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Preface

An original goal of automated theorem proving was its application to mathemat-
ics, whether by proving established results, enhancing calculation techniques or
facilitating discovery of new results. There is still much scope for the use of
automated deduction to add to mathematics and we hope to explore these pos-
sibilities in this workshop.

Contributions which detail the employment of automated deduction tech-
niques in any area of mathematical research were encouraged. This includes
looking at the interaction between automated deduction programs and other
computational systems which have been developed over recent years to auto-
mate different areas of mathematical activity. Such systems include computer
algebra packages, tutoring programs, systems developed to help explore a math-
ematical theory, and those developed to help present and archive mathematical
theories.

The proceedings of the workshop therefore contain papers on a variety of dif-
ferent aspects of the application of automated reasoning in a mathematical con-
text. Cairns and Gow argue that the acceptance of deduction systems amongst
mathematicians could be enhanced if these systems were more designed to fur-
ther the actual goals of their human users. Chen, Kobayashi, Murao and Suzuki
present a formalisation of an algebraic proof method, induction on the num-
ber of sets, in Isabelle. Colton, McCasland, Bundy and Walsh discuss a role
of automated theory formation (which includes automated deduction) in the
production of mathematics exercises. Kerber and Pollet are concerned with the
representation of mathematical data, where the objects are enriched with some
of their mathematical properties, and which can therefore lead to more human-
oriented proofs. Similarly, Schwarzweller is concerned with the representation of
mathematical objects in knowledge bases. He presents a properties-based rep-
resentation for mathematical theorems and domains that facilitates checking
whether a general theorem holds in a particular domain.

Simon Colton and Volker Sorge
17th June 2002
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Automated Deduction Systems for Real
Mathematicians

Paul Cairns and Jeremy Gow

UCL Interaction Centre, University College London,
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Abstract. Automated deduction systems currently have a low uptake
(or even recognition) amongst mathematicians. This paper takes a hu-
man computer interaction perspective on the role of automated deduc-
tion in mathematics. We first dismiss the fallacy that making systems
easy to use will make them used by heuristically comparing Microsoft
Word and ETEX systems in mathematical authoring. Through consider-
ing the goals of mathematicians, we propose ways to develop automated
deduction systems that mathematicians actually want. There are clearly
considerable technological and even philosophical barriers but it is hoped
that these can be surmounted in time.

1 Introduction

Computer algebra systems have made considerable impact on the working prac-
tices of mathematicians, particularly applied mathematicians. Using systems
such as Mathematica, a mathematician can perform many symbolic manipula-
tions on complicated models and at the right moment convert these to numerical
results for a concrete problem. This has radically changed not only the working
practices of mathematicians but also those of physicists and engineers who no
longer need rely on expert mathematicians to help them with their problems.

Given the wide variety of mature automated deduction systems (ADS), it
would be hoped that at least one system might have already had a comparable
impact on the working practices of mathematicians. Yet, with one or two notable
exceptions [16], mathematicians have barely even heard of automated deduction
systems let alone used them. This is not that the ADS developers have not tried
to make such systems available to mathematicians: the UITP conference [2] was
expressly concerned with producing good user interfaces to theorem provers; the
proof transformation and presentation workshop has similar goals [21]; and this
workshop too is clearly hoping to make in-roads in this area. There is clearly
then some greater gap between mathematicians and ADS than can be explained
by difficult user interfaces.

In this paper, we take a human-computer interaction perspective on the role
of automated deduction in mathematics. Rather than considering ADS as the
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solutions to mathematicians’ problems, we consider what problems mathemati-
clans might currently have and whether ADS can help out. First, we discuss
why making systems easy to use does not make them fit for use by comparing
the easy to use word processor Microsoft Word with the document preparation
system IATEX [14]. Next, we take a high-level look at the needs of mathemati-
cians as individuals and as a community and see how ADS might meet those
needs. Finally, the paper proposes some ways forward to bring a user-oriented
perspective to the development of ADS for mathematicians.

2 Easy to use %A Useful

It is a common selling point of many software systems that they are easy to use.
This is all well and good but ease of use in itself does not constitute a useful
system. If the software is not useful in the sense of helping users to achieve their
goals then no amount of easy to use interfaces is going to make users want to use
the system. With mathematicians, this can be seen most clearly in the uptake
of IATEX above other easy to use systems such as Microsoft Word.

ITEX is a document preparation system, that is, it allows the user to type in
the content of the document and IXTEX will format it, typeset it and generally
make a good attempt to make it look good on the printed page. The user must
enter content made up of the words that the user wishes to convey together with
instructions for displaying symbolic equations and further instructions for the
usual typographical aids such as section headings, paragraphs, footnotes, lists,
references and the like. The content is then processed separately to produce a
printable version of the document.

This contrasts markedly with the WYSIWYG (“What You See Is What You
Get”) approach of most popular word processors. With these, the user types the
words and they appear on the screen as they would on the printed document
— content and presentation are inextricably linked. Toolbars and menu allow
the user to change the formatting of the document and those changes appear
immediately on the screen. This means the user never needs to stop entering
content in order to process the document to see what it looks like and thus their
work has a seamless flow from starting entering content to printing out the final
document.

In terms of ease of use, WYSIWYG systems, as epitomised by Microsoft
Word, are the most easy to use. The user starts the application and is immedi-
ately producing the document in its final form. IXTEX is far from easy to use:
the user must not only enter the content but must instruct the system on how
to present equations, what sort of document is being produced and what pre-
sentational features to include. None of these instructions are made available to
the user via the system as IWTEX is separate from any text editor that might
be used to prepare the documents. Novice users must type with the manual to
hand and even expert users consult the manual to achieve difficult or unusual
typesetting effects.
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At face value then mathematicians, like many other professionals, should
prefer using Word over IWTEX. But this is clearly not the case. Many journals
are produced exclusively in ATEX to the point that they even produce style
sheets so that the authors can achieve the journal style on their submissions
[24]. Publishing companies, such as Springer, produce their mathematical texts
entirely in BTEX. And the mathematical community produces most of its work
using IATEX to the point that in talks, when introducing a new symbol, the
speaker will sometimes give the IATEX code for the symbol so that the listeners
know what it is.

The reason for this apparent irrationality in an otherwise logical community
must be that whilst Word is easy to use it is not easy to do what mathematicians
want to do. For instance, consider the following anecdotal evidence.

Mathematicians commonly want to put equations into their text so, for ex-
ample, to include the following sort of a equation (taken from [6]) should be a
routine task.

c=U No.

fE2% new

In I¥TEX, this is done with the somewhat complicated instructions:

$C = \bigcup_{f\in 2"{\omega}} \bigcap _{n\in \omega}
\overline{U_{f|_{n}}$

Only an expert user or a novice user sitting with the manual would know
how to do this. In Word, though, it is enough to go to the menu Insert|Object
and select the equation editor. The user is then taken from the Word document
into the special editor and presented with a palette of buttons. The icons on
the buttons clearly correspond to different types of symbol that could be used
in equations and it is fairly easy to find the exact symbol that is required and
so build up the equation. However, already the WYSIWYG paradigm has been
broken, the user has been taken from the flow of producing a document to go to
a special new process for equations. Whereas, in IATEX, typing the equation was
done in the same way that other typesetting is set up — by typing instructions.
Even so, for the novice, the task was reasonably painless in Word and probably
a lot less difficult than IATEX.

However, the important point in this scenario is that this is what math-
ematicians commonly do. Very quickly, whichever system is being used, the
mathematician user is going to get used to entering equations and producing
certain symbols that they use frequently. Yet with Word, the only way to enter
equations is through the editor and the only way to produce symbols is through
the palette of buttons. There are no shortcuts to getting to, say, |J quickly. Ex-
pert users must go at the same pace as novices, violating a well-known usability
principle that there must be ways for experts to improve their performance [18].
And for every equation, the user must interrupt their current mode of use to
enter the special editor but, for mathematicians, entering equations should be
the normal mode of use. In WTEX, there is a single mode of use and the codes
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for symbols become quicker to recall with practice. As time goes by, expert users
will automatically speed up and come to write equations as rapidly as they write
ordinary sentences.

This is only one aspect of preparing mathematical documents and the anal-
ysis is only heuristic rather than empirically demonstrated. However, I’ TEX is
undoubtedly the most successful tool in this area. There may be many reasons
why this is so, including historical serendipity, but the lesson stands that ease
of use in itself will not persuade mathematicians to use a tool. With regards
to the role of ADS in mathematics, simply making ADS easier to use will not
necessarily change their current value to mathematicians nor will it suddenly
make mathematicians realise what they are missing out on. Either ADS must
offer something new that mathematicians really want or they must support what
mathematicians currently do with tangible benefits over the existing ways of do-
ing things. In both cases, this requires a deep understanding of the activities and
needs of mathematicians.

3 What do mathematicians want?

It is impossible to define what mathematicians want without extensive research
into a broad cross-section of the mathematical community. And even then, it
may be impossible to come up with general indications that do not exclude the
majority of mathematicians. However, there are some broad, high-level goals that
it is easy to assert that mathematicians really do want to achieve. Additionally,
it is worth making a distinction between what individuals want and what the
community as a whole wants.
As individuals, some simple goals of mathematicians are:

— Do (good) maths
— Publish results/achieve recognition
— Don’t feel stupid

Mathematicians by definition want to do maths. It is not even clear that they
want to do maths that would be recognised universally as good maths but at
the very least they want to do maths that is good for them. Also, at some point,
the majority of mathematicians want to receive recognition for their work. The
usual channel for this is the traditional academic route of papers in journals or
conferences but other approaches will do.

The third goal of not feeling stupid is one made emphatically by Cooper,
and it is not particular to mathematicians but to everyone [8]. None of us want
to look stupid and this is such a personal goal that it is almost never made
explicit. Yet it can greatly clarify and motivate a lot of human activity. For
mathematicians, not feeling stupid could mean producing correct proofs, or at
least not obviously wrong ones, having mastery of a discipline or even just being
able to ask interesting questions.

Notice that there is no high-level goal of mathematicians that they want to
learn about automated deduction or that they want to use ADS. In fact, giving
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mathematicians a complicated system that they find difficult to understand and
cannot see the benefit of will almost certainly make them feel stupid [8].
As a community, mathematicians also have high-level goals:

— Disseminate results
— Ensure the quality of published work
— Find existing results

These goals can be seen in the activity of most of the mathematical societies
[15,1]. They provide edited journals which ensure that good quality results are
disseminated. Also, the American Mathematical Society publishes the Mathe-
matical Reviews, synopses of every paper published in a mathematical journal
in paper, CD ROM and web-based versions. These are so that there is a single
resource for mathematicians to consult when they want to find existing mathe-
matics. Again, ADS do not feature explicitly.

To bring automated deduction into mathematics is going to require more
than just producing good ADS. Killer applications will be ones that meet at
least one goal of a significant number of mathematicians.

3.1 Automated deduction in education

We have deliberately avoided the issue of mathematics education. This is mainly
because it is not obviously a goal of individual mathematicians. However, it al-
most certainly is a goal of a large group of mathematicians or even the mathe-
maticial community. Melis has has some success in using proof planning methods
to teach mathematicians generic proving skills [17]. Once the educational value
of ADS has been recognised, it may be that mathematicians will be more gen-
erally open to ADS and their goals might begin to include specific aspects of
ADS.

4 Ways Forward

The two sets of goals outlined above are very general. It may be that in analysing
these goals in more depth it will become apparent how ADS could fit in.

In addressing the mathematicians’ goal to do mathematics, it is not clear
how ADS could best offer support. This is mostly because there is no real un-
derstanding of where mathematicians could use support and whether ADS are
the right tools to provide it. We are about to start a project to investigate
how computer-based tools might support mathematicians. The first step is to
examine thoroughly what it is that mathematicians actually do when they do
maths. The investigation will not only interview and observe mathematicians
about their work but also look at the products of mathematical work such as
text books, journals, talks and classes to understand how mathematicians com-
municate their ideas to each other. Also, the project will look at what sorts of
interactions might support mathematicians. For example, would a tool that helps
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mathematicians correct proofs as they work be useful? Currently with ADS we
seem to be a long way from this goal however it would be easy to simulate such
a system using a “Wizard of Oz” type set up [20]. Users may think that they are
interacting with a piece of software where in reality they are interacting with a
human across a network in a constrained manner. Simply performing this simu-
lation will offer valuable insights into whether such software would be useful or
degenerate into the merely irritating as with the Microsoft Word “Paper Clip”.
Additionaly, such simulations could suggest other ways in which ADS could be
used that have not been fully explored.

As well as, going to the target users, we can consider psychological models of
how people reason. There are some well-established models with good empirical
evidence [12,22]. These models are able to specify the kinds of mistake that
people make generally when performing reasoning tasks. This could add to the
user experience if, when working with software, the system not only affirmed
correct proofs but identified and corrected common mistakes.

And there could be other auxiliary systems which would make a proof sup-
port tool more attractive such as support for finding particular results. These
functions not traditionally considered an important part of automated deduc-
tion but could feasibly complement it well when integrated as part of a general
support tool. Indeed, once thinking along these lines, it may be possible to come
up with a myriad different tools that mathematicians might find useful. Which is
why resorting back to an empirical knowledge of what mathematicians actually
need is essential.

Within computer science, there is a growing recognition that mathematics is
a burgeoning discipline with no real standards for communication and exploita-
tion of results. This has lead to the area of mathematical knowledge management
that aims to investigate ways in which mathematics can be organised for better
retrieval [5]. This will require setting standards for the representation of mathe-
matics and applications that can convert the standard representations into forms
suitable for mathematicians to use. In addition, ensuring the quality of all of this
new mathematics is difficult. Here then is an ideal area in which ADS could offer
support — they could help mathematicians to check existing mathematics and
to ensure that conversions between different representations do not introduce
€rrors.

Though the issues of mathematicial knowledge management are not being
driven by mathematicians, they address two of the goals identified earlier, namely
that of disseminating results and achieving recognition for them. As such, math-
ematical knowledge management holds promise for developing new tools that
mathematicians will want to use.

Just as mathematicians goal is to do maths, the goal of a researcher in auto-
mated deduction is to advance knowledge of automated deduction. Our sort of
user investigation requires stepping back from the systems and becoming more
of an HCI researcher. Is there something more immediate that HCI can offer for
developers of ADS? We propose that Cooper’s notion of personas (persons) may
have potential. He advocates not designing a system for a generic user, in this
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case a generic mathematician, but rather to develop an idealised but realistic
mathematician persona. By targeting this persona, you are likely to produce a
system that this sort of mathematician will definitely want rather than a generic
system that no particular mathematician wants.

Persona could be developed based on only a few interviews with mathemati-
cians — Beyer and Holtzblatt [3] advocate that only fifteen users are sufficient
to identify the major user activities. The key thing is to keep the persona real-
istic (even idiosyncratic) so that the system is more likely to address real goals
of mathematicians rather than amorphous goals of an idealised user. Indeed, it
may be possible to include personal anecdotes or even characteristics of famous
mathematicians in the persona. User goals are then implicitly embodied and
whilst the resultant system may not suit all, or even the majority, of potential
users,it has a high chance of being exactly right for some users.

5 Barriers between Mathematicians and ADS

Promoting the role of automated deduction in mathematics is not without barri-
ers. A commonly occurring concern is that of formalisation. ADS naturally work
at a very formal level of logic with manipulations at a symbolic level. This is
undoubtedly a strength of ADS because it means that there can be a great deal
of confidence in a proof that can be checked (albeit not generated) by a sim-
ple mechanistic system. Mathematicians though work at a very informal level
which facilitates communication between humans but is very prone to errors. An
analysis of journal articles reveals numerous small errors and even some quite
substantial ones [11]. Similarly, standard textbooks suffer from mistakes [13], or
if not actual mistakes, such large leaps of logic that it is almost impossible to
reconstruct the original thinking [19].

To get humans and ADS to work together will requiring translating (and
possibly correcting) the informal proofs of humans into the formal language of
ADS and filling in the logical gaps. If this fails, the ADS will have to communicate
back a breakdown in logic that the user may not even be aware of as relevant.
There are some systems [26,9] that propose ways of making the translation to
formal proofs and others which offer ways of translating back [10,25]. But it
remains to be seen if they can be combined into a single system that can help a
user correct a proof as they write it.

