Serge Autexier,
Heiko Mantel (Eds.)

Second Verification Workshop
VERIFY’02

affiliated with the 18th Conference
on Automated Deduction (CADE)
at FLoC’02

July 25-26, 2002
Copenhagen, Denmark

Preface

Traditionally, the verification of system properties has been one of the main areas of
application for automated theorem proving. On the one hand side, the formal development
of safety and security critical systems creates numerous deduction problems which are
not only interesting and challenging but also of practical relevance. On the other hand,
automated theorem proving offers the means to reduce the development burden in formal
developments, thus making them feasible.

The aim of the verification workshop is to bring together people who are interested in
the development of safety and security critical systems, in formal methods in general, in
automated theorem proving, and in tool support for formal developments. The emphasis
of the workshop is on the identification of open problems and the discussion of possible
solutions under the theme

What are the verification problems? What are the deduction techniques?

VERIFY’02 was held in connection with the Conference on Automated Deduction
(CADE) at FLoC in Copenhagen, Denmark. This year, 16 regular papers were submitted
from which 11 were selected for presentation at the workshop. These 11 accepted papers
and an abstract of the invited talk by Fabio Massacci about “Formal Verification of SET by
Visa and Mastercard: Lessons for Formal Methods in Security” are contained in this report.

The special focus of this years workshop was the application of formal methods to is-
sues in computer security. Submissions in this area were especially encouraged and joint
submissions to VERIFY and to the workshop on Foundations of Computer Security (FCS)
were possible. Almost two thirds of the accepted papers were security-related while the re-
maining papers covered other topics. Hence, the final program of VERIFY nicely reflected
the special emphasis on security without neglecting other important topics.

We would like to thank several people who helped us in the organization of this work-
shop. First of all, many thanks to all program committee members for their support and
productive collaboration. Many thanks to the organizers of FLoC’ 02 and CADE’02 for
their support in the organization and realization of this workshop, especially, to the FLoC
Workshop Chair Sebastian Skalberg, the CADE Workshop Chair Mateja Jamnik, and the
CADE Conference Chair Reiner Héhnle, for answering various curious questions that oc-
curred to us during the preparation of this workshop. Last but not least, many thanks to all
authors who submitted papers to this workshop.

Serge Autexier
Heiko Mantel
Workshop Organizers

Workshop Committee

Program Co-Chairs & Organizers

Serge Autexier, University of Saarbriicken, Germany

Heiko Mantel, German Research Center for Artificial Intelligence, Germany

Program Committee

David Basin, University of Freiburg, Germany
Iliano Cervesato, ITT Industries, USA
Riccardo Focardi, University of Venezia, Italy
Rainer Hdhnle, Chalmers University, Sweden
Nevin Heintze, Agere Systems, USA
Andrew Ireland, Heriot-Watt University, UK
Deepak Kapur, University of New Mexico, USA
Christoph Kreitz, Cornell University, USA
Fabio Martinelli, CNR Pisa, Italy
Fabio Massacci, University of Trento, Italy
Catherine Meadows, Naval Research Lab, USA
Steve Schneider, Royal Holloway, University of London, UK

Table of Contents

Invited Talk

F. Massacci

Formal Verification of SET by Visa and Mastercard: Lessons for Formal Meth-
0dS IN SECUTILYottt 1

Applications of ATP in Verification

D. Kroning

Application Specific Higher Order Logic Theorem Proving................. 5

V. Vanackere

The TRUST Protocol Analyser, Automatic and Efficient Verification of Cryp-
tographic Protocolso e 17

C. Benzmiiller, C. Giromini, A. Nonnengart, J. Zimmer

Reasoning Services in the MathWeb-SB for Symbolic Verification of Hybrid
SYSIEIMS . . ettt e 29

Logical Approaches

A. W. Appel, N. G. Michael, A. Stump, R. Virga

A Trustworthy Proof Checker.......... o il 41
E. Cohen
Proving Cryptographic Protocols Safe from Guessing Attacks 53

A. Armando, L. Compagna

Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to
Planning. . ..ot e 61

Security Protocols

C. Meadows
Identifying Potential Type Confusion in Authenticated Messages............ 71

G. Steel, A. Bundy, E. Denney

Finding Counterexamples to Inductive Conjectures and Discovering Security
Protocol Attackso 81

Specification and Verification

A. L. Herzog, J. D. Guttman

Eager Formal Methods for Security Management.......................... 91

A. Armando, M. P. Bonacina, A. K. Sehgal, S. Ranise, M. Rusinowitch

High-performance Deduction for Verification: A Case Study in the Theory of
N & 2 £ PP 103

B. Beckert, U. Keller, P. H. Schmidt

Translating the Object Constraint Language into First-order Predicate Logic. . 113

Panel

The Future of Protocol Verification..................ciiiiiiiiiiiiiinnnn..

Index of Authors

Session:
Invited Talk

Formal Verification of SET by Visa and
Mastercard: lessons for formal methods in
security

Fabio Massacci

Dipartimento di Informatica e Telecomunicazioni
Universita di Trento - Italy
http://www.ing.unitn.it/ “massacci - massacci@ing.unitn.it

Abstract. The Secure Electronic Transaction (SET) protocol has been
proposed by a consortium of credit card companies and software corpo-
rations to secure e-commerce transactions. When the customer makes a
purchase, the SET dual signature guarantees authenticity while keeping
the customer’s account details secret from the merchant and his choice
of goods secret from the bank.

SET verification has alwasy been a holy grail for security verification
and many papers do conclude with ”and this technique can be applied
to SET” and yet the forthcoming application is not so forthcoming. . .
In this talk, I report the results of the verification efforts on the SET
protocol, a joint work with G. Bella and L. Paulson from the University
of Cambridge. In a nutshell, we proved that the protocol is reasonably
secure. by using Isabelle and the inductive method we showed that the
credit card details do remain confidential and customer, merchant and
bank can confirm most details of a transaction even when some of those
details are kept from them.

And now, the question come: you verified SET, so what?

What can we learn for this verification effort? Are there lessons for se-
curity design? Which security designs are easier to verify? What kind of
techniques and tricks are necessary? What do we need to scale so that
security verification can become an easier task? I will give a personal
perspective on the problem.

1 Why SET (and real industrial protocol) are hard for
security verification

The last years have seen a substantial progress in the formal verification of secu-
rity protocols. Detailed analysis of cryptographic primitives, verification of Inter-
net standards, and substantial progress in the automation of model-checking and
theorem-proving procedures for security verification have boosted a field which
outsiders believe populated by ” Yet- Another-Weakness-of-Needham-Schroeder”
papers.

Though protocols like Kerberos IV [3], the Internet Key Exchange protocol
[10], the Cybercash protocol [5], the TLS/SSL protocol [12], the Cardholder

Registration Phase of SET[2] all yielded to automatic or semi-automatic tools,
full verification of SET (the Secure Electronic Transaction protocol by Visa and
Mastercard) has remained out of reach.

Lots of researchers have worked on the problem: for instance Meadows and
Syverson [11] have proposed a language for describing SET specifications but
have not actually verified the protocol. Kessler and Neumann [4] have extended
an existing belief logic with predicates and rules to reason about accountability.
Although accountability is not a stated goal of SET, it is clearly desirable. They
concentrate upon the Merchant’s ability to prove to a third party that the Order
Information originated with the Cardholder. Using the calculus of the logic,
they conclude by pen and paper that the goal is met, so the Cardholder cannot
repudiate the transaction. Equivalently, we have proved that the dual signature
being in the traffic implies that the Cardholder sent it. Stoller [14] has proposed a
theoretical framework for the bounded analysis of e-commerce protocols but has
only considered an overly simplified description of the payment phase of SET.
Hui and Lowe [5] have proposed a general theory to transform a complex protocol
into a simpler protocol while preserving any faults. However, they limited their
actual analysis to the Cybercash protocol.

Why is SET such a challenge for formal verification? The first obstacle is
its documentation [6-9] which takes over 1000 pages. The second obstacle is its
protocol. Academic protocols are typically short, straight-line programs; they
seldom go beyond two levels of encryption and generate few secrets. Even more
sophisticated protocols with more complex goals like Optimistic Fair Exchange
[1] or Group Protocols can be described into few pages. Internet protocols such
as IKE and TLS use cryptography rather sparingly compared to SET. SET has
many features that make its verification hard:

— multiple nested encryptions and several message fields which require abbre-
viations, make the manual unwinding of the specifications impossible and
restrict analysis to tools supporting equational reasoning;

— ubiquitous generation of random numbers and keys hampers the usual model-
checking technique to limit the state space (limiting different keys and nonces
to an handful) as it would not even allow a single execution to complete, let
alone two or more parallel ones;

— many alternative protocol paths make it impossible to single out the few key
roles used either by manual analysis (as in the strand space model) or by
model-checkers to restrict the search space;

— many different cryptographic algorithms (xor, symmetric keys, hash func-
tions, public key encryption and digital signatures, random padding) that
makes at list suspicious the assumption of perfect cryptography

Are they caused by bad design? Though some security expert may claim that
SET is badly designed because it was designed by a committee, other will rightly
claim that many of these features are actually needed in any practical protocol.
For sake of example take the presence of optional protocol paths: they are nec-
essary in any practical scenarion in which we remember that the task of security

protocol is first doing business, second doing it securely. Security-aware cus-
tomers may have pre-registered with a financial institution and thus secured
their credit cards against the merchant’s eyes. Other customers may decide to
trust the merchant and thus be content with a transaction secured against the
outside world. From a merchant’s perspective, all customers should able to con-
clude a purchase, whether they bothered to pre-register or not.

The complex structure of SET makes it a benchmark for security protocol
design and verification, whether or not it will be a commercial success. It is a
baseline test to check whether one can scale up to the point when direct manual
analysis no longer work, and human intuition can no longer guide fine-state
methods in getting the right ”configuration” for finding bugs.

We succeeded in analyzing an abstract, but still highly complex, version of
the SET purchase protocols. The difficulty consisted in digesting the specification
and scaling up. This is a major result: our methods scale to a level of complexity
where intuition falters but...we found out that our method, based on human
interaction with a semi-automatic but powerful prover, has reached a point where
the sheer complexity of the proofs, the size of what must be read (possible
protocol configurations that must be ruled out) will require further advances to
scale further.

In the talk I will give a personal perspective on the problem: what can we
learn for this verification effort? Are there lessons for security design? Which
security designs are easier to verify? What kind of techniques and tricks are
necessary? What do we need to scale so that security verification can become an
easier task?

References

1. N. Asokan, M. Schunter, and W. M. Optimistic protocols for fair exchange. In
Proc. of the 4th ACM Conf. on Comm. and Comp. Sec. (CCS-97), pages T7-17.
ACM Press and Addison Wesley, 1997.

2. G. Bella, F. Massacci, L. C. Paulson, and P. Tramontano. Formal verification of
cardholder registration in SET. In F. Cuppens, Y. Deswarte, D. Gollman, and
M. Waidner, editors, Computer Security — ESORICS 2000, LNCS 1895, pages
159-174. Springer, 2000.

3. G. Bella and L. C. Paulson. Kerberos version IV: Inductive analysis of the secrecy
goals. In Quisquater et al. [13], pages 361-375.

4. V. Kessler and H. Neumann. A sound logic for analysing electronic commerce
protocols. In Quisquater et al. [13].

5. G. Lowe and M. L. Hui. Fault-preserving simplifying transformations for security
protocols. J. of Comp. Sec., 9(3-46), 2001.

6. Mastercard & VISA. SET Secure Electronic Transaction: Fax-
ternal Interface Guide, May 1997. Available electronically at
http://www.setco.org/set_specifications.html.

7. Mastercard & VISA. SET Secure Electronic Transaction Specifica-
tion: Business Description, May 1997. Available electronically at
http://www.setco.org/set_specifications.html.

10.

11.

12.

13.

14.

Mastercard & VISA. SET Secure Electronic Transaction Specifica-
tion: Formal Protocol Definition, May 1997. Available electronically at
http://www.setco.org/set_specifications.html.

Mastercard & VISA. SET Secure Electronic Transaction Specifica-
tion: Programmer’s Guide, May 1997. Available electronically at
http://www.setco.org/set_specifications.html.

C. Meadows. Analysis of the Internet Key Exchange protocol using the NRL
Protocol Analyzer. In SSP-99, pages 216-231. IEEE Comp. Society Press, 1999.
C. Meadows and P. Syverson. A formal specification of requirements for payment
transactions in the SET protocol. In R. Hirschfeld, editor, Proceedings of Financial
Cryptography 98, volume 1465 of Lecture Notes in Comp. Sci. Springer-Verlag,
1998.

L. C. Paulson. Inductive analysis of the internet protocol TLS. ACM Trans. on
Inform. and Sys. Sec., 2(3):332-351, 1999.

J.-J. Quisquater, Y. Deswarte, C. Meadows, and D. Gollmann, editors. Computer
Security — ESORICS 98, LNCS 1485. Springer, 1998.

S. D. Stoller. A bound on attacks on payment protocols. In Proc. 16th Annual
IEEE Symposium on Logic in Computer Science (LICS), June 2001.

Session:
Applications of ATP in
Verification

Application Specific Higher Order Logic Theorem Proving*

Daniel Kroening
Computer Science Department
Carnegie Mellon University
kroening@cs.cmu.edu

Abstract

Theorem proving allows the formal verification of the correctness of very large systems. In order to increase the acceptance
of theorem proving systems during the design process, we implemented higher order logic proof systems for ANSI-C and Verilog
within a framework for application specific proof systems. Furthermore, we implement the language of the PVS theorem prover
as well-established higher order specification language. The tool allows the verification of the design languages using a PVS
specification and the verification of hardware designs using a C program as specification. We implement powerful decision
procedures using Model Checkers and satisfiability checkers. We provide experimental results that compare the performance of
our tool with PVS on large industrial scale hardware examples.

1 Introduction

1.1 Challenge

Formal verification of complex systems such as hardware and software designs is the major thrust within the theorem proving
community in the past years. Formal verification is applied in a wide range of domains. First of all, in the domain of safety critical
systems a full proof of correctness is most desirable. Examples of live-critical embedded systems include medical devices and
controllers in the avionics or automotive industry. Because of the high cost of design faults, theorem proving is already common
in this area. Examples include the formal verification of a fault tolerant communication bus protocol [PSvH99, Pfe00] using PVS
or the verification of tools for train borne control software systems [BT00] using ACL2 [KM96].

In case of the chip industry, design faults are expensive due to shortening time-to-market. A well known example is the bug in
Intel’s Pentium floating point unit [V. 95]. Despite of the progress of symbolic Model Checking, state of the art microprocessors
are still too complex for completely automated formal verification methods. Theorem proving is currently the only technique
known that is able to handle designs of this complexity. Examples of theorem proving within the microprocessor industry include
the work of David Russinoff [RusO0b] on the correctness of the floating point units of the AMD Athlon processor series using
ACL2 and of John Harrison on Intel’s Merced [Har99] using HOL [CGMS&6].

However, theorem proving has not yet become an integral part of the design process. Main obstacles are the high amount of
manual work required by theorem proving systems. We discuss two issues that are part of this problem. The first issue is the
language that is used for design, specification and verification, and the second is automation of the proof itself.

Design Language The formal verification of hardware and software designs usually includes that the original design, given in
a programming or hardware description language, first has to be translated to the native language of the theorem prover. If done
manually, this translation process is error-prone, since while formalizing the design, the person doing the translation is likely to
translate the “’desired behavior” instead of a bug.

*This research was sponsored by the Semiconductor Research Corporation (SRC) under contract no. 99-TJ-684, the National Science Foundation (NSF) under
grant no. CCR-9803774, the Office of Naval Research (ONR), the Naval Research Laboratory (NRL) under contract no. N00014-01-1-0796, and by the Defense
Advanced Research Projects Agency and the Army Research Office (ARO) under contract no. DAAD19-01-1-0485. The views and conclusions contained in this
document are those of the author and should not be interpreted as representing the official policies, either expressed or implied, of SRC, NSF, ONR, NRL, DOD,
ARO, the U.S. government or any other entity.

The design is often harder to understand after translation into the language of the theorem proving system. This holds
particularly for sequential programming languages, such as ANSI-C or Java. In case bugs are found while trying to prove the
correctness of the design, one is required to understand the nature of the bug given an output in the native language of the theorem
prover. The bug has to be fixed in the design language and then the translation has to be repeated.

An alternative approach is to write the design in the high level, native language of the theorem proving system. The design
is later on obtained by translating or compiling the high level languages into the design language. However, this approach is not
accepted in many areas because of existing code, that is to be re-used, and because of low efficiency of the translated code. This
is a particular problem for embedded systems designers, where code size and speed are crucial for the total cost of the product.

We therefore think that the language a theorem prover uses is of high importance for the acceptance of theorem provers as
a design tool. The theorem prover should accept both hardware and software designs in the original, low level design language.
This allows efficient designs and formal verification without translation into a specific theorem proving language. Feedback of
any kind, e.g., subgoals in case of an interactive theorem prover, or about bugs in the design, should be given in the original
language as well.

Specification Language While the design language is intended for efficient compilation of the hardware or software product,
the specification, in contrast, should be given in a concise high level language. In [Gor85], Gordon motivates the use of higher-
order logic for the specification of hardware. We believe that the specification language should not be application specific.
Higher-order logic ensures that the specification language applies to the widest range of applications. In [Rus97], Rushby
describes the advantages of sub-typing, as supported by PVS, for writing easily understandable and concise specifications.

Proof Automation Most large practical verification problems in the hardware and software domain are solved compositional,
i.e., the design is manually divided into smaller sub-problems that are then verified independently. This allows reducing the
large problem into a number of problems that are small enough to be solved by efficient automated decision procedures. These
decision problems are often very application specific. However, general purpose theorem proving systems often lack efficient
decision procedures for these problems. They then have to be solved manually, which is an unnecessary burden.

Both for low level programming languages, such as ANSI-C and Java, and, obviously, hardware design languages, decision
support for bit vector arithmetic is highly desirable. This includes operations such as addition, multiplication, shifting and bit-
wise operations on fixed-length bit vectors. However, in most existing theorem proving systems automated decision support for
bit vector arithmetic is neglected.

The correctness proof of control logic of hardware designs is often very tedious using theorem proving systems. However,
because of their small state space, it is a simple problem for Model Checkers. Thus, many theorem proving systems integrate
Model Checkers as decision procedure, e.g., PVS [ORS97, ORSSC98, Rus00a]. The theorem prover is used to abstract the data
paths, which makes Model Checking feasible.

Besides the lack of application specific decision procedures, the obstacle for the verification of large designs is the size of the
decision problems. In general, the decision procedures of most theorem provers are not optimized for large decision problems.
As an example, the correctness of many hardware designs, such as arithmetic units, is a pure propositional logic problem. Current
decision procedures are able to handle even complex designs with thousands of gates completely automated. However, such a
problem is just too big for the decision procedures of theorem provers such as ACL2 or PVS and requires a manual proof.

