Xn—2

Where
(tiya — tigs)®
(tita — tip1)(tiva — tiv2)
8 = (tits — tits)(tits — tix2) (tixs — tit1)(bita — tits)
(tivs — tiva)(tiva —tize) (tiva — tiv1)(tiva — tiv)
(tiys — tiz2)’
(tirs — tir2)(tita — tita)
All these n — 1 equations can be expressed in matrix form, as shown below
1 P Xo
ai f1 m

a; =

Yi

Qn—3 ﬂn—3 Yn—3
1 Pn—l Xn—2

Looking at this matrix equation, we observe that it has a particulary nice looking shape, such a shape is
called tridiagonal. It is particular easy to solve a system of tridiagonal linear equations (see [7]) and by
doing so we can compute all the control points.

Of course we have omitted a little detail: How should the knot vector be constructed if we are only
given the break points? A good approach to this problem is to use a heuristic, which is known as the
“chord length heuristic”. Basically this means that we will require that the following condition is always
fulfilled

tiva —tivs _ | Xiy1 — X
tivs —tiva | Xig2 — Xiga|

(16)

5 Cubic Curve Decomposition

Nonuniform B-splines are easily converted into a composition of corresponding bezier curve segments by
performing an operation on them which is called knot insertion. We have devoted this section to treat
all the details on how one takes a nonuniform B-spline and ends up with a composition of cubic bezier
curve segements.

B-splines are attractive due to two properties. They have local support and they guarantee continuity
across adjacent curve segments. These properties are not mutually present when having a composition of
bezier curve segements. Changing a control point on one curve segement means that one has to change
the control points on all other curve segements to ensure continuity. However a bezier curve composition
is far better to work with for rendering and evaluation. In our opinion it pays off in terms of performance
to convert a B-spline to a composition of bezier curve segements when one is finished with modelling the
final shape of the spline.

5.1 The Cubic Bezier Curve and the B-Spline Connection

The best way to see how a cubic nonuniform B-spline corresponds to a cubic bezier curve is by direct
computation. Assume that we have the nonuniform B-spline

3
C(’LL) = Z I)iNiA
=0

5 CUBIC CURVE DECOMPOSITION 18

Defined on the knot vector
T =10,0,0,0,1,1,1,1]"

We say that such a knot vector has no internal knots and that its multiplicity of all its knots are k = 4.
We immediately see that only four basis functions are involved, these are

No,4, N1,4, N2 4, N3 4

Looking at figure 1 it is fairly easy to evaluate these four basis functions. We immediately see that
only those paths with leaves where the numerator ¢;; — ¢; are nonzero contributes to the value of the
N-function. By direct substitution we derive

N074 = (]. — ’LL)3
N174 = 3u (1—u)2
Noy = 3u?(1-u)
N3y =
Cleaning up a bit we get
Nos = —u®+3u? —3u+1
Nig = 3u®—6u®+3u
Noy = —3u®+ 3u?
N3y = o

Plugging our results into the original summation for the B-spline and using matrix notation we derive

-1 3 -3 1 Py

s 3 -6 3 0| A
C(u) = [u?,u?,u,1] 3 3 0 o0 P, (17)

1 0 0 0 P

But this is actually the matrix definition of a cubic bezier curve. There is no doubt by now that there
definitely is a connection between the spline and bezier curve representations. However we do have a
little problem: Not all nonuniform B-splines have the particular nice looking knot vector as we used to
show the connection with bezier curves. What should we do about a general looking B-spline? Let us for
the moment being assume that every knot value in the general B-spline have multiplicity & (in the next
subsection we will start on attacking the problem of twisting the spline into this form). The “general”
cubic nonuniform B-spline can then be seen as a sequence of separate nonuniform B-splines because at
each unique knot value the first k¥ — 1 derivatives vanishes (see section 7.1). Each “sequence” of this special
looking spline looks almost like the one we used in our derivation above the only difference is that the
knot values are not zeroes and ones. Instead the knot vector looks like this

T
T = [ts, tis ts, tisti1, tigr, tir, tiga)

The indices are the ones from the original spline with multiplicity 1. We can easily get the zeroes simply
be subtracting the “left” knot value from all the knot values. This is perfectly legal because we are looking
at a local segment of the spline. We end up with a knot vector like the following

T = [O,O,O,O,S,S,S,S]T

Where
§=tiy1 —

This knot vector allmost look like the one we want except for the s-value, which is not necessarily 1. If we
repeat the above computation we will derive at a cubic bezier curve where its parameter has been scaled

5 CUBIC CURVE DECOMPOSITION

19

by s. We can conclude that we still have the connection between cubic bezier curves and nonuniform

B-splines.