Formalisation, as currently done by ADS, may not be rich enough to meet
the needs of mathematicians. From our own work in presenting mathematical
proofs, there is also the issue of the role of examples in formal mathematics [7].
Like many formalisations of mathematics, our Polya-Lamport framework divides
mathematical statements into definitions and theorems. However, examples do
not fall so simply into these categories. In some sense, examples can be irrel-
evant to the development of a theory — illustrative but simply instantiations
of existing results. In other situations, examples are crucial as providing stereo-
typical exemplars. They provide instances of theorems and motivations for new
definitions. And in themselves they need to be defined but often have things
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proven about them so do not fall naturally into either definition or theorem.
Dismissing them as irrelevant to theory completely overlooks their central role
to mathematicians.

The simple solution to the formal/informal mismatch would be to exhort
mathematicians to become more formal [4]. But this is not the goal of math-
ematicians so is unlikely to happen. It may be that by revealing some of the
benefits of mathematical knowledge management, mathematicians might decide
it is in their interest to become more formal (much as it is in their interest to
learn IATEX). But for the moment, any system which aims to bridge the gap be-
tween mathematicians and machines must make some attempt to bridge between
the formal and the informal.

A further issue with bringing computer-based support to mathematicians is
that of creativity. Mathematicians, like all researchers, are involved in a creative
process. Sometimes that process feels instantaneous, “a flash of inspiration,”
and no amount of structured support is going to be available in all such circum-
stances. However, a lot of creativity arises a result of sustained, intentional effort
and hence computers could feasibly be useful. Even in this case, a traditional
HCT view of developing software to support user tasks does not really apply —
there is no clear task involved in being creative, at least not one that HCI is
currently able to address.

Shneiderman has developed the Genex framework that describes how com-
puter systems might support creativity [23]. However, at the actual create step
of the framework, the particular systems that might promote innovation need
to be tailored for the type of creativity. It may be that ADS could play a useful
role here, say, supporting the “what if” possibilities around a proof or a defini-
tion. The Genex framework does not point to ways forward in this area so, once
again, it will be essential to rely on empirical investigations to find out what
really supports creating new mathematics.

Even allowing for the almost philosophical issues raised by bringing auto-
mated deduction into mainstream mathematics, there are more mundane prob-
lems such as: many systems are not easily ported to a new platform; there is
not a great deal of technical support for some of the systems; and there is no
standard way to communicate between systems. There is going to have to be
a lot of routine standardisation and development before automated deduction
systems are made available to ordinary mathematicians.

6 Conclusions

We have considered how making mathematicians use automated deduction sys-
tems is far more than just making the systems easier to use. ADS must support
mathematicians’ goals, be they personal or communal goals, if ADS are to have
a broad-based uptake in the mathematical community. Mathematical knowledge
management seems to be employing ADS in a goal-directed way and so has a
lot of promise. However, helping mathematicians to do mathematics requires a
deeper understanding of what mathematicians do than is currently available.
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Also, ADS may be more be appropriate support tools only as part of a larger
system that can identify mistakes or find existing results. This broader sort of
proof support can only be justified through a real understanding of what math-
ematicians would actually want from such a system.

7
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1 Introduction

This paper presents an application of inductive theorem proving in ideal the-
ory, appeared in the first steps of our effort for formalizing abstract ring theory.
Induction is one of the most important and useful strategies for mathemati-
cal proof, and widely used also in mechanical theorem proving [KMMO00,ACL)],
[Wal92,INK], [BvHHS91,vH89]. It is often used to prove equations in elementary
arithmetics. More advanced use is to prove that some fact holds for arbitrary
number of objects, usually a consecutive sequence of linearly ordered objects.
In the early stage of our on-going project, we faced a proposition of this kind,
and in investigating its appropriate formalization, we noticed that the statement
of the fact in terms of natural language implies the fact in meta-logic and the
inductive proof uses this implied fact. To prove some fact that holds for a set of
some objects, inductive hypothesis assumes that it holds for its arbitrary sub-
set. In this extended abstract, we describe this particular problem. We clarify
the subtle meaning of the statement in natural language and we present how to
formalize the fact and the proof. The formalization is done with Isabelle/Isar
[Wen], a generic theorem prover with higher-order logic.

Software systems for automated reasoning and for mathematical proof as-
sistant has been well developed to date, such as Coq [Coq], HOL [GM93], Is-
abelle/Tsar, Nuprl [Jac94], TPS [TPS], and has been being applied to practical
problems. They are used mainly to certify the correctness of behaviors of hard-
ware, software or algorithms. Mathematics itself also often be their target. There
are some softwares dedicated solely to mathematics, such as Geometry Expert
[CGZ96], Theorema [The]. Also, most of the existing software systems give def-
initions of basic mathematical concepts and structures, such as group, ring and

* Supported in part by Japan Society for the Promotion of Science, Grant-in-Aid for
Scientific Research (C), 14580365, 2002.
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so on, as part of library or simple sample problems, and TPTP [TPT] includes
many related problems. Most of those examples treat merely the properties of
concrete calculations and operations of domain elements, rather than those of
the concepts and the structures, namely mathematical theory itself. On the other
hand, there are a limited number of experiments on theories of abstract algebra.
Set theory has been extensively studied [PG96], [Far01] as well as group theory
has been [KP99], [Yu90]. In his PhD thesis work [Jac95], Paul Jackson explored,
with the plan of introducing rigor into computations performed in computer
algebra systems, computational abstract algebra required by the plan. State-of-
the-art in this direction will the implementation of Buchberger’s algorithm in
Coq by Laurent Thery [The01]. The MIZAR, project [Miz] has been developing
and maintaining a big archive of formal descriptions of mathematical theories
with computer-assisted formal proofs. Also in the Mizar library [RSTO01], for-
malization of abstract theory of rings and ideals can be found, which further
accomplished the formalization of Hilbert basis theorem.

It is our recognition that abstract ring theory has been being developed and
evolved in pure abstraction and will be easily adapted for formalization, and
that the techniques used for proof are rather limited and the applicable area of
every technique is almost distinct and therefore, the automation will not be very
difficult. Motivated by this recognition and inspired by the work by Chou et. al.
[CGZ96], we started a project to mechanize the theory of commutative rings.
The aim of our project is systematic formalization with automated mechanical
theorem proving of the ring theory, namely, transfer of the theory in a textbook to
a machine. The project is initiated by defining and describing the notions and the
facts in a textbook by Atiyah and Macdonald [AM69] using Isabelle/Isar. In this
initial attempt, we give step-by-step specification of proof manually for every fact
and describe how it should be proved, especailly in the basic part of the theory
for efficiency, and to invistigate how the whole theory is structured and ought
to be reorganized and to design appropriate schemes for future automation.

The target in this short paper is about the set theoretic property of an ideal
and an arbitrary number of prime ideals, as is given in the title. In the proof,
induction is applied to a set of ideals, and we notice that the hypothesis makes
assumptions not merely on the number of set elements but on a set of arbitrary
subsets of the set, which will attract us to developing a generic method for
formalization of the induction on the number of target objects. The main goal is
a concise formal description of the fact and a clean formalization of the inductive
proof and the techniques and tools used in our effort.

The next section describes our target mathematical fact and a inductive
proof. Preparing some basic mathematical notions in Sect. 3, we formalize the
fact and the proof in Sect. 4. In the formalization, we point out the fact implied in
the statement by natural language in Sect. 4.1 and for treating this, we introduce
a mathematical concept in Sect. 4.2, which is generic to the induction on the
number of objects.



Formalizing Induction on the Number of Sets 13
2 Proposition to Formalize and Prove

The main topic in this paper lies in the following basic mathematical fact. We
quote the statement of the fact and the proof from the textbook [AM69, p.8].

Proposition 1.11 1 (i) Let p1, ..., p, be prime ideals and let a be an ideal
contained in |J,.,, #;- Then a C p; for some i.
Proof. (i) is proved by induction on n in the form

agZp1<%i<n)=ag ] (1)

i<n

It is certainly true for n = 1. If n > 1 and the result is true for n — 1,
then for each ¢ there exists z; € a such that x; € p; whenver j # 4. If
for some i we have x; & p;, we are through. If not, then z; € p; for all 4.
Consider the element

n
y= E T1X2 **  Ti—1Ti41T342 " " T,
i=1

we havey € aand y € p; (0<i<n). Hence a Z J,.,, pi- m

Remarks. We rewrite the newly introduced element y as e,:
n
en, = E L1T2 """ Tij—1Li41L542 """ Ln,
=1

and instead of the above symmetric definition, we consider the inductive defini-
tion:
en =€n_1Tp +T1T2 - Tp_1.

Note here that e,_12z, represents such an element of a that is € p,, but & p; for
any i < n, while z125---z,_1 € ais € p, but € p; for any i < n. Especially,
en—1 is assumed ¢ p; for any ¢ < n, whose existence in a is certified by the
induction hypothesis. Assuming that e,_; & p,, directly leads to the conclusion.
In the other case that e,_1 € p,, the multiplication by z,, which guarantees
becoming € p,, without violating the assumed property of e,_1, is redundant.
Therefore, in this context, the only requirement is that for all ¢ < n, there exists
x; such that z; € p; but z; & p,.

3 Formalization of Basic Mathematical Concepts

This section describes the basic mathematical concepts required for formalizing
the fact described in the previous section, and explain how they can be formal-
ized. Their concrete formal descriptions in Isabelle/Isar are given in Appendix 5
and more details may be found in our progress report [CKMS02]. The concepts
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of our major concern introduced in this section are ideals, prime ideals, and a
method (function) to represent the product of indexed expressions.

An ideal T of a ring R (described later) is such a non-empty subgroup (closed
under the additive operation, described later) of R that contain all the elements
of R multiplied by an element of Z:

Ve RVyeZ (mulgzy) €.

The multiplication operation (denoted as mulp above) is defined in R as a
component of a ring. Commutative ring is defined as such an extension of (addi-
tive) group that incorporates commutative multiplication operation, as well as
a unit, termed one, of multiplication. A commutative ring R is represented by a
record with two components for those extensions added to a record of a group.
An (additive) group is a set (termed carrier) with addition operation, its inverse
operation (usually called negation) and a unit (termed zero), and is represented
as a record of those four components. Group is closed under addition and nega-
tion, and a subset of some set, usually a group, is called a subgroup of the set if
it is closed under these operations and consequently includes zero. Addition and
multiplication are defined to be commutative, associative, and further distribu-
tive in their combination as usual, and also the units are defined in conjunction
with these operations. Ring inherits the property of group, and is closed under
multiplication.

An ideal 7 is called prime if it never contains the product of non-members,
i.e., if mlg xy € 7 implies € Z or y € Z. Such an ideal is called a prime ideal.

To express such terms as z x5 ---x,, we usually use such a notation as
[T, z;. We prepare a similar function in Isabelle. Formally, as in Isabelle,
indexed variables are treated as a function of integer values of an index, and
represented by the function symbol, i.e., x;’s are represented by z. We define

nmulOg(n, f) as
n

nmulog(n, f) = [[ £),

i=1
where each f(7) is € R and the multiplication is performed over R. This function
will be formally defined by primitive recursion as

onep for n =0,

nmulOg(n, f) = {mul']z f(Suc n) nmulOx (n, f) for n > 0.

4 Formalizing the Proof: Induction on the Number of
Ideals
4.1 Overview — Problem and Resolution

Using the definitions of the previous section, we may translate our target propo-
sition into Isabelle/Isar as

[|Vi < n.PrimeIdealg (P i); Idealga; a C |J{..n::nat} P|]
= Fi <n.a C (Pi);
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where “{..n:: nat}” represents a set of natural numbers < n, “(Js P” does the
union of the sets (P z) for z € s, i.e., { y.Ix € s.y € (P z) }, and “P ¢” stands
for an expression with subscript ¢, p;. In the inductive proof (of the case of n
from n — 1) above, we have assumed the existence of z; for all ¢ < n such that
x; €0, z; € P;,and z; € p; for all j #4 and j < n:

Vi<n.(3z;.z; €akz; € (Pi)&Vi<n.j#i— z; € (Pj)) .

Literally, the inductive hypothesis when (n — 1) in the form (1) insists only that
there exists and element of a not included in any of py,...,9,_1:

JecaVi<n—1l.e¢gp;

and tells nothing about the relation with p,, or p,, itself. In contrast, the natural
language version of the proof above introduces and uses the assumption z; & p,
with no special assumption. What is the gap between the formalization and the
proof in English, or what is implied by the assumptions in natural language? In
the formalization process above, we have considered p,, a new comer to a fixed
set of ideals, p1, ..., Pn—1, and try to explore the formal proof. On the other hand,
what is required for an inductive hypothesis is the fact that the conclusion holds
for an aribtray choice of (n—1) ideals from py, ..., pn. The addition of p,, ought to
be regarded simply as an increment of the number of elements in the target set
of prime ideals, and never prompts us a special treatment for p,,. Although not
clearly stated in the proposition, the claim holds for an arbitrary set of prime
ideals, and this fact is substantial for completing the induction. Formal proof
requires clear indication of this fact, and formal description of the proposition
must include the specification(V) for it. The specification of p; in the form of
(P 1) supports further clarification in our effort for formalization. We regard P
as a map from an integer to an element of some ordered set of prime ideals (P:
N — {P i}, where N represents the set of natural numbers). The proposition
should state P, the set of p;’s, can be arbitrary. Now, the formal description of
the proposition (i) in the form (1) ought to be

AP.An.[|Vi < n.PrimeIdealr (P i); Vi <n.a € (P i); Idealgral]
= a ¢ J{..n:nat} P,

The next thing to consider is how to represent a choice of (n — 1) ideals from
p1, ..., Ppn. Here notice again that with respect to the two ordered sets of n and
of n — 1 elements, the element of their difference is of no significance, but we
regard them as two ordered sets happen to have equal elements. Our idea to
clarify this situation is the use of a function which establishes an elementwise
correspondence between the two ordered sets, more concretely, a function for
indices (subscripts) of elements. Let S, = {0y, 1<i<n}and S¥_, ={7, 1<
i <n —1} be ordered sets of n and of n — 1 elements respectively. We assume
that S, —S*_, = { o } and that there is a correspondence between the elements
as follows:

N for i < k,
' ) o1 fori> k.
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We define a function for subscripts as follows:

iskip(k,i) S if i < k then i else i + 1.

Then, the above correspondence can be rewritten simply as 7; = O iskip(k,i)-

A set of (n — 1) chosen elements from py, ..., p, can be represented by
{Piskipiy- 1Si<n}={pi1<i<n&i#k}.
The function form
iskip(k) = (M i.if i < k then i else i + 1)

may be used for representing their union/intersection as

U {..n::nat} (Po iskip(k)),
where f o g represents a function composition such that

fog= Az f(g(x))).

4.2 Generic Tools

With Isabelle, induction is done from n to n + 1 via applying induct_tac, and
n+ 1 is represented as Suc n, the successor of n. In the following, we denote Suc
n by n + 1 for simplicity. We prepare some generic tools required to complete
our inductive proof. Very basic one is the following order relation:

lemma Sucnelenotlt: [| k+1#i; i<k+1 |] = —(k<i);

This can be proved by simply applying rewrite rules, in a backward reasoning
style, as

1. (-k < i) = (i < k) (1inorder not_less from the Isabelle/HOL library),
2. (i<k)=(i<k+1) (less_Suc_eq_le [THEN sym]), and
3. (i<k)=(<k&i#k) (order_less_le).