1.2 Related Work

Boulton et al. [BGG192] formalize the semantics of several hardware description languages in HOL. They provide support of
viewing problems in the original design language by translating back HOL to the original HDL. The specification can be done
in higher order logics. They do not discuss application specific decision procedures for the verification problem. In [Bou97], the
authors provide a framework to automate the integration of an application specific language into a formal reasoning tool. Support
for generating parsers and pretty-printers and internal representations is provided.

As described above, PVS integrates a Model Checker in order to decide smaller sub problems automatically. It also provides
means to abstract data types in order to make problems finite or small enough. It does not provide support to input or output
application specific languages. ICS [FORSO01], which will be integrated in future versions of PVS, provides automated support
for bit vector decision problems. However, bit-vector multiplication and shifting by variable distance is not supported.

While the PVS language allows concise specifications, the type checking problem becomes undecidable. Our experiments
with PVS show that the speed of the type check becomes critical for large projects; the verification of the actual proof is faster
than the type check. The type check has to be performed again after any change to the theory, so it is part of the interaction.

The Stanford Pascal Verifier [Luc79] takes Pascal as input language and contains decision procedures specialized for the task.
However, it does not contain further reasoning capabilities. Non-trivial verification conditions have to be verified by means of an
external, generic theorem prover. The extended static checker [DLNS98] takes Java programs as input and also contains decision
procedures that are specialized for this task; however, the tool focuses on specific, simple properties and does not aim at a full
proof of correctness.

Other application specific verification tools include AX / SPIN and the SLAM project for ANSI-C. However, these tools
lack a full higher-order logic theorem prover. The aim of the LOOP project is to formally verify Java programs by conversion
to the language of a variety of theorem provers. However, the proofs are done using the language of the theorem prover. The
specifications are done in a special language.

The combination of a functional programming language and theorem provers is much more natural than the combination of
sequential programming languages and theorem provers. Thus, there are theorem provers that accept functional programming
languages as input. ACL2 is both used as executable programming language and as specification language for the theorem prover.
Another example is OCaml and Nuprl. A significant advantage is that this allows the theorem prover to argue about its own code.

When designing application specific theorem proving systems, many components can be re-used. The SyMP framework
[Ber0O1, Ber02] allows the integration of application specific proof systems. The user interface and the proof manager are shared
among all proof systems. Every proof system can provide an application specific input/output language. As examples, SyMP
provides languages for security protocols and a language that is used for the verification of cache coherence protocols. In one of
the proof systems, the Model Checker SMV is tightly integrated by extending the Gentzen sequent with an explicit model and
temporal operators. The interaction with the user is done using the application specific language only.

However, the framework does not integrate the application specific languages by means of an internal higher-order logic
representation. The disadvantage of this approach is that it prohibits the sharing of proof commands and decision procedures.
No common specification language is provided.

1.3 Contribution

We provide theorem proving support for application specific design languages by extending the SyMP framework by a common,
higher-order logic internal representation. All design languages are converted into this representation. Design languages currently
implemented are ANSI-C, Verilog, and the SMV language. In addition to the design languages, we import the language of the
PVS theorem prover, with minor restrictions. This language is used as common specification language for all design languages.
In comparison with PVS, we improve the speed of the type check of PVS input files significantly. The user is able to pick the
language for the interaction. This can be any design language or the specification language. The language can be switched while
proving a theorem.

Besides the usual set of higher-order logic proof rules, we implement decision procedures that allow verifying larger sub-
problems. We implement a SAT based decision procedure for bit vector arithmetic including multiplication. We implement a
equality logic decision procedure that automatically applies user provided lemmas in the style of rewriting rules. In contrast to
prior approaches, the algorithm is SAT based and allows large decision problems and, on the propositional level, arbitrary rules.

1.4 Outline

In section 2, we describe the overall framework of our approach. In section 3, we describe the hardware description language
support, the ANSI-C support, and details of the PVS language module. In section 4, we describe the decision procedures.

2 Framework

Figure 1 shows an overview of the tool and the framework. Our tool is integrated into the SyMP (Symbolic Model Prover)
framework, which was developed by Sergey Berezin [Ber(02].

SyMP provides the proof manager, which manages the proof trees and controls the interactive proof construction. The proof
manager interfaces to the user interface and the proof systems. SyMP comes with an Emacs user interface, which is much like

SyMP : SyMP
User Interface Proof Manager
Proof System

[Language Modules] [Abstraction] [Decision Procedures]

ANSI-C ': Data Types CMU SMV
. SAT
VHDL Predicate Presburger
PVS Bitvector Arith.
Simplex

Figure 1: Tool Overview

the user interface of PVS. Flavio Lerda has implemented a new, graphical user interface in Java, which allows “push-button”
proof construction.

While the user interface and the proof manager are language and application independent, the proof systems of SyMP are ap-
plication specific. They provide language support by implementing the parser and pretty-printer. We extend the SyMP framework
by implementing one proof system that supports multiple, application specific languages by means of language modules.

A language module translates a given input language into a common, higher-order logic internal representation. It also
translates the internal representation back into the application specific language for displaying proof obligations in the original
language. This way, the engineer uses the design language during the whole design and verification process. The theorem prover
integrates well in the design process.

The proof system also contains a common set of proof rules and decision procedures, which are shared. Thus, the proof rules
and decision procedures are implemented only once and are used for all languages.

This concept also allows comparing designs and specifications that are equivalent but made in different languages. For
example, one can compare ANSI-C designs to hardware designs given in Verilog or PVS language.

Internal Representation The internal representation is a tree-like data structure allowing arbitrary higher-order logic. After
type check, every node in the tree is annotated with a type. Of all languages we implement, PVS has the most expressive type
system. We therefore use the same type system as implemented by PVS: A type consists of a base type and a predicate. The base
type is a basic type, such as the number type or an enumerative type, or combinations of basic types (tuples, records, ...). The
predicate allows generating sub-types from basic types.

3 Language Modules

3.1 Hardware Description Languages

We implement conversion into and from the internal representation for Verilog [TM91] and the language of SMV, an automated
Model Checker. This allows reading hardware designs directly into the tool. The formalization of the languages in higher-order
logics is simple. In case of Verilog, we assume that the design is given as clocked circuit with only one clock. Besides the
registers, the circuit has to be completely combinatorial. We therefore import a record type, which represents the registers, and a
transition function. We do not support any non-synthesizable language features. We do not generate theorems from Verilog files.

In case of the SMV language, we import a record type, which represents the defined variables and their types, the transition
relation, and an initial state predicate. We also import any given specification, which may contain temporal operators, as a
theorem.

3.2 ANSI-C

3.2.1 Formalization

The semantics of ANSI-C are defined in the 1999 ISO/IEC C Standard ("C99”) [Int99], henceforth referred to as ’the standard”.
They provide many options to the implementation of the compiler. Examples include the bit codings of the number types,
padding of structures, signedness of several data types, and the sub-expression evaluation order. This has both advantages and
disadvantages. The advantage is that ANSI-C can be used in many environments, and easily and efficiently adapts to many
different architectures.

The disadvantage is that the behavioral semantics of ANSI-C programs are quite often not well defined or depend on the
actual architecture. This proposes a challenge for formal verification.

One of the main parts of the project therefore is the formalization of the semantics of ANSI-C. For this task, we extend
Hoare’s logic with concepts required for ANSI-C such as functions with side effects, pointers and so on. We offer two ways to
handle the options allowed by the standard:

1. Fix it. One option is to allow the user to pick a particular option. For example, we require the user to define the number of
bits of the ANSI-C arithmetic data types such int and char.

2. Verify them all. Committing to one option is not useful in several cases. One example is the evaluation order of sub-
expressions. For example, in the expression

a = f(x) + g(x);

the order in which the functions £ and g are called is not defined by the standard. The compiler may call them in any order.
In this situation, we require that the behavior of the circuit shall match the behavior of the program regardless of the order
in which f and g are executed, i.e., we allow the program to pick an ordering nondeterministically.

Another example is the semantics of several operators, such as bit-wise shifting. These operands only return well-defined re-
sults on signed integers in case the operands are not negative. We return an arbitrary result, which is chosen nondeterministically,
in case an operand is negative.

We formalize the semantics of the ANSI-C standard using an extended but traditional Hoare logic, which is easily embedded
within higher-order logic. Hoare’s logic allows tools that are intuitive to use for software engineers since technical details such
as program counters (PC) are hidden by the logic.

Using the traditional Hoare axioms, the proof of correctness of the program is constructed by beginning at the end of the
program. Using the traditional axioms, we conclude rules that allow to construct the proof in program execution order, which is
more intuitive for engineers. This is the forward-version” of the assignment axiom:

{3a’ : pla/a’] Aa = tla/ad']} S{q}
{p} a=t; S {q}

After skolemization of the existential quantifier, this rule technically is just variable renaming, which can be performed
automatically and efficiently.

There is a similar rule for arrays, which includes constraints for the array bounds in order to assert that the semantics of the
array access are well-defined. Note that most security flaws in software systems written in ANSI-C are caused by out-of-bounds
pointers.

{3d’ : pla/a’] Nalj] = { Z[,(E]/]a/] it:eriw. }S{q},i > 0 A < size(a)

{p} alil=t S {q}
There are similar rules for all other ANSI-C constructs, such as for, switch, function calls and so on.

3.2.2 Pointers and Dynamic Memory

ANSI-C programs make heavy use of pointers. They are used to implement arrays and pass-by-reference for function call
arguments.

Let V be the set of variables (before renaming), and let F be the set of functions. We assume that both are disjunct. Further-
more, the special symbol NULL must not be an element of either set.

Pointers are modeled as tuple with two components (v, 0). The first component v is an element of the set of variables (before
renaming), the set of functions, or the special value NULL. Let p.v denote the first component of pointer p, p.o the second.

p=(v,0)
p.v € VUF U{NULL}

If p.v is an element of the set of variables, p.o is used to denote the offset within that variable. Otherwise, p.o is not used.
Pointers are dereferenced using the following rule: if p.v is equal to variable a € V and p.o is within the bounds of the variable,
*p 1s equal to a. Variables that are not of an array type have size 1.

pv=aApo>0Apo<size(a) = *p=alp.o

Example: Consider the following code fragment:

int al4], b, *p;
if(x) p=&al2]; else p=&b;

After the execution of the second line, the pointer p may have two values, depending on z: (a, 2) or (b, 0).

In many cases the constant propagation provides fixed values for both components. In this case, a read or write access to
a dereferenced pointer is handled just as a variable read or write access. However, in practice there are multiple possibilities if
assignments are made to pointers that depend on input variables. In this case, a case split that considers all possible values of the
two components is performed. This can yield significant blowup.

We optionally add subgoals that assert that p points to a valid variable and that the offset is within the bounds of the variable
(left hand side of implication above). This allows checking whether exceptions can occur.

Pointer Arithmetic Pointer arithmetic on p is performed by bit vector arithmetic on p.o:
p+i = (pv,p.o+i)
The difference of two pointers is only defined if the pointers point to the same variable a € V. We add a subgoal p.v = q.v.

pv=aANqu=a — pP—q=p.0—(qg.0

Dynamic Memory Allocation We verify programs that make use of dynamic memory allocation, e.g., for dynamically sized
arrays or data structures such as lists or graphs. This is easily realized by replacing every call to malloc or calloc by the
address of a new variable. For this, we assume that the type of the new variable is given by ether an explicit or implicit type cast
to a pointer that points to a variable of type . In case of malloc, let z be a new variable of an array type with elements of type
t and size s/sizeof (t). We assert that s is an integer multiple of sizeof (t).

(t *) malloc(s) — &z

In case of calloc, let n denote the number of elements to be allocated and s denote the size of each element. We add a
subgoal that asserts that s matches sizeof (¢). Let z be a new variable of an array type with elements of type ¢ and size n.

(t *) calloc(n, s) — &x

10

{-1} output == 0

[-2] factor2 == in2
[-3] factorl == inl
{

while (factorl != 0)

{
if (factorl & 1) output = output + factor2;

factorl = factorl >> 1;

factor2 = factor2 << 1;
assert (output == inl * in2 - factorl * factor2);
}
}
[1] output == inl * in2

Figure 2: Combination of Hoare Triple and Gentzen sequent

3.2.3 Proof Construction for ANSI-C Programs

Using Hoare’s axioms, and given that loops have an upper run-time bound, the ANSI-C program can be transformed into a
Boolean propositional formula completely automated by a proof strategy. Also given that the specification written in bit vector
logic, the verification problem is within bit vector logic and therefore decideable. We also support arbitrary higher-order logic
properties given as PVS specification. In this case, the proof has to be constructed manually.

The user interaction is done using a variant of the Gentzen sequent: In the Gentzen sequent, the verification problem is

displayed as implication as follows:
/\ a; — \/ Cj
i J

We combine the Gentzen sequent and the Hoare triple as follows: the precondition is displayed as conjunction, and the
post-condition is displayed as disjunction:

{/\ a;} code {\/ ¢}

This allows using a consistent set of proof commands, such as copy and delete for the manipulation of sequents for both
pure Gentzen sequents and Hoare triples. See figure 2 for an example.

3.3 PVS Language as Specification Language

The language of the theorem proving system PVS was chosen as common specification language. It is well-established in contrast
to new approaches such as SAL [BGLT00]. As described above, the type check is time critical on large theories.

Restrictions We support the full set of language features of the PVS language with the following restrictions: For efficient
parsing, we require a semicolon after each definition. This is optional in the original PVS language. We do not allow overloading
the keyword TF (the parser is taken from [BBJT02]). We do not resolve overloading ambiguities using the type of the expression,
but rather only the type of arguments. Thus, the type of an expression only depends on the expression itself, never on its context.

We are using a state of the art microprocessor design as benchmark [BJO1, BBJT02]. The microprocessor contains an out-
of-order scheduler and a floating point unit. The design, specification and proof are done using PVS. Experiments show that
the type check is time critical since it is part of the interaction. For large context, the type check using PVS takes up to thirty
minutes. Our implementation takes less than four seconds for the same input. All times are obtained on a dual AMD Athlon with
1.5 GHZ and 3 GB of RAM. This result shows that our implementation is fast enough even for large designs that are too big for
generic theorem provers.

11

4 Decision Procedures

4.1 Overview

Traditional theorem proving puts to much burden, i.e., manual work, on the verification engineer. By adding strong decision

procedures as rule of inference, we can provide a very high degree of automation. Typically, the verification engineer splits

the whole design into smaller parts or modules, which can then be verified automatically by automated decision procedures.

The decision procedures that come with generic theorem provers are usually too slow for big decision problems. We therefore

implement efficient decision procedures for subgoals that are large. Furthermore, most are optimized for specific applications.
The following decision procedures are implemented:

e For simplification, we have implemented a simple constant propagation and canonization algorithm. This is similar to the
simplify rulein PVS.

o We implemented CMU SMV as decision procedure for smaller problems that include a model. Experiments showed that
SMV is particularly useful for the verification of liveness properties of microprocessor control circuits.

e We implemented a strong SAT based decision procedure for bit vector decision problems. In the context of this project,
the bit vector decision problems arise from the ANSI-C programs. We employ Chaff [MMZ*01] as SAT checker. This
decision procedure is described in more detail below.

e We integrated the Omega library [PW94] as decision procedure for Pressburger arithmetic.
¢ We implemented a variant of the Simplex algorithm for linear arithmetic on rational numbers.

e We implemented a rule based decision procedure using a SAT checker. This decision procedure is described in more detail
below.

4.2 Proving Bit-vector Equations using SAT

Using Hoare style inference rules, we reduce the problem to Boolean predicates on the state of the program. It is therefore left
to verify these equations. In case of ANSI-C programs and HDL specifications, these equations are bit-vector equations. We
implemented a decision procedure for such equations that translates these equations into CNF. The translation is done the same
way as done by BMC, i.e., by adding new variables. There is a set of alternative algorithms for bit vector decision problems
[CMR97, MRIS].

We implemented numerous operators, including shifting with variable distance and arithmetic operators including multipli-
cation. We made experiments using the SAT checker Chaff [MMZ*01].

The results are very promising unless nonlinear arithmetic is involved. Even large formulae are asserted within seconds,
given that they do not contain nonlinear arithmetic. We experienced an exponential blowup on equations that include nonlinear
arithmetic, as in the following example:

a : b&l#0

|
axb=(a<<1)*(b>> 1)+{ 0 : otherwise

This equation is the induction step of an ANSI-C program that does multiplication using left and right shifting (a has to be
large enough to prevent an overflow during the left shift operation).

4.3 Proving Equations using Rules and SAT

Because of the limits of the approach described above, we also implemented a rule based decision procedure for bit vector
equations. We convert the formula into a Boolean propositional formula by reducing all properties to equalities. These equalities
are mapped to Boolean variables. The claim and the equality based rules are passed to the SAT checker Chaff. This allows even
infinite data types such as natural numbers.

12

We have implemented rules for most common ANSI-C operators such as addition, multiplication, relational operators etc.
For example, if the sequent contains an expression such as a+b, we add a commutativity constraint

a+b=b+a

In case of arbitrary functions f we do not have any information about, we just make them uninterpreted using congruence
closure by adding

a=b= f(a) = f(b)

as constraint. The algorithm queries all theorems and lemmas that have been verified so far and adds all appropriate theorems as
constraint.

This certainly provides no completeness, but is able to decide many equations that arise from practical examples completely
automated. The algorithm is very fast, and the generated CNF formulae typically only have a few thousand variables and are
verified in less than a second by Chaff.

5 Conclusion and Future Work

We illustrated how to combine several completely different application specific design languages within one common higher-
order logic theorem proving framework. We describe a tool implementing ANSI-C, Verilog, SMV, and PVS language.

Future work includes the addition of more design languages such as VHDL and object oriented languages like Java and C++,
and more application specific decision procedures. In particular, for modular reasoning about languages with pointers or objects
a decision procedure for a logic like separation logic is desirable.

References

[BBJ*02] Christoph Berg, Sven Beyer, Christian Jacobi, Daniel Kroning, and Dirk Leinenbach. Formal verification of the
VAMP microprocessor (project status). In Witold Charatonik and Harald Ganzinger, editors, Symposium on the
Effectiveness of Logic in Computer Science (ELICS02),, pages 31-36, 2002. Technical Report MPI-1-2002-2-007,
Max-Planck-Institut fiir Informatik, Saarbruecken, Germany.

[BerO1] Sergey Berezin. The SyMP tool. http://www.cs.cmu.edu/ modelcheck/symp.html,2001.

[Ber(02] Sergey Berezin. Model Checking and Theorem Proving: a Unified Framework. PhD thesis, Carnegie Mellon
University, January 2002.

[BGGT92] R. Boulton, A. Gordon, M. Gordon, J. Harrison, J. Herbert, and J. Van Tassel. Experience with embedding hard-
ware description languages in HOL. In V. Stavridou, T. F. Melham, and R. T. Boute, editors, Proceedings of
the IFIP TC10/WG 10.2 International Conference on Theorem Provers in Circuit Design: Theory, Practice and
Experience, volume A-10 of IFIP Transactions, pages 129—156, Nijmegen, The Netherlands, June 1992. North-
Holland/Elsevier.