Let us try to get rid of this scaling problem. We introduce the terminology of global and local param-
eters. The global parameter is denoted by U and it is the parameter that was used to define the original
nonuniform B-spline with (see (1)). We now use u for the local parameter of the i’th curve segment B(u)

of the original spline. We want

B(u) = C(U)
If we compute u as follows
U-t
w= — %
tig1 — ¢

Then our property is fulfilled. Another nice property is that « runs from 0 to 1.

5.2 Global and Local Parameter Conversion of Derivatives

If we have a local bezier segement B;(u) of C(U) where we know
C(U) = Bi(u)

and recall that the conversion between the local and global spline parameter is given by

u= f(U)
where U_t
1) = tit1 — 1

By straigthforward differentiation we get

d d ' !
4 ow) = LB(HW) = B W) F©)
where 1
() = =1

Putting it together we get the conversion rule for the first order derivative we were looking for.

! — 1 ! —_ 1 !
C'U) = =3 BU(U) = T Bi(w)
If we continue our differentiation we get
d2 d 1 ! _ 17 ! ! n
2C0) = = Bi(F () f'(U) = B (F(U)f'(U)* + Bi(£(1)) f"(U)

And we can easily compute

" _i 1 _
f1) = du (ti+1 —ti) =0

Substituting back into our computation we get the conversion rule we were looking for.

1
tit1 — 1

o) = (7=)2B£’(f(U)) - ()2B;'<u)

it1 — t

By now the patteren should be obvious and we can conclude

V(W) = (#)jB?"(f(U)) = (%)sz("’(u)

tiy1 —t; i+1 — ti

(18)

5 CUBIC CURVE DECOMPOSITION 20

5.3 Knot Insertion

We are now ready to take on the task of knot insertion. Even though the resulting algorithm is quite
simple and bare some resemblence to the de Boor algorithm (see Appendix A) we need to take a detour
to “divided differences” in order to prove the algorithm.

5.3.1 Divided Difference
We have some function g(t) and a knot vector

T =] tistivrsenstizhs--]"
Where

t; <tiv1 < tits
For all values of i. We define the divided difference on g recursively! in the following manner. The zero’th
divided difference is given by
Aig = g(t:)
and for k=1
Aipr1g(ti) — Aig(ti)
tiv1 —t;

Az’,i+lg =
The general k’th divided difference? is defined by

Ai,...,t,,_l,tr+1,...,i+kg - Ai,...,ts_l,ts+1,...,i+kg
ts —tp

A; . irkg =

An important property of the divided difference, which we are going to use, is that it is symmetric, This
is easily shown. It follows trivially in the case of k¥ = 0. Using operator notation and assuming the k£ —1’th
divided difference is symmetric for all £ > 2, we notice that

A Ai,vyewyitk — Do, ith—1
TyeesVye W,y itk —
tivk — b

Ait1,wyyvyesitk — Doy ith—1

titk —t;
- Ai,...,w,...,v,...,i—i—k

This clearly shows that the divided difference is symmetric.

5.3.2 Leibniz’ Formula

Later on we will use Leiniz’ formula, so we will state it here, without proof due to space considerations
and because the proof requires another definition of the divided difference than the one we are using. The
interested reader should refer to [4] for a proof. If we have f(t) = g(t)h(t) then Leibniz’ formula states

itk
A;ivkf = Z AV VAV RUY) (21)

r=t

2There are other ways to define the divided difference, see [4].
2We have ignored the case t; = --- = t;1, see [4] for details.

5 CUBIC CURVE DECOMPOSITION 21

5.3.3 The Funny Equation
Later on we will use a rather funny equation
0= (ti — titk)Ai, itk + (t — 1) Di,ivk—1,5 + (Eitk —) Dji1, itk (22)

For now we will try to show that this funny equation is infact true. Let us start out by using the definition
of the divided differences on the funny equation (22):

Aipr,itk—1,5 — Diitk—1
t;—t;

)Ai+1,...,i+k — Ajit,.ith—1

0= (t; — tivn)D,...ivk + (t; — t;) T
i+k — Uj

+ (tivw — 8
Cleaning up gives us

_A Aipt,ith—1, — Djit1,ivh—1 Digr,ivk — D, ith—1
0=24;. i+r+ -

ti — tiyk tivk — b
By symmetry of the divided difference we have
Az’+1,...,z’+k71,j = Aj,z'+1,...,i+k71

so our second term vanishes from our equation. Now looking at the third term we recognize the definition
of the divided difference, that is:

A Dy ik — D k-1
byoryith =
tivk —t;

So the first and third terms cancel each other out, and we immediately see that the funny equation (22)
is true.