We investigate the range of an index variable, often used for subscripts, sat-
isfying some condition. In the following, let C', C; and C: denote arbitrary
predicate conditions. Besides these, we may freely use various notations as x (%),
x i or x; to represent indexed variables, all of which are treated as functions in
Isabelle. Existence of a variable inside an indexed environment (within a formula
bound by some other quantifier) may be replaced by the existence of a generic
variable with index:

lemma foreachex exforall: Vi <m.Je.C(e,i) = Jx.Vi < n.C(z i,i);

The following fact will be obvious and can be proved by case distinction (i <
n+1)=(¢=n+1Vi<n) (defined as lesuc_iff):
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lemma range Suc: (Vi <n.C(i))&C(n+1))=(Vi<n+1.C());

In contrast with the inclusion of an additional Suc case above, we can prove the
case of elimination. The following will be clear from iskip’s definition.

lemma skipped_choice: Vi < n+1.Ci(f(i)) = Vi < n.C1(f(iskip(j,i)));

Here, j can be arbitrary. This corresponds to the premise of the inductive hy-
pothesis in our target proof. For the induction to proceed, the corresponding
conclusion must be deduced. Our idea is to use the conclusion of the above
lemma as a condition of modus ponens (as P of (P& P — Q) = @), instead
of Vi < n.C1(f(i)), another set of n elements. We prove a fact that holds for
sets of n elements inductively, by regarding the fact as holding for an arbitrary
set F,..., F},, and applying to a set f(iskip(j,1)), ..., f(iskip(j,n)).

lemma skipped_choice_mp:
[ Vi<n+1.C1(f(i); YF (Vi< n.Ci(F(i)) — Vi < n.Co(F(i))) 11
= Vj < n. (Vi <n.Cao(f(iskip(j,i))));

Actually used in our proof is the following extension, which adds some condition
for an element in some set A:

lemma Plemma skipped_choice_mp:
[l Vi<n+1.Ci(f());
VF. (Vi <n.Ci(F(i)) — 3z € A.Vi < n.Co(z, F(i))) 1]
= Vj <n.(3z € A.Vi < n.Cy(z, f(iskip(j,i))));

Next, we consider the cases when 2skip appears in the premise. The following
seems obvious from the definition of ¢skip, but is not in Isabelle.

lemma skipped_cond:
[l t<n; Vi<n.C(iskip(t,i)) 1] =Vji<n+1l.j#t— C@);

In the distinct case of j < t, we can use the premise; letting ¢ = j where
j < n deduced and the expansion of zskzp’s definition give the required result.
In another case when ¢ < j, we consider the case t < j because j # t is assumed
in the conclusion. Then, ¢t + 1 < j, which leads to 3k.j = k + 1 (rule Suc_le D)
and k < n. By Sucnelenotlt, =(t < k). Then expansion of #skip’s definition
when i = k in the premise gives C'(k + 1) = C(j). In our proof, this lemma is
used with some additional condition in conjunction with foreachex exforall:

lemma Plemma skipped_cond:
[I Vi <n.Je€ A.Vj <n.Cl(e,iskip(i,j)) 1]
= Jz.Vi<n.z(i) e A& (Vj<n+1.j#i— C(z(i),5));

4.3 Membership of Ideal Elements

Any ideal of a ring R is a subgroup of R, and therefore closed under additive
operation of R. This inheritance cannot be treated automatically, and to en-
courage automatic reasoning, we explicitly add the known fact AGroupR to the
premise (by frule).
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lemma iAddClose: [| IdealrZ; z€Z; ye€Z |] = z+gry €Z;

Group, say G, is closed under (additive) inverse operation, —gz € G for z € G,
and therefore, if both x and = +% y are included in a group, sois y = (—grx) +xr
(z +% y). This argument also holds for ideals (ideal inherits the properties of
group), and its contraposition gives

lemma iInclAddNeg:
[| IdealrZ; z€Z; y¢7I; y€carrier(R) |] = z+ry ¢ 7;

From the definition of ideal, it will be clear that the product of elements of a
ring R is a member of an ideal of R if at least one of them is a member of the
ideal:

lemma nmulOClosel: Idealprl —
(Vi <n.z; € carrier(R)) &3 <n.z; € L) — [[,,, i €Z;

Formal proof requires induction on n and case distinction of Zn11; [[;<,qq Ti =

(HK" ;U,) Zn+1 is obviously € 7 if x,41 € Z, and otherwise, at least one of z;,
i < n must be € I, which implies [[,.,, #; € Z by the induction hypothesis,
and leads to the required result. In contrast, the counterpart with respect to the
membership requires ideal’s primality:

lemma nmulOPmi: Primeldealg’Pd —
(Vi <n.z; € carrier(R)&z; €P) — [, s € B

This can be proved by induction more simply than the previous, because non-
membership of (H i<n x,) Zp+1 to a prime ideal requires both those of two fac-

tors, which are given directly by the induction hypothesis.
Actually used in our proof for the main goal are the combinations of the
above. A simple combination of nmul0CloselI and iAddClose gives

lemma Plemma_makeElm:

[l IdealrZ; Vi<n.z;€Z; e€Z |1 = e+ ]].c, zi €TL;

i<n

The expression of the sum corresponds to e,y1 introduced in the remarks of
Section 2. Required facts about the expression are as follows. A combination of
nmulOClosel and iInclAddNeg gives

lemma Plemma_ElmNotMem:
[| e € carrier(R); Vi < n.x; € carrier(R); IdealrpP; e & P;

i<n; z; €P 1] = e+[lic, 2 €%;
and that of nmulOPmi and iInclAddNeg gives

lemma Plemma_ElmNotMem1:
[l Vi <n.z; € carrier(R); Primeldealr®; e € P;

Vi<n.z; € |] ﬁe‘f‘nisnwi ¢ B;
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4.4 Formal Proof of the Proposition
Vn > 0. Idealra —

V. | (Vi < n.PrimeldealgP; & a Z P;) —a U B;

i<n

where P is a symbol used to designate a set of prime ideals, and considered as
amap P : N — {P;}, representing an actual prime ideal by JB;, a value of the
map.

The proposition itself is proved by induction on n (in Isabelle/Isar, apply
(induct_tac “n”)). If n = 0, trivial. Assuming that the formula in the big paren-
theses is true for n(> 0), we show that the correctness of the formula with n
being replaced by n + 1. The conclusion of the inner implication (—) will be
treated as

ad U‘,BZ = dreaVi<nzgP;

i<n
1. Assuming Idealga, its implied result when n, and, also the premise of

the inner implication when n + n + 1 with B; = p; (ice., Vi < n +
1.PrimeIdealgp; & a Z p;), we show the conclusion when n + n + 1:

[| Idealgra;
VP. (Vi < n.PrimeldealgP; & a Z P;) — Iz ca.Vi<n.z & P,);
Vi <n+ 1.Primeldealgp; & a Z p;) |]
= drcaVi<n+lzx&p;

2. Direct from the premise, there exists an element of a not included in any of
p; for i < m, and let e be such an element. If e ¢ p,, 11, then the conclusion
is straight, via the rule range_Suc above. So, hereafter, we assume e € p,, 11,
and add the following formulae to the premise:

eeaq;Vi<n.e&p;;e€ppyr

Notice that this e corresponds to z,41.
3. By applying Plemma_skipped_choice_mp with f(i) = p;,
C1(X) = Primeldealg X &a & X, F(i) = Py, and C2(X,Y) =X €Y, we
duduce
Vi<n.(Fze€eaVi<n.z¢g pisk’ip(j,i))‘

4. Further translation using Plemma_skipped_cond leads to the existence of
elements z; (or a map z : N = {z;}) such that
V]Sn(l"] Ea&Vz§n+1z¢g—>m] gpz),

which is to be added to the premise.
Here, we assume Vj < n + 1.z; € p;; otherwise the existence of z; being
& p; gives the conclusion.
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5. At this point, we have the following premise:

[| Idealgra;
VP. (Vi <n.PrimeldealgP; & a € P;) — Iz €a.Vi<n.z & P,);
Vi < n+ 1.PrimeIdealyrp; & a € p;;
eeaq;Vi<n.e € p;;e€ppii;
Vi<n.zjea&(Vi<n+1l.i#j— z; &p);
Vi<n+1l.z;ep;|]

This is sufficient for showing that e + []
Plemma makeElm:

j<n ¥ is a member of a by

[l Idealna;\ﬁgn.x,-ea;eeaﬂ:>e+H;c,-Ea;

i<n

and that it is not a member of any of p; for j <n + 1 by
Plemma ElmNotMem for j < n:

[| e € carrier(R); Vi < n.z; € carrier(R); Idealgp;;
edpji;j<niz;€p;ll=e+][lic, @i &9

where Idealgrp; is deduced from PrimeIdealrp; and the membership €
carrier(R) from the membership € a, and for j = n+1 by Plemma ElmNotMem1:

[| Vi < n.z; € carrier(R); PrimeIdealgpPpi1; € € Pri1;
Vi <n.z; & Pny1 |] — e+ Hign T & Pyt

Finally, the contraposition of the main result gives our desired fact:

lemmaProp_1_11_casei:
[l Vi <n.Primeldealgp;; Idealra; a C|J{..n::nat} P |]
= Ji <n.aCp;;

5 Concluding Remarks

We described a formal method of inductive proof to be applied to a set of ob-
jects. It is pointed out that hypothesis of the induction on the number of set
elements may assume that the fact to be proved holds for its arbitrary proper
subsets. With the application in this paper, we presented a formal method to
represent arbitrary subsets with n elements of a set with n + 1 elements. We
prepared a mapping function of element indices which assigns a new ordinal
number to each element in a subset. The method itself is generic enough to
be extended to any subsets of arbitrary number of elements. Furthermore, two
lemmas, skipped_choice mp and skipped cond, related with this function are
proved and give a general scheme of this type of inductive proof. While the for-
mer is quite simple and can be proved almost automatically, the latter is one of
the most complicated and required, in its proof, more than 20 steps of manual
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application of a rule and simplification. In our current implementation, all the
proof processes are controlled manually except the transformation of logical ex-
pressions and for the facts that can be proved by simplification or assumption.
All the lemmas described here and all the substeps in Sect. 4.4 required only 30
manual steps at most.

The topic described in this paper was the first major difficulty in our formal-
ization effort, which appeared in developing ideal thoery, one of the basis theories
in ring theory. The problem itself is irrelevant to the theory, and the complica-
tion is raised by the subtle statement in natural language of a logically-clear
fact in algebra. However, from the viewpoint of formalization, the fact implied
in natural language is not trivial and requires a treatment in higher-order logic.
Our idea for resolution is quite natural and attractive for its logical cleanness,
and is sufficiently generic. Our formalization effort is in progress, and it often
reveals a gap between the statement in natural language and a logical structure
of a mathematical fact. Other interesting topics, our treatments and techniques
used there are left for future publication.
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A Definition of Mathematical Concepts in Isabelle/Isar

group : record ’a groupSig =

carrier :: "’q set"
add :: "[’a, ’al = ’a"
inverse :: "’a = ’a"
zero :: "’ag"
constdefs AGroup :: "(’a, ’more) groupSig scheme => bool"

"AGroup G == addg € carrier(G) — carrier(@) — carrier(G)
& inverseg € carrier(G) — carrier(G) & zerog € carrier(G)
& (Vz € carrier(G).Vy € carrier(().Vz € carrier(G).
(addg (inverseg x) * = zerog) & (addg (zerog)r = x)
& (addgzry = addgyx)
& (addg (addg zy) 2 = addg z (addgy z)) "

subgroup :
constdefs
Subgroup :: "(’a, ’more) groupSig_scheme = ’a set = bool"
"Subgroup G H == H C carrier(G) & zerog € H
& (Ve € HVy € H.(addgzy € H) & (inversegxz € H) )"
ring : RingR == R is a ring.

record ’a ringSig = "’a groupSig" +
mul :: "[’a, ’al] — ’a"
one :: ’a

constdefs Ring :: "’a ringSig = bool"

"Ring R == AGroup R & (oneg) € carrier(R)
& (muly ) € carrier(R) — carrier(R) — carrier(R)
& (Vz € carrier(R).Vy € carrier(R).Vz € carrier(R).
(mulg (mulg 2y) z = mulg = (mulg y 2))
& (mulg (addg zy) 2z = addg (mulg  2) (mulg y 2))
& (mulg z (addgr yz) = addg (mulg zy) (mulg z 2))
& (mulg (oneg)z =z) & (mulg z (onegr) = x)
& (mlgzry =mulgyz) )"
tdeal : Idealgr A == A is an ideal of a ring R.
constdefs Ideal :: "’a ringSig = ’a set = bool"
"Ideal R I == RingR & Subgroupp I & I # {}
& (Vz € carrier(R).Vy € I.mulgzy € I)"
prime tdeal : PrimeIdealgp == p is a prime ideal of a ring R.
constdefs Primeldeal :: "’a ringSig = ’a set = bool"
"Primeldeal R I == Idealrl & I # carrier(R)
& (Vz € carrier(R).Vy € carrier(R).
(mulpzy€el) — (xelIVyel))"

product : nmulOg(f,n) == Hign fi, where the multiplication is performed over
a ring R.
consts nmul0 :: "[’a, (nat ringSig = ’a), nat] = ’a"
primrec nmul0 0: "nmulOg(f,0) = oneg™"

nmulO_suc: "nmulOg(f,n + 1) =mulg (f (n+ 1)) nmulOg(f,n)"
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Abstract. The HR program forms mathematical theories from as little
information as the axioms of a domain. The theories include concepts
with examples and definitions, conjectures, theorems and proofs. More-
over, HR uses third party mathematical software including automated
theorem provers and model generators. We suggest that a potential role
for theory formation systems such as HR is as an aid to mathematics
lecturers. We discuss an application of HR to the generation of a set of
group theory exercises. This forms part of a project using HR to make
discoveries in Zariski spaces, which is also detailed.

1 Introduction

At primary and secondary school levels, there are programs which generate ex-
ercise sheets automatically as an aid to mathematics teachers and students. In
these cases, the emphasis is on asking the student to perform computations. At
the university level, more emphasis is placed on using deduction in exercises.
Hence, there is much potential for automated reasoning and other tools to be
used in mathematics education, in particular for generating tutorial exercises.

We discuss here a project which couples a research mathematician with var-
ious pieces of mathematical software. In particular, the project aims to employ
the HR automated theory formation system [3] to produce novel results in the
domain of Zariski spaces [12]. This project, while still in its early stages, has
produced both some promising preliminary results and an insight into the us-
age of HR by a research mathematician. In §3 we discuss this project and the
preliminary results from it, and in §4 we explain the improvements to HR which
have been implemented in response to the user’s suggestions. These improve-
ments have enabled an application of HR not to a discovery task, but rather to
a tutoring task: the aiding of a mathematician in producing a set of exercises in
group theory. This application is discussed in §5.
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2 The HR Program

The HR program (named after mathematicians Hardy and Ramanujan) performs
automated theory formation in domains of pure mathematics such as number
theory, graph theory, and finite algebras, such as group theory and ring theory.
The initial information about a domain supplied to HR includes the axioms of the
domain and optionally some initial concepts (e.g., multiplication and addition
in number theory) and some objects of interest (e.g., some integers in number
theory, groups in group theory, etc.). The concepts are supplied with both a
definition and some examples (e.g., triples of integers related by multiplication).
In finite algebraic domains, HR can start with just the axioms of the theory, as
it extracts initial concepts from these, e.g., given the identity axiom in group
theory, HR extracts the concept of identity elements.

HR operates by performing a theory formation step that attempts to invent
a new concept from one (or two) old ones. Concept formation is facilitated
by a set of general production rules that generate both a definition and set
of examples for the new concept, from the definition and examples of the old
concept(s) respectively. The complexity of a concept is measured as the number
of production rule steps which were used to construct the concept. Similarly, the
applicability of a concept is measured as the proportion of objects of interest in
the theory for which the concept has a non-empty set of examples.

The production rules are described in detail in [3], [6] and [7]. In summary,
these rules perform the following constructions:

® Compose rule: uses conjunction to join the definitions of two previous concepts
® Disjunct rule: uses disjunction to join the definitions of two previous concepts
® Equals rule: imposes equality in a concept’s definition

® Exists rule: introduces existential quantification

® Forall rule: introduces universal quantification

® Match rule: equates variables in a concept’s definition

® Negate rule: negates predicates in a concept’s definition

® Size rule: counts subobjects

® Split rule: instantiates variables in a concept’s definition

Figure 1 portrays how HR constructs the concept of central elements in group
theory using the compose, exists and forall production rules.

A theory formation step will lead to either: (a) a concept that has no exam-
ples, (b) a concept that has exactly the same examples as a previous concept, or
(c) a concept that has non-trivial examples that differ from those of all previously
existing concepts. In the first case, there may be no examples for the concept
because of the lack of data given to HR, or it may be because the definition of
the concept is inconsistent with the axioms of the domain. Hence, HR makes a

conjecture that no examples of the concept exist. In the second case, HR makes
an if-and-only-if conjecture, stating that the definitions of the new concept and
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[a, b, ] :a*b=c [a b, ] : a*b=c

\:ompose/ compose

[a b, ] : a*b=c & b*a=c

exists

[a b] : exists c (a*b=c & b*a=c)

forall

[a] : all b (existsc (a*b=c & b*a=c))

Fig. 1. Construction of the concept of central elements in group theory

the previous one are equivalent. In the last case, the concept is simply added to
the theory.