[BGL1t00] Saddek Bensalem, Vijay Ganesh, Yassine Lakhnech, César Mu noz, Sam Owre, Harald Ruef3, John Rushby, Vlad
Rusu, Hassen Saidi, N. Shankar, Eli Singerman, and Ashish Tiwari. An overview of SAL. In C. Michael Holloway,
editor, LFM 2000: Fifth NASA Langley Formal Methods Workshop, pages 187-196, Hampton, VA, jun 2000. NASA
Langley Research Center.

[BJO1] Christoph Berg and Christian Jacobi. Formal verification of the VAMP floating point unit. In Proc. 11th Advanced
Research Working Conference on Correct Hardware Design and Verification Methods (CHARME), volume 2144 of
LNCS, pages 325-339. Springer, 2001.

[Bou97] R. J. Boulton. A tool to support formal reasoning about computer languages. In E. Brinksma, editor, Proceed-
ings of the Third International Workshop on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’97), volume 1217 of Lecture Notes in Computer Science, pages 81-95, Enschede, The Netherlands, April
1997. Springer.

13

[BTOO]

[CGMS6]

[CMRY97]

[DLNS98]

[FORSO1]

[Gor85]

[Har99]

[Int99]

[KM96]

[Luc79]

[MMZ101]

[MR98]

[ORS97]

[ORSSC98]

[Pfe00]

[PSVH99]

P. Bertoli and P. Traverso. Design verification of a safety-critical embedded verifier. In M. Kaufmann, P. Manolios,
and J Moore, editors, Computer-Aided Reasoning: ACL2 Case Studies. Kluwer Academic Press, 2000.

A. Camilleri, M. Gordon, and T. Melham. Hardware verification using higher order logic. In From HDL Descrip-
tions to Guaranteed Correct Circuit Designs, pages 41-66. North-Holland, 1986.

David Cyrluk, Oliver Mdller, and Harald Ruef3. An efficient decision procedure for the theory of fixed-sized bit-
vectors. In Orna Grumberg, editor, 9th International Conference on Computer-Aided Verification (CAV’97), volume
1254 of Lecture Notes in Computer Science, pages 60-71. Springer-Verlag, 1997.

David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe. Extended static checking. Technical
Report 159, Compaq SRC Research Report, 130 Lytton Ave., Palo Alto, 1998.

Jean-Christophe Fillidtre, Sam Owre, Harald RueB, and N. Shankar. Ics: Integrated canonizer and solver. In
Gérard Berry, Hubert Comon, and Alain Finkel, editors, Proceedings of the 13th Conference on Computer-Aided
Verification (CAV’01), volume 2102 of Lecture Notes in Computer Science. Springer-Verlag, 2001.

Michael J. C. Gordon. Why higher-order logic is a good formalism for specifying and verifying hardware. In
George J. Milne and P. A. Subrahmanyam, editors, Proceedings of the 1985 Edinburgh Workshop on VLSI Design:
Formal Aspects of VLSI Design, pages 153—177, Edinburgh, Scotland, 1985. North Holland.

John Harrison. A machine-checked theory of floating point arithmetic. In Yves Bertot, Gilles Dowek, André
Hirschowitz, Christine Paulin, and Laurent Théry, editors, Theorem Proving in Higher Order Logics: 12th Interna-
tional Conference, TPHOLs’99, volume 1690 of Lecture Notes in Computer Science, pages 113-130, Nice, France,
September 1999. Springer-Verlag.

International Organization for Standardization. ISO/IEC 9899:1999: Programming languages — C. International
Organization for Standardization, Geneva, Switzerland, 1999.

Matt Kaufmann and J. S. Moore. ACL2: An industrial strength version of nqthm. In Proc. of the Eleventh Annual
Conference on Computer Assurance, pages 23-34. IEEE Computer Society Press, 1996.

D. Luckham. Stanford Pascal verifier user manual. Technical Report STAN-CS-79-731, Stanford University Com-
puter Science Department, March 1979.

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff: Engineering an
efficient SAT solver. In Proceedings of the 38th Design Automation Conference (DAC’01), June 2001.

M. Oliver Méller and Harald RueB3. Solving bit-vector equations. In Ganesh Gopalakrishnan and Phillip Windley,
editors, Formal methods in computer aided design: Second International Conference, FMCAD’98, number 1522 in
LNCS, pages 36—48. Springer-Verlag, 1998.

Sam Owre, John Rushby, and N. Shankar. Integration in PVS: tables, types, and model checking. In Ed Brinksma,
editor, Tools and Algorithms for the Construction and Analysis of Systems TACAS ’97, number 1217 in Lecture
Notes in Computer Science, pages 366—-383, Enschede, The Netherlands, April 1997. Springer-Verlag.

Sam Owre, John Rushby, N. Shankar, and David Stringer-Calvert. PVS: an experience report. In Dieter Hutter,
Werner Stephan, Paolo Traverso, and Markus Ullman, editors, Applied Formal Methods—FM-Trends 98, volume
1641 of Lecture Notes in Computer Science, pages 338-345, Boppard, Germany, October 1998. Springer-Verlag.

Holger Pfeifer. Formal verification of the TTP group membership algorithm. In Tommaso Bolognesi and Diego
Latella, editors, Formal Methods for Distributed System Development Proceedings of FORTE XIII/ PSTV XX 2000,
pages 3—18, Pisa, Italy, October 2000. Kluwer Academic Publishers.

Holger Pfeifer, Detlef Schwier, and Friedrich W. von Henke. Formal Verification for Time-Triggered Clock Syn-
chronization. In Charles B. Weinstock and John Rushby (eds.), editors, Dependable Computing for Critical Ap-
plications 7, volume 12 of Dependable Computing and Fault-Tolerant Systems, pages 207-226. IEEE Computer
Society, January 1999.

14

[PWO4]

[Rus97]

[Rus00a]

[Rus00b]

[TM91]

[V.95]

William Pugh and David Wonnacott. Static analysis of upper and lower bounds on dependences and parallelism.
ACM Transactions on Programming Languages and Systems, 16(4):1248—1278, July 1994.

John Rushby. Subtypes for specifications. In Mehdi Jazayeri and Helmut Schauer, editors, Software Engineering—
ESEC/FSE ’97: Sixth European Software Engineering Conference and Fifth ACM SIGSOFT Symposium on the
Foundations of Software Engineering, volume 1301 of Lecture Notes in Computer Science, pages 4—19, Zurich,
Switzerland, September 1997. Springer-Verlag.

John Rushby. Theorem proving for verification. In Franck Cassez, Claude Jard, Brigitte Rozoy, and Mark Dermot
Ryan, editors, Modelling and Verification of Parallel Processes: MOVEP 2000, number 2067 in Lecture Notes in
Computer Science, pages 39-57, Nantes, France, June 2000. springer Verlag.

David Russinoff. A case study in formal verification of register-transfer logic with ACL2: The floating point adder
of the AMD Athlon processor. In Warren A. Hunt Jr. and Steven D. Johnson, editors, Formal Methods in Computer-
Aided Design, Third International Conference (FMCAD 2000), volume 1954 of Lecture Notes in Computer Science.
Springer Verlag, 2000.

Donald E. Thomas and Philip Moorby. The Verilog Hardware Description Language. Kluwer,
Boston;Dordrecht;London, 1991.

V. Pratt. Anatomy of the Pentium Bug. In P. D. Mosses, M. Nielsen, and M. 1. Schwartzbach, editors, TAPSOFT’95:
Theory and Practice of Software Development, number 915 in Lecture Notes in Computer Science, pages 97-107.
Springer Verlag, 1995.

15

The TRUST protocol analyser
Automatic and efficient verification of cryptographic
protocols

Vincent Vanackeére
Laboratoire d’Informatique Fondamentale de Marseille
Université de Provence,
39 rue Joliot-Curie, 13453, Marseille, FRANCE

vanackere@cmi.univ-mrs.fr

June 2002

Abstract

This paper presents TRUST, a verifier for cryptographic protocols. In our framework, a
protocol is modeled as a finite number of processes interacting with an hostile environment;
the security properties expected from the protocol are specified by inserting logical assertions
on the environment knowledge in the processes.

Our analyser relies on an exact symbolic reduction method, combined with several tech-
niques aiming to reduce the number of interleavings that have to be considered. We argue
that our verifier is able to perform a full analysis on up to 3 parallel (interleaved) sessions
of most protocols. Moreover, authentication and secrecy properties are specified in a very
natural way, and whenever an error is found an attack against the protocol is given by our
tool.

Keywords: cryptographic protocols, symbolic verification, state explosion problem

1 Introduction

The aim of this paper is to present TRUST, a verifier for cryptographic protocols relying on a
symbolic reduction method introduced in [ALOO] and further developed in [ALVO1]. Although
the symbolic reduction system allows us in theory to perform an exact analysis of an otherwise
infinitely branching system, we face the same problem as in most model-checking tools: as the
number of parallel threads goes up, the number of possible interleavings make the verification task
harder - if not impossible - because of the state-space explosion problem. It should be noted that
the verification problem we are discussing here was shown to be NP-complete [ALV01, RT01].

Our primary goals while developing this implementation were efficiency and ease of use. Most
notably we use an eager reduction procedure in order to minimize the number of interleavings that
have to be considered. Together with that, we have explored - and used - several symmetry and
partial order reductions techniques. The end result is that our tool is able to handle up to 2 or
even 3 parallel sessions of most protocols. We found by experience that inserting assertions within
a protocol is a very natural way to specify security properties and is a good way to very quickly
find a flaw. Our verifier handles nonces, symmetric and asymmetric keys; assertions consist of
arbitrary boolean combinations of tests on equality, secrecy and authentication.

17

2 Theoretical background

Our formal model is presented in details in [ALV01], therefore we will only give a short presentation
here.

We use the common Dolev-Yao model [DY83], where the network is under full control of an
adversary that can analyse all messages exchanged and synthetize new ones. We work under
the perfect encryption assumption, thus messages can be viewed as terms in a free algebra. We
distinguish between basic names (agent’s names, nonces, keys,...) and composed messages (pairs
< _, > and encrypted terms E(_,)), with the restriction that only basic names may be used
as encryption keys. The set of names is denoted by N and the full set of messages by M.

2.1 Analysis and synthesis

The intruder capabilities are formally defined from two operators doing the analysis and synthesis
on a set of messages.
We assume a (computable) relation D C A x A with the following interpretation:

(C,C") € D iff messages encrypted with C' can be decrypted with C’.

We define Inv(C) = {C’" | (C,C") € D}. Further hypotheses, on the properties of D allow to
model hashing, symmetric, and public keys. In particular: (i) for a hashing key C, Inv(C) = 0,
(ii) for a symmetric key C, Inv(C) = {C}, and (iii) for a public key C there is another key C’ such
that Inv(C) = {C'} and Inv(C’) = {C}.

Given a set of terms T we can now define the S (synthesis) and A (analysis) operators as
follows :

e S(T) is the least set that contains 7" and such that:

ti,t2 € S(T) = (t1,t2) € S(T)
t1 € S(T),t2€e TNN = E(t1,t2) € S(T) .

e A(T) is the least set that contains T and such that:

(t1,t2) € A(T) = t; € A(T), i=1,2
E(t1,t2) € A(T),A(T)NInv(t2) Z0 = t1 € A(T) .

As an example, if T = {E((4,B),K),K~'}, then A(T) = T U {A,B,(A,B)} and e.g.
E(A, K1) € S(A(T)). Using these definitions, the set of messages that an adversary can de-
rive from T is S(A(T)); a trivial - but quite important - remark is that this set will be infinite as
soon as T is not empty.

2.2 Processes and configurations : semantics

In our framework, a protocol is modelled as a finite number of processes interacting with an envi-
ronment. As our process syntax includes the parallel composition - commutative and associative -
of two processes, we can define a configuration as a couple (P,T') where P is a process and T a set
of terms representing the current adversary knowledge, that is the initial knowledge augmented
with all messages emitted by the participants of the protocol so far.

Figure 1 gives the semantic rules as a reduction system on configurations. Informally, a process
can either:

(1) Write a message : the term is simply added to the environment knowledge.

(?) Read some message from the environment : this can be any message the adversary is able
to build from its current knowledge.

18

M (writet.P | P',T) — (P | P, TU{t}ift e M
(?) (readz.P | P',T) — ([t/z|P | P, T)if t € S(A(T))
(d) (z «— dec(E(t,C),C").P | P',T) — ([t/x]P | P',T)if C' € Inv(C),t € M
O ol)PP (P P e
, (P|P.,T) if Er
(a) (assert(p).P | P',T) — { orr if i
(m1) (t=tP, P | P,T) — (P | P\ Tift e M
(m2) (t=t1P,P| P,T) — (P | P,)1ft7£t t,t' e M

Figure 1: Reduction on configurations

(d) Decrypt some (encrypted) term with a corresponding inverse key.

)
(pl) Perform some unpairing (the symmetric rule (pr) is not written).
(m;) Test for equality/inequality of two messages.

)

(a
Missing from the figure is the terminated process, denoted by 0, as well as the syntax of the
assertion language, that will be presented in the next section. err denotes a special configuration
that can only be reached from a false assertion.
In our model, a correct protocol is a protocol that cannot reach the err configuration - or, put
in other words, a protocol such that all assertions reachable from the initial configuration of the
system hold.

Check if some assertion ¢ holds.

2.3 Specifying security properties through assertions

The full assertion language we consider is the following:
pu= true| false |t =t |t #t' | known(t) | secret(t) | 1 A @2 | p1 V 2

This is equivalent to saying that we consider arbitrary boolean combinations of atomic formulas
checking the equality of two messages ¢ = ¢’ and the secrecy of a message secret(t) with respect
to the current knowledge of the adversary. As shown in [ALVO01], this language allows to easily
express authentication properties such as aliveness and agreement ([Low97]).

We take as a short example the following 3 message version of the Needham-Schroeder Public
Key protocol:

A — B : {na, A}Pub(B)
B — A: {na,nb}puya)
A— B: {nb}pub(B)

In our framework, the protocol can be modeled as follows (the open variables are to be instan-
tiated by the process and peer identities before the actual symbolic reduction):

Init(myid, resp) : fresh na.
write E({na, myid), Pub(resp)).
read e. (na’,nb) < dec(e, Priv(myid)). [na
write E(nb, Pub(resp)).
assert(secret(nb) A auth(resp, myid, na, nb)). 0

"' = nal.

Resp(myid,init) : read e. (na,a) < dec(e, Priv(myid)). [a = init].
fresh nb.
Writ€auth(myid,init,na,nb) B ((na,nb), Pub(init)).
read €. [¢/ = E(nb, Pub(myid))].
0

19

The instruction “write, s (msg)t” is some syntactic sugar to be replaced by “write (E(msg, Kauth), t)”,
whereas the assertion “auth(msg)” is a shortcut for “known(E(msg, Kauh))”. These notations are
actually supported by our tool and their usage reveals itself quite convenient in practice. In our
example, the initiator specifies that at the end of its run of the protocol, the nonce nb must be
secret and expects an agreement with some responder on the nonces na and nb.

2.4 Symbolic reduction

The main difficulty in the verification task is the fact that the input rule (?) is infinitely branching
as soon as the environment is not empty. In [AL00, ALV01] it was shown that it is possible to solve
this problem by using a symbolic reduction system that stores the constraints in a symbolic shape
during the execution. As an example, the input rule (read x.P,T) — ([t/x]P,T),t € S(A(T))
becomes (readx.P, T, F) — (P, T,(E; x : T)). The complete description of the symbolic reduction
system can be found in [ALV01]. The main property we rely on is the fact that the symbolic
reduction system is in lockstep with the ground one and provides a - sound and complete - decision
procedure for processes specified using the full assertion language described in section 2.3.

3 Techniques for an efficient verification

Although the symbolic reduction system is satisfying from a theoretical point of view, an inherent
limitation is that it does not handle iterated processes (as the general case for iterated processes
is undecidable). Thus, in order to verify a protocol against replay attacks and/or parallel sessions
attacks, it is quite important to handle cases where there is a finite - even if small - number of
participants playing each role.

Of course, as the number of parallel threads goes up, the number of possible interleavings make
the verification task harder - if not impossible - because of the state explosion problem. The main
techniques that have been used/introduced in our tool are:

Depth-first search: this strategy brings here a lot of advantages, the main one being that no
state needs to be explicitly saved (as all the necessary information indeed lies within the
continuation of the program). As a consequence, the memory requirement of our tool is
almost constant and quite low.

Carefully chosen data structures: substitutions are heavily used during the symbolic reduc-
tion process. By using a representation of terms as DAGs (directed acyclic graphs) where all
variables are shared, substitutions on variables are done in O(1) time. Other data structures
(such as the one representing the environment knowledge) were chosen in order to allow
for incremental computation whenever possible. These classical algorithmic optimizations
do make a huge difference on the execution time: namely, the speed-up of our current tool
w.r.t. our first prototype - mesured by the number of reductions per second - is greater than
500.

Pruning of equivalent schedulings of parallel processes: it is quite important not to ex-
plore all interleavings, but only those that have a significance. For this purpose, we have
introduced an eager reduction technique that allows in some cases huge savings on the com-
putation time. Aside from that, symmetry in the system is also exploited in order to further
cut the state space.

We will now proceed in giving more details on our eager reduction procedure (section 3.1) and
on the way we handle symmetry in the system (section 3.2). We then give a small note on other
partial reduction techniques that may be applied.

20

3.1 Eager reduction

When verifying a system of parallel processes, only a small number of all possible interleavings
need to be explored, because a lot of reduction steps are independent from each other'. While
conceptually simple, the eager reduction procedure we introduced in our verifier has - to our
knowlegde - never been described in the literature; this section is devoted to a high-level description
of our method. Technical details and proofs can be found in appendix A.

In the following, we study the reduction of a configuration (P; | ... | P, T), denoted by
(IIP;, T). We will not allow the rewrite of P | Q as @ | P, therefore we can define the relation —,
as a reduction on the z-th process of the parallel composition.

The eager reduction procedure relies on the fact that when considering a sequence of reductions
(HPi(l),Tl) — s> (HPZ-("),Tn) where S(A(T1)) = S(A(T,)) (i-e. the adversary knowledge does
not increase during the reductions), then all reductions on the different processes are independent
from each other. This leads to define a “big step” reduction that amounts to reducing one process
until it writes some term that was previously unknown to the environment, thus we define the
algorithm for an eager reduction as follows:

Algorithm 3.1 Step of eager reduction of (ILP;, T):
1. Choose j € [1,n].
2. ¢c:= (IIP, T)
3. Choose ¢’ such that ¢ —; .
4. If ¢/ = (IIP,T") and S(A(T")) = S(A(T)) then { c:= ¢ ; go to step 3 } else return ¢’

A more formal definition, together with a proof of correctness and completeness, is given in
appendix A.