5.3.4 The Ordinary B-spline Basis Function

The unnormalized k’th order B-spline basis function M; j, also called the ordinary B-spline basis function,
is defined recursively. This is very similar to equation (1). We have for k£ > 1:

u—t; tivk — U
—— M1+ LMi+1,k—1 (23)

My =
" titk — &

titr — i

and for k = 1: L]
M, = r—— if t, <u< ti+1
B 0 otherwise

The oridinary B-spline basis function can be turned into the normalized B-spline basis function
Nig = (tivr —t:i) M (24)

This is all easily veryfied by straightforward computation and comparision with the definition of the
normalized B-spline basis function (see equation (1)).
What has all this to do with divided differences? If we pick a special known function® for g

() = 0 ift<u
W=\ t=—wh?t ift>u

With our choice of g the k’th divided difference corresponds to the ordinary k’th order B-spline basis
function, that is
Mg = A, i (8= U)k_1)>u (25)

3Notice we have defined g differently than in [4, 5].

5 CUBIC CURVE DECOMPOSITION 22

Where we have adopted the notation ((t —u)*~')_ to mean (¢t —u)*~" if ¢ > u and 0 otherwise. We
will now try to show this by induction* on k . First we observe that for k = 1 we have
Ai+1 ((t - U)0)>u - Az ((t - u)°)>u ((ti—i-l - U)O) su ((tz - U)0)>u

M;1 = A, t—u)° = =
i1 i,i+1 ((u))>u tig1 — t; tiy1 —

Now if u < t; then
(tiy1 —w)® —(ti—w)® 1-1

M;1 = = =0
tiv1 —t tit1 — ¢
Ift; <u< tit1 then
tiyr —u)? — 1- 1
]\L’,lz(z—"—1 v 0= 0 =
tiv1 — tiv1 =t tiv1—
And finally if u > ¢;41 then
0-0
Mijy=——-—=0
tit1 — t;

So we can conclude that equation (25) is true when k = 1. Now let us assume that equation (25) is true
for k =k — 1, and take a close look on the equation:

((t— u)k’1)>u =(t—u)((t- u)k’2)>u
We can think of this as the product of two functions, so let us try to use Leibniz’ formula (21) on it.

Biitr (€=), = A=) (=), (26)
+ A (t—w)Aiga, ik ((E—w)*72)
+ A it —w) Ay itk ((t _ u)kfz)

>u

+ Ay ikt —w) Ak ((t - U)kiz)

>u

Now by straightforward computation we have

Ait—u) = (t; —u)
A1t —u) = (tz'+1—u)—(t,~—u):1
7 tiy1 —
A ipe(t—u) = Airyiva(t —u) — A1t —w) _ 1-1 o
N titz =t tiyo — ;
A itk(t—u) = 0

Using these results equation (26) reduces to
Aipirr (=)") = = w) A (= w)72) L+ A (E -)72 (27)
By the definition of the k’th divided difference we have

Aita,.ivk — D, ik h—1

Aiivk =
beth titk — &

Multiplying by (t; — u) gives us

ti —u
(ti —w) A, itk = ﬁ (Ait1,itk = Diyitk—1)
K3 K3

4Note that if we use the definition of g in [4, 5] then the base case will always fail.

5 CUBIC CURVE DECOMPOSITION 23

Substituting this into equation (27) yields

AT (2 U)k_1)>u = ﬁ (Az’+1,...,i+k ((t— u)k_2)>u — Ak ((E— u)k_2)>u)

+ Agga, i (- U)k_2)>u
Now by induction this means that we have

(ti —u)
(tivr — i)

Rearranging the terms this equation can be rewritten into

My = (Mig1,p—1 — My g—1) + M1 g1

u —t; tz’+k—uM

My = 1,k—1 + i+1,k—1

titr — s tivk — b

But this is the definition of M; ;, which means that we have proven the correspondence of M; ; and the
k’th divided difference.

5.3.5 The Knot Insertion Algorithm

Imagine that we insert a new knot value, t*, into the knot vector, T, where
tr S t* < tr—i—l

Then we get a new knot vector

e T
T= [...,tr,t*7t1-+1,...,tr+k,...]

Observe that
t; ifi<r
fi=Q tr ifi=r+1
tioy ifi>r+1

If we have a nonuniform B-spline, C'(u), defined on T then we want to find a new nonuniform B-spline,
C(u), defined on T, such that X
C(u) = C(u)

for all values of u. If we look at the definition of the nonuniform B-spline this means that we have to find
all P;’s such that

K

n
ZNi,kPi = N P;
=0 ;

+
[

s
Il
<

Where the hat-notation, means that the quantity is defined with respect to T'. Recall that N; 1 has
support on the knot values t;, ..., t;+x. This means that t* only affects the basis functions

Nr_pt1kye s Nrg
Since C(u) and C(u) should have the same shape we can conclude that

N = N; fi<r—k+1
YT Ny ifi>r+1

From which it follows that we must have

p_ P ii<r—k+1
TV Py ifi>r+1

5 CUBIC CURVE DECOMPOSITION 24

Now this leaves us with the problem of determining the Py’s such that

T r+1
> NixPi= > NiiP (28)
i=r—k+1 i=r—k+1

To solve this problem we will try to write N in terms of N. To accomplish this we will turn back to the
funny equation (22). Let us set t; = t* and rearrange the equation. Then we have

ik —) DG ik = (& —) A ipk—10 + (it —) Dsi1,. itk

Using equation (25) we get for all values of i =7 — k+ 1 to r.