When HR makes conjectures in finite algebraic domains, it can invoke the
Otter theorem prover [13] to attempt to prove the conjecture. If Otter fails, HR
invokes the MACE model generator [14] to attempt to find a counterexample.
If neither Otter nor MACE are successful, then the conjecture remains open.
In cases where Otter proves an equivalence theorem, HR breaks this into a set
of implication theorems, where a set of premise predicates imply a single goal
predicate. Furthermore, HR extracts prime implicates from each implication
theorem, i.e., it takes ever-larger subsets of the premises from the implication
theorem and sees whether Otter can prove that they imply the goal.

For instance, if it made the conjecture that

AANBAC < DANEAE,
then HR would extract implicates such as these:
AANBAC - D

DANEAF — A

etc. From the first of these, HR would attempt to extract prime implicates in
this order:
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A—-D, B-»D, C—-D
AANB—-D, ANC—-D, BANC - D
ANBAC =D

stopping when it found one that Otter could prove. For more details of how HR
makes conjectures, see [4].

3 The Zariski Spaces Project

Zariski Spaces were introduced in 1998 [12]. In order to understand these spaces,
one needs to first understand Zariski Topologies. In a broad sense, these topolo-
gies are rather like prime factorizations. For example, the Zariski topology asso-
ciated with the ring of integers consists of sets (called varieties) of prime ideals,
one set for each integer. In particular, the variety of the integer 12 would be the
set of ideals generated by 2 and by 3, respectively, since 2 and 3 are the prime
factors of 12. Note that since 2 and 3 both divide 12, then the ideal generated
by 2 and the ideal generated by 3 both contain the ideal generated by 12.

In the general case, let R be a commutative ring with unity, and let specR
denote the collection of prime ideals of R. Now for each (possibly empty) subset
A of R, let the variety of A be given by: V(A) = {P € specR : A C P}. It is
easily shown that the collection of all such varieties constitutes (the closed sets
of) a topology, called the Zariski Topology on R, which we denote by ((R). It
turns out that every topology is a semiring, if one takes the operations of addition
and multiplication to be set-theoretic intersection and union respectively. Now
let M be an R-module, and repeat the above process. That is to say, let specM
denote the collection of all prime submodules of M, and for each subset B of
M, let the variety of B be given by: V(B) = {P € specM : B C P}. Finally,
let (M) represent the collection of all varieties of subsets of M. Then one can
show that while (M) seldom forms a topology, it does form a semimodule over
the semiring ((R), where the operation in (M) is taken to be intersection, and
scalar multiplication is given by V(4)V (B) = V(RAB).

There are reasons to suppose that Zariski Spaces might turn out to be of
considerable importance in mathematics. For instance, Zariski Topologies and
the study of varieties have played an important role in the development of Alge-
braic Geometry, and in particular, the Hilbert Nullstellensatz, which is one of the
fundamental results in Algebraic Geometry. It is certainly possible that Zariski
Spaces could have a similar impact on some branch of mathematics. Further-
more, some preliminary results suggest a possible connection between a certain
concept in Zariski Spaces, called subtractive bases, and direct sum decomposi-
tions within a large class of modules. The search for direct sum decompositions
has been a major undertaking in mathematics for some time, and has so far
proven quite intractable, except in special cases. The study of semimodules in
general has already yielded many applications to computer science [10], and since
Zariski Spaces are first and foremost semimodules, it is possible that their study
will promote further advances in theoretical computer science.
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3.1 Proposed Discovery Methods

At present, HR is mostly autonomous, i.e., the user sets some parameters for
the search it will perform, then HR builds a theory and the user employs var-
ious tools to extract information about the theory. We propose to extend the
theory of theory formation upon which HR is based by enabling any of the
functionality of HR to be replaced on occasion by human intervention. That is,
we intend to make HR semi-automated by allowing the user to provide proofs
and counterexamples to conjectures HR makes and to specify related concepts
and conjectures to base the theory formation around. Alongside the develop-
ment of HR’s functionality, we also intend to develop the application to Zariski
spaces. Zariski spaces represent a higher level of complexity than the domains
in which HR has so far been applied, and the new application will require an
incremental approach whereby (i) HR is enabled to form theories about increas-
ingly complicated domains related to Zariski spaces (ii) testing is performed to
see if HR invents various concepts and conjectures required for it to proceed and
(iii) theory formation is centred around the important concepts and the results
analysed for any discoveries. The proposed route to Zariski spaces is via: semi-
groups, semirings and semimodules, followed by groups, rings and modules and
finally, using a cross domain approach, Zariski spaces.

It is unclear at the moment how HR will interact with the user and with
third party pieces of mathematical software on this project. It seems likely that
HR will be used for an initial exploration of each domain, to: (a) invent core
concepts (b) prove some fundamental theorems using a theorem prover (HR
has access to Otter, E, Spass and Bliksem through the MathWeb Software Bus
[9]), and (c) generate some examples of the concepts using a model generator
or computer algebra system (HR uses MACE and Maple, also possible through
MathWeb). Following the initial investigation, the user will both prune uninter-
esting concepts and specify which concepts should be emphasised in the next
theory formation session. The user will be more involved in that session, choos-
ing to prove theorems, provide counterexamples and direct the search where
appropriate.

3.2 Preliminary Results

Our approach is to employ HR in successively more complex domains, eventually
arriving at Zariski spaces. Along the way, we may find interesting results in the
less complex domains. A particularly interesting result which was previously un-
known to us occurred in the semigroup domain, which are algebras with a single
associative operation. HR produced the conjecture, which Otter then proved,
that: cxc=c & 3 d (cxd =b) — cxb=b. Paraphrased, this states that, given
an idempotent element ¢, then if any element b appears in any column in the “¢”
row of the Cayley table of the given semigroup, then that same element b must
also appear in the “c” row in its own column. Admittedly, this result appeared to
us at first glance to be untrue, but upon reflection, the proof was actually fairly
obvious. This result is of some interest to us, because Zariski Spaces are a rather
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complicated algebraic structure, but at their simplest level, they are a special
kind of semigroup. Moreover, every element in these spaces is an idempotent
element, and therefore, this theorem is applicable to every element.

4 Additions to HR Arising from the Project

Each new application of HR necessitates some additional functionality, and the
application to Zariski spaces is no exception. Firstly, we have implemented a
new production rule so that HR can check whether particular concepts exhibit
certain algebraic properties. Secondly, we have introduced a reaction mechanism
so that we can tailor HR’s search to react to a particular event, such as the
introduction of a concept with a particular property. Thirdly, we have enabled
HR to use Knuth-Bendix completion so that it can identify (and discard) a
range of conjectures which are uninteresting. These additions are described in
more detail below.

4.1 The Embed-Algebra Production Rule

All of HR’s conjectures discuss concepts which it has invented, and HR uses
only a small number of production rules to generate new concepts. Hence the
implementation of a new production rule represents a major addition to HR’s
functionality. Each production rule must:

® Determine the ways in which it can be used to produce new concepts from a
given set of old concepts, in terms of the parameterisations of the rule possible
for the old concept(s).

® Produce a complete set of examples for the new concept for each object of
interest (group, graph, integer, etc.) in the theory.

® Produce a definition for the concept which is consistent with the examples.

Drawing on work by Graham Steel [16] [17] into cross domain theory forma-
tion, we implemented the ‘embed- algebra’ production rule, which aims to find
algebraic structures embedded in old concepts. Any concept which is a predicate
of arity 4, where the first entry is an object of interest and the following three
entries are of the same type, can be tested for various algebraic structures. For
instance, if HR invented a concept with a predicate definition P(a,b,c,d) such
that b,c¢ and d were subobjects of a of the same type, then the embed-algebra
rule could be invoked to check whether the function f(b,c¢) = d had particular
algebraic properties, such as commutativity, associativity, an identity, etc.

This production rule differs from all the others in that it relies on a third
party program, MACE, to generate the examples of the new concept. Given an
old concept C' of arity 4, MACE is used to check whether the set of triples for
each object of interest that C' applies to satisfies a set of axioms chosen by the
user. For example, suppose that concept C' had the datatable as in table 1. In
this case, the embed-algebra rule takes each object of interest o in turn and
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collects all ground instances of C' as examples of the operation upon which the
axioms are to act. For instance, HR takes object o2 and collects the following
four instances of the operation upon which the axioms are going to be checked:

txt=1, txu=u, uxt=u, uxu==t
HR first normalises the elements so that they are represented by the numbers 0,

1, 2, etc. It then checks that it has not seen this (possible) algebra before, and
if it has, uses the results of the previous calculation.

|object of interest”subobject 1|s11bobject 2|subobject 3|

01 S S S
02 t t t
02 t u u
02 u t u
02 u u t
03 a a b
03 a b b
03 b a b
03 b b b
04 X zZ zZ
04 X y X
04 y X y

Table 1. Example datatable input to the embed-algebra production rule

If the set is new, HR then checks whether or not this operation is closed, by
checking that every element which appears as the product of an operation also
appears as both the left hand and right hand element in a product and that
the examples constitute a Cayley table. If the operation passes this check, then
MACE is invoked to check whether the operation satisfies the axioms chosen
by the user. To use MACE in this manner, both the axioms and all the ground
instances of the operation are passed to MACE. Hence, for 02 above, if the user
chose the group theory axioms, MACE would be passed the following file:

set (auto) .

formula_list (usable).

0%0=0.

0%x1=1.

1x0=1.

1x1=0.

all a (a*id = a & id*a = a). \\ identity

all a (a*inv(a) = id & inv(a)*a = id). \\ inverse

all a b ¢ ((axb)*c = ax(b*c)). \\ associativity
end_of_list.



32 Colton, McCasland, Bundy and Walsh

If MACE responds that it has found a model, then this effectively states that
the model HR has supplied satisfies the axioms chosen. Hence, the operation
(and thus the original concept) embeds an algebra for the particular object of
interest under consideration.

In the current example, if the user had chosen the axioms for group theory,
then the operation for the elements of 0; and o, would both be closed and satisfy
the axioms, but the operation for o4 is not closed (z does not appear in the
product anywhere) and the operation for o3 does not have an identity element,
which is required for the group theory axioms. To construct the datatable for the
new concept, for each object of interest for which the operation does embed an
algebra, HR first checks whether any algebra it has already is an isomorphism of
the embedded algebra, and substitutes the previous one if so. Then the datatable
is constructed with the objects of interest in the first column and the algebra
embedded in the second column. If the embedded operation does not satisfy the
axioms of the algebra, then an empty set is put in the second column.

If the concept which was input to this production rule had concept number
F, and the algebra chosen to check for embedding was Alg, then the definition
for the new concept would be generated as:

[a,b] : concept F forms Alg b for a

for instance:
[a,b] : concept 17 forms group b for a

Note that the user can specify that HR checks for various algebras using this
rule. These choices comprise the different parameterisations of the embed-algebra
production rule that HR will carry out.

4.2 Reaction Mechanism

A motivating example for the embed-algebra production rule was for HR to find
the centre of groups, not just as a subset of elements, but also as a subgroup.
However, as we see from figure 1 above, HR invents the concept of a central
element as an element type, not as a concept of arity four in which an operation
could be embedded. It is not controversial to state that, if a mathematician
invents a new type of element in an algebra like group theory, one of the first
things they might try is to see whether the set of elements forms a subgroup for
all groups. We wanted to model this kind of reaction to a new element type in
HR, and — to cover the more general case — we implemented a ‘reactive’ search in
HR. Such a search is similar to the way in which certain “demons” are invoked
when particular slots are filled in frame representations of concepts [2].

The reactive search in HR is determined beforehand by the user, who supplies
pieces of pseudo-java code to HR that specify what HR should do if certain things
occur during its normal theory formation. Using Java’s reflection mechanism,
HR translates these pieces of code (which we call ‘reactions’) into Java code
at runtime, and the conditions for them are checked whenever a new theory
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formation step is completed; a new concept is introduced; a new conjecture is
made or a new counterexample is found.

For instance, the reaction script in figure 2 reacts to a new concept being
introduced. With this reaction activated, for each new concept, HR first checks
whether the applicability! of the new concept is greater than 0.8. If so, HR then
adds two steps to the agenda, the first of which performs a step using the exists
production rule on the new concept, and the second of which performs a step
using the size production rule on the concept produced by the first step (nl).
Note that if any step results in a previous concept, this is substituted in further
steps added to the agenda. Finally, this reaction tells HR to mark the concept
produced by the second step (n2) as interesting, so that the user can find all
such concepts in HR’s output.

react_to(concept)

condition(concept, applicability > 0.8)
condition(concept, arity == 3)
action(add_to_agenda, nl = concept exists [2])
action(add_to_agenda, n2 = nl size [1])
action(mark_concept, n2, interesting)

Fig. 2. Sample reaction script

HR’s reaction mechanism is still under development. As discussed in §5 below,
we use the reaction mechanism to force HR to check immediately whether a
new type of element forms a subgroup in a group theory session. This is a
generalisation of work done with Alison Pease [15] on getting HR to react in
ways prescribed by Lakatos in [11].

4.3 Knuth-Bendix Completion to Discard Conjectures

A problem we have come across throughout the development of HR is that
it produces too many conjectures of a trivial nature, as lamented in chapter
11 of [3]. We have previously relied on Otter’s proof length statistic to prune
conjectures which Otter found easy to prove, but we have recently found this
approach can discard fairly interesting conjectures, and so is not appropriate.
Instead, to reduce the number of trivial results produced by HR, one can use
a set of rewrite rules as a filter. Otter can, in some cases, be used to produce a set
of rewrite rules (demodulators) for certain collections of axioms. In particular,
we can use the Knuth-Bendix option in Otter to derive a list of equations from
the axioms of an algebra, and these equations form a complete set of rewrite
rules for the given axioms. To be more specific, in group theory, we give Otter

! See [8] for a description of HR’s measures of interestingness, including the applica-
bility of a concept.
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the group axioms of left identity, left inverse and associativity, and Otter outputs
the following list of 10 equations:

id*x=x. inv(x)*x=id. (x*y) *z=x*y*z.
inv (x) *x*y=y. x*id=x. inv(id)=id.
inv(inv(x))=x. x*¥inv(x) *y=y. x*inv(x)=id.

inv (x*y)=inv(y) *inv(x) .

On inspection, this list includes the right-hand versions of identity and in-
verse, as well as these facts: the identity is its own inverse, the inverse composed
with itself is the identity function, and the inverse of a product is the product of
the inverses in reverse order. Having obtained such a list of equations, HR take
each prime implicate it produces and sends the premises of that conjecture to
Otter, which is told to work in Knuth-Bendix mode. Otter then uses its demod-
ulator and paramodulator functions to simplify the premises. Sometimes, this
rewriting process includes in its output the goal of the original conjecture. In
these cases, HR discards the conjecture as it is considered trivial.

As an example, HR produced the following conjecture in a group theory
session: bx ¢ = d&b = id — b*d = c¢. This is a true statement in group
theory. When we gave the premises of this conjecture to Otter in Knuth-Bendix
mode, it produced several conclusions, including the one conjectured here. It
should be noted that a human would typically arrive at the conclusion by first
observing that since b = id, the first premise yields ¢ = d. At this point, the
conclusion would be obvious. While one can perhaps argue that this thought
process is not an entirely straightforward one, and that therefore the conjecture
has some merit, the result is not sufficiently important to be included in the
theory, and therefore a human mathematician would probably discard it. Thus,
HR’s decision to discard the conjecture matches that of human mathematicians.

To test this new method, we ran HR for 1000 theory formation steps and
it produced 281 prime implicates, of which 40 (14%) were discarded because
Knuth Bendix completion found the goal from the premises. For example, HR
discarded the conjecture bxc = d & cxb = d& d*b = ¢ — bxd = ¢, because, using
the demodulators extracted from the axioms of group theory, Otter’s Knuth-
Bendix mode managed to re-write the premises to include the goal. We are
currently working to get Otter to discard more conjectures of a similarly trivial
nature. This is similar to our efforts described in [5], where we ask HR to discard
conjectures about Maple [1] functions if Otter is able to prove them, as these
will most likely be trivially true.