From ground eager reduction to symbolic eager reduction

We stress on the fact that although the eager reduction procedure has been described and proved
here only on the ground reduction system, our verifier in fact relies on the symbolic counterpart
of it. The symbolic eager reduction procedure matches closely the ground one, the only difference
being that we (symbolically) reduce a process until it reaches error or writes a term symbolically
unknown to the environment. Completeness of the symbolic eager reduction procedure follows
from the completeness of the ground reduction (but is beyond the scope of this paper).

3.2 Exploiting symmetry

When studying several parallel sessions of protocols, it is useful to define protocol roles, which are
parametric processes. All parameters will range over a finite set of principals names {Ido, ..., ld,}.
In our verifier, the identifier Idy is reserved to name a compromised participant, whereas all the
names {Idy,...,Id,} are supposed to play a symmetric role in the protocol: then, we instanciate
the parameters using basic injective renaming in order to generate all possible cases.

As a consequence of the completeness of eager reduction, we only need to consider “eager
traces”; therefore, whenever some role is involved in a reduction to error, there is one process
among those of that role that will do a step of eager ground reduction at first. Thus we can
start the reduction by using only one process of each role, and add another process of some role
only after the last introduced process of the same role has performed a full step of eager reduction.
Although this may look simplistic, this allows a very important reduction in the number of states
having to be explored, even when considering only 2 parallel sessions of a protocol.

LAs a trivial example, consider two processes in parallel, one performing a decryption, and the other one an
equality test: the order in which the two reduction steps are done does not affect at all the reachability of an error.

21

3.3 Going further...

We have also investigated some more advanced partial order techniques in order to further reduce
the size of the state-space to be explored: it is namely possible, at the symbolic level, to detect that
some eager reduction step was indeed independent from a previous one in the same trace. Then
we can restrict the search to only explore traces that are in some (lexicographical) normal form
(see [DM96]). Unfortunately, the proof of completeness for these methods become quite involved,
and the gain observed in practice was not as important as expected: further investigation in this
area is still needed.

4 Experimental results

TRUST was written in OCAML, and the syntax it accepts is very close to the one of the example
from section 2.3 (see appendix B for a real example). This section provides some experimental
results for our tool. Reassuring is the fact that our tool successfully found all known flaws on all
protocol we have tried so far - even thoses the author was not yet aware of...

Benchmarks

Figure 2 gives some figures for the full analysis of some typical protocols. For each protocol, we
detail the number of roles involved and give the time to do a full search depending on the number
of parallel (interleaved) sessions. In that benchmark, all roles parameters ranged over a set of
3 names {ldo, Id;,ld2}, Idg being the name of a compromised principal whose private keys were
initially known by the environment. All measures were done on a Pentium IIT at 733MHz, on
which the tool performs more than 750.000 basic reductions per second. The total time spent is
more or less proportional to the number of reductions done and, for instance, when verifying 3
interleaved sessions of the Needham-Schroeder protocol (with a key server), the verifier indeed
performs around 88.000.000 reductions, checking more than 2.900.000 assertions.

Protocol # roles | # sessions time
yahalom 3 1 < 0.01s
yahalom 3 2 12s
needham-schroeder 2 3 0.50s
needham-schroeder 2 4 22s
needham-schroeder (with a key server) 3 2 0.11s
needham-schroeder (with a key server) 3 3 115s
otway-rees 3 1 < 0.01s
otway-rees 3 2 1.90s
otway-rees 3 3 1940s
kerberos v5 4 1 < 0.01s
kerberos v5 4 2 15s
kerberos v5 4 3 ~ 3d

Figure 2: Times for the analysis of various protocols

Of course, we do not avoid the state explosion problem, but nevertheless the verification task
stays practical up to at least 2 or 3 parallel sessions for all the protocols we have tried so far.
Moreover, an interesting feature is that the memory usage of our analyser is almost constant and
quite small (around 1MByte, for all protocols tested so far).

Remark on the eager reduction: it should be noted that, depending on the protocol,
experimental results have shown that our eager reduction procedure - compared to the more
classical input/output interleaving semantics - gives improvements ranging from a factor of 2 to
more than 100...

22

Finding attacks...

Here follows an example of an attack as reported by our tool. This particular one was on a
(bad) variant of the Otway-Rees protocol introduced in [Pau97], whose full specification is given
in appendix B:

0:Init(Id1,Id2) sends <N1,Id1,Id2,Crypt(<N1,Id1,Id2>,K(Id1))>

1:Resp(Id1,Id0) gets <na,Id0,Idi,e>
1:Resp(Id1,Id0) sends <na,Id0,Idl,e,N2,Crypt(<na,Id0,Id1>,K(Id1))>

2:Serv(Id0,Id1) gets <na,Id0,Id1,Crypt(<nal,Id0,Id1>,K(Id0)),N1,Crypt(<na,Id0,Id1>,K(Id1))>
2:Serv(Id0,Id1) sends <na,Crypt(<na,N3>,K(Id0)),Crypt(<N1,N3>,K(Id1))>

0:Init(Id1,Id2) gets <N1i,Crypt(<N1,N3>,K(Id1))>
0:Init(Id1,Id2) sends Crypt(N4,N3)

0:Init(Id1,Id2) assert (Id2=Id0 or secret(N4))

A short explanation of the above example follows: Idg is the identity of a compromised prin-
cipal whose key K (Idg) is initially known by the environment, and the initiator makes the (false)
assertion that either it wanted to communicate with Idg (in that particular trace leading to error,
the initiator has identity ld; and wants to communicate with Ids), or the data it sent at the last
step must stay secret. This is actually not the case as clearly shown by the given attack.

It should be noted that by directly checking the secrecy of the key that the initiator gets at
the end of its protocol run, we get the following - much shorter - error:

0:Init(Id1,Id2) sends <N1,Id1,Id2,Crypt(<N1,Id1,Id2>,K(Id1))>

0:Init(Id1,Id2) gets <N1,Crypt(<N1,Id1,Id2>,K(Id1))>
0:Init(Id1,Id2) assert (Id2=Id0 or secret(<Idi,Id2>))

This is a typical example of a type-flaw attack; although complex keys are not directly handled
by our tool (namely, in our model, the pair <ld1,ld2> cannot be used as a valid encryption key),
it is nevertheless possible to find some of those attacks with our tool.

5 Conclusion

We have presented the TRUST protocol analyser, a fully automatic verifier for cryptographic
protocols. Our tool relies on a sound and complete symbolic reduction procedure: protocols are
specified by the use of logical assertions on secrecy and authentication, and whenever an assertion
is found to be invalid, an attack against the protocol is given. Our personal experience is that
the description and specification of protocols using roles (parametric processes) and assertions is
manageable even for non specialists, and is an easy way to find flaws in the protocols.

TRUST makes use of several techniques in order to alleviate the state space explosion problem.
Most notably, it takes advantage of an eager reduction procedure, together with some basic sym-
metry reduction techniques. Experimental results show that - although the verification problem
is actually NP-hard - our tool is able to handle efficiently 2 or even 3 interleaved sessions of most
protocols from the literature.

As a sidenote, we believe that the idea behind our eager reduction procedure is simple and
general enough to easily be adapted to other verification techniques such as those relying on tree
automatas [Mon99, Gou00].

More information on our tool can be found at [Trust]. We are currently working on extending
the symbolic decision method to particular cases when some processes - like a key server - can be
iterated.

23

References

[ALOO]

[ALVO1]

[DMY6]

[DY83]

[Gou00]

[Hui99]

[Low97]

[Mon99]

[Pau97]

[RTO1]

[Trust]

R. Amadio and D. Lugiez. On the reachability problem in cryptographic protocols. In
Proc. CONCURO00, Springer LNCS 1877, 2000. Also RR-INRIA 3915.

R. Amadio, D. Lugiez and V. Vanackére. On the symbolic reduction of processes
with cryptographic functions. RR-INRIA 4147, March 2001. To appear in Theoretical
Computer Science.

V. Diekert and Y. Métivier. Partial commutation and traces. In G. Rozenberg and
A. Salomaa, editors, Handbook of Formal Languages, Vol. 3, Beyond Words, pages
457-534. Springer-Verlag, Berlin, 1997

D. Dolev and A. Yao. On the security of public key protocols. IEEE Trans. on
Information Theory, 29(2):198-208, 1983.

J. Goubault. A method for automatic cryptographic protocol verification. In Proc.
FMPPTA, Springer-Verlag, 2000.

A. Huima. Efficient infinite-state analysis of security protocols. In Proc. Formal meth-
ods and security protocols, FLOC Workshop, Trento, 1999.

G. Lowe. A hierarchy of authentication specifications. In Proc. 10th IEEE Computer
Security Foundations Workshop, 1997.

D. Monniaux. Abstracting cryptographic protocols with tree automata. In Proc. Static
Analysis Symposium, Springer LNCS, 1999.

L. Paulson. Proving properties of security protocols by induction. In Proc. IEEE
Computer Security Foundations Workshop, 1997.

M. Rusinowitch and M. Turuani Protocol insecurity with finite number of sessions is
NP-complete. RR INRIA 4134, March 2001.

http://www.cmi.univ-mrs.fr/~vvanacke/trust/

24

A Appendix

Eager reduction : proof of correctness and completeness

For a ground configuration k = (IIP;,T), we define p(k) = S(A(T)). p(err) = 0. We note
k(j) = P;.
We will first state the main lemma on which all the eager reduction process is based :

Lemma A.1 If ki —; ko —; ks and p(k1) = p(ke), ks # err then 3ky(ky —; ky —; k3) and
puky) = p(ks).

PROOF. We assume i # j (else the result is trivial) and do a basic case analysis on the rules used
to reduce P; and P;. All rules but (?), (a) and (!) do not depend at all from the environment nor
modify it and thus the result holds whenever —;¢ {(a),(?),()} or —;¢ {(a),(?),(1)}. On the 9
cases remaining, we can distinguish 4 relevant sub-cases by denoting (r;) € {(a), (?)} :

4 Ky =i ky =5 ks

Cases (1), (2) and (3) are straightforward. Note that case (3) when r = (?) is folklore and used very
broadly in the literature. Case (4) is where the eager reduction procedure will take advantage:
namely we can perform the input/assert rule first and then reach ks after an output from the
process number i, due to the fact that u(k1) = u(k2) and that the input/assert rule does not
depend on the environment 7' but only on the knowledge S(A(T)) = u(k).]

Any sequence of reductions k& —* k' such that p(k) = p(k") will preserve the environment
knowledge : from the previous lemma, those reduction have the (nice) property that the order
in which we reduce each process in the parallel composition does not matter. We will now an-
notate sequences of reductions to include the order in which the different processes modify the
environment knowledge.

Definition A.2 We write:

0
1) k="K iff k—"k and u(k) = p(k)
z 0
(2) k-o*K iff Fki| k=" ke — K and p(k') # p(k:)
P1,--,Pn Pn

p1 P2
3) k —=* K iff k—=%k " ="K

0 x
Informally, = denotes any sequence of reductions that preserves the environment knowledge ; =
means that the environment knowledge was not modified until the last step, where the process
numbered z either performs an output of a previously unkown term, or reaches error.

— is just syntactic sugar in order to shorten the notations.

Remark A.3 If k = k/, then there exists a sequence p1,...,p, such that k = k.

Definition A.4 (Eager reduction) We define —,, a step of eager reduction on the process
numbered x, as follows:

kg K iff kb —5 K

25

. . , ,
We will write k <, .., k' whenever k —, ki —p, -+ —p, K.

Informally, eager reduction on the process x means that we reduce only the process x in the
configuration until either a term unknown to the environment is written, or we reach error.

Lemma A.5
1 k="K and ¥ =% err implies k1 k —, ky —0>* K
2. k e err implies k —, err

PROOF.

T 0 0
1. k —* k' implies 3&" | k —* k" —, k' and p(k’) # p(k”). All reductions in k —* k" preserve
the environment knowledge, and thus by iterating lemma A.1 we can move all reductions on
2 to the beginning of the sequence (details are left to the reader).

x 0
2. By the same reasoning : k —* err implies 3k’ | k —* k' —, err. Then we can use lemma A.1

[
to prove that 3k” | k —* k" —* k' —, err and such that there is no reduction on z between
k" and k. Then k' —, err means that k'(x) is a false assertion w.r.t. p(k’) (recall that an
assertion in the environment T only depends on S(A(T))), and as we have k' (z) = k'(z)

0
and p(k”) = u(k), it implies k" —, err. Thus k —* k" —, err and k —% k" —* k' —, err
O

Theorem A.6

0
1. k =% K implies 3" k —p, _p. K" =K

P1;---5Pn
* N 5 1"
2. k —* err implies k" k —,, ., err

Proor.

P1,---:Pn P1,--sPn—1 Pn
1. Case (n = 1) was done in the previous lemma. Else & —* k implies ¥ —* k" —>*F

0 0 Pn
and by induction : 3k,—1 k —,, . p. 1 kn—1 —* k. Thus k,—1 —* k¥’ —* k' and we can
Pn
write more directly: k,—1 —* k’. By using the previous lemma, we have 3k, k,—1 —,,

0
kn —* k'. QED.

Pn Pn
2. By (1) : 3k, K" k —p, .. pn_1 kn = k" —* err. Thus k,, —* err and k,, —,, err.

Corollary A.7 Correctness and completeness of the eager reduction method.

ProoF. Completeness is stated in theorem A.6(2). Correctness comes trivially from —,C—*. O

26

B An Otway-Rees variant
The protocol we wish to verify is the following:

A— B: N4A B, {N,, A, B}k,

B—S: NaaA7B7{Na;A7B}KQ7Nba{Nb7AaB}Kb
S - B: Na){NtMKab}Ka){Nb)Kab}Kb

B—A: Na; {NavKab}Ka

...and the raw protocol description as fed to our tool is:

Principals:

Init(me,him):
[me!=him] ; [me!=IdO]
fresh na
write <na,me,him,E(<na,me,him>,K(me))>
read <m,e>
[m=na] ; <na2,kab><-decrypt(e,K(me)) ; [na2=nal
fresh confidential
write E(confidential,kab)
assert((him=Id0) or secret(confidential))
nil

Resp(me,him) :
[me!=him] ; [me!'=Id0]
read <na,a,b,e>
[b=me] ; [a=him]
fresh nb
write <mna,a,b,e,nb,E(<na,a,b>,K(me))>
read <na2,el,e2> [na2=nal] <nb2,kab><-decrypt(e2,K(me)) [nb2=nb]
write <na,el>
nil

Serv(init,resp):
read <na,a,b,el,nb,e2>
[a=init] [b=resp] [a!=b]
k1<-K(init)
k2<-K(resp)
<nal,al,bl><-decrypt(el,kl) ; [<nal,al,bl>=<na,a,b>]
<na2,a2,b2><-decrypt(e2,k2) ; [<na2,a2,b2>=<na,a,b>]
fresh kab
write <na,E(<na,kab>,k1),E(<nb,kab>,k2)>
nil

Environment :

1d0 ; K(IdO)

27

Reasoning Services in the MathWeb-SB for
symbolic verification of Hybrid Systems *

Christoph Benzmiiller!, Corrado Giromini', Andreas Nonnengart?, and Jiirgen
Zimmer!

! Fachbereich Informatik
Universitat des Saarlandes
Saarbriicken, Germany
{chris, corrado, jzimmer}@ags.uni-sb.de

2 German Research Center for Artificial Intelligence (DFKT)
Saarbriicken, Germany
nonnenga@dfki.de

Abstract. Verification of non-linear hybrid systems is a challenging
task. Unlike many other verification methods the deduction-based verifi-
cation approach we investigate in this paper avoids approximations and
operates directly on the original non-linear system specifications. This
approach, however, requires the solution of non-trivial mathematical sub-
tasks. We propose to model existing reasoning systems, such as computer
algebra systems and constraint solvers, as mathematical services and to
provide them in a network of mathematical tools in a way that they can
reasonably support subtasks as they may occur in formal methods ap-
plications. The motivation is to make it simpler to implement and test
verification approaches by out-sourcing complex but precisely identifi-
able mathematical subtasks for which specialised reasoners do already
exists.

1 Introduction

Hybrid systems are heterogenous dynamical systems characterised by interacting
continuous and discrete dynamics. The enormous presence of hybrid systems in
safety critical applications, such as automated highway systems [18], air traffic
management systems [22], embedded automotive controllers [3], and chemical
processes [9], increasingly calls for safety guarantees. Since traditional program
verification methods allow at best to approximate continuously changing envi-
ronments by discrete sampling, special verification methods for hybrid systems,
such as [15-17], have been developed. A frequently employed method is to model
hybrid systems by hybrid automata. A hybrid automaton is a closed system
with a built-in control structure determining when and how the system switches

* This work is supported by the EU training network CALCULEMUS (HPRN-CT-
2000-00102) funded in the EU 5th framework.

between its various discrete states. Thereby the continuous behaviour in each
discrete state is governed by a differential equation.

The verification method we will employ in our work is the deduction-based
model checking approach for hybrid systems described in [23]. Given a speci-
fication of a hybrid system H (a hybrid automaton) and a safety property &
the approach generates a second order formula [@]g such that the validity of
the latter guarantees that property @ is valid for H. To support the validation
of [®]y this method eliminates second order location predicates in [@]y one
by one in order to transform [®]y into an equivalent first order formula ¥, if
possible. With the validation of ¥ the verification approach terminates.

For the above deduction-based model checking approach we have identified
the following mathematical subtasks: (1) The solution of sets of differential equa-
tions, (2) checking subsumption between sets of constraints, and (3) checking
consistency of sets of constraints.

In general, solving these tasks is feasible in case of linear constraints and
linear differential equations. Our aim, however, is to widen the spectrum of the
approach, for instance, by allowing also non-linear constraints and differential
equations. Mathematical tasks like (1) — (3) may also be relevant for other hy-
brid system verification approaches. For instance, [13] employed the computer
algebra system MATHEMATICA to solve linear constraints. MATHEMATICA was
later replaced by a more efficient implementation of a specialised constraint
solving algorithm [14]. However, multiple implementations of the same kinds of
mathematical services in different verification systems could and should best be
avoided, especially if their realization is complex and challenging, such as in our
context.

We propose to model existing reasoning systems, such as computer algebra
systems and constraint solvers, as mathematical services and to provide them
in a network of mathematical tools in a way that they can reasonably support
subtasks as they may occur in formal methods applications. The motivation is to
make it simpler to implement and test verification approaches by out-sourcing
complex but precisely identifiable mathematical subtasks for which specialised
reasoners do already exists. Allowedly, in case a verification approach later turns
out to be successful (see for instance [14]) it may be reasonable from efficiency
aspects and also from concession aspects to replace the connections to math-
ematical services again by fast re-implementations of the particularly needed
algorithms. However, starting with the latter may dramatically slow down a
quick development and implementation of new verification environments. This
is particularly true in case the automation of the mathematical subtasks is al-
ready on the edge of current research, such as given in our case. This motivates
our proposal to build up a network of mathematical reasoning services for formal
methods. The more services will be appropriately added to such a network the
more likely it will be that also other verification approaches can directly employ
them (in early development stages) for the same purpose.