(tivk —ti)Mig = (t" —t:)) M g + (tiyr — t*) Mig1x

Let us convert the M-terms into N-terms by using equation (24)

t*—t; . tigk —t° -
Nz’,k = = ZA Ni,k + = as = Ni+1,k
tivk — 1t titk+1 — tit1

Now we would like to shift notation from old knot values into new knot values, we can do this by observing
that for any value of ¢ =r — kK + 1 to r we have

ti=t; and tiyp = tippp

So we end up with

t—t o fivkrr —t* o
N+ = —Nit1,k

Nik = %
titk+1 — it

tirr — 1

Now let us try to use this to rewrite the terms in the summation of C(u), that is

r % ~ ~

,
= fiers —t* o
Z N; P = Z (71Ni,k+LNi+l,k>Pi

i=r—k+1 imr—kq1 Ntk i bitktr = it

Now let us write out the summation

. t* bkl o trpo —t°
Z NipPi = 7 z Nr—krp + 77— Nr—pi2k | Propa
i=r—k+1 trp1 —tr—k41 tryo —tr_ki2
t —tr k2 o tros —t*
<7A = Ny pqop+ 5 Nr_ 3% | Propyo
trya — tr—ky2 r+3 — br—k+3

~

t* —t, brphgpr — 5 -
+ ﬁNr,k + ﬁNrﬁkl,k Pr
tr+k —tr tr+k+1 - tr+1

Recall that t* = ¢,,1, with this knowledge we immediately see that some of the fractions in the summation
become 1.

. .
. frgn —t*
Z NiwP; = (Nr—k+1,k + 5 Nr_pyok | Prokt1
Plier try2 — tr—pt2
t* — b g trps —t*
(%Nr—ﬂz,k +————— N3k | Prokt2
try2 — tr—kt2 tr43 — tr—ky3

P S
+ fNT,k'{'NT-l-l,k P'r'
tr+k_tr

5 CUBIC CURVE DECOMPOSITION 25

Now let us rewrite once more to collect terms of equal N

r
Z NiwP; = Ne_ppiplPrps1
i=r—k+1
S Er+2 —t* t* — f’r‘—k+2
+ Nr_ki2,k (%Pr—k-i-l + P k42
tr+2 - t’r'—k+2 t1'+2 - tr—k+2

o (rpp —t* t —1t
+ Nr,k (WiAPT_l + %Pr)
tr+k —tr tr+k —tr

+ Nr—i—l,kpr

Observe that we now have a summation over Nj just like we wanted in equation (28) All we need now is
to make things a little more nice looking. We do this by first expressing the fractions in terms of T' and
not T

,
Z NiwPi = Nrokp1,ePr k1
i=r—k+1
o t -t t* — bk
+ Nr—kt2,k (LPTIG—FI + 7THPTI€+2>
tr+1 - tr7k+2 tr+1 - tr7k+2
o trik—1 —t* t*—1t
+ N (e A - PT)
tr+k—1 —tr tr—i—k—l —tr
+ Nr—i—l,kPr
Finally we will introduce the notation
t* —t;
= —
bitk—1 — 1t

From which we observe that .
(1—a;) = titg—1—t
;)= 2E== -
titk—1 — &
With the new notation at hand we have

T
E NiyP; = Ny ppipProkpr
i=r—k+1

+ Ny—giok (1= @rpg2) Progg1 + Q2 Pr_pa)

+ N’r‘,k ((]— - ar) P_1+ a’rP’r)
+ Nr—i-l,kpr

From which we conclude that the solution to equation (28) is

A P; ifi=r—k+1
P={ (1-a)Pioa+oiP ifr—k+2<i<r
P, ifi=r+1

Putting it all together we can now state the knot insertion algorithm. We have

n+1

+

>

s
Il
<

6 ACCUMULATED ARC LENGTH TABLE 26

with A
P=(1-a)P1+aP
Where
1 fi<r—k+1
a; = tt*;t_t ifr—k+2<i<r
itk—1—t;
0 ifi>r+1

If we compare the algorithm with the de Boor algorithm (see Appendix A) then we will discover that the
newly computed control points correspond to the the de Boor points P}, P}_4,..., P .