5 Application to Setting Exercises

The second author of this paper has much experience in mathematics education
at the university level, and it was our aim to see if HR alongside Otter and MACE
could aid him in the setting of tutorial questions for an undergraduate group
theory course. Based on the observation that many such tutorial questions ask
the student to show that a particular set of elements form a subgroup, we decided
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that HR’s embed algebra production rule should be used to identify subgroup
types. To facilitate this, we wrote a reaction script which ensured that, whenever
HR invented a new type of element, it formed the subgroup (where possible) of
those elements, and flagged those to the user for which: (a) the subset always
formed a subgroup and (b) the subgroup generated was neither the trivial group
with one element nor the entire parent group for at least one of the groups in
HR’s database. The reaction script in figure 3 achieved this functionality.

react_to(concept)

condition(concept,types.toString() == [group, element])
action(add_to_agenda,nl = group003 concept compose [1,2,0,0]1)
action(add_to_agenda,n2 = nl concept compose [1,0,2,0])
action(add_to_agenda,n3 = n2 embed_algebra [groupl)
condition(n3,applicability == 1)
action(add_to_agenda,n4 = n3 match [0,0])
action(add_to_agenda,nb = n3 split [[1],[0]11)
condition(n4,applicability < 1)
condition(n5,applicability < 1)
action(mark_concept,n3,good_subgroup)
action(mark_concept,concept,good_element_type)

Fig. 3. Reaction script used for subgroup types

We gave HR the groups up to order 8 to use as data for the empirical con-
jectures that it made, and formed a theory using 10,000 theory formation steps.
We used the compose, exists, match and equals production rules in a breadth
first manner, and controlled the use of the forall production rule via another
reaction script. This forced HR to use the forall rule only with concepts  which
relate two elements, to invent the concept of elements for which all the other
elements are related to . We have found that normal usage of the forall pro-
duction rule often leads to many complicated — but generally uninteresting —
concepts in group theory, so we controlled it with a reaction script instead.

The user was allowed to write any tutorial questions, as long as they were
inspired in some way by something from HR’s theory. On reflection of how HR’s
subgroup concepts were being used to generate tutorial questions, we identified
the following possibilities:

® For those element types, C, which the user can prove (possibly using Otter)
always form a subgroup, the teacher may set the exercise: “Prove that elements
with property C form a subgroup”.

® For those element types, C, for which HR has found groups where they don’t
form a subgroup, and, indeed, for those where such a group is later found by
MACE, the teacher could ask the following question: “Characterise those groups
for which the set of elements with property C form a subgroup.” Note, however,
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that characterisation problems can often be very difficult, and sometimes of little
interest to mathematics.

® For those element types where the smallest group for which the elements do
not form a subgroup is fairly large (i.e., beyond the reach of simple computation),
the teacher could ask the following: “Find the smallest group for which the set
of elements with property C do not form a subgroup”. As the answer is large,
the student will be forced to use their knowledge of group theory to answer
the question, because a calculation would not easily yield the answer. Note that
questions of this type may also be difficult to answer.

In addition, the mathematician may choose to simplify the questions by re-
stricting the range of groups to which a question applies. For example, they may
ask: “Show that, for Abelian/cyclic/dihedral groups, the set of elements with
property C form a subgroup”. Finally, other questions may arise as part of this
process, and HR may be able to inspire such questions, with MACE and Otter
possibly providing answers to such questions.

5.1 Results

We ran HR on a 2.0 Ghz. Pentium 4, for 10000 theory formation steps, giving as
input the datatables for all groups of order 8 or less. The run took 301 seconds
and produced a total of 330 concepts. Of these concepts, 17 were element types
which produced subgroups for at least some of the initial groups. Of these 17,
10 concepts produced subgroups for all of the initial groups. Of these last 10, 8
concepts produced at least one non-trivial subgroup; that is, a subgroup which
was neither the identity subgroup, nor the group itself. The concept definitions
of this last type were as follows:

g43. [a, b] : exists c (c*c=b)

g93. [a, b] : all c (exists d (d*c=b & c*d=b))

gl02. [a, b] : exists c d (b*c=d & dx*b=c)

g110. [a, bl : all c¢ (b*(c*b)=c)

gl24. [a, b] : exists c (cx(c*b)=b & inv(c*b)=(c*b))
g224. [a, b] : inv(b)=b & (exists c (c*c=b))

g282. [a, b] : exists c (inv(c)=b & c*c=b)

g307. [a, b] : exists c ((c*c)*(c*c)=Db)

The remaining 9 concepts produced subgroups for some, but not all of the initial
groups.

gl0. [a, b] : all c (inv(c)=b)

gl6. [a, b] : all c (c*c=b))

g29. [a, b] : inv(b)=b

g67. [a, b] : exists c d (cxd=b & (all e (exe=c)))

g198. [a, b] : all c ((exists d (d*c=b)) & (exists e (e*e=c)))
g202. [a, b] : all c¢ (cxb=c & (exists d (d*d=c)))
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g262. [a, b] : all c (exists d (d*c=b & dxd=c))
g267. [a, b] : exists c (c*x(c*c)=b)
g303. [a, b] : all c ((c*c)*(c*c)=b)

In the course of setting the exercises, we looked at the first two concepts
(g43 and g93) in more detail. Concept g43 simply defines the set of all elements
which appear on the diagonal of the Cayley Table of the group. This concept
gives a subgroup for each of the groups of order 8 or less, as demonstrated by
HR using MACE during the theory formation. However, we were fairly certain
that this construction does not always yield a subgroup. We therefore asked
MACE to generate a counterexample, by asking it to find a group for which
there are two elements on the diagonal which multiply to give an element which
is not on the diagonal. If it could find one, then the subset would not be closed
under multiplication and hence not a subgroup. We were unsuccessful in finding
a counterexample up to order 11, but at order 12, MACE took 142.84 seconds
of cpu time to generate the non-Abelian group in figure 4. We see that elements
0,1,2 and 4 appear on the diagonal, but the product of 1 and 2 is 3 which is not
on the diagonal. Hence concept g43 does not form a subgroup for this group.

* | 01 2 3 4 5 6 7 8 91011
e
0l 01 2 3 4 5 6 7 8 91011
11 1 0 3 25 4 7 6 9 81110
21 2 3 45 018 91011 6 7
31 3 25 4 1 0 9 81110 7 6
4| 4 5 01 2 31011 6 7 8 9
5] 56 4 1 0 3 21110 7 6 9 8
6| 6 71011 8 9 1 0 5 4 3 2
71 7 61110 9 8 0 1 4 5 2 3
81 8 9 6 71011 3 2 1 0 5 4
91 9 8 7 61110 2 3 0 1 4 5
1011011 8 9 6 7 5 4 3 2 1 0
11 11110 9 8 7 6 4 5 2 3 0 1

Fig. 4. Group produced by MACE disproving subgroup closure property

It is perhaps not entirely obvious that the second concept in the top list, g93,
actually generates the centre of a group. To see this, first solve both equations for
d, to give d = bxinv(c) and d = inv(c)*b, or more succinctly, bxinv(c) = inv(c)*b.
Now note that since the concept applies to all elements ¢ in the group a, we can
substitute inv(c) for ¢, and it becomes clear that the concept is equivalent to:
[a,b] : V¢ (bxc=cxb). We asked Otter to prove that this set is a subgroup,
by giving it the concept and the group axioms, and then having it prove, each
in turn, that the concept definition is closed with respect to the products, the
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inverses and the identity. That is, we ran Otter three times, first with the group
axioms and these two additional lines:

all a (f(a) <> (all b (((exists c (c*b=a & bx*c=a)))))).
-(all a b (f(a) & f(b) -> f(axb))).

[Note that the goal is negated as Otter is a resolution prover]. This proved that
the subset is closed under multiplication. Secondly, we ran Otter with the group
axioms and these two additional lines:

all a (f(a) <> (all b (((exists c (c*b=a & bx*c=a)))))).
-(all a (f(a) -> f£(inv(a)))).

This proved that the inverse axiom applies to the subset. Finally, we ran Otter
with the group axioms and these two additional lines:

all a (f(a) <> (all b (((exists c (c*b=a & bx*c=a)))))).
-(exists a (f(a) & (all b (f(b) > (a* b=Db & b *x a =Db))))).

This proved that there is an identity element in the subset. Given that the parent
multiplication operation was inherited by the subset, we had no need to prove
associativity in the subgroup. Hence, with the three proofs completed, we had
shown that the centre of a group forms a subgroup. The statistics Otter used in
this way are given in table 2.

Axiom |Statistic Value
Identity|Proof Length|1
Proof level |1
Cpu time 0.20 seconds
Inverse |Proof Length|36

Proof level |10

Cpu time 24.67 seconds
Closure |Proof Length|59

Proof level |14

Cpu time 54.55 seconds

Table 2. Otter statistics from proving that central elements form a subgroup

Having run HR and explored the results as described above, the mathemati-
cian then set the exercises, with the resulting exercise sheet given in appendix
A. Tt is difficult to assess the success of this work in objective terms, and we have
included in appendix A a brief summary of how the exercises were influenced by
HR’s theory. We hope that this demonstrate that HR, Otter and MACE con-
tributed in a non-trivial way to the setting of the exercises, and that there is
much potential for similar use in future.
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6 Conclusions and Future Work

We have demonstrated that the HR theory formation program, in conjunction
with the Otter theorem prover and MACE model generator can be used to help
write tutorial questions for mathematics students. The programs acted in the role
of an aid to a mathematics teacher, rather than as an autonomous mathemati-
cian. In particular, HR was used to empirically suggest subgroup constructions,
and HR called MACE as part of this process. Furthermore, Otter and MACE
were both used to check whether certain element types form a subgroup in the
general case. We documented a case where Otter proved that a subset of ele-
ments always forms a group and a case where MACE showed that another subset
of elements doesn’t necessarily form a group (as HR had suggested based on the
evidence of the groups up to order 8).

To undertake this application, we implemented two new functionalities, namely

a reactive search, where HR’s search can be interrupted in response to certain
events, and a new production rule which identifies when certain algebras are
embedded in old concepts. We believe that a sustained application of HR in
this manner to other algebras could yield further interesting tutorial questions.
However, the main aim of this project is to use HR to discover new results in
the domain of Zariski spaces, and we are already getting positive results and
feedback from this project. To succeed further in this project, our future work
will centre around:

® The implementation of more user interface functionality, so that the user
can act themselves as the concept formation/conjecture making/theorem prov-
ing/counterexample finding process.

® Storage of knowledge between sessions. This will be important in order to (i)
reduce the time spent by the mathematician sifting through results he/she has
already come across and (ii) import and apply in a new context important results
derived during previous sessions.

® Further exploration of Zariski spaces. This will proceed as planned — HR will
be used in successively more complicated domains until eventually able to work
with Zariski spaces.

® Further pruning of uninteresting conjectures. This will be achieved by using
Knuth-Bendix completion more fully and via a variety of other techniques, some
using automated theorem provers such as Otter.

We believe that for automated deduction, the role of an aid for mathematics
lecturers is a more plausible prospect in the short term than the role of a discov-
erer of important new proofs. However, such an application needs to be fuelled
by automated theory formation in order to identify interesting results that the
lecturer would possibly miss otherwise.
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A Group Theory Exercise Sheet

The following exercise sheet was producing using the theory HR formed as de-
scribed in §5.1 above. Below, we give a brief summary of how HR’s results
inspired these questions.

Let G be a multiplicative group with identity 1. Problems marked ** should be
considered honors exercises.

1. Let A = {a € G : for some ¢,d € G, ac = d, ad = ¢ and ¢} = ¢} and let
B ={b€ G :b*>=1}. Prove or disprove that A = B. Determine whether A is a
subgroup of G. If so, prove it. If not, give the smallest example of G such that
A is not a subgroup of G.

** 2. Let A ={a € G:a ="b*for some b € G}. Determine whether A is a
subgroup of G. If A is not a subgroup, give a characterisation for the groups G
for which A is a subgroup.

3. Let A = {a € G : ab = ba for all b € G}. Prove or disprove that A is a
subgroup of G.

4. Let A={a € G : for some ¢,d € G,ac=d and da =c} and let B={be G:
beb = ¢ for some ¢ € G}. Prove or disprove that A = B. Determine whether A is
a subgroup of G. If so, prove it. If not, give the smallest example of G such that
A is not a subgroup of G.

5. Let A ={a € G :aca = cfor all c € G}. Recall that if ac = ¢ for some ¢ € G,
then ac = ¢ for all ¢ € G. With this in mind: Determine whether the set A is
equal to B in exercise 4. Determine whether A is a subgroup of G.

6. Let A= {a € G : for some z € G, z%°a = a and (za)™' = za}. Let B={b €
G:b=b"1}. Let C = {c € G : cyc = y for some y € G such that y> = 1}. Is
B C A?71s AC B?Is A = C7? Is this A the same as the A in exercise 4?7 Prove
your answers. Determine whether A is a subgroup of G.

7.Let A= {a € G : for some ¢,d,f € G,ac=d,ad =c,a= f? and c = ¢!}
and let B={b€ G:b> =1 and b = g for some g € G}. Is A = B? How does
this A compare with the A in exercise 1?7 Is this A a subgroup of G? Prove your
answers.

8.Let A ={a € G :a =10 for some b € G}. Determine whether A is a subgroup
of G. If so, prove it. If not, give the smallest example of G such that A is not a
subgroup of G.

** 9, Characterise the groups G for which every element of G' can be written as
a fourth power, (i.e., for all a € G, there exists b € G such that b* = a).

10.Let A={a€G:a=(a!)?}andlet B={beG:0>=1}.1sA=B?Is A
a subgroup of G? Prove your answers.
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A.1 Summary of Motivations

Referring to the concept numbers as specified in §5.1, in Question 1, set B is in
fact equivalent to the set defined by concept g29, since inv(b) = b iff bx b = id.
Set A came from concept g30. These two concepts are indeed equivalent, and
the proof thereof makes a reasonable exercise for undergraduate students. In
Question 2, set A is clearly the set defined by concept g43, which is discussed in
§5.1. Set A in Question 3 comes from concept g93, also discussed in §5.1.

Set A of Question 4 comes from concept g102, and the A of Question 5 is
derived from gl110. The set B of Question 4 was conceived by us, merely by
simplifying the definition of the corresponding set A. Having looked at these
three sets, we came up with the first part of Question 5. We feel that students
need to realise that, even though the existential and universal quantifiers are
clearly different, nevertheless, on occasion they turn out to produce the same
results. It should perhaps be pointed out that on this occasion, they of course
do make a difference. It seemed to us a good opportunity to force the students
to think a little, rather than merely give an instinctive reaction.

In Question 6, the set A is given by concept gl24, and set B is just concept
g29 again. We wanted a situation where students would find that, although the
two sets were not equal, one set was contained in the other. Set C resulted from
combining this latter concept with the set B of Question 4. In Question 7, set
B is derived from concept g224, and set A is simply a combination of the set A
of Questions 1 and 2. The sets in Questions 8 and 9 are given by concepts g267
and g303, respectively. The set A in Question 10 is from concept g282, and set
B is clearly just a rewrite of the definition for set A.
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Abstract. That foundational systems like first-order logic or set theory
can be used to construct large parts of existing mathematics and formal
reasoning is one of the deep mathematical insights. Unfortunately it has
been used in the field of automated theorem proving as an argument to
disregard the need for a diverse variety of representations. While design
issues play a major role in the formation of mathematical concepts, the
theorem proving community has largely neglected them. In this paper
we argue that this leads not only to problems at the human computer
interaction end, but that it causes severe problems at the core of the
systems, namely at their representation and reasoning capabilities.

A Introduction

In the traditional theorem proving community, which we consider as our home
community, a seemingly strong argument against new approaches in theorem
proving has been of the type “Everything you can do in your system X, I can
do in Y,” where Y stands typically for standard first-order logic. This kind of
thought is so strong that proponents of the conventional approach to theorem
proving seem to fail to even understand why this argument — albeit it may be
true — is unhelpful and misleading.

For instance, Pat Hayes said in 1974 ([11] quoted from [4, p.18]):

A more recent attack on conventional theorem-proving ... is that it is too

concerned with “machine-oriented” logic, and not enough with “human ori-

ented” logic. I confess to being quite unable to understand what this could
possibly mean.