In this paper we illustrate the kinds of mathematical subtasks which occur in
the verification approach [23] by looking at a simple non-linear hybrid system.

30

Our network of choice for providing the mathematical services is the mathemat-
ical software bus MathWeb-SB [20].

The outline of the paper is as follows: we first illustrate aspects of the
deduction-based elimination approach for hybrid system verification and mo-
tivate different kinds of mathematical subtasks involved. We then sketch the
mathematical software bus MathWeb-SB that is our mathematical network in-
frastructure of choice and, furthermore, discuss candidate systems suitable for
tackling the identified kinds of problems. Finally we give an outlook on some
first ideas and requirements on the modelling and solving of these problems in
the MathWeb-SB.

2 Mathematical Subtasks in Hybrid System Verification

We briefly sketch the deduction-based model checking approach (DMC) of Non-
nengart described in [23], starting from the description of a hybrid system. We
also identify some of the mathematical subtasks that result from the application
of this approach. Our presentation follows a very simple example of a non-linear
hybrid system for which the deduction-based model checking approach results
in non-linear constraints.

2.1 Structure of a Hybrid System

Hybrid systems are typically modelled as hybrid automata that are presented as
finite graphs whose nodes correspond to global states (locations). The discrete
dynamics, i.e. the state transitions, of the automaton is modelled by the edges of
the graph. The continuous dynamics of the automaton is modelled by differential
equations associated with each state.

Falling

5::/270.':0

s=0|T

Fig. 1. A simple hybrid automaton

Fig. 1 shows a simple hybrid automaton modelling Galilei’s gravity test:
Given a tower of height h, we assume to stand on top of this tower and let a
stone fall down. The stone falls until it reaches the bottom. Hence, we say, the
stone can be in two main states: Falling and Landed. At the beginning of our

31

experiment the clock counter ¢, which mirrors the flow of time ¢ in our system,
is set to 0, and we are dropping the stone from height h. Thus, the height of the
falling stone (at time ¢), which is represented by variable s, is initialised with h.

While the stone falls it accelerates according to the physical law of gravity:

$(t) = —gt, (1)
where g is the gravitational constant (g = 9.81m/sec?). This is represented as
the invariant § = —gc in the state Falling. Another invariant of Falling is

¢ = 1 expressing that the clock c is increasing linearly. s > 0, the last invariant
condition, says that the stone has not reached the ground yet. The condition for
a state transition to Landed simply is s = 0.

2.2 The Deduction-Based Model Checking Approach

We now apply the DMC to our example automaton in Fig. 1. Suppose we want
to know when the stone falling from the tower will reach the ground level. In
terms of a Integrator Computation Tree Logic (ICTL) [23] formula this means
to prove the property:

3¢ (Landed A e < k), (2)

where k is a parameter to be instantiated by the proof procedure. A first task
in the DMC approach is the formalisation of the reachability theory for our
automaton. This theory formalises the conditions and invariants for staying in
the states Falling and Landed as well as the conditions causing a transition
from state Falling to Landed.

For the formalisation of this theory as a second order formula we, for in-
stance, have to solve the differential equation (1). Taking into consideration the
initialisation information we get:

c(t)=t, s(t) =h— 3gt* (3)

and thus
c(t+0) = c(t) + 6, s(t+6) = s(t) — ge(t)6? — 396° (4)

for any change in time J.

The complete reachability theory of the Galilei automaton is given as the
following conjunctive set of second order formulas (F and L are second order
variables)!:

1
F(s,c) — V6. <520/\s’sg65§g52/\c/c+5/\5’20%F(5’,c’)>

(s,¢)

(s,¢)

F(s,c)—>8—0—>L(sc)

L(s,c) = V5 (6 >0As'=sAd =c+d— L(s,))

! Some of the formulas are already somewhat simplified.

32

F(h,0) represents the initial state. Let us call this theory . For the sake of
simplicity we consider now the dual of the property (2), namely VO(L — ¢ > k).
Hence, we have to prove

AF, L F(h,0) ARAVs,c L(s,¢) = [L—c¢>Ek|ANF(s,¢c) = [L — ¢ > k]
which simplifies to
JF, L F(h,0) ARAVYs,c L(s,c) — ¢ > k.

Let us first eliminate location F'. We start with the fix-point computation over
the state Falling.

Ty =T
I''(Ty=s>0As=0— L(s,c)
I(T)=V5.(6 >0As =s—gcd — 296> N =c+ N8 >0—
s >0Ns =0— L(s,)) (5)
I3(T)=V5.(6 >0As =s—gcd — 296 N =c+ N8 >0—
V6. (0 >0Ns" =5 —gdd —1gd? N = +5 A" >0—
S// ZO/\SHZOHL(SH7C”))

It is easy to see that in I'® the computation terminates (because I'* — I'?).
Hence, with the insertion of the initial condition F(h,0), the result is:

1
V6 <520As'h§g52/\c/5/\5'2()%c/ > k/\s'OHL(s',c’)) ,
where ¢’ and s’ are universally quantified variables. This can be simplified to
1
d>0Ns =h— 590’2/\5’ >0—-cd >kANs=0— L(s,).

Further simplification leads to

2h 2h
20N =2 = >kNd == — L(0,c) (6)
g g

At this stage it would be necessary to eliminate L as well. In fact this is very
simple and therefore is omitted here. From formula 6 we can extract a constraint

on the variable k, namely: k& < ,/%. And since we had a look at the negation
of the property to be proved, we finally end up with the result that the stone is

landed for all values of the clock of at least %. Thus the moment of landing

is exactly when ¢ = 4/ %.

We now point to three relevant mathematical subtasks that occur in the
context of the DMC approach:

33

(1) In the example we have to solve the differential equations ¢(¢t) = 1 and
5(t) = —gt. The solution is employed in the formalisation of the reachability
theory.

While this is trivial in our hybrid system, the solution of non-linear differen-
tial equations is generally complex and not easily computable.

(2) The DMC approach stepwise eliminates the second order state predicates
and thereby generates sets of constraints. As indicated above a subsequent task
is then to check the consistency of the generated constraint sets in order to show
that a model exists. In our example above, for instance, we are interested in
constraints like:

§>0Ns =s—gcd— 295N
d=c+oNs>0—C >k

The constraint variables are ¢ and s,while d,c’, s’ universally quantified pa-
rameters coming from the reachability theory.

(3) Generally the fix-point computations involved in the DMC approach are
not as trivial as in the example here. The detection of fix-points can then be
supported by checking the subsumption of the constraint sets of single iterations
in the fix-point computation.

The overall picture is that the verification tool, implementing the deduction-
based verification approach, is processing the main steps involved. This, for
instance, includes the formalisation of the reachability theory and the stepwise
elimination of second order variables. The verification tool is also responsible for
the generation and appropriate formulation of the concrete mathematical service
requests illustrated in (1) — (3) and for passing them to the MathWeb-SB. A
verification example that illustrates the work-sharing aspects of the sketched
verification approach in more detail is given in [4]. As long as the verification
tool is not fully implemented its tasks or parts of its tasks will be simulated by
hand.

In the remainder of this paper we will concentrate on the mathematical
service network MathWeb-SB, which is our network infrastructure of choice. We
will also present candidate systems for supporting the mathematical subtasks
we are interested in.

3 The MathWeb Software Bus

The MathWeb Software Bus (MathWeb-SB) [20] for distributed automated the-
orem proving supports the connection of a wide range of mathematical services
by a common software bus. The MathWeb-SB provides the functionality to turn
existing theorem proving systems, computer algebra systems, and miscellaneous
tools into mathematical services that are homogeneously integrated into a proof
development environment.

34

The MathWeb-SB is implemented in MozART Oz [11], a multi-paradigm
object-oriented programming language which fully supports concurrent and dis-
tributed programming and allows to simply distribute applications over the In-
ternet. The services of the MathWeb-SB are used permanently by client ap-
plications, such as the 2MEGA system [10]. The MathWeb-SB currently inte-
grates many different reasoning and computation systems, like, for instance,
automated theorem provers (e.g., OTTER, SPASS, etc.) and computer algebra
systems (CASs) (e.g., MAPLE, and GAP). Fig. 2 shows parts of the MathWeb-
SB as it is currently running. In the MathWeb-SB, service servers offer the
mathematical services (e.g., an ATP, or a CAS) to their local MathWeb-SB bro-
ker. MathWeb brokers register and unregister to other brokers, so called remote
brokers, running in the Internet and therefore build a dynamic web of brokers.

i CoSIE
Activemat -
Client >(Broker
S
(Java) \0,,7_ (Mozart)
N

N
N
N

%

7

DORIS |~ .~

Client i
(Prolog) /~ \ /

=

Qmega |0~ ~ o ATP

Client | -~~~ T <

(Lisp) Birmingham Pittsburgh

2 E;
~<— broker to broker communication

<+ - - - client to broker communication (Mozart, XML-RPC, HTTP)
<<----- > server to broker communication (service offers/requests)

MathWeb Clients
SIOAIDS QO M UIBIA

Fig. 2. The MathWeb Software Bus

Client applications, like the 2MEGA system or a CGl-script, connect to one
of the MathWeb-SB brokers and request services. If the requested service is not
offered by a local server, the broker forwards the request to all remote brokers.
If the requested service is found, the client application receives a reference to a
newly created service object and can directly send messages to the object. The
MathWeb-SB currently offers three interfaces to connect to a broker, namely
MozART’s distributed programming interface, CGI-script access via an HTTP
server, and access via XML-RPC.

3.1 Solving Differential Equations

Amongst the available Computer Algebra Systems in the MathWeb-SB we choose
MAPLE [6] as a first candidate to support our tasks. MAPLE is a mathematical
problem-solving environment that supports a wide variety of mathematical op-
erations such as numerical analysis, symbolic algebra, and graphics. We intend

35

to use the module for differential equations, especially the dsolve function,
that is a part of MAPLE. This module has the capability to solve Ordinary
Differential Equations (ODEs). The dsolve function is good in solving linear
differential equations very efficiently and provides good results, but it is quite
weak in attacking non-linear systems. A better candidate for the non-linear case
is the module NODES (Non linear Ordinary Differential Equations Solver) [8],
which has been developed in context of the European ESPRIT contact group
CATHODE. The NODES module is implemented in the MAPLE programming
language and is specialised in the analysis of systems of non-linear ODEs. It is
based on the quasi-monomial transformation theory [24]. In that theory, a system
of ODEs is represented by a couple of matrices and only these are manipulated.
NODES identifies values of the parameters in the relative matrix representation
corresponding to the integrability property of the ODE system and builds the
associated first integrals.

3.2 Checking Consistency of Constraints

The Rewrite and Decision procedure Laboratory (RDL) [1] simplifies clauses in
a quantifier-free first-order logic with equality using a tight integration between
rewriting and decision procedures. RDL is based on CCR (Constraint Contex-
tual Rewriting) [2], a formally specified integration schema between (ordered)
conditional rewriting and a satisfiability decision procedure. As a consequence,
RDL is sound, terminating and fully automatic.

RDL is an open system which can be modularly extended with new decision
procedures provided these offer certain interface functionalities. In its current
version, RDL offers ’plug and play’ decision procedures for the theories of Uni-
versal Presburger Arithmetic over Integers (UPAI), Universal Theory of Equality
(UTE), and UPAI extended with uninterpreted function symbols. Last but not
least, RDL implements instances of a generic extension schema for decision pro-
cedures. The key ingredient of such a schema is a lemma speculation mechanism
which ’reduces’ the satisfiability problem of a given theory to the satisfiability
problem of one of its sub-theories for which a decision procedure is available.
In the following we explain in few words how the lemma speculation works on
constraint sets.

In the context of our subtask, subsumption and checking of constraints can
be attacked in two ways. If the set of constraints looks like a set of polynomial
or trigonometric functions we can simplify them using highly efficient arithmetic
libraries. Due to this, we can handle constraints containing trigonometric func-
tions such as sin(z), cos(x), etc. In case that arithmetic is unable to simplify
the constraint set, we can attack the problem using the quantifier elimination
approach. The mechanism that allows RDL to decide which is the best choice
for the solving of the problem is Lemma Speculation. Here we sketch briefly how
this mechanism works for constraint subsumption.

Lemma speculation. The goal of this mechanism is to feed the decision proce-
dure with new facts about function symbols which are otherwise uninterpreted

36

in the theory T decided by the decision procedure. In other words, it inspects
the context C' and returns a set of ground facts entailed by C' using T as the
background theory. In RDL there are three kinds of lemma speculation: the sim-
plest is augment that finds instances of the conclusions among the conditional
lemmas which can promote further inference steps in the decision procedure; an
improvement of the augment method is affinize that implements the 'on the fly’
generation of lemmas about multiplication over integers. Affinization is particu-
larly useful for non-linear inequalities and doesn’t require any user intervention.
As most powerful choice, there is the combination of the two mechanisms men-
tioned above. RDL combines augmentation and affinization by considering the
function symbols occurring in the context C. For example, the top-most function
symbol of the largest literal in C' triggers the invocation of either mechanisms.

4 Work Plan

We will investigate whether the sketched approach is applicable to industrial-
strength examples. To gain evidence for this we want to pursue case studies
like air traffic management [21,22] and the steam-boiler problem [12]. Starting
with an appropriate representation of the automata we will apply the DMC
approach and identify the concrete instances of the mathematical subtasks de-
scribed above. We then analyse whether and how these subtasks can actually
be attacked by the systems already available in the MathWeb-SB. The aim then
is to suitably model the subtasks as service requests to the MathWeb-SB. We
might possibly have to integrate new systems into the MathWeb-SB like, for
instance, the RDL system.

In the current implementation of the MathWeb-SB, the services requested by
client applications are whole reasoning systems (e.g. the CAS MAPLE or ATPs
such as OTTER). The service objects offer interface methods for using the sys-
tem’s reasoning capabilities, for instance the method eval in the case of CASs
or prove in the case of ATPs. For our work, we have to extend the MathWeb-SB
such that also abstract reasoning services, e.g. solving differential equations, can
be defined, offered to MathWeb brokers, and requested by clients. We plan an
implementation of abstract reasoning service as new interface methods of the
services objects. We also intend to use a service description language to describe
reasoning services independent of a concrete implementation. This language will
be based on XML-standards WSDL [7], OPENMATH [5], and OMDoc [19]. Ab-
stract service descriptions can then be mapped to interface method calls.

References

1. A. Armando, L. Compagna, and S. Ranise. System description: Rdl-rewrite and
decision procedure laboratory. In International Joint Conference on Automated
Reasoning (IJCAR2001), 2001.

2. A. Armando and S. Ranise. Constraint contextual rewriting. In R. Caferra and
G. Salzer, editors, Proceedings of the 2nd International Workshop on First Order
Theorem Proving, FTP’98, Vienna (Austria), pages 65—75, 1998.

37

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

A. Balluchi, M. Di Benedetto, C. Pinello, C. Rossi, and A. Sangiovanni-Vincentelli.
Hybrid control in automotive applications: the cut-off control, 1999.

C. Benzmiiller, C. Giromini, and A. Nonnengart. Symbolic verification of hybrid
systems supported by mathematical services. In Proceedings of the Calculemus
Symposium 2002, 2002. forthcoming.

O. Caprotti and A. M. Cohen. Draft of the Open Math standard. The Open Math
Society, http://www.nag.co.uk/projects/OpenMath/omstd/, 1998.

B. W. Char, K. O. Geddes, G. H. Gonnet, B. L. Leong, M. B. Monagan, and S. M.
Watt. First leaves: a tutorial introduction to Maple V. Springer Verlag, Berlin,
1992.

E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Service De-
scription Language. W3C Recommendation 1.1, World Wide Web Consortium,
2001. Available at http://www.w3.org/TR/2001/NOTE-wsd1-20010315.

M. Codutti. Nodes : Non linear ordinary differential equations solver. In Proceed-
ings of ISSAC’92 (International Symposium on Symbolic and Algebraic Computa-
tion), 1992.

S. Engell, S. Kowalewski, C. Schulz, and O. Stursberg. analysis and optimization
of continuous-discrete interactions in chemical processing plants.

C. Benzmiiller et al. {2MEGA: Towards a mathematical assistant. In Proceedings
of the 1/t* International Conference on Automated Deduction (CADE-14), pages
252-255. Springer Verlag, Berlin, 1997.

The Oz group. The mozart programming system. http://www.mozart-oz.org/.

T. Henzinger and H. Wong-Toi. Using hytech to synthesize control parameters for
a steam boiler, 1996.

T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HYTECH: A model checker for
hybrid systems. International Journal on Software Tools for Technology Transfer,
1(1-2):110-122, 1997.

T. A. Henzinger, B. Horowitz, R. Majumdar, and H. Wong-Toi. Beyond HY TECH:
Hybrid systems analysis using interval numerical methods. In HSCC, pages 130—
144, 2000.

T.A. Henzinger and P.H. Ho. HYTEcCH: The Cornell Hybrid Technology Tool.
In P. Antsaklis, A. Nerode, W. Kohn, and S. Sastry, editors, Hybrid Systems II,
Lecture Notes in Computer Science 999, pages 265-293. Springer-Verlag, 1995.
T.A. Henzinger and P.H. Ho. A note on abstract-interpretation strategies for hybrid
automata. In P. Antsaklis, A. Nerode, W. Kohn, and S. Sastry, editors, Hybrid Sys-
tems II, Lecture Notes in Computer Science 999, pages 252-264. Springer-Verlag,
1995.

T.A. Henzinger and H. Wong-Toi. Linear phase-portrait approximations for non-
linear hybrid systems. In R. Alur, T.A. Henzinger, and E.D. Sontag, editors, Hybrid
Systems I1I, Lecture Notes in Computer Science 1066, pages 377-388. Springer-
Verlag, 1996.

R. Horowitz and P. Varaiya. Design of an automated highway system. Proceedings
of the IEEE. This issue.

M. Kohlhase. OMDoc: Towards an internet standard for the administration,
distribution and teaching of mathematical knowledge. In Proceedings of Al and
Symbolic Computation, AISC-2000, LNAI. Springer Verlag, 2000. Forthcoming.
M. Kohlhase and J. Zimmer. System description: The Mathweb Software Bus for
Distributed Mathmatical Reasoning; to appear.

C. Livadas, J. Lygeros, and N. Lynch. High-level modelling and analysis of tcas,
1999.

38

22. J. Lygeros, G. J. Pappas, and S. Sastry. An approach to the verification of the
center-TRACON automation system. In HSCC, pages 289-304, 1998.

23. A. Nonnengart. A deductive model checking approach for hybrid systems.
Technical Report MPI-I-1999-2-006, Max-Planck-Institute for Computer Sci-
ence, Saarbriicken, Germany, November 1999. Available via http://www.mpi-
sb.mpg.de/.