6 Accumulated Arc Length Table

In the previous section we explained how the spline could be decomposed into a sequence of bezier curves.
Sometimes we are interrested in quickly finding the bezier curve segment which corresponds to a given
arc length value along the spline C'(u). For instance if we do spline driven animation.
Stated mathematically we are given an arc length value s and we are now looking for the bezier curve
segment B;, such that
S(ti) <5 < S(tit1)

One way to quickly determine the curve segment is by using an accumulated arc length table. After
having found the decomposition of the spline into bezier curve segments, By,...,B,_1, this table is
easily constructed by computing the total arc length of each bezier curve segment Sp, and letting entry ¢
store the value E;;}) SB,. We can now perform a linear search through the table to find the segment we
are looking for, or even better we can do a binary search. The following pseudo code shows how a linear
search can be done.

Algorithm lookupSegment (s)
int i=0;
doq

i++;

}while(ArcLengthTable[i]<s);
i--3
return i;

End Algorithm

This sort of strategy is also known under the name accumulated chord length and it comes in different
flavors, but the basic idea still remains the same. For more details about the other “flavors” see [2].

7 The Regular Cubic Nonuniform B-spline

In this section we will look at a subclass of the B-splines, which is known as regular B-splines. A regular
B-spline is defined by having nonzero first order derivatives everywhere. Regular B-splines are usefull for
describing a physical meaningfull motion. That is the center of mass trajectory of a real world object (see
for instance [8]).

In this section we will formulate different conditions on how one should define a B-spline such that it
would be a regular B-spline. We will only consider cubic B-splines.

7 THE REGULAR CUBIC NONUNIFORM B-SPLINE 27

7.1 First Order Derivatives at Knot Values

Let us derive an equation for the derivative at the knot value ¢;

C'(t:) = NigaPis+Niy4Pia+ N y,Pi1+N,Pi

3 3
= —— N; 33— ——N;_ P
(ti L, 3,3 fors —fia 2,3) i—3 T

3 3
———N; 93— ——F—N;_ P s+
(ti+1 —ti_2 23 tivs —ti—1 1’3) ?

3 3
—— N; 13— ——N;3 | P;_
(ti+2 . i—1,3 P— 1,3) i—1 T

3 3
2 Nig—— Nins) P
(ti+3 —t; “e tiva — i1 z+1,3) !

Recall that N;_3 3 = 0 and N;;1,3 = 0 since we are looking at the ¢’th knot value of a third order B-spline.
Using this knowledge we can rewrite our equation into the following sum of differences

3N;_
C'(t:;) = ﬁ (Pi—2 — Pi-3) +
1 11—
3N;_
et T (Pi_1 — Pi_s) +
tiva —ti1
3N; 3
ﬁ (P; — Pi_1)
i+3 — i

Let us evaluate the basis functions by using de Cox’s definition (see equation (1)), we start by looking at
Nis.

u—ti . < tiilfti e
tiya—t; 02 P
Ve N g Nt
Nis < y s
tits—u a7 et
Trps—tigs LVi+1,2

titz—u .
N tiys—tita Nit2,1

Recall that only IV;; is nonzero for u = ¢;. From this we see that IV; 3 is always zero. Now let us look at
Ni_13

u—ti_1
\/ ti,ti_INz’—l,l
u—ti—1
tit1—ti-1 Ni_l’z .
i+1=U AT
\/ ,\ tit1i—ts Nz,l
Ni_13
’ u—t; A
N : 4 tiv1—ti Ni
i+2=U £
tipa—t; 62
tiyo—u
N tivo—tit1 Nit11
Setting u = t; we see that
ti —ti—1
N 1o=—2 "2 >
i—1,3 sl
tit1 — ti—1

Finally we only have to evaluate N;_s 3

7 THE REGULAR CUBIC NONUNIFORM B-SPLINE 28

. ' NG g
timti_p™ 1722
e N t,'tit_i’lil Ni—1,1
N; 23 .
)\ tit1—u N \/ Zﬁti:ll Ni_l’l
Tog1fig1Vi-1,2 .
N mNi,l
Again we have u = t;, and from this we conclude that
Ni_gs = iy — b >0
tit1 — ti—1

Substituting the basis functions we just found into our equation for the first order derivative we obtain

3 tiy1 — b ti— ti
C'(t;) = (B (P —Pig)
tiv1 —tic1 \fig1 — ti—2 tiva —ti—1

(Pim1 — Pz'z))

If we wanted to make C’(¢;) equal to zero how could we then go about this? From our equation we can by
straightforward inspection derive the following complete list of conditions, which will make C’(¢;) equal
to zero

e P11 =P_y,=PF,_3
e P y=PF sandty =t

° Pi72 = Pi,3 and t; =11

tiv1 =1 =ti1

The final condition is a bit more difficult to derive

tivr —ti ti— ti
_vitl T Y (Pi_y— Pi_3)+ b bl
tiv1 —ti—2 tiyo —ti—1

0= (Pi1— P 3)

From which we get

(tig1 — t;) (tig2 — tiz1)
— P_s—P;_3)=(P;_1 — P;_
(ti-i—l — tz’—2) (ti — tz’—l) (1—2 i 3) (i—1 [3 2)

This tells us that the three succeding control points P;_3,P;_2 and P;_; all have to lie on the same
line and the magnitude of (P;_s — P;_3) must be a scalar multiple of the magnitude of (P;_; — P;_»).