In this paper we try to clarify why the argument, although it may be techni-
cally correct, is pragmatically flawed and has led to very negative consequences.
The argument is pragmatically wrong, since it is meant to say “Your system X
is redundant and uninteresting, since we have system Y already, which suffices
for everything you want to do.” Since this argument was widely accepted the
focus in the field was set much too narrow on the study of foundational systems.
For other communities, our observations in this paper may be trivial.

* This work was supported by European Commission IHP Calculemus Project grant
HPRN-CT-2000-00102.
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Of course there are exceptions and we claim in no way that we are the first
to have a look at this relationship of mathematical practice and fundamental
systems. In this paragraph we do not claim to give a comprehensive overview
of this type of work. We just mention some work in this direction, which we
think provides very important starting points to the support of the design of
mathematical concepts. In AUTOMATH, N.G. de Bruijn developed the idea of
a mathematical vernacular [5], which should allow to write everything mathe-
maticians do in informal reasoning, in a computer assisted system as well. In
this tradition, Hugo Elbers looked in [9] at aspects of connecting informal and
formal reasoning, in particular the integration of computations in formal proofs.
Francis Jeffry Pelletier [18] as well as Henk Barendregt and Arjeh Cohen [1]
discuss related philosophical questions on the nature of proof. Proof planning [6]
in general can be viewed as an attempt to simulate informal reasoning (and in-
tegrate it with formal reasoning). Following this paradigm, Alan Bundy made
first steps towards a Science of Reasoning [7], which goes beyond a narrow focus
on a particular calculus. Ursula Martin took in [15] a close look at the mathe-
matical practice and its relationship to computer algebra and computer-assisted
reasoning. Michael Beeson presented in [2] a system that combines deductive
and computational reasoning steps. He proposed to use the mathematical stan-
dard for checking the correctness of proofs generated by the system, namely peer
reviews.

We are not aware, however, of work in which the design process in mathe-
matics is compared to the design possibilities of computer based mathematical
support systems. In this paper, we look at design problems, which current au-
tomated reasoning systems suffer from, and relate them in the rest of this in-
troduction to an old debate in mathematical philosophy, which summarises the
relationship between foundational systems and informal systems very well.

We do not doubt that one of the deepest insights in the foundations of math-
ematics resulted from the epochal work by Bertrand Russell and Alfred North
Whitehead. Russell articulated the idea in the Principles of Mathematics [21]
namely, to reduce mathematics to formal logic, and carried it through together
with Whitehead in the famous Principia Mathematica [25] — a work often quoted
and seldom read. Russell was at this time also in inspiring discussions with Lud-
wig Wittgenstein and strongly acknowledges Wittgenstein’s contribution to his
thoughts. He writes in [22] (quoted from the reprint in [23, p.178]):

As I have attempted to prove in The Principles of Mathematics, when we
analyse mathematics we bring it all back to logic. It all comes back to logic
in the strictest and most formal sense.

Although there is evidence that Wittgenstein shared Russell’s view, he later
took the opposite stance and attacked Russell’s approach. In particular he dis-
cusses the important notion of proof (quoted from [26, p. 143]):

‘A mathematical proof must be perspicuous.’ ... I want to say: if you have a
proof-pattern that cannot be taken in, and by a change in notation you turn
it into one that can, then you are producing a proof, where there was none
before.
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One of the reasons why the Principia are so rarely read is that the main ideas of
the proofs are no longer visible in very long and very detailed proofs. Wittgen-
stein continues (p. 176f) to question the idea to try to reduce everything to a
very small number of primitives (had the resolution calculus already been in-
vented at that time his attack might have been to try to reduce everything to
one single rule):

Mathematics is a MOTLEY of techniques of proof. — And upon this is based
its manifold applicability and its importance. ...

Now it is possible to imagine some — or all — of the proof systems of present-
day mathematics as having been co-ordinated in such a way with one system,
say that of Russell. So that all proofs could be carried out in this system,
even though in a roundabout way. So would there then be only the single
system — no longer the many? — But then it must surely be possible to shew
of the one system that it can be resolved into the many. — One part of the
system will possess the properties of trigonometry, another those of algebra,
and so on. Thus one can say that different techniques are used in these parts.

He continues then to counter the argument that Russell and Whitehead have
constructively shown the possibility to reduce everything to one single system
(p- 185)%:

If someone tries to shew that mathematics is not logic, what is he trying to
shew? He is surely trying to say something like: — If tables, chairs, cupboards,
etc. are swathed in enough paper, certainly they will look spherical in the
end.

He is not trying to shew that it is impossible that, for every mathematical
proof, a Russellian proof can be constructed which (somehow) ‘corresponds’
to it, but rather that the acceptance of such a correspondence does not lean
on logic.

We try to exemplify in the rest of the paper why these matters are crucial
for automated theorem proving systems. One important issue is that of accep-
tance among mathematicians. Current automated theorem provers do not find
acceptance among mathematicians, while computer algebra systems do. In many
computer algebra systems things are as they should be, as an inexperienced but
mathematically educated user would expect them to be. That is, these systems
are typically well-designed. In automated theorem proving systems they are typ-
ically not as they should be, not as an inexperienced user would them expect to
be. We will argue that this is not just a deficiency of the interface, but that the
problem with automated theorem provers is much deeper, it goes to the core of
these systems, namely to the formal representation of mathematical knowledge
and the reasoning that can be performed with this knowledge.

3 By the way, Godel’s proof that formal systems like the Principia are necessarily
incomplete is irrelevant for this argument, since not only the Principia but any
other powerful system suffers from the same problems.
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B Design Issues Exemplified with Multiplication Tables

In this section we want to have a close look at one particular example of a math-
ematical concept which is carefully designed. Before we do so, let’s have a more
general look at design issues. Donald Norman gives a fascinating introduction
into “The Design of Everyday Things.” His insights are of a very general nature
and we will see that the principles for good design hold in mathematics as well.

Although Norman does not relate design to mathematics, most observations
can be translated to a mathematical context. For instance, design principles allow
us to answer questions like “Why and how do we find a proof without major
search effort, although it is a difficult one and we don’t know it?” Norman states
four principles why we get certain things right, although we don’t know precisely
what to do [17, p.55]:

1. Information in the world. Much of the information a person needs to do
a task can reside in the world. Behavior is determined by combining the
information in memory (in the head) with that in the world.

2. Great precision is not required. Precision, accuracy, and completeness of
knowledge are seldom required. Perfect behavior will result if the knowledge
describes the information or behavior sufficiently to distinguish the correct
choice from all others.

3. Natural constraints are present. The world restricts the allowed behavior.
The physical properties of objects constrain possible operations: the order
in which parts can go together and the ways in which an object can be
moved, picked up, or otherwise manipulated. Each object has physical fea-
tures — projections, depressions, screwthreads, appendages — that limit its
relationship to other objects, operations that can be performed to it, what
can be attached to it, and so on.

4. Cultural constraints are present. In addition to natural, physical constraints,
society has evolved numerous artificial conventions that govern acceptable
social behavior. These cultural conventions have to be learned, but once
learned they apply to a wide variety of circumstances.

We argue that humans make use of such principles, not only in their rela-
tionship to everyday objects like door handles, but also in their relationship to
mathematical objects like multiplication operators. However, conventional theo-
rem proving systems do not. We will take a closer look at multiplication tables,
a concept that seems on a first view easy, and on a second difficult to model
in existing theorem proving systems. Multiplication tables are part of rigorous
mathematics in the sense that they appear not only as comments or illustrations
in mathematical textbooks, but are usually introduced in definitions and their
properties are stated as theorems.* We believe that the features of the concept
“multiplication table” as well as those we present in the next section are not

* We use here the word “rigorous” and not “formal” in order to distinguish it from
“formal logic” and mechanical systems. Mathematicians would probably use the
word “formal,” since they are happy with these concepts as a level of formalisation
that clarifies concepts unambiguously.
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only a matter of presentation but that they are used to encode and retrieve
information about mathematical concepts in an efficient way and that they ease
the actual process of finding and presenting proofs.

Now let’s look concretely at multiplication tables. They were 4, ... 4.
first introduced by Cayley to represent the operation of finite ab- 7,7, - ¢,
stract groups. The information encoded into the tables is that
the operation is a binary operation, defined on {di,...,d,} %

{d1,...,d,} and with range {c11, ..., Cnn}, the operation is dis- dnjcn1 -+ Can

crete and has a finite domain and codomain.

The table has its own notion of well-formedness, that is, all d; have to occur
and have to be different, the table must be fully filled. Here you find Norman’s
principles 1, 3, and 4. Multiplication tables are designed in a way that their
structure puts “information in the world” that makes it difficult to violate well-
formedness. It is hard to imagine when you’ve got the task to define a specific
operation starting with an empty multiplication table that you forget a case,
since that would leave a hole in the structure. The table itself is of the form
that it constrains the possibilities. For instance, it is impossible to enter more
than one entry per field. This prevents any over-specification of o. Furthermore,
although the order of the d; in the columns and rows could in principle be
different, cultural conventions prevent that.

Note that there are particular reasoning methods connected to the repre-
sentation. To check the basic property of closedness, one has to go through the
elements of the table and check whether for all elements holds ¢;; € {di,...,d,}.
The commutativity of o is checked by verifying that the table is symmetric with
respect to the diagonal. This intuitive form of reasoning depends on the cultural
convention to use the same order for rows and columns. Another cultural con-
vention is to write a (potential) unit element as first element (or second element
in the presence of a zero, which typically goes in the first place). With this con-
vention, it is checked that d; is a unit element by establishing the equality of the
columns under o and d; and the rows right to o and d;. Inverse elements can
be checked by establishing that each column and each row contain the neutral
element exactly once. These reasoning patterns follow partly the design princi-
ple number 2, since they are natural and easy to reconstruct. From the group
properties only associativity requires a logic level proof.®

Of course, it is possible to define the same operation in a logic, possible
formalisations are for example:

— First order: extend the signature by a function constant o and add the as-
sumptions dy ody =cj1 Adyods =cioAN...Adypody = Cpn.

5 Surely, for people experienced with this type of proof, there isn’t anything to prove
anymore, but it boils all down to trivial computations, which according to the
Poincaré principle [1] can be considered as not being a part of the proof. This is
different for beginners, whose perspective we have taken here.
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— Higher order: use the description operator® to define the operation as
o= Apuy.(x = (di,di) ANy=-c11)V...V(xz = (dn,dn) ANy = cpn)-

While the special representation of multiplication tables can be translated into
these general logical formalisms, parts of the information stored in the mathe-
matical representation are lost. In the first case the compoundness of the table
representation is hard to reconstruct. We are speaking about a set of equations
suitable for equational reasoning steps, but to recognise that the set of equations
is suitable for an abstract method for closedness or commutativity as mentioned
before is not so obvious. Also the special reasoning methods for proving commu-
tativity, inverse elements, and neutral element are not so obvious, but require
search in a set of formulae. From a human interface point of view, the lack of
structure in the formulae puts the burden of guaranteeing well-definedness on
the human. He or she has to be careful not to forget the definition of one ele-
ment or to over-define one expression by inserting two formulae like, for instance,
di ody = a and at a different place dy ody = b.

Although, the higher order formalisation of the operation seems preferable
over the first order one since it encodes o as one compound object, here as well it
is hard to recognise what kind of function is encoded. Actually, there is a proof
obligation to be shown in an application of the function to arguments, namely
that there is really a unique element with these properties.

While programming languages like Caml (see e.g., http://caml.inria.fr/) fos-
ter for the transition between different data structures, this is typically difficult in
deduction systems. We will briefly discuss the little theory approach in IMPs [10]
later (see section D.2).

C Mathematical Representations

In this section we look at further examples — in addition to the multiplication
tables — for mathematical concepts and procedures which are difficult to rep-
resent directly in a foundational system. Although we do not relate them in
detail to the design principles discussed in the previous section, it wouldn’t be
hard to establish similar relationships here as well. We try to argue later that
all these examples show that mathematical representations are very flexible and
extendible, that new concepts may require new representations and that closed
systems do not offer the necessary flexibility to design concepts to the level of
sophistication which is achieved in informal mathematics.

C.1 Matrices

A matrix is a two dimensional array that may contain numbers or more complex
objects. It has similarities with multiplication tables and a possible formal def-
inition as lists of lists is the same as the one of multiplication tables. However
its usage is very different, and human mathematicians have different methods

5 The description operator ¢ returns the element of a singleton. ty.P[y] denotes the
unique element ¢ such that Pc] holds, if such a unique element exists.
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attached to these concepts. Matrices are typically used to represent linear map-
pings and other transformations in vector spaces. The equation”

al0 .- 0 1] uT al auT
0 0 |

o I : BT || 7'BT
0 0 0

is taken from a proof about the tridiagonalisation of matrices.

In principle matrices over a field F' can be represented in logic by functions
from an index set into F'. However, this representation does not lend itself to
the definition of multiplication of matrices in which product elements are calcu-
lated by traversing the left matrix left-right and the right matrix of the product
top-down. The generalisation of this principle makes it easy to establish the re-
lationship accounted for above. Furthermore the explicit matrix representation
exhibits advantages mentioned above for multiplication tables.

Note that matrices are available in Computer Algebra Systems (CASs) as
primitives and that direct manipulations are possible. This, however, does not
make it obsolete to introduce them directly into automated theorem proving
systems as well. For instance, the matrices used in the equation above cannot be
easily defined in a CAS, since they represent more than one instance, they are
generalised matrices representing any matrix that has the same ‘form.” Establish-
ing the equation itself cannot be done by computation, but requires reasoning.
Once established it can become a further computation rule.

C.2 Dynamic Representations

A feature of mathematical representations is that they are dynamic in the sense
that as new knowledge is available the basic representation of objects may
change. For instance, the existence of inverse elements of a group G can be
formalised by VyegIyeq £ 0y = e Ay oz = e with the unit element e. Since for
each group element there exists exactly one inverse element, the inverse of an
element z is usually denoted with the help of a function as inv(z). Whereas the
introduction of a function denoting the inverse elements is possible in most of
the interactive theorem proving systems, the question whether the concept group
should be introduced as group(G, o), group(G,o,e), group(G,o,e,inv) seems to
be more subtle.

The first formalisation eases the possibility to inherit properties of subsumed
concepts with group(G, o) = monoid(G, o). The latter formalisation makes the
unit elements and inverse elements directly accessible but already contains the
uniqueness of the inverse element of an element in form of the inverse function.
The process of the actual exploration of basic principles of group theory that
starts with the tuple (G, o) and later introduces the neutral and inverse elements
as useful parameters of the concept can hardly be modelled in current automated

7 Mathematicians store information even in the letters they choose for their objects.
Even without further information it is relatively easy to reconstruct that T~!, B,
and T should represent submatrices since they make use of upper-case letters, while
the Greek « stands for a scalar, and u denotes a vector.
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reasoning systems. Rather it is necessary to choose one formalisation and to stick
to it. This way it is not only the case that the introduction of a concept cannot be
modelled adequately, but perhaps more seriously re-representations of concepts
are not supported. However, while one representation may be best suited for one
task, it may turn out to be unsuitable for a different one. In the latter situation
mathematicians change representations. Different formalisations model different
views on something that is one single mathematical concept to a mathematician.
If a mathematician had to use one of the standard theorem proving systems, he
or she would need to know in advance which choice of representation to make,
since the choice of a good formalisation is crucial for the success. But how do
you know which formalisation is best, when you start to explore something?

Another example of dynamic re-representation, which is very simple, but
for which the different reasoning complexities are striking, is when associativity
holds for an operation +. Once associativity is established, no mathematician
would still use brackets, but the notation for a term like ((14z)+y) would change
to 1 + z + y. The property is encoded into the notation and can be retrieved
from the given term. On a reasoning level this simple shift in representation can
make a dramatic difference. For a term with 1+ 1 summands there are < ")
different ways to put brackets in.® That means for a medium sized expression
with just 10 summands there are already 4862 ways to represent it. If all these
representations are part of the search process it is no surprise that automated
theorem provers find such expressions difficult. The design of these systems does
not allow for a change in representation, a user must write down unnecessary
brackets in order to be syntactically correct, the brackets, however, don’t help
but unnecessarily confuse the reasoner. These all are signs of bad design. In the
next sub-section we will look more closer at the change of representation.