24. B.-C.-V. Ung. Combinatorial identities for series of quasi-symmetric functions.

39

Session:
Logical Approaches

A Trustworthy Proof Checker

Andrew W. Appel*
Princeton University

Neophytos Michael*
Princeton University

Aaron Stump'
Stanford University

Roberto Virga*
Princeton University

June 28, 2002

Abstract

Proof-Carrying Code (PCC) and other applications in
computer security require machine-checkable proofs of
properties of machine-language programs. The main ad-
vantage of the PCC approach is that the amount of code
that must be explicitly trusted is very small: it consists
of the logic in which predicates and proofs are expressed,
the safety predicate, and the proof checker. We have built
a minimal-TCB checker, and we explain its design princi-
ples, and the representation issues of the logic, safety pred-
icate, and safety proofs. We show that the trusted code in
such a system can indeed be very small. In our current
system the TCB is less than 2,700 lines of code (an order
of magnitude smaller even than other PCC systems) which
adds to our confidence of its correctness.

1 Introduction

Machine-verified proofs have applications in computer
security, program verification, and the formalization of
mathematics. We are particularly interested in security
applications such as proof-carrying code, in which an
untrusted program provider must send a proof that the
machine-language program is safe to execute; or proof-
carrying authorization, in which an untrusted client must
send a proof that some desired server operation conforms
to an authorization policy. The recipient doesn’t trust the
proof provider, so the recipient’s proof checker is an es-
sential component of the trusted computing base: a bug in
the proof checker can be a security hole in the larger sys-
tem. Therefore, the checker must be trustworthy: it must
be small, simple, readable, and based on well-understood
engineering and mathematical principles.

In contrast, theorem provers are often large and ugly, as
required by the incompleteness results of Godel and Tur-
ing: no prover of bounded size is sufficiently general, but

*This research was supported in part by DARPA award F30602-99-1-
0519.

TThis research was supported DARPA/Air Force contract F33615-00-
C-1693 and NSF contract CCR-9806889.

one can always hack more features into the prover until it
proves the desired class of theorems. It is difficult to fully
trust such software, so some proving systems use technical
means to ensure that buggy provers cannot produce invalid
proofs: the abstract data type theorem of LCF [14], or the
proof-witness objects of Coq [8] or Twelf [20]. With these
means, only a small part of a large system must be exam-
ined and trusted.

How large is the proof checker that must be examined
and trusted? To answer this question we have tried the ex-
periment of constructing and measuring the smallest pos-
sible useful proof checker for some real application. Our
checker receives, checks the safety of, and executes, proof-
carrying code: machine code for the Sparc with an accom-
panying proof of safety. The proof is in higher-order logic
represented in LF notation.

This checker would also be directly useful for proof-
carrying authorization [3, 9], that is, checking proofs of au-
thentication and permission according to some distributed
policy.

A useful measure of the effort required to examine, un-
derstand, and trust a program is its size in (non-blank, non-
comment) lines of source code. Although there may be
much variation in effort and complexity per line of code,
a crude quantitative measure is better than none. It is also
necessary to count, or otherwise account for, any compiler,
libraries, or supporting software used to execute the pro-
gram. We address this issue explicitly by avoiding the use
of libraries and by making the checker small enough so
that it can be examined in machine language.

The trusted computing base (TCB) of a proof-carrying
code system consists of all code that must be explicitly
trusted as correct by the user of the system. In our case
the TCB consists of two pieces: first, the specification
of the safety predicate in higher-order logic, and second,
the proof checker, a small C program that checks proofs,
loads, and executes safe programs.

In his investigation of Java-enabled browsers [11], Ed
Felten found that the first-generation implementations av-
eraged one security-relevant bug per 3,000 lines of source
code [13]. These browsers, as mobile-code host platforms

that depend on static checking for security, exemplify the
kind of application for which proof-carrying code is well
suited. Wang and Appel [7] measured the TCBs of vari-
ous Java Virtual Machines at between 50,000 and 200,000
lines of code. The Speciall JVM [10] uses proof-carrying
code to reduce the TCB to 36,000 lines.

In this work, we show how to reduce the size of the
TCB to under 2,700 lines, and by basing those lines on
a well understood logical framework, we have produced a
checker which is small enough so that it can be manually
verified; and as such it can be relied upon to accept only
valid proofs. Since this small checker “knows” only about
machine instructions, and nothing about the programming
language being compiled and its type system, the seman-
tic techniques for generating the proofs that the TCB will
check can be involved and complex [2], but the checker
doesn’t.

2 The LF logical framework

For a proof checker to be simple and correct, it is helpful
to use a well designed and well understood representation
for logics, theorems, and proofs. We use the LF logical
framework.

LF [15] provides a means for defining and presenting
logics. The framework is general enough to represent a
great number of logics of interest in mathematics and com-
puter science (for instance: first-order, higher-order, intu-
itionistic, classical, modal, temporal, relevant and linear
logics, and others). The framework is based on a general
treatment of syntax, rules, and proofs by means of a typed
first-order A-calculus with dependent types. The LF type
system has three levels of terms: objects, types, and kinds.
Types classify objects and kinds classify families of types.
The formal notion of definitional equality is taken to be
[Bn-conversion.

A logical system is presented by a signature, which as-
signs types and kinds to a finite set of constants that rep-
resent its syntax, its judgments, and its rule schemes. The
LF type system ensures that object-logic terms are well
formed. At the proof level, the system is based on the
Jjudgments-as-types principle: judgments are represented
as types, and proofs are represented as terms whose type is
the representation of the theorem they prove. Thus, there
is a correspondence between type-checked terms and theo-
rems of the object logic. In this way proof checking of the
object logic is reduced to type checking of the LF terms.

For developing our proofs, we use Twelf [20], an im-
plementation of LF by Frank Pfenning and his students.
Twelf is a sophisticated system with many useful fea-
tures: in addition to an LF type checker, it contains a type-
reconstruction algorithm that permits users to omit many
explicit parameters, a proof-search algorithm, constraint
regimes (e.g., linear programming over the exact rational
numbers), mode analysis of parameters, a meta-theorem

prover, a pretty-printer, a module system, a configuration
system, an interactive Emacs mode, and more. We have
found many of these features useful in proof development,
but Twelf is certainly not a minimal proof checker. How-
ever, since Twelf does construct explicit proof objects in-
ternally, we can extract these objects to send to our mini-
mal checker.

In LF one declares the operators, axioms, and inference
rules of an object logic as constructors. For example, we
can declare a fragment of first-order logic with the type
form for formulas and a dependent type constructor pf
for proofs, so that for any formula 2, the type pf () con-
tains values that are proofs of A. Then, we can declare
an “implies” constructor imp (infix, so it appears between
its arguments), so that if A and B are formulas then so is
A imp B. Finally, we can define introduction and elimi-
nation rules for imp.

form : type.

pf : form -> type.

imp form -> form -> form. %in-

fix right 10 imp.

imp_i: (pf A -> pf B) -> pf (A imp B).
imp_e: pf (A imp B) -> pf A -> pf B.

All the above are defined as constructors. In general, con-
structors have the form name : 7 and declare that name is
a value of type 7.

It is easy to declare inconsistent object-logic construc-
tors. For example, invalid: pf A is a constructor that
acts as a proof of any formula, so using it we could easily
prove the false proposition:

logic_inconsistent : pf (false) = invalid.

So the object logic should be designed carefully and must
be trusted.

Once the object logic is defined, theorems can be
proved. We can prove for instance that implication is tran-
sitive:

imp_trans:

pf (A imp B) -> pf (B imp C) -
> pf (A imp C) =
[pl: pf (A imp B)][p2: pf (B imp C)]
imp_i [p3: pf A] imp_e p2 (imp_e pl p3).

In general, definitions (including predicates and the-
orems) have the form name T = ezp, which
means that name is now to stand for the value exp
whose type is 7. In this example, the exp is a func-
tion with formal parameters pl and p2, and with body
[p3] (imp_e pl p3).

Definitions need not be trusted, because the type-
checker can verify whether exp does have type 7. In gen-
eral, if a proof checker is to check the proof P of theo-
rem 7' in a logic £, then the constructors (operators and
axioms) of £ must be given to the checker in a trusted
way (i.e., the adversary must not be free to install incon-
sistent axioms). The statement of 7" must also be trusted

imp_i imp_e p2

42

(i.e., the adversary must not be free to substitute an irrel-
evant or vacuous theorem). The adversary provides only
the proof P, and then the checker does the proof checking
(i.e., it type-checks in the LF type system the definition
t: T = P, for some arbitrary name t).

3 Application: Proof-carrying code

Our checker is intended to serve a purpose: to check safety
theorems about machine-language programs. It is impor-
tant to include application-specific portions of the checker
in our measurements to ensure that we have adequately ad-
dressed all issues relating to interfacing to the real world.

The most important real-world-interface issue is, “is the
proved theorem meaningful?”’ An accurate checker does
no good if it checks the wrong theorem. As we will ex-
plain, the specification of the safety theorem is larger than
all the other components of our checker combined!

Given a machine-language program P, that is, a se-
quence of integers that code for machine instructions (on
the Sparc, in our case), the theorem is, “when run on the
Sparc, P never executes an illegal instruction, nor reads or
writes from memory outside a given range of addresses.”
To formalize this theorem it is necessary to formalize a
description of instruction execution on the Sparc proces-
sor. We do this in higher-order logic augmented with arith-
metic.

In our model [16], a machine state (r, m) comprises a
register bank (r), and a memory (m), each of which is a
function from integers (register numbers and addresses) to
integers (contents). Every register of the instruction-set ar-
chitecture (ISA) must be assigned a number in the register
bank: the general registers, the floating-point registers, the
condition codes, and the program counter. Where the ISA
does not specify a number (such as for the PC) or when the
numbers for two registers conflict (such as for the floating
point and integer registers) we use an arbitrary unused in-
dex.

A single step of the machine is the execution of one in-
struction. We can specify instruction execution by giving
a step relation (r,m) — (r/,m’) that maps the prior state
(r,m) to the next state (', m’) that holds after the execu-
tion of the machine instruction.

For example, to describe the “add” instruction r; <«
ro + r3 we might start by writing,

(rym) = (rim’) = (1) = r(2) +r(3)
ANz #£ 1.7 (z) =rx) Am'=m
In fact, we can parameterize the above on the three

registers involved and define add(z, j, k) as the following
predicate on four arguments (r, m, ', m’):

add(i, j, k) =

43

Similarly, for the “load” instruction r; «— m[r; + c| we
define its semantics to be the predicate:

load(i, j,¢) =
Ar,m, 1’

To enforce memory safety policies, we will modify the
definition of load(i, j, ¢) to require that the loaded address
is legal [2], but we omit those details here.

But we must also take into account instruction fetch and
decode. Suppose, for example, that the “add” instruction
is encoded as a 32-bit word, containing a 6-bit field with
opcode 3 denoting add, a 5-bit field denoting the destina-
tion register ¢, and 5-bit fields denoting the source registers
7, k:

L3 1 il j | 0 [k]
26 21 16 5 0

The “load” instruction might be encoded as:

I N c |
26 21 16 0

Then we can say that some number w decodes to an
instruction instr iff,

decode(w, instr) =
(Fi, 5, k.
0<i<2 A 0<j<2° A 0<k<25 A
w=23-22647.221 4 5.216 1 k.20 A
instr = add (i, 4, k))
V (3, 4, c.
0<i<2® A 0<j<2° A 0<e<2i6 A
w=12-2%644.221 4 j.216 1 .20 A
instr = load(t, j, c))
AV

with the ellipsis denoting the many other instructions of
the machine, which must also be specified in this formula.

We have shown [16] how to scale this idea up to the
instruction set of a real machine. Real machines have
large but semi-regular instruction sets; instead of a single
global disjunction, the decode relation can be factored into
operands, addressing modes, and so on. Real machines
don’t use integer arithmetic, they use modular arithmetic,
which can itself be specified in our higher-order logic.
Some real machines have multiple program counters (e.g.,
Sparc) or variable-length instructions (e.g., Pentium), and
these can also be accommodated.

Our description of the decode relation is heavily fac-
tored by higher-order predicates (this would not be possi-
ble without higher-order logic). We have specified the exe-
cution behavior of a large subset of the Sparc architecture,
and we have built a prototype proof-generating compiler
that targets that subset. For proof-carrying code, it is suf-
ficient to specify a subset of the machine architecture; any
unspecified instruction will be treated by the safety policy
as illegal. While this may be inconvenient for compilers

that want to generate that instruction, it does ensure that
safety cannot be compromised.

4 Specifying safety

Our step relation (r,m) — (r’,m’) is deliberately partial;
some states have no successor state. In these states the pro-
gram counter 7(PC) points to an illegal instruction. Using
this partial step relation, we can define safety. A safe pro-
gram is one that will never execute an illegal instruction;
that is, a given state is safe if, for any state reachable in
the Kleene closure of the step relation, there is a successor
state:

safe-state(r,m) =Vr’',m’. (r,m)—* (r',m') =
H,T,//7 m//. (,r,/7 m/) —s (7,//, m//)

A program is just a sequence of integers (each repre-
senting a machine instruction); we say that a program p is
loaded at a location [in memory m if

loaded(p, m,l) = Vi € dom(p). m(i+1) = p(i)

Finally (assuming that programs are written in position-
independent code), a program is safe if, no matter where
we load it in memory, we get a safe state:

safe(p) =Vr,m, .
loaded(p, m, 1) A r(pC) =l = safe-state(r, m)

Let ; be a “cons” operator for sequences of integers
(easily definable in HOL); then for some program 8420;
2837; 2938; 2384; nil the safety theorem is simply:

safe (8420; 2837; 2938; 2384; nil)

and, given a proof P, the LF definition that must be type-
checked is:

t: pf(safe(8420; 2837; 2938; 2384; nil)) = P.

Though we wrote in section 2 that definitions need not
be trusted because they can be type-checked, this is not
strictly true. Any definition used in the statement of the
theorem must be trusted, because the wrong definition will
lead to the proof of the wrong theorem. Thus, all the def-
initions leading up to the definition of safe (including
add, load, safe—state, step, etc.) must be part of the
trusted checker. Since we have approximately 1,600 lines
of such definitions, and they are a component of our “min-
imal” checker, one of the most important issues we faced
is the representation of these definitions; we discuss this in
Section 7.

On the other hand, a large proof will contain hundreds
of internal definitions. These are predicates and internal
lemmas of the proof (not of the statement of the theorem),
and are at the discretion of the proof provider. Since each
is type checked by the checker before it is used in further
definitions and proofs, they don’t need to be trusted.

In the table below we show the various pieces needed for
the specification of the safety theorem in our logic. Every
piece in this table is part of the TCB. The first two lines
show the size of the logical and arithmetic connectives (in
which theorems are specified) as well as the size of the
logical and arithmetic axioms (using which theorems are
proved). The Sparc specification has two components, a
“syntactic” part (the decode relation) and a semantic part
(the definitions of add, load, etc.); these are shown in the
next two lines. The size of the safety predicate is shown
last.

Safety Specification | Lines | Definitions
Logic 135 61
Arithmetic 160 94
Machine Syntax 460 334
Machine Semantics | 1,005 692
Safety Predicate 105 25

| Total | 1,865 | 1,206 |

(From this point on we will refer to everything in the table
as the safety specification or simply the specification.

5 Eliminating redundancy

Typically an LF signature will contain much redundant in-
formation. Consider for example the rule for imp intro-
duction presented previously; in fully explicit form, their
representation in LF is as follows:

form}
-> pf

imp_i : {A : form}{B :

(pf A —> pf B) (A imp B).

The fact that both A and B are formulas can be easily in-
ferred by the fact they are given as arguments to the con-
structor imp, which has been previously declared as an op-
erator over formulas.

On the one hand, eliminating redundancy from the rep-
resentation of proofs benefits both proof size and type-
checking time. On the other hand, it requires performing
term reconstruction, and thus it may dramatically increase
the complexity of type checking, driving us away from our
goal of building a minimal checker.

Twelf deals with redundancy by allowing the user to
declare some parameters as implicit. More precisely, all
variables which are not quantified in the declaration are
automatically assumed implicit. Whenever an operator is
used, Twelf’s term reconstruction will try to determine the
correct substitution for all its implicit arguments. For ex-
ample, in type-checking the lemma

imp_refl: pf (A imp A) = imp_i ([p : pf A] p).

Twelf will automatically reconstruct the two implicit argu-
ments of imp_i to be both equal to a.

While Twelf’s notion of implicit arguments is effective
in eliminating most of the redundancy, type reconstruc-
tion adds considerable complexity to the system. Another

44

drawback of Twelf’s type reconstruction is its reliance on
higher-order unification, which is undecidable. Because of
this, type checking of some valid proofs may fail.

Since full type reconstruction is too complex to use in a
trusted checker, one might think of sending fully explicit
LF proof terms; but a fully explicit proof in Twelf syntax
can be exponentially larger than its implicit representation.
To avoid these problems, Necula’s LF; [18] uses partial
type reconstruction and a simple algorithm to determine
which of the arguments can be made implicit. Implicit
arguments are omitted in the representation, and replaced
by placeholders. Oracle-based checking [19] reduces the
proof size even further by allowing the erasure of subterms
whose reconstruction is not uniquely determined. Specifi-
cally, in cases when the reconstruction of a subterm is not
unique, but there is a finite (and usually small) list of can-
didates, it stores an oracle for the right candidate number
instead of storing the entire subterm.

These techniques use clever syntactic representations of
proofs that minimize proof size; checking these represen-
tations is not as complex as full Twelf-style type recon-
struction, but is still more complex than is appropriate for
a minimal proof checker. We are willing to tolerate some-
what larger proofs in exchange for a really simple checking
algorithm. Instead of using a syntactic representation of
proofs, we avoid the need for the checker to parse proofs
by using a data-structure reprentation. However, we still
need to avoid exponential blowups, so we reduce redun-
dancy by structure sharing. Therefore, we represent and
transmit proofs as LF terms in the form of directed acyclic
graphs (DAGs), with structure sharing of common subex-
pressions to avoid exponential blowup.

A node in the DAG can be one of ten possible types:
one for kinds, five for ordinary LF terms, and four for
arithmetic expressions. Each node may store up to three
integers, argl, arg2, and type. This last one, if present,
will always point to the sub-DAG representing the type of
the expression.

argl arg2 type
n U U U kind
c U U M constant
v M M M variable
a M M o application
p M M (0] product
1 M M o abstraction
M U o number
+ M M o addition proof object
* M M 0] mult proof object
/ M M o div proof object

M = mandatory, O = optional, U = unused

The content of argl and arg?2 is used in different ways
for different node types. For all nodes representing arith-
metic expressions (‘#’, ‘+’, “*’, and ‘/’), they contain in-
teger values. For products and abstractions (‘p’ and ‘I°),
argl points to the bound variable, and arg2 to the term

45

where the binding takes place. For variable nodes (‘v’),
they are used to make sure that the variable always oc-
curs within the scope of a quantifier. For application nodes
(‘a’), they point to the function and its argument, respec-
tively. Finally, constant declaration nodes (‘c’), and kind
declaration nodes (‘n’) use neither.

For a concrete example, consider the LF signature:

form : type.
pf : form -> type.
imp form -> form -> form.

We present below the DAG representation of this signa-
ture. We “flattened” the DAG into a numbered list, and,
for clarity, we also added a comment on the right showing
the corresponding LF term.