With all this theory to our disposal we surely know how to avoid that C'(¢;) ever becomes zero for any
knotvalue. C'(¢;) is always nonzero for any knotvalue ¢; if the following three criteria is fulfilled.

1. No knotvalue has multiplicity greather than one.
2. All control points are unige.
3. We never have three (or more) succeding control points lying on the same line.

Note that if we put this theory to practical use then it is slightly more restrictive than it need be, that
is it does exclude some splines having nonzero first order derivatives.

7 THE REGULAR CUBIC NONUNIFORM B-SPLINE 29

7.2 First Order Derivatives between Knot Values

By now we have complete knowledge about how we can control C'(u) at any knotvalue, ¢;, but what
happens between the knotvalues? That is how do we ensure that

C'(u) #0
For an u-value inbeteween two knotvalues? That is
ti <u<tip
Let us start writting up the equation for C'(u) again
3N;_23

C'(t:) = m (Pi—2 — Pi-3) +
i i—
N;_
SNicls p o _p) 4
tiy2 —ti1
3N;
ag, =Py
i+3 — b

And like previously we will now evaluate the basis functions.

N; 23 = (ti41 —u)”
’ (tig1 —ti) (tig1 — ti1)
N s (tit1 —u) (u—tiz1) (u—t;) (tir2 —u)
’ (tir —ts) (Gipr —tim1) (fip1 —) (Bi2 — i)
(u—t:)
N;3

(tix1 — ti) (tiga — t;)
From our knowledge of the knot vector
tic1 <ty <u<tipr <tigo

We can conclude that N;3,IV;_1,3 and N;_» 3 are always positive and never zero. So our equation for the
first order derivative reduces to the equation.

C'(t;) = a(Pi—2—Pi3)+
b(Pi—1 — Pi—2) +
C (Pz - Pi—l)
Where
3(tix1 —u)’
a = >0
(tiv1 —ti—2) (tip1 — ti) (tiy1 — tiz1)
b = 3 ((tiy1 —u) (u —ti_1) (u —t;) (fiy2 —u)) 50
(tig2 —tic1) \(big1 — ti) (tip1 —tic1) (tipr — i) (Bigo — t3)
2
c = 3(u=t) >0

(tivs — i) (tivr — i) (tiva — i)
All we have left to do is to solve the linear system
ali_s +bA;_1+cA; =0

Where A; = P; — P;_; and since we allready have decided that none of the control points coincide we
know that all A; are nonzero. In other words we can only find a solution if the A;’s are lineary dependent.
In three dimensions and higher it is quite easy to come up with a condition, which always ensure that
C'(u) is nonzero, simply make sure that no four succeding control points lie in the same plane. However
in two or one dimensions it is unavoidable to have linear dependent A’s, and the problem still persist in
three dimensional space (or higher) if one wants the spline (or a subpart of it) to lie in a plane. So let us
try to handle the linear dependence.

7 THE REGULAR CUBIC NONUNIFORM B-SPLINE 30

7.2.1 Two Linear Dependent A’s

Recall that each a,b and c¢ is a function of u, actually they are all second order polynomials. So assuming
we have two lineary independent A’s to our disposal then we have three posibilities.

sA;+tA1 = A
vAi2 +wh; = Ay
zAi1 +yAie = Ay

for some nonzero scalar values s,t,v,w,x and y. Now let us look closely at the first posibility.

a(u) (sA; +tA;—1) +b(u)Aj—1 + c(w)A; = 0
Aj_o
(a(u)s + c(u))A; + (a(u)t + b(u))Ai—

Since A; and A; 1 are lineary independent and different from zero, this can only occur if

0

a(u)s+c(u) = 0

a(u)t+bu) = 0
Similary the other two possibilites give rise to

b(uw)v +a(u) =

b(u)w + c(u) =
and

c(wz+blu) = 0

clwy+a(u) = 0

In other words our problem has been reduced to determine if two parabola intersect and if they do then
to determine the u-values where they intersect.

7.2.2 Three Linear Dependent A’s
Following our derivation from previous section we have
a(u)zA; + b(u)yA; + c(u)zA; =0
For some nonzero scalar values z,y and z (all nonzero). All this boils down to a single equation.
a(w)z + b(u)y + c(u)z =0 (29)

By now we are tempted to repeat our earlier idea and look at the linear dependency of the three polyno-
mials a(u),b(u) and c(u). If they all are linear independent then no solution exist and we are guaranteed
that C'(u) is always nonzero. If on the other hand we have some polynomials that are linear dependent
then we are once again left with determining if and where two parabola intersect. To see this imagine we
have

a(u) = vb(u) + we(u)

Then equation (29) becomes

a(u)z +b(u)y +c(u)z = 0
(vb(u) + we(u))z + b(u)y + c(u)z = 0
(vz + y)b(u) + (wz + 2)c(u) = 0
(vz +y) _
(w;c +2) blu) +e(u) = 0

Just like we have seen previously.