C.3 Change of Representations

Sometimes an appropriate reformulation of a problem into another represen-
tation is already the key step to find a proof. Different representations allow
to apply knowledge from different sources to a problem. The importance of re-
representation was pointed out by George Pélya [20, vol.2, p.80]:

When you are handling material things (for instance, when you are about to
saw a limb off a tree) you automatically put yourself in the most convenient
position. You should act similarly when you are facing any kind of problem;
you should try to put yourself in such a position that you can tackle the
problem from the most accessible side. You turn the problem over and over
in your mind; try to turn it so that it appears simpler. The aspect of the
problem that you are facing at this moment may not be the most favourable:
Is the problem as simply, as clearly, as suggestively expressed as possible?
Could you restate the problem?
Of course you want to restate the problem (transform it into an equivalent
problem) so that it becomes more familiar, more attractive, more accessible,
more promising.

8 Even notation can be an object for mathematical investigations. The formula gives

the Catalan numbers.
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We exemplify this importance by different forms of re-representations:

— functions: Given an Euclidean space R with a metric function | | : R xR —
R then for each pair A, B € R of disjoint points there exists exactly one
distance preserving function g% : R — R with g(0) = A, g(|AB|) = B. With
the help of this function the lines in Fuclidean space can be interpreted
as images of the real numbers. Notions of the real numbers, as intervals,
correspond to notions in the abstract Euclidean space, namely line segments.

— representation theorems: Poincaré’s model for the hyperbolic plane, where a
line has infinitely many parallel lines through one point, is a unit disk, where
circle segments correspond to hyperbolic lines. With this representation it
becomes possible to re-represent constructions in the hyperbolic plane as
constructions in the Euclidean plane.

— theory change: Geometric constructions can be represented as field exten-
sions. The possibility to construct a square equal in area to a circle using
compass and ruler can be re-represented to the question whether 7 belongs
to a particular class of algebraic numbers (which it does not since it is tran-
scendental).

— inheritance: The properties of monoids and groups are inherited by the mul-
tiplicative and additive substructures of rings and fields.

— diagrams: P € [AB],B € [AQ] = P € [AQ],B € [PQ)] which is obvious
when this situation is expressed in a diagram: § 2 3 &

And of course there exist re-representations between different theories. Some of
them changed the structure of mathematics itself:

— Cartesian geometry: arithmetic representation for geometry. This makes it
possible to reduce geometrical problems to arithmetic problems and solve
them arithmetically. This is actually the starting point of Descartes’ idea
to take arithmetic as a foundational system so that all problems should be
translated to arithmetic and then solved by equation solving.

— set theory: mathematical concepts are representable as sets. Set theory is
another foundational system on which most of mathematics can be based in
principle.

— group theory: the group concept can be used to represent geometric trans-
formations, permutations, and the solvability of polynomials.

Certain forms of representations are very important to form new concepts.
The theorem that every permutation can be decomposed into transpositions,
that is, can be represented as a product of transpositions, makes the definition
of even and odd permutations suggestive. It is hard to imagine how to define
the concept without this particular representational form. Once these concepts
have been formed they become the starting point for the introduction of other
concepts like the alternating group.

Let’s look at a different example, the concept of real numbers. Real num-
bers can be defined as Dedekind cuts or Cauchy sequences. However, Cantor’s
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second diagonalisation proof that the reals are uncountable is difficult to imag-
ine without having the representation in the decimal (dual, or another) number
system.

Often the opposite of a change in the representation happens in mathematics,
that is, so-called overloading is used. The use of the same notation for different
concepts, e.g. | | in the example above for the concept of distance, + for oper-
ations that behave like the well-known addition on natural numbers, etc. Even
formally incorrect notation, as equality for isomorphisms, is used to enable the
transfer of knowledge from a known concept to a new concept. Certain sort and
type systems allow for some kind of overloading, but they do not offer the kind
of knowledge transfer that humans achieve this way in using overloaded symbols
in an analogical way.

C.4 Limited Coverage of Mathematical Activities by Logic

When we take mathematical textbooks as basis for what is part of mathematics
and what not, we can find statements that are not expressible in formal lan-
guages at all. Naturally comments or diagrams, and a number of models are
not represented. Historic statements, statements about the relevance of prop-
erties and concepts and so on are part of mathematics, but not part of logic,
although they are often important for a deeper understanding and an informed
proof search.

But even at the level of problem formulation, it is not always possible to
apply a formal system in a straightforward way. Let’s look for instance at the
mathematical task (provided in some context): “Determine the maximum of f(x)
in the interval [a, b].” Does the obvious formalisation “3,¢[4,5 max(f,z)” reflect
the meaning of the sentence? Not necessarily, assume somebody comes up with
the argument “Since f is a continuous function on a compact interval it has a
maximum.” This might be a correct argument to prove the logical formulation
but it would not solve the original task. On a closer look adequacy of the logical
statements depends on the logic used. If interpreted in a constructive way the
logical formulation is adequate; if interpreted classically it is not. While there
are constructive and classical systems around, it seems to be inappropriate that
one has to decide for a constructive system once and for all, in order to be able
to formulate a standard task like the one above.

While one can hardly cover all aspects of mathematics in a computer-based
system, it seems for many applications — like the recently emerging applications
in education — important to find a coverage which is as broad as possible.

C.5 A ‘Natural’ Calculus

The suggestions for a ‘Mathematical Vernacular’ [5] seem not to question that
all concepts of mathematics are sufficiently expressible in a language consisting
of functions and relations, potentially enriched by types or sorts. The design
of the Vernacular seems not to be focused on the objects mathematicians are
interested in, but on the reasoning framework.

The strength of a formal system can be measured by the de Bruijn factor,
that is, the ratio of the length of the proof in the formal system compared to
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its version in a mathematical textbook.® A reassuring observation is that in the
experiments with AUTOMATH and MI1ZAR the de Bruijn factor remained constant
for the proofs of a wide range of differently complex theorems.

Even if we agree with the conclusion that the proofs constructed in for-
mal calculi are already in principle an approximation of standard mathematical
proofs, it is important to note that such a comparison is based on the output
of mathematical work, the language used by mathematicians to communicate
proofs in textbooks and articles. While a comparison of such completed proofs,
proofs after all search is finished may be interesting, they often do not resemble
the proof construction. As an example look at standard e-d-proofs. In the proof
construction you compute a sufficient criterion on §, choose § as a function of €
and than you prove that with this § the difference of the function values is in-
deed smaller than €. In a finished proof a crucial part of the proof construction,
namely the construction of d, is redundant and hence not presented. For this
reason it is impossible to understand prima facie why ¢ has been selected as it
is.

Traditionally, the formulations of final proofs are minimalist and mathemati-
cians repress their original ideas, even the order of steps can be different, in
favour of an objective rigorous style. As Pdélya [19, p. vi], pointed out:

We secure our mathematical knowledge by demonstrative reasoning, but we
support our conjectures by plausible reasoning ... Demonstrative reasoning is
safe, beyond controversy, and final. Plausible reasoning is hazardous, contro-
versial, and provisional. ... In strict reasoning the principal thing is to distin-
guish a proof from a guess, a valid demonstration from an invalid attempt.
In plausible reasoning the principal thing is to distinguish a guess from a
guess, a more reasonable guess form a less reasonable guess. ... [plausible
reasoning] is the kind of reasoning on which his [a mathematician’s] creative
work will depend.

The ‘demonstrative reasoning’ corresponds to a formulation in reasoning
steps that were investigated by logicians. In this sense current deduction systems
are suitable as proof checkers for existing and well-understood parts of mathe-
matics but lack to act as proof assistants for the exploration and construction of
new mathematical knowledge. How can ‘plausible reasoning’ be modelled? Proof
planning follows the paradigm of proof search on an abstract level and can be
seen as an important step into this direction. But as described in [3] even proof
planning depends on structural restrictions of the underlying calculus and uses
a formal language as the only representation for mathematical concepts.

There might be the view that we can come up with a more powerful logic
which provides the best possible representation. Marvin Minsky gave a strong
argument why this wouldn’t be the case in artificial intelligence in general, but
why multiple representations are necessary. He recommends [16]:

9 The notion is not without problems, since mathematical proofs are not standardised
with respect to their detailedness. Furthermore there are other aspects for the quality
of a proof than its length.
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“First decide what kinds of reasoning might be best for each different kind
of problem — and then find out which combination of representations might
work well in each case.”

As we have seen for multiplication tables different types of representations
allow for specialised and efficient reasoning methods connected to them, opposed
to search on the logic level. Mathematicians carefully design their concepts to
keep the search spaces small. We need to understand this aspect of mathematical
reasoning much better in order to understand the versatility of the reasoning
capabilities of human mathematicians.

Historically the development of many concepts went the way that certain
meta expressions were introduced, which were later reified and become object
expression. The development of number systems might illustrate this. Having
natural numbers and fractions, irrational numbers and negative numbers as well
were considered as odd ones out, which only later became first class citizens.
Then imaginary numbers were the odd ones and negative square roots were
considered as strange entities which were used only for convenience. Likewise,
functions were first concrete in nature, and only much later it was possible to
speak about them.

D Representations of Mathematics on Computers

Up to here we have strongly argued how important a broad range of specialised
constructs is for the adequate representation of mathematical knowledge and
for proof construction. Representations find their analogues in data structures
used in existing implementations of mathematical software systems, a range
of general purpose and specialised theorem proving systems, computer algebra
systems, and educational software. These data structures provide functionality
and the ability to implement mechanisms working on them. In this section we
want to take a brief look at some important features of systems from which ideas
can be borrowed to realise a flexible system of the kind we envisage.

D.1 Sorted Extensions to Logic

Sorted logic is a good example to exemplify the importance of careful design. It
is an old insight that sorted logic (more carefully put, some classes of sorted log-
ics) can have significant advantages over unsorted logic. Let us just consider the
case of standard first-order logic with and without its order sorted extension.
Sorts can be considered as special unary predicate symbols. Typical formula-
tions in sorted logic are Yz, man-Mortal(z), socrates<Human, —Mortal(socrates).
The equivalent in unsorted logic is Vz:Human(z) = Mortal(z), Human(socrates),
—Mortal(socrates). The translation from the sorted to the unsorted logic is called
relativisation. The possibility to relativise any sorted problem formulation can
be and is used as an argument against the use of sorted logic in line with the
standard argument “Everything you can do in your system of sorted logic, I can
do in unsorted logic.” This argument is — although correct — unhelpful because
of the counterargument “Everything you can do in your unsorted logic, I can do
in sorted logic, but in a smaller search space!”
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The reason for the smaller search space is due to a better design realised
by the sorted system. Although the formalism of sorted logic is equivalent in
strength to the unsorted one, a concrete formulation (which makes use of sorts
in a non-trivial way, that is, whose relativisation is not equal to itself) is not. It is
actually weaker, since certain things can not be derived in sorted logic which can
be derived in unsorted logic (concretely, formulae like Human(1) = Mortal(1)
are syntactically possible in unsorted logic, but the equivalent is rejected in
sorted logic). To generalise this observation: A particular design is better than
an alternative one if certain redundant, or heuristically uninteresting derivations
cannot be made.

The integration of sorts in a system also demonstrates how subtle design is-
sues can be. We can’t discuss this in detail here, but we will give some indication.
It should be noted that sorts are not necessarily exclusively beneficial.l® If we
take standard order-sorted logic we have for each relation like Human and Mortal
to decide whether we want to formalise it by a sort symbol or by a predicate
symbol. If we want to prove some statement like ~Human(pegasus), we cannot
formalise Human as a sort symbol. This is a serious flaw in standard sort systems,
also it is not possible to model the genesis of concepts in an adequate way. In
order to perform the reasoning above we need to know socrates<Human a priori.
It is not possible to infer that Socrates is a human being later in the reason-
ing process. This unduly limits the flexibility of the system. Ideally you would
want to have the advantages of a sorted formulation whenever possible, but also
benefit from the flexibility of the unsorted formulation when necessary. To our
knowledge only Christoph Weidenbach’s system [24] offers these possibilities.

D.2 Little Theories

Another important logic-based approach which approximates mathematical rea-
soning well is the little theory approach of IMPs [10]. As we can see in textbooks
from different areas of mathematics, there is no fixed hierarchy of theories. Each
textbook presumes knowledge from different areas of mathematics and by this
induces a partial order of theories. That there exists a total order of theories
is rather a theoretical result than used in everyday mathematics. The attempt
to realise this total order prohibits the flexibility to use theorems constructed
for one area in another area. The little theory approach also allows to relate
different formulations with each other without necessitating a hierarchy.

D.3 Data Structures in Computer Algebra Systems

CASs offer many more primitive data structures such as matrices than stan-
dard theorem proving systems. With these structures it is possible to cover large
parts of the ‘computational’ part of mathematics. As we tried to show, there
is a grey area in which deduction and computation go hand in hand (cf. sub-
section C.1), since any structure in a CAS is concrete, while mathematical ex-
pressions often make use of ellipses, for instance, expressions which contain dots
like 21,22, ..., Zy, or the multiplication table and matrix in sections B and C.1.

10 For a detailed discussion why sorts/types may be harmful see [14].
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A promising first approach in the direction of formalising ellipses in reasoning
can be found in [8].

D.4 Data Structures for Reasoning

Koedinger and Anderson [13] introduce a representation different from a purely
logical formalisation called diagram configuration model (DC) for diagrammatic
reasoning in geometry. The representation is based on DC schemas that encode
typical geometric situations that were identified through observations on the
problem solving behaviour of experts in this domain. The schemas contain the
main property of the situation, the subsumed properties and the different ways
under which the schema can be established. The level of abstraction allows for
an efficient inference algorithm that introduce the DCs as inference steps.
Mateja Jamnik describes in [12] a diagrammatic representation for theorems
and inference steps based on this data structure that allow to infer theorems in
arithmetic. The proofs constructed in the diagrammatic representation can be
translated to proof planning and then formally verified with a theorem prover.
These examples are important in our context since they show that at least
for particular domains it is possible to build special reasoners for diagrammatic
reasoning which are distinct from a purely logic based system, but which can
be formally linked to such a system. An adequate data structure for diagrams
seems to be the key point for the success of both approaches. Only this data
structure allows the implementation of an efficient inference mechanism.

E Discussion

One of the deepest insights in the foundations of computing was Turing’s paper
on computable numbers, which clarified by a construct which we now call a
Turing machine what can and cannot be computed by computers. This does
not mean, however, that the core field of Computer Science would offer to users
just Turing machines in which they have to write their programs and if they
don’t like the idea tell them that everything they may possibly want to do with
computers can be written as a Turing machine. It is not even the case that
computer languages are built as extensions of Turing machines or compiled into
Turing machines. The field of automated theorem proving seems to have followed
a different approach. While it is built upon the deep logical insights of the first
half of the 20th century, the rich wealth of structure and representations in
mathematics has not been mirrored sufficiently yet in formal systems.

In this paper, we presented aspects of mathematical representations that
we think are highly relevant for mathematical theorem proving and that can
— if at all — be implemented in traditional theorem proving systems only with
great difficulty. We think that the lack of acceptance of theorem proving systems
(compared with the success of computer algebra systems) is also due to these
shortcomings. Deduction systems offer — compared to computer algebra systems
— only limited added value: formal correctness, but at a very high price, namely a
significant overhead to formulate and prove mathematics. While the production
of a large body of formally correct proofs for known theorems does usually not
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correspond to the research interests of mathematicians, the exploration of new
problems is not very well supported as we observed in section C.

Current deduction systems ideally offer the potential benefit that they can
relieve users from the tedious task of checking trivial subproblems, so that the
human can concentrate on the interesting parts of the problem. In practice, how-
ever, it is typically more work even for an experienced human mathematician to
formulate the problems in the first place so that an automated theorem prover
can prove them than to do the job directly him/herself. We think, when a theo-
rem proving system wants to have a real application as either a proof assistant
or a proof tutor, it has to take care about the representation that is used by
mathematicians.

The mathematical representation is not only important for the user inter-
face and presentation of proofs, but for theorem proving itself, since the rep-
resentation is used to optimise problem solving and the transfer and access of
knowledge. The observations presented in section C reveal that mathematical
knowledge is highly structured and special representations are important for
mathematical problem solving. Data structures that realise these aspects may
allow for the definition of detailed problem classifications for which special but
efficient mechanisms can be found. In sections D.1 and D.4 we gave examples for
data structures and implementations of this kind. Mathematical representation
appears furthermore to be dynamic and flexible. Modelling this flexibility is on
the one hand important for the user interface, because it would give the choice
for a representation to the user. On the other hand, this flexibility is the key
point for the combination of different representations.