1l n 00O ; type Kind

2] c 001 ; form: type

3] v 002 ; x: form

4] p3 10 ; {x: form} type

5/ ¢ 00 4 ; pf: {x: form} type

6] v 0 0 2 ; yv: form

71 p 6 20 ; {y: form} form

8] v 0 0 2 ; x: form

91 p 8 70 ; {x: form}{y: form} form
10 ¢ 0 0 9 ; imp: {x: form}{y: form} form

6 Dealing with arithmetic

Since our proofs reason about encodings of machine in-
structions (opcode calculations) and integer values manip-
ulated by programs, the problem of representing arithmetic
within our system is a critical one. A purely logical rep-
resentation based on 0, successor and predecessor is not
suitable to us, since it would cause proof size to explode.
The latest releases of Twelf offer extensions that deal na-
tively with infinite-precision integers and rationals. While
these extensions are very powerful and convenient to use,
they offer far more than we need, and because of their
generality they have a very complex implementation (the
rational extension alone is 1,950 lines of Standard ML).
What we would like for our checker is an extension built
in the same spirit as those, but much simpler and lighter.
We require two properties from such an extension:

1. LF terms for all the numbers we use; moreover, the
size of the LF term for n should be constant and in-
dependent of n.

2. Proof objects for single-operation arithmetic facts
such as “10 + 2 = 12”; again, we require that such
proof objects have constant size.

Our arithmetic extensions to the checker are the smallest
and simplest ones to satisfy (1) and (2) above. We add
the word32 type to the TCB, (representing integers in the
range [0, 232 — 1]) as well as the following axioms:

+ : word32 -> word32 -> word32 -> type.
* : word32 -> word32 -> word32 -> type.
/ : word32 -> word32 -> word32 -> type.

We also modify the checker to accept arithmetic terms
such as:

456+25 :
32%4

+ 456 25 481.
* 32 4 128.

This extension does not modify in any way the standard
LF type checking: we could have obtained the same result
(although much more inefficiently) if we added all these
constants to the trusted LF signature by hand. However,
granting them special treatment allowed us to save literally
millions of lines in the axioms in exchange for an extra 55
lines in the checker.

To embed and use these new constants in our object
logic, we also declare:

c: word32 -> tm num.

eval_plus: + A B C —>

pf (eq (plus (c A) (c B)) (c C)).
eval_times: * A B C —>
pf (eq (times (c A) (c B)) (c C)).
eval_div: / M N Q —>
pf ((geg (c M) (times (c N) (c Q))) and
(not (geg (c M) (times (c N)
(plus one (c Q)))))).

This embedding from word32 to numbers in our object
logic is not surjective. Numbers in our object logic are still
unbounded; word32 merely provides us with handy names
for the ones used most often.

With this “glue” to connect object logic to meta logic,
numbers and proofs of elementary arithmetic properties,
are just terms of size two.

7 Representing axioms and trusted
definitions

Since we can represent axioms, theorems, and proofs as
DAGs, it might seem that we need neither a parser nor
a pretty-printer in our minimal checker. In principle, we
could provide our checker with an initial trusted DAG rep-
resenting the axioms and the theorem to be proved, and
then it could receive and check an untrusted DAG repre-
senting the proof. The trusted DAG could be represented
in the C language as an initialized array of graph nodes.

This might work if we had a very small number of ax-
ioms and trusted definitions, and if the statement of the
theorem to be proved were very small. We would have to
read and trust the initialized-array statements in C, and un-
derstand their correspondence to the axioms (etc.) as we
would write them in LF notation. For a sufficiently small
DAG, this might be simpler than reading and trusting a
parser for LF notation.

However, even a small set of operators and axioms (es-
pecially once the axioms of arithmetic are included) re-
quires hundreds of graph nodes. In addition, as explained
in section 4, our trusted definitions include the machine-
instruction step relation of the Sparc processor. These
1,865 lines of Twelf expand to 22,270 DAG nodes. Clearly
it is impossible for a human to directly read and trust a
graph that large.

Therefore, we require a parser or pretty-printer in the
minimal checker; we choose to use a parser. Our C pro-
gram will parse the 1,865 lines of axioms and trusted def-
initions, translating the LF notation into DAG nodes. The
axioms and definitions are also part of the C program:
they are a constant string to which the parser is applied
on startup.

This parser is 428 lines of C code; adding these lines to
the minimal checker means our minimal checker can use
1,865 lines of LF instead of 22,270 lines of graph-node ini-
tializers, clearly a good tradeoff. Our parser accepts valid
LF expressions, written in the same syntax used by Twelf.
For more details see the full version of the paper [6].

7.1 Encoding higher-order logic in LF

Our encoding of higher-order logic in LF follows that of
Harper et al. [15] and is shown in figure 1. The construc-
tors generate the syntax of the object logic and the axioms
generate its proofs. A meta-logical type is type and an
object-logic type is tp. Object-logic types are constructed
from form (the type of formulas), num (the type of inte-
gers), and the arrow constructor. The LF term tm maps
an object type to a meta type, so an object-level term of
type T has type (tm T) in the meta logic.

Abstraction in the object logic is expressed by the 1am
term. The term [x] (F x)) is the object-logic
function that maps x to (F x). Application for such
lambda terms is expressed via the @ operator. The quan-
tifier forall is defined to take as input a meta-level
(LF) function of type (tm T -> tm form) and produce
atm form. The use of the LF functions here makes it easy
to perform substitution when a proof of forall needs to
be discharged, since equality in LF is just 3n-conversion.

Notice that most of the standard logical connectives are
absent from figure 1. This is because we can produce them
as definitions from the constructors we already have. For
instance, conjunction can be defined as follows:

(lam

and = [A][B] forall [C] (A imp B imp C) imp C.

It is easy to see that the above formula is equivalent to the
standard definition of and. We can likewise define intro-
duction and elimination rules for all such logic construc-
tors. These rules are proven as lemmas and need not be
trusted. Object-level equality’ is also easy to define:

'The equality predicate eq is polymorphic in T. Objects A and B have object
type T and so they could be nums, forms or even object level functions (arrow

46

Logic Constructors

tp type.

tm tp —> type.
form tp.

aArrow tp —> tp —> tp.
pf tm form -> type.
lam (tm T1 -> tm T2)

@ : tm (Tl arrow T2)

forall (tm T -> tm form) -> tm form.
imp tm form -> tm form -> tm form.

Logic Axioms
beta_e pf (P ((lam F) @ X)) —-> pf (P (F X)).
beta-i pf (P (F X)) -> pf (P (lam F) @ X).
imp-1i (pf A —> pf B) —> pf (A imp B).
imp_e pf (A imp B) -> pf A -> pf B.
forall_i ({x tm T} pf (A X)) -> pf (forall A).
forall_e pf (forall A) -> {X tm T} pf (A X).

-> tm (Tl arrow T2).
-> tm Tl -> tm T2.

Figure 1: Higher-Order Logic in Twelf

T ->tm T -> tm form =
forall [P] P @ B imp P @ A.

eq : tm
[A] [B]

This states that objects A and B are considered equal iff any
predicate P that holds on B also holds on A.

Terms of type p£ A are terms representing proofs of ob-
ject formula A. Such terms are constructed using the ax-
ioms of figure 1. Axioms beta-i and beta.e are used to
prove (3-equivalence in the object logic, imp_i and imp.e
transform a meta-level proof function to the object level
and vice-versa, and finally, forall_i and forall_e in-
troduce and eliminate the universal quantifier.

7.2

ML-style implicit polymorphism allows one to write a
function usable at many different argument types, and ML-
style type inference does this with a low syntactic over-
head. We are writing proofs, not programs, but we would
still like to have polymorphic predicates and polymorphic
lemmas. LF is not polymorphic in the ML sense, but
Harper et al. [15] show how to use LF’s dependent type
system to get the effect and (most of) the convenience of
implicit parametric polymorphism with an encoding trick,
which we will illustrate with an example.

Suppose we wish to write the lemma congr that would
allow us to substitute equals for equals:

“Polymorphic” programming in Twelf

congr : {H :
pf (eq X 2)

type -> tm form}

-> pf (H 2) -> pf (HX) = ...

types). The object type T is implicit in the sense that when we use the eq predicate
we do not have to specify it; Twelf can automatically infer it. So internally, the
meta-level type of eq is not what we have specified above but the following:
{T : tp} tm T -> tm T -> tm form.
‘We will have more to say about this in section 7.2.

The lemma states that for any predicate H, if H holds on
z and z = X then H also holds on x. Unfortunately this
is ill-typed in LF since LF does not allow polymorphism.
Fortunately though, there is way to get polymorphism at
the object level. We rewrite congr as:

congr : {H :
pf (eq X 2)

tm T -> tm form}

-> pf (H 2) -> pf (HX) = ...

and this is now acceptable to Twelf. Function H now
judges objects of meta-type (tm T) for any object-level
type T, and so congr is now “polymorphic” in T. We
can apply it on any object-level type, such as num, form,
num arrow form,etc. This solution is general enough to
allow us to express any polymorphic term or lemma with
ease. Axioms forall_i and forall_ein figure 1 are like-
wise polymorphic in T.

7.3 How to write explicit Twelf

In the definition of lemma congr above, we have
left out many explicit parameters since Twelf’s type-
reconstruction algorithm can infer them. The explicit ver-
sion of the LF term congr is:

congr : {T : tp}{X : tm T}{Z : tm T}
{H : tm T -> tm form}
pf (_eq T X Z) —> pf (H Z) -> pf (H X) = ...

(here we also make use of the explicit version of the
equality predicate _eq). Type reconstruction in Twelf is
extremely useful, especially in a large system like ours,
where literally hundreds of definitions and lemmas have to
be stated and proved.

47

Object Logic Abstraction/Application

£1d2
lamé6

= [Tl:tpl [T2:tp] [T3:tp] [T4d:tp]
(arrow Tl (arrow T2 form))
(arrow T3 (arrow T2 form))
(arrow T2 form)
(arrow Tl (arrow T3 T4))
T4 T2 form
[£f0] [£f1] [p_pi] [icons] [ins] [w]
(@ T2 form p_pi w) and
(exists2 Tl T3 [gO:tm T1]
(@ T2 form
(&& T2 (@ T1
(@ T3 (arrow T2 form)
(eqg T4 ins (@ T3 T4 (@ T1

[gl:tm T3]

(arrow T2 form) £0 g0)
f1 gl)) w)
(arrow T3
icons g0)

Meta Logic Abstraction/Application

f1d2 [Tl:tp] [T2:tp] [T3:tp] [T4:tp]
[£0] [£1] [p_pi] [icons] [ins] [w]
(p_pi w) and
(exists2 [g0:tm T1] [gl:tm T3]
(f0 g0 && f1 gl) w)
(eqg ins (icons g0 gl)).

and

and
T4)
gl))).

Figure 2: Abstraction & Application in the Object versus Meta Logic.

Our safety specification was originally written to take
advantage of Twelf’s ability to infer missing arguments.
Before proof checking can begin, this specification needs
to be fed to our proof checker. In choosing then what
would be in our TCB we had to decide between the fol-
lowing alternatives:

1. Keep the implicitly-typed specification in the TCB
and run it through Twelf to produce an explicit ver-
sion (with no missing arguments or types). This ex-
plicit version would be fed to our proof checker. This
approach allows the specification to remain in the im-
plicit style. Also our proof checker would remain
simple (with no type reconstruction/inference capa-
bilities) but unfortunately we now have to add to the
TCB Twelf’s type-reconstruction and unification al-
gorithms, which are about 5,000 lines of ML code.

Run the implicitly typed specification through Twelf
to get an explicit version. Now instead of trusting the
implicit specification and Twelf’s type-reconstruction
algorithms, we keep them out of the TCB and pro-
ceed to manually verify the explicit version. This ap-
proach also keeps the checker simple. Unfortunately
the explicit specification produced by Twelf explodes
in size from 1,700 to 11,000 lines, and thus the code
that needs to be verified is huge. The TCB would
grow by a lot.

Rewrite the trusted definitions in an explicit style.
Now we do not need type reconstruction in the TCB
(the problem of choice 1), and if the rewrite from the
implicit to the explicit style can avoid the size explo-
sion (the problem of choice 2), then we have achieved
the best of both worlds.

Only choice 3 was consistent with our goal of a small
TCB so we rewrote the trusted definitions in an explicit
style while managing to avoid the size explosion. The new

safety specification is only 1,865 lines of explicitly-typed
Twelf. It contains no terms with implicit arguments and so
we do not need a type-reconstruction/type-inference algo-
rithm in the proof checker. The rewrite solves the problem
while maintaining the succinctness and brevity of the orig-
inal TCB, the penalty of the explicit style being an increase
in size of 124 lines. The remainder of this section explains
the problem in detail and the method we used to bypass it.

To see why there is such an enormous difference in
size (1,700 lines vs 11,000) between the implicit specifi-
cation and its explicit representation generated by Twelf’s
type-reconstruction algorithm, consider the following ex-
ample. Let F be a two-argument object-level predicate
F : tm (num arrow num arrow form) (typical case
when describing unary operators in an instruction set).
When such a predicate is applied, as in (F @ x @ V),
Twelf has to infer the implicit arguments to the two in-
stances of operator @. The explicit representation of the
application then becomes:

@ num form (@ num (num arrow form) F X) Y

It is easy to see how the explicit representation explodes
in size for terms of higher order. Since the use of higher-
order terms was essential in achieving maximal factoring
in the machine descriptions [16], the size of the explicit
representation quickly becomes unmanageable.

Here is another more concrete example from the
decode relation of section 3. This one shows how the ab-
straction operator 1am suffers from the same problem. The
predicate below (given in implicit form) is used in specify-
ing the syntax of all Sparc instructions of two arguments.

f1d2 = lam6 [fO0][fl] [p_pi]ll[icons] [ins] [w]
p_pi @ w and
exists2 [g0][gl] (f0 @ g0 && f1 @ gl) @ w and

eq ins (icons @ g0 @ gl).

Predicates £0 and £1 specify the input and the output reg-
isters, p_pi decides the instruction opcode, icons is the

48

instruction constructor, ins is the instruction we are de-
coding, and w is the machine-code word. In explicit form
this turns into what we see on the left-hand side of figure 2
— an explicitly typed definition 16 lines long.

The way around this problem is the following: We avoid
using object-logic predicates whenever possible. This way
we need not specify the types on which object-logic ap-
plication and abstraction are used. For example, the £1d2
predicate above now becomes what we see on the right-
hand side of figure 2. This new predicate has shrunk in
size by more than half.

Sometimes moving predicates to the meta-logic is not
possible. For instance, we represent instructions as pred-
icates from machine states to machine states (see sec-
tion 3). Such predicates must be in the object logic
since we need to be able to use them in quantifiers
(exists tm instr] ...). Thus, we face the
problem of having to supply all the implicit types when
defining and applying such predicates. But since these
types are always fixed we can factor the partial applica-
tions and avoid the repetition. For example, when defining
some Sparc machine instruction as in:

[ins

i_anyInstr = lam2 [rs : tnum][rd : tnum]
lam4 registers memory registers memory form
[r : tregs][m : tmem] [r’ : tregs][m’ : tmem]

we define the predicate instr_lam as:

instr_lam = lam4 registers memory

registers memory form.

and then use it in defining each of the 250 or so Sparc
instructions as below:

i_anyInstr = [rs : tnum][rd : tnum]
instr_lam [r : tregs][m : tmem]
[r : tregs][m’ : tmem]

This technique turns out to be very effective because our
machine syntax and semantics specifications were highly
factored to begin with [16].

So by moving to the meta logic and by clever factor-
ing we have moved the TCB from implicit to explicit style
with only a minor increase in size. Now we don’t have to
trust a complicated type-reconstruction/type-inference al-
gorithm. What we feed to our proof checker is precisely
the set of axioms we explicitly trust.

7.4 The implicit layer

When we are building proofs, we still wish to use the im-
plicit style because of its brevity and convenience. For this
reason we have built an implicit layer on top of our explicit
TCB. This allows us to write proofs and definitions in the
implicit style and LF’s gn-conversion takes care of estab-
lishing meta-level term equality. For instance, consider the
object-logic application operator _@ given below:

@: {T1l : tp}{T2 : tp} tm (Tl arrow T2) ->

tm Tl -> tm T2.

In the implicit layer we now define a corresponding appli-
cation operator @ in terms of _@ as follows:

@: tm (Tl arrow T2) -> tm Tl -> tm T2 =
_@ T1 T2.

In this term the type variables T1 and T2 are implicit and
need not be specified when @ is used. Because @ is a defini-
tion used only in proofs (not in the statement of the safety
predicate), it does not have to trusted.

8 The proof checker

The total number of lines of code that form our checker is
2,668. Of these, 1,865 are used to represent the LF sig-
nature containing the core axioms and definition, which is
stored as a static constant string. The remaining 803 lines
of C source code, can be broken down as follows:

Component Lines
Error messaging 14
Input/Output 29
Parser 428
DAG creation and manipulation 111
Type checking and term equality 167
Main program 54
| Total | 803 |

We make no use of libraries in any of the components
above. Libraries often have bugs, and by avoiding their
use we eliminate the possibility that some adversary may
exploit one of these bugs to disable or subvert proof check-
ing. However, we do make use of two POSIX calls: read,
to read the program and proof, and _exit, to quit if the
proof is invalid. This seems to be the minimum possible
use of external libraries.

8.1 Trusting the C compiler

We hasten to point out that these 803 lines of C need to
be compiled by a C compiler, and so it would appear that
this compiler would need to be included in our TCB. The C
compiler could have bugs that may potentially be exploited
by an adversary to circumvent proof checking. More dan-
gerously perhaps, the C compiler could have been written
by the adversary so while compiling our checker, it could
insert a Thompson-style [22] Trojan horse into the exe-
cutable of the checker.

All proof verification systems suffer from this problem.
One solution (as suggested by Pollack [21]) is that of in-
dependent checking: write the proof checker in a widely
used programming language and then use different com-
pilers of that language to compile the checker. Then, run
all your checkers on the proof in question. This is similar

49

to the way mathematical proofs are “verified” as such by
mathematicians today.

The small size of our checker suggests another solution.
Given enough time one may read the output of the C com-
piler (assembly language or machine code) and verify that
this output faithfully implements the C program given to
the compiler. Such an examination would be tedious but
it is not out of the question for a C program the size of
our checker (3900 Sparc instructions, as compiled), and
it could be carried out if such a high level of assurance
was necessary. Such an investigation would certainly un-
cover Thompson-style Trojan horses inserted by a mali-
cious compiler. This approach would not be feasible for
the JVMs mentioned in the introduction; they are simply
too big.

8.2 Proof-checking measurements

In order to test the proof checker, and measure its perfor-
mance, we wrote a small Standard ML program that con-
verts Twelf internal data structures into DAG format, and
dumps the output of this conversion to a file, ready for con-
sumption by the checker.