8 CONCLUSION 31

7.2.3 Conclusion on Linear Dependency

We can conclude that we can only have C'(u) = 0 between t; and ¢;11 when two second order polynomials
in u have an intersection in the interval [t;..t;+1]. In other words the first derivative can only vanish at
isolated values of u, i.e. C'(u) = 0 between knot values can only occur at cusps.

8 Conclusion

In this paper we have presented the theory of open nonuniform B-splines. All the theory we have pre-
sented are selfcontained except for the Leibniz’s formula. We have derived easily understandable c-style
pseudocode for efficient implementation of open nonuniform B-splines.

Besides having presented the basic theory we have looked into some more advanced topics, which is
frequently used when working in 3D, global interpolation, and curve decomposition.

Finally, we have treated regular B-splines in great detail and presented a set of “verification” rules for
determining whetever a given open nonunifrom B-spline is regular or not. We currently speculate that
these rules also could be used to construct an algorithm for interpolating a set of break points with a
regular open nonuniform B-spline, but we leave this as a future research topic.

References

[1] L. Piegl and W. Tiller: The NURBS Book, Springer-Verlag Berlin Heidelberg New York. 1995.
[2] A. Watt and M. Watt: Advanced Animation and Rendering Techniques, Theory and Practice, Addison-Wesley 1992.

[3] J. Hoschek and D. Lasser: Fundamentals of Computer Aided Geometric Design, English translation 1993 by A K
Peters, Ltd.

[4] Carl de Boor: A Practical Guide to Splines, Springer-Verlag, Applied Mathematical Sciences, vol. 27, 1978.
[5] Wolfgang Boehm: Inserting new knots into B-spline curves, Computer Aided Design 12 (1980) 199-201.

[6] Gerald Farin: Curves and Surfaces for Computer Aided Geometric Design. A Practical Guide, Third Edition, Aca-
demic Press, INC., Computer Science and Scientific Computing, 1993.

[7] William H. Press, Saul A. Teukolsky, William T. Vetterling and Brian P.Flannery: Numerical Recipes in C: The Art
of Scientific Computing, Second Edition, Cambridge University Press, 1999.

[8] Knud Henriksen og Kenny Erleben: Scripted Bodies and Spline Driven Motion, Technical Report 02/18, Department
of Computer Science University of Copenhagen, 2002.

A The de Boor Algorithm

In this appendix we will state the the de Boor algorithm and prove it. The de Boor algorithm can be
stated as follows:

n+j
C(u)=>_ Niy P/ for 0<j<k-1 (30)

i=0

Where ' ' '
P/ =(1=-a;;)P/ +ai;PI70 for j>0
and iy
ay = amd P'=P
i+k—j 1

The points Pz-j are called the de Boor points. Now we will prove de Boors algorithm. First let us write up
the definition of a nonunform B-spline.

C(u) = i Ny Py
i=0

B REPEATED KNOT INSERTION 32
If we now apply de Cox’s definition for NN;; then we get

OB e

i=0

k1P+Z bivk — Niy1 k1B

z+k l_t i—0 z+k_tz+1

This looks a bit nasty, but by applying a little mathematical trick of shifting the index of the second term
by i =i —1 we get

n n+1

Zt zk1P+Zz+k1 Nik—1Pi—1

i—0 i+k— 1—t le'k 1—t
Finally if we define P_; = 0 and P,; = 0 then we are allowed to rewrite the two summations into a

single summation
n+1
Pi(u—t;)+ Pi1 (tigr—1 —u)
Cu) = N; -
(u) ; s =1 k-1

Again we apply a little mathematical trick of adding and subtracting ¢; from the second term in the
denominator. That is

n+1
P;(u—t; Py (tjgp—1 —t; +t; —
C(U) _ Z z(u z)+ zl(z—i—kl i+t U)Nz'kl
= titk—1 — b
1

_ Ti P; (u - t@') + P;_4 (ti+k—1 —t; — (u — t,))N -
i=0 tivk—1 — b v
n+1

= Y (Paj+Pioi (1-a})) Nig—
=0

Where o} is defined as in the definition of the de Boor Algorithm. The final equation is derived by
introducing the notation
P! =(1-0a})P_i +alP;

(2

So we get
n+1

U) = Z PilNi,k,1
=0

From all this we can conclude that we have proven de Boors algorithm in the case where j = 1. It is not
hard to see that if we apply the same index shifting and definitions recursively we will end up with the
de Boors algorithm in the general j’th case.