We have summarised some approaches to good design in section D. More
work in this direction is necessary to offer well-designed tools to mathematicians
and other people interested in computer assisted mathematics. While certain
parts might turn out to be straightforward other aspects will require a much
deeper understanding. To give one example for the size of the task, if we wanted
to integrate multiplication tables as a primitive in automated reasoning systems,
it should be relatively easy to offer concrete multiplication tables (or matrices)
with all the advantages mentioned in sections B and C (as it is relatively easy
to offer order-sorted sorts). However, it will be difficult to offer general type
multiplication tables (or matrices) which contain ellipses, and flexible ways to
reason about them. Human beings have an amazing capability to reify structures
in their space of discourse. We seem not to have yet a deep understanding of
these capabilities.

This paper compared approaches in mathematics and in existing theorem
proving system. We did not aim to offer solutions, but want to conclude with
some thoughts how a strong reasoning system would have to look like to model
mathematical practice more adequately. Such a system should firstly be its own
meta-system, so that it can speak about itself (care about paradoxes has to be
taken). Secondly, the definition of mathematical structures as well as establishing
their formal relationships would have to be provided by such a system. Thirdly,
a graphical user interface should facilitate the possibility to relate mathematical
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structures to a form, which is familiar to mathematicians. Particularly important
are in this context spatial and diagrammatic representations. While there are
approaches to all these points, to our knowledge no single system offers yet an
integrated flexible approach.
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Abstract. We claim that mathematical databases should be more than
a collection of domains with associated theorems; in particular theorems
should be stated as general as possible, that is independent of domains.
A database then should be able to check whether such a general theorem
holds in a particular domain. To this end we use a properties-based
representation for both theorems and domains, and present a deduction
calculus that using additional rules about the problem domain allows to
perform such a theorem check.

A Introduction

Numerous mathematical theorems have been proven with various mechanized
reasoning systems. Among them are, for example, the proof of Robbin’s conjec-
ture in Otter [McC97], a proof of the Jordan curve theorem in Mizar [RT99], and
a proof of the Chinese Remainder theorem in RRL [ZH93]. However, mathemat-
ical databases allowing to reuse such theorems in a general sense can hardly be
found. The reason is that mechanized reasoning systems rely on rather involved
logics and proof languages, so that proofs cannot be translated from one system
to another easily. Thus the only possibility is often to prove such a theorem
again or to include it as an axiom. Furthermore, the domain used to prove a the-
orem often includes unnecessary restrictions, for instance the above mentioned
Chinese remainder theorem is proven for the integers and not for rings (or even
more general domains). Hence even inside a reasoning system it is sometimes a
non-trivial task to reuse an already proven theorem because the current domain
does not fit to the one that has been used for the proof.

In this paper we present an approach to mathematical databases focussing on
the reuse of theorems in various domains. We have proposed to organize math-
ematical databases by decoupling proving theorems and reusing them in other
domains [Sch01]. To this end, theorems are decorated with sets of properties
describing conditions under which a theorem holds. Thus by using as less prop-
erties as possible theorems are given in a general setting. These properties-based
theorems then allow for checking their validity in particular domains by just
checking whether the domain fulfills the properties connected with the theorem.
Here, we present a calculus to perform this check in a Prolog-style manner. We
think of such a checker as being part of a mathematical database.
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B Representation of Theorems and Domains

In this section we describe the representation of theorems and domains underly-
ing our database approach. The key idea is to separate the content of a theorem
from the properties necessary to prove a theorem correct [Sch01]. The content
Cont(T) of a theorem T states the proposition the theorem is about. It can
be compared to a first-order formula. However, the domain and the operations
necessary to express Cont(T') are given separately in a signature Sig(T'). This al-
lows to distinguish between the proposition of the theorem and conditions under
which it holds. This is further elaborated in the third component of a theorem T'.
Here, a set of properties Prop(T') is given. The intended meaning is that using
these properties Cont(T) can be proven correct. To enable easier deduction we
represent properties by predicate symbols. Thereby, the arity of these symbols
corresponds to the carriers and operations necessary to formulate the property
as a first order formula. Summarized we consider a theorem 7' as a triple

T = (Sig(T),Cont(T), Prop(T))

where the statements of Cont(T') and Prop(T) fit to the given signature Sig(T).
The other way round Sig(T") should not include more than necessary for the
statements given in Cont(T) and Prop(T). Note, that we do not use a formal
definition of properties in the sense of first-order logic here. We assume that the
meaning of a property is indicated by its name, that is by the chosen predicate
symbol. Consider, for example, the following theorem T'.

Let R be a (commutative) ring. Then {0} is an ideal in R.

Then we get in our notation
Cont(T) = {0} is an ideal in R.

It is a straightforward task to expand the right-hand phrase ”{0} is an ideal
in R” into a first-order formula. More importantly, the signature necessary to
formulate this proposition is

Sig(T) = (R, +’ *)0)’

that is the symbol 1 usually part of a ring signature is not included. Furthermore,
in order to prove that {0} is an ideal in R it is only necessary that + is associative,
provides a right zero as well as right inverses and that + and * are distributive.
So we get

Prop(T) = {associative(R, +), right-zero(R, +,0),
right-inverse(R, +,0), distributive(R, +, %)},

that is the properties connected with T' are much weaker than the properties of
a ring required in the original version of the theorem. Note that the arguments
R,+,* and 0 can be interpreted as variable symbols since they represent arbi-
trary carriers and operations respectively. This will play an important role later
for the calculus.
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Domains D can be represented in a similar way. They also consist of a sig-
nature Sig(D) giving carriers and operations of the domain and a set Prop(D)
containing properties the domain fulfills, thus

D = (Sig(D), Prop(D)).

This works for both abstract domains such as rings or fields and concrete do-
mains. For example, the ring of integers Z would look like

Sig(Z) 2 (Z,+z,%z,0z,1z)
Prop(Z) O {associative(Z, +z), distributive(Z, +z, *z),
commutative(Z, +z), commutative(Z, xz),
Euclidean(Z, +z, *z,0z) }

where Z, +z, %z,0z and 1z are now constant symbols. Thus the approach allows
for the description of both domains and theorems with regard to properties of
domains and properties ensuring the correctness of theorems. This gives rise to
a straightforward criterion whether a theorem T holds in a domain D where D
may be both an abstract or a concrete domain. It has only to be checked whether
D provides both the necessary signature and the properties connected with 7',
thus

Cont(T) holds in D <= Sigp(T) C Sig(D) A Propp(T') C Prop(D).

The notations Sigp(T) and Propp(T) resp. mean that the variable symbols
occurring in the theorem T', actually in Sig(T'), are replaced by the corresponding
symbols of the domain D. Note that the failure of this test not necessarily implies
that a theorem does not hold in a domain, the check is relative to the properties
stated about the theorem and the domain. Reasoning is not necessary here, just
checking whether certain properties, that is predicates connected with domains
and theorems, are present. Nevertheless the deduced results are correct provided
that the meaning of the properties was defined properly. Note, that this method
also allows for straightforward error messages by collecting the properties of T
not included in the ones of D.

C A Calculus for Deducing Properties

The distinction between the content of a theorem and properties under which
this content can be proven allows for checking whether theorems hold in a do-
main by comparing sets of properties with respect to inclusion. However, this
setting is too restricted. For example, if a theorem T requires the property left-
distributive, and a domain D obeys the property distributive, it is not desirable
that left-distributive has to be added to the domain’s properties. The mathe-
matical database should rather be able to conclude that 7" holds in D, although
the sets of properties involved are not related by inclusion.

In the following we replace the subset relation between two sets P; and P» of
properties by a relation P, =—> P, with the meaning that every domain D that
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fulfills the properties of P; also fulfills the ones in Ps, or more formally
=P = P, = VD:D P, implies D = P,

where |= on the right-hand side is the model operator well-known from first-order
logic. Thus the content of a properties-based theorem T' = (Sig(T"), Cont(T"), Prop(T))
holds in a domain D = (Sig(D),Prop(D)) if both Sign(T) C Sig(D) and

E Prop(D) = Propp(T) are valid. Note that = P, => P, corresponds to the
usual semantic implication. However, in a mathematical database as proposed

in the last section the formulas occurring in P, and P» are given by a set of
predicates only, whose arguments are either variables or constants.

Obviously, an implication P, => P, cannot be checked in this generality,
in particular if we represent properties by predicate symbols without giving the
definition of properties as a first-order formula. Therefore we incorporate a set
of rules L describing basic relations between sets of properties. For example, the
following rule

{distributive(R, +, %)} — (A)
{left-distributive(R, +, x), right-distributive(R, +, %)}
states that structures (R, +, %) that are distributive are also both left- and right-
distributive. In this way a mathematical database is provided with additional
knowledge about the problem domain. The deduction of | P; => P, is then
performed relative to such a set of rules.

The calculus has two axioms. The first mirrors the fact, that an implication
P, = P, trivially holds, if P, C P;. The second axiom allows to incorporate
the external rules: if | — r € L, then o(l) implies o(r) where o is an arbitrary
substitution compatible with the signature. Further on, there are a rule allowing
to combine different implications P, and P3; both made from P; and a rule for
concatenating implications P, => P, and P, = P;.

P, C P

s (AX1)

% (AX2)
TELNTY e
- P = P, + P, = P, ®2)

|_P1:>P3

Provided that the rules in L are correct, that is if from I — r € L indeed follows
E o(l) = o(r) for the substitutions o used in a deduction, it is straightforward
to see that the calculus is correct. In other words, we have that (relative to L)
F P, = P, implies = P, = P,. However, if no deduction sequence is found
this does not necessarily mean that = P, = P, is not valid. The reason is that
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the calculus checks for implications with respect to the rule set L only. In other
words, if L does not contain enough knowledge about the problem domain, the
deduction of an implication may fail, although this implication is true.

The calculus can be extended with some straightforward derived rules, among
them

FPL—=PUP;
FP=D

F P =>P2, P C P3
l_P3:>P2

These rules can be easily proven correct in the sense that their consequences can
be deduced from their premises in the original calculus. To see how the calculus
works let us deduce the following implication.

F {associative(Z, +z), distributive(Z,+z,*z)} =
{associative(Z, +z),
left-distributive(Z, 4z, *z), right-distributive(Z, +z, *z)}

To do so, we assume that the distributivity rule A from above is present in the
set of rules L. Then, using Lemma L2, we get the following deduction sequence.
Note that the actual definition of the properties involved has no influence on the
deduction, that is the deduction is purely symbolic.

(1) F {associative(Z, +z), distributive(Z,+z,*z)} =
{associative(Z,+z)}
by AX1

(2) F {distributive(Z, +z,*z)} =
{left-distributive(Z, +z, *z), right-distributive(Z, +z, *z)}
by AX2 with A and o(R) = Z, o(+) = +z, o(x) = xz

(3) F {associative(Z, +z), distributive(Z,+z,*z)} =
{left-distributive(Z, +z, *z), right-distributive(Z, +z, *z)}
by L2(2)

(4) F {associative(Z, +z, distributive(Z,+z,*z)} =
{associative(Z, +z),
left-distributive(Z, +z, xz), right-distributive(Z, +z, *z)}
by R1(1,3)

Thus a theorem T requiring for instance the properties associative(R, +), left-
distributive(R, +, %) and right-distributive(R, +, *) holds in particular for Z.
Though for Z only the property distributive(R, +, *) has been stated, this can
be checked by a mathematical database using the calculus. Note that, by just
taking the identity substitution for o, the above sequence can be easily trans-
formed in a deduction sequence using R,+ and * instead of Z,+z and %z, that
is general lemmas can be shown.
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Finding a deduction sequence for an implication P, = P, requires some
amount of guessing in which way the set on the left-hand side of an impli-
cation has to be extended, that is guessing which property should be addi-
tionally considered in order to combine already deduced implications. This can
be seen, for example, in step (3) of the deduction above where using Lemma
L2 the set on the left-hand side is extended from {distributive(Z, 4z, *z)} to
{associative(Z, +z), distributive(Z, +z,+*z)}; any other extension would have
been a correct application of L2, too. Fortunately, this problem can be avoided
using backward propagation. The idea is, given an implication P, = P, to
successively remove properties from P, that are implied by the ones from P;.
We use the following three rules.

(B].) Replace FP = P byl_Pl =>P2\(P1 ﬂPg)

(B2) Replace F P, = P, by - P, = (P\(o(r) N P,)) U o(l) if there are a
rule ] — 7 € L and a substitution ¢ with o(r) N Py # 0.

(B3) Accept - P, = 0.

Thus an implication P, = P, is accepted, if it can be transformed into an
implication of the form P; = (). The rules are correct with respect to the above
calculus in the sense that every deduction starting with P, = P, and ending
with P = () using B1 - B3 can be translated into a correct sequence of the
original calculus. For the example from above we get

F {associative(Z, +z), distributive(Z,+z,%z)} =
{associative(Z, +z),
left-distributive(Z, +7, *z), right-distributive(Z, +z,*z)}
F {associative(Z, +z), distributive(Z,+z,*z)} =
{left-distributive(Z, +z, *z), right-distributive(Z, +z,*z)}
by B1
F {associative(Z, +z), distributive(Z,+z,*z)} =
{distributive(Z, +z, *z) }
by B2 with A and ¢(R) = Z, o(+) = +z, o(*) = *z
F {associative(Z, +z), distributive(Z,+z,*z)} = 0
by B1

which is accepted by B3. Note, that the only choice throughout the deduction
consists of determining which rule of L should be applied. Also the left-hand
side P; of the goal does not change throughout the whole deduction, so that
keeping track of the changes occurring in P, is sufficient. Finally it may be
worth mentioning that for rules I — r with a right-hand side r consisting of
one property only, B2 can be simplified to

(B2’) Replace F P, = P, by - P, = (P2\o(r)) U o(l) if there are a rule
Il — r € L and a substitution o with o(r) € P;.

Thus no intersection has to be computed in this case. Note, that this kind of rules
can be easily obtained by splitting up given rules as for example the distributivity
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rule from above into the following two ones.

{distributive(R, +,*)} — {left-distributive(R, +, )}
{distributive(R, +,*)} — {right-distributive(R, +, %)}

However, transforming all the rules of L this way would heavily increase the
number of steps in a deduction and only detailed experiments will show which
method is to prefer.

D Conclusion

The calculus presented provides mathematical databases with additional knowl-
edge: it allows to infer implications of sets of properties with respect to a given
set of basic rules. In the database both theorems and domains are represented
based on properties so that the implication of sets of properties is sufficient to
check whether a theorem holds in a particular domain. Thus theorems stated in
this general manner can be checked for validity in special domains easily.

Stating theorems with respect to properties rather than domains may at first
glance be somewhat unfamiliar. However, if working in a particular domain only,
the familiar representation of theorems can be easily regained. For example, a
theory of rings can be constructed as follows. First—if this has not already been
done—the database has to be extended by a domain R = (Sig(R), Prop(R))
with the appropriate signature and properties defining rings. Then all theorems
T with Sigr(T) C Sig(R) and |= Prop(R) => Propgr(T) can be extracted from
the database, in this way building a new database for rings.

Mechanized reasoning systems can be incorporated the following way. The-
orems and properties included in the library as well as rules used for deduction
can be proven with a mechanized reasoning system (provided that first-order
formulae has been attached to the properties’ predicate symbols). Note, that
this indeed is a realization of proving theorems and properties of domains on
the one side, and storing and reusing knowledge in a mathematical database on
the other side. Mechanized reasoning systems allowing to formulate and prove
properties-based theorems are for example Mizar [RT99], Imps [Far93], and The-
orema [BJK97].

The properties-based approach has applications in other areas, for instance in
the area of generic programming. Here, generic algorithms obey type parameters
which are instantiated later to get a running instance of the algorithm. Both
the feasibility and the correctness of such an instance depends on whether the
operations instantiated fulfill certain properties which is usually not checked.
Using an properties-based approach, that is providing generic algorithms and
possible instantiations with properties required resp. fulfilled, this can be done
in terms of the calculus presented.
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