B Repeated Knot Insertion

If our spline, C(U), do not have any sequences of identical control points or knot values then the local
bezier segement B;(u) corresponding to the segment ¢; to #;+1 will have geometry vectors, Go,G1,G2 and
('3, which are unige and distinct. This postulate follows rather easily from direct computation.

Let us assume that we have a multiplicity of & = 4 for all knot values to the left of ¢, and that all
knot values to the right of ¢, and ¢, itself have a multiplicity of 1. Now imagine we have

tr S t* < tr—i—l

This means that for a cubic spline (i.e. K = 4) we have N;_3 4,..., Ny 4 # 0. From this we also know that
it is the control points P, 3,P. 5,P, 1 and P, which have to be “recomputed” in the new spline. The
new de Boor points are generated as in the tableu below

B REPEATED KNOT INSERTION

33

P s
¢
(1—07«,2)
¢
P, - Qr_s - P!,
¢
(l_ar—l)
¢
P, - ar_1 - P,
¢
1-a;)
e
P o ar - P!
Where
tr —
Ar_9 = 7(7‘ T2) >0
(tr+1 — tr—2)
tr —tph_
Qr_1 — (r T 1) >0
(tr+2_tr71)
t, — 1
ar 7(T r) =0
(tT+3_tr)
Now we can construct the new control points P.
rR P P .. P_3|P_, P, P! P, Py P,
P P P, .. P3| P, P., P.,| P. Py P,
r P P ... P3|FP> P P |FPiu P Pyt
And the new knot vector 7.
to t1 ... tr t* tre1 ... tnt+k
to 1 ... tr | tr | trp1 o tnsk
fo t1 .t | Era1 | Era2 o bkt

We now have multiplicity of 2 for the knot value t,, let us try to insert ¢t* = ¢,. once more. This time we

will discover that
trp1 <t <trgo

From which we conclude that it is the control points PT_z, Pr_l, Pr and PTH, which have to be “recom-

puted” in the new spline.

P,
pY
(l—ar_l)
. N
P, - ar_1 - P,
pY
(l_ar)
. S
P ar - P!
pY
(l_ar+1)
. N
Py = Gr+1 - Pl

B REPEATED KNOT INSERTION 34

Where
tr —tp tr —tr
ar1 = E T ’I'A l) — T r—1 >0
(tr+2 - trfl) try1 —tr—1
0 - A(tT—tATA) _ b=t _
(tr+3 - tr) tr+2 - tr
Qrp1 = (tr - f’r—i—l) — tr - tr =0

(£r+4 - £r+1) tri2 —tr a

With this information we can write up the new control points P

P ... By Py |P, P PL | Py ... Pun
P ... Py P,|P_, P P°| P .. P
Py P.s P ,|P, P, P, P. ... P,
PO Pr73 Pr72 Prfl Pr Pr+1 Pr+2 .- Pn+2
And the new knot vector T'

to h 2 B T

to t1 ... tr tr | tr | trg1 --r bngk

to 11 tr trg1 | trao | trgs oo. tngrde

We know have a multiplicity of 3 for the knot value %,, let us see what happens upon the last knot
insertion. First of all we see that we have.

'Er+2 S t* < 'Er+3

From which we know that we have to recompute the following control points.

Py
¢
(1-a,)
. N
P a - P!
¢
(1 - ar+1)
i N
Py = ar41 - Pl
¢
(1—=ary2)
. N
Pl - Ory2 - Pl
Where
tr — 1 t, —t
ar — S T T,.,) — T T — 0
(tr+3 - tr) tr—i—l - tr
t, — 1, tr —t
Qrg1 — ~(T r~+1) — T T =0
(tr+4 - tr+1) try2 —tr
t, — 1, tr —t
Qria — ~(T r+2) — T T 0

(tr+5 - t~r+2) tr+3 - tr B

Finally we write up the new control points p.

B REPEATED KNOT INSERTION 35

Py B3 Py P4 JBTI 13%4-1 1:)r1+2 Prya .. Paypo
P ... P_3 P, P' | |P_; P, P P, ... P,
PR .. P_ P, P _,|P_, P, P_ P, ... P,
po --- Pr-3 Pr-2 Pr-1 Pr Pr+1 Pr+2 | Pr+3 oo+ Pni3
And the new knot vector 7.

o oo B B g | £ | Tois e Fnpreo

to 1, t, tr | tret o otk

T .- Tr T4l Tr42 | Tr43 | Tr+4 -+ Tp+k+3

Now let us examine our results a little closer. We have now discovered that only three new control points
is actually computed: P!_,, P} ; and P}_;, which are all distinct.

Notice that 13’,,1_1 = P2 ,. This means the new control points actually can be computed directly by
using the de Boor algorithm (see appendix A) on P._3,P._2 and P,_;.
PO .

r

T

hS

P, —» P,
h
_)

PY

T

P, - P2