We performed our measurements on a sample proof of
nontrivial size, that proves a substantial lemma that will
be used in proofs of real Sparc programs. (We have not
yet built a full lemma base and prover that would allow us
to test full safety proofs.) In its original formulation, our
sample proof is 6,367 lines of Twelf, and makes extensive
use of implicit arguments. Converted to its fully explicit
form, its size expands to 49,809 lines. Its DAG represen-
tation consists of 177,425 nodes.

Checking the sample proof consists of the four steps:
parsing the TCB, loading the proof from disk, checking
the DAG for well-formedness, and type-checking the proof
itself. The first three steps take less than a second to com-
plete, while the last step takes 79.94 seconds.

The measurements above were made on a 1 GHz Pen-
tium III PC with 256MB of memory. During type check-
ing of this proof the number of temporary nodes generated
is 1,115,768. Most of the time during type-checking is
spent in performing substitutions. All the lemmas and def-
initions we use in our proofs are closed expressions, and
therefore they do not need to be traversed when substitut-
ing for a variable. We are currently working on an opti-
mization that will allow our checker to keep track of closed
subexpressions and to avoid their traversal during substitu-
tion. We believe this optimization can be achieved without
a significant increase in the size of the checker, and it will
allow us to drastically reduce type-checking time.

9 Future work

The DAG representation of proofs is quite large, and we
would like to do better. One approach would be to com-

50

press the DAGs in some way; another approach is to use
a compressed form of the LF syntactic notation. However,
we believe that the most promising approach is neither of
these.

Our proofs of program safety are structured as follows:
first we prove (by hand, and check by machine) many
structural lemmas about machine instructions and seman-
tics of types [4, 5, 1]. Then we use these lemmas to prove
(by hand, as derived lemmas) the rules of a low-level typed
assembly language (TAL). Our TAL has several important
properties:

1. Each TAL operator corresponds to exactly 0 or 1 ma-
chine instructions (0-instruction operators are coer-
cions that serve as hints to the TAL typechecker and
do nothing at runtime).

2. The TAL rules prescribe Sparc instruction encodings
as well as the more conventional [17] register names,
types, and so on.

3. The TAL typing rules are syntax-directed, so type-
checking a TAL expression is decidable by a simple
tree-walk without backtracking.

4. The TAL rules can be expressed as a set of Horn
clauses.

Although we use higher-order logic to state and prove
lemmas leading up to the proofs of the TAL typing rules,
and we use higher-order logic in the proofs of the TAL
rules, we take care to make all the statements of the TAL
rules first-order Horn clauses. Consider a clause such as:
head :- goall , goal2 , goal3. In LF (using our
object logic) we could express this as a lemma:

n : pf (goal3l)
pf (goall)

-> pf
-> pf

(goal2) ->
(head) = proof.

Inside proof there may be higher-order abstract syntax,
quantification, and so on, but the goals are all Prolog-
style. The name n identifies the clause.

Our compiler produces Sparc machine code using a se-
ries of typed intermediate languages, the last of which is
our TAL. Our prover constructs the safety proof for the
Sparc program by “executing” the TAL Horn clauses as
a logic program, using the TAL expression as input data.
The proof is then a tree of clause names, corresponding to
the TAL typing derivation.

We can make a checker that takes smaller proofs by just
implementing a simple Prolog interpreter (without back-
tracking, since TAL is syntax-directed). But then we
would need to trust the Prolog interpreter and the Prolog
program itself (all the TAL rules). This is similar to what
Necula [18] and Morrisett et al. [17] do. The problem
is that in a full-scale system, the TAL comprises about a
thousand fairly complex rules. Necula and Morrisett have
given informal (i.e., mathematical) proofs of the sound-
ness of their type systems for prototype languages, but no

machine-checked proof, and no proof of a full-scale sys-
tem.

The solution, we believe, is to use the technology we
have described in this paper to check the derivations of
the TAL rules from the logic axioms and the Sparc spec-
ification. Then, we can add a simple (non-backtracking)
Prolog interpreter to our minimal checker, which will no
longer be minimal: we estimate that this interpreter will
add 200-300 lines of C code.

The proof producer (adversary) will first send to our
checker, as a DAG, the definitions of Horn clauses for
the TAL rules, which will be LF-typechecked. Then, the
“proofs” sent for machine-language programs will be in
the form of TAL expressions, which are much smaller than
the proof DAGs we measured in section 8.

A further useful extension would be to implement
oracle-based checking [19]. In this scheme, a stream
of “oracle bits” guides the application of a set of Horn
clauses, so that it would not be necessary to send the TAL
expression — it would be re-derived by consulting the or-
acle. This would probably give the most concise safety
proofs for machine-language programs, and the implemen-
tation of the oracle-stream decoder would not be too large.
Again, in this solution the Horn clauses are first checked
(using a proof DAG), and then they can be used for check-
ing many successive TAL programs.

Although this approach seems very specific to our appli-
cation in proof-carrying code, it probably applies in other
domains as well. Our semantic approach to distributed au-
thentication frameworks [3] takes the form of axioms in
higher-order logic, which are then used to prove (as de-
rived lemmas) first-order protocol-specific rules. While in
that work we did not structure those rules as Horn clauses,
more recent work in distributed authentication [12] does
express security policies as sets of Horn clauses. By com-
bining the approaches, we could have our checker first ver-
ify the soundness of a set of rules (using a DAG of higher-
order logic) and then interpret these rules as a Prolog pro-
gram.

10 Conclusion

Proof-carrying code has a number of technical advantages
over other approaches to the security problem of mobile
code. We feel that the most important of these is the fact
that the trusted code of such a system can be made small.
We have quantified this and have shown that in fact the
trusted code can be made orders of magnitude smaller than
in competing systems (JVMs). We have also analyzed
the representation issues of the logical specification and
shown how they relate to the size of the safety predicate
and the proof checker. In our system the trusted code itself
is based on a well understood and analyzed logical frame-
work, which adds to our confidence of its correctness.

51

References

[1] Amal J. Ahmed, Andrew W. Appel, and Roberto Virga.
A stratified semantics of general references embeddable
in higher-order logic. In In Proceedings of the 17th An-
nual IEEE Symposium on Logic in Computer Science (LICS
2002), July 2002.

[2] Andrew W. Appel. Foundational proof-carrying code. In
Symposium on Logic in Computer Science (LICS ’01),
pages 247-258. IEEE, 2001.

[3] Andrew W. Appel and Edward W. Felten. Proof-carrying
authentication. In 6th ACM Conference on Computer and
Communications Security. ACM Press, November 1999.

[4] Andrew W. Appel and Amy P. Felty. A semantic model of
types and machine instructions for proof-carrying code. In
POPL °00: The 27th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 243-253,
New York, January 2000. ACM Press.

[5] Andrew W. Appel and David McAllester. An indexed
model of recursive types for foundational proof-carrying
code. ACM Trans. on Programming Languages and Sys-
tems, pages 657-683, September 2001.

[6] Andrew W. Appel, Neophytos G. Michael, Aaron Stump,
and Roberto Virga. A Trustworthy Proof Checker. Tech-
nical Report CS-TR-648-02, Princeton University, April
2002.

[71 Andrew W. Appel and Daniel C. Wang. JVM TCB: Mea-
surements of the trusted computing base of Java virtual ma-
chines. Technical Report CS-TR-647-02, Princeton Univer-
sity, April 2002.

[8] Bruno Barras, Samuel Boutin, Cristina Cornes, Ju-
dicaél Courant, Yann Coscoy, David Delahaye,
Daniel de Rauglaudre, Jean-Christophe Fillidtre, Ed-
vardo Giménez, Hugo Herbelin, Gérard Huet, Henri
Laulhere, César Mufioz, Chetan Murthy, Catherine Parent-
Vigouroux, Patrick Loiseleur, Christine Paulin-Mohring,
Amokrane Saibi, and Benjamin Werner. The Coq Proof
Assistant reference manual. Technical report, INRIA,
1998.

[9] Lujo Bauer, Michael A. Schneider, and Edward W. Felten.
A general and flexible access-control system for the web.
In Proceedings of USENIX Security, August 2002.

Christopher Colby, Peter Lee, George C. Necula, Fred Blau,
Ken Cline, and Mark Plesko. A certifying compiler for
Java. In Proceedings of the 2000 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementa-
tion (PLDI ’00), New York, June 2000. ACM Press.

Drew Dean, Edward W. Felten, Dan S. Wallach, and Dirk
Balfanz. Java security: Web browers and beyond. In
Dorothy E. Denning and Peter J. Denning, editors, Internet
Beseiged: Countering Cyberspace Scofflaws. ACM Press
(New York, New York), October 1997.

(10]

(11]

[12] John DeTreville. Binder, a logic-based security language.
In Proceedings of 2002 IEEE Symposium on Security and

Privacy, page (to appear), May 2002.

[13] Edward W. Felten. Personal communication, April 2002.

(14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

M. J. Gordon, A. J. Milner, and C. P. Wadsworth. Ed-
inburgh LCF: A Mechanised Logic of Computation, vol-
ume 78 of Lecture Notes in Computer Science. Springer-
Verlag, New York, 1979.

Robert Harper, Furio Honsell, and Gordon Plotkin. A
framework for defining logics. Journal of the ACM,
40(1):143-184, January 1993.

Neophytos G. Michael and Andrew W. Appel. Machine
instruction syntax and semantics in higher-order logic. In
17th International Conference on Automated Deduction,
pages 7-24, Berlin, June 2000. Springer-Verlag. LNAI
1831.

Greg Morrisett, David Walker, Karl Crary, and Neal Glew.
From System F to typed assembly language. In POPL
"98: 25th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 85-97, New
York, January 1998. ACM Press.

George Necula. Proof-carrying code. In 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 106119, New York, January 1997.
ACM Press.

George C. Necula and S. P. Rahul. Oracle-based check-
ing of untrusted software. In POPL 2001: The 28th
ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 142—154. ACM Press, January
2001.

Frank Pfenning and Carsten Schiirmann. System descrip-
tion: Twelf — a meta-logical framework for deductive sys-
tems. In The 16th International Conference on Automated
Deduction, Berlin, July 1999. Springer-Verlag.

Robert Pollack. How to believe a machine-checked proof.
In Sambin and Smith, editors, Twenty Five Years of Con-
structive Type Theory. Oxford University Press, 1996.

Ken Thompson. Reflections on trusting trust. Communica-
tions of the ACM, 27(8):761-763, 1984.

52

Proving Cryptographic Protocols Safe From Guessing Attacks

Ernie Cohen*
Microsoft Research, Cambridge UK

June 28, 2002

Abstract

We extend the first-order protocol verification method of
[1] to prove crypto protocols secure against an active ad-
versary who can also engage in idealized offline guessing
attacks. The enabling trick is to automatically construct
a first-order structure that bounds the deduction steps that
can appear in a guessing attack, and to use this structure to
prove that such attacks preserve the secrecy invariant. We
have implemented the method as an extension to the proto-
col verifier TAPS, producing the first mechanical proofs of
security against guessing attacks in an unbounded model.

1 Introduction

Many systems implement security through a combina-
tion of strong secrets (e.g., randomly generated keys and
nonces) and weak secrets (e.g. passwords and PINs). For
example, many web servers authenticate users by sending
passwords across SSL channels. Although most formal
protocol analysis methods treat strong and weak secrets
identically, it is well known that special precautions have
to be taken to protect weak secrets from offline guessing
attacks.

For example, consider the following simple protocol,
designed to deliver an authenticated message 7" from a user
Atoaserver S:

A—S:{Na, T}y a)

(Here k(A) is a symmetric key shared between A and S,
and Na is a freshly generated random nonce.) If k(A) is
generated from a weak secret, an adversary might try to
attack this protocol as follows:

e If A can be tricked into sending a 7" that is in an eas-
ily recognized sparse set (e.g., an English text, or a
previously published message), the adversary can try
to guess A’s key. He can then confirm his guess by
decrypting the message and checking that the second
component is in the sparse set.

e If A can be tricked into sending the same T twice
(using different nonces), or if another user B can be

*Author’s address: ernie.cohen@acm.org

53

tricked into sending the same 7', the adversary can
try to guess a key for each message. He can then con-
firm his guess by decrypting the messages with the
guessed keys, and checking that their second compo-
nents are equal.

In these attacks, the adversary starts with messages he has
seen and computes new messages with a sequence of steps
(guessing, decryption, and projection in these examples).
Successful attack is indicated by the discovery of an un-
likely coincidence — a message (7' in the examples above)
that either has an unlikely property (as in the first example)
or is generated in two essentially different ways (as in sec-
ond example). Such a message is called a verifier for the
attack; intuitively, a verifier confirms the likely correctness
of the guesses on which its value depends.

This approach to modelling guessing attacks as a search
for coincidence was proposed by Gong et. al. [2], who
considered only the first kind of verifier. Lowe [3] pro-
posed a model that includes both kinds of verifiers !. He
also observed that to avoid false attacks, one should ig-
nore verifiers produced by steps that simply reverse other
derivation steps. For example, if an adversary guesses a
symmetric key, it’s not a coincidence that encrypting and
then decrypting a message with this key yields the original
message (it’s an algebraic identity); in Lowe’s formulation,
such a coincidence is ignored because the decryption step
“undoes” the preceding encryption step.

Lowe also described an extension to Casper/FDR that
searches for such attacks by looking for a trace consist-
ing of an ordinary protocol execution (with an active ad-
versary), followed by a sequence of steps (dependent on a
guess) that leads to a verifier. However, he did not address
the problem of proving protocols safe from such attacks.

In this paper we extend the first-order verification
method of [1] to prove protocols secure in the presence of
an active attacker that can also engage in these kinds of of-
fline guessing attacks. We have also extended our verifier,
TAPS, to construct these proofs automatically; we believe
them to be the first mechanical proofs of security against a
guessing attacker in an unbounded model.

'Lowe also considered the possibility of using a guess as a verifier;
we handle this case by generating guesses with explicit attacker steps.

1.1 Roadmap

Our protocol model and verification method are fully de-
scribed in [1]; in this paper, we provide only those details
needed to understand the handling of guessing attacks.

We model protocols as transition systems. The state of
the system is given by the set of events that have taken
place (e.g., which protocol steps have been executed by
which principals with which message values). We model
communication by keeping track of which messages have
been published (i.e., sent in the clear); a message is sent by
publishing it, and received by checking that it’s been pub-
lished. The adversary is modelled by actions that combine
published messages with the usual operations ((un)pairing,
(en/de)cryption, etc.) and publish the result.

Similarly, a guessing attacker uses published messages
to construct a guessing attack (essentially, a sequence of
steps where each step contributes to a coincidence) and
publishes any messages that appear in the attack (in partic-
ular, any guesses). We describe these attacks formally in
section 2. Our model differs from Lowe’s in minor ways
(it’s a little more general, and we don’t allow the attack
to contain redundant steps); however, we prove in the ap-
pendix that for a guesser with standard attacker capabil-
ities, and with a minor fix to his model, the models are
essentially equivalent.

To verify a protocol, we try to generate an appropri-
ate set of first-order invariants, and prove safety properties
from the invariants by first-order reasoning. Most of these
invariants are invariant by construction; the sole exception
is the secrecy invariant (described in section 4), which de-
scribes conditions necessary for the publication of a mes-
sage. [1] describes how TAPS constructs and checks these
invariants; in this paper, we are concerned only with how
to prove that guessing attacks maintain the secrecy invari-
ant.

In section 3, we show how to prove a bound on the in-
formation an adversary learns from a guessing attack by
constructing a set of steps called a saturation; the main
theorem says that if a set of messages has a saturation that
has no verifiers, then a guessing attack starting with infor-
mation from that set cannot yield information outside that
set. In section 5, we show how to automatically gener-
ate first-order saturations suitable to show preservation of
TAPS secrecy invariants. TAPS uses a resolution theorem
prover to check that the saturation it constructs really does
define a saturation, and to check that this saturation has no
verifiers.

2 Guessing Attacks

In this section, we describe guessing attacks abstractly.
We also define a standard model, where the attacker has
the usual Dolev-Yao adversary capabilities (along with the
ability to guess and recognize).

We assume an underlying set of messages; variables
X,Y,Z A, Na, and T range over messages, and M over
arbitrary sets of messages. In the standard model, the mes-
sage space comes equipped with the following functions
(each injective?, with disjoint ranges):

nil a trivial message
{X,Y} the ordered pair formed from X and Y’
Xy encryption of X under the key Y

Following Lowe, we define a guessing attacker by the
steps that he can use to construct an attack; variables start-
ing with s denote steps, variables starting with .S denote
sets of steps or finite sequences of steps without repeti-
tion (treating such sequences as totally ordered sets). We
assume that each step has a finite sequence of message in-
puts and a single message output; intuitively, a step models
an operation available to the adversary that, produces the
output from the inputs. An input/output of a set of steps is
an input/output of any of its members. We say s is inside
M iff the inputs and output of s are all in M, and is outside
M otherwise. S is inside M iff all its steps are inside M.

In the standard model, a step is given by a vector of
length three, the first and third elements giving its inputs
and output, respectively. Steps are of the following forms,
where d,guessable, and checkable are protocol-dependent
predicates described below:

,Z),dec, X), where d(Y, Z)
), guess, X) where guessable(X)
X), check, nil)

(), nil, nil)
({X,Y),cons, {X,Y})
({X,Y), enc, Xy)
(({X,Y}), car, X)
(({x ,Y}> cdr,Y)
(Xy

(

(

where checkable(X)

The first five steps model the adversary’s ability to produce
the empty message, to pair, encrypt and project. The sixth
step models his ability to decrypt; d(X,Y’) means that
messages encrypted under X can be decrypted using Y.
The seventh step models the adversary’s ability to guess;
we think of the adversary as having a long list of likely
secrets, and guessable(X) just means that X is in the list.
The last step models the adversary’s ability to recognize
members of particular sparse sets (such as English texts);
checkable(X) means X passes the recognition test*.

2As usual, we cheat in assuming pairing to be injective; to avoid a
guesser being able to recognize pairs, pairing is normally implemented
as concatenation, which is not generally injective. One way to improve
the treatment would be to make message lengths explicit.

3For example, the axiom sk(X) < (VY : d(X,Y) & X =Y)
defines sk as a recognizer for symmetric keys.

4Because of the way we define attacks, checkable has to be defined
with some care. For example, defining checkable to be all messages of
the form {X, X} would allow construction of a verifier for any guess.
However, we can use checkable to recognize asymmetric key pairs,
which were treated by Lowe as a special case.

54

Let undoes be a binary relation on steps, such that if
s1 undoes s2, then the output of sl is an input of s2 and
the output of 52 is an input of s1°. Intuitively, declaring
that s1 undoes s2 says that performing s1 provides no new
“information” if we’ve already performed s2°. Typically,
data constructors and their corresponding destructors are
defined to undo each other.

In the standard model, we define that step s1 undoes
step s2 iff there are X, Y, Z such that one of the following
cases holds:

) s1 = (X,Y),cons, {X,Y})
T s2 = (({X, Y}, car, X)

5 s1 = (X,Y),cons, {X,Y})
T s2 = (({X,Y}),cdr,Y)

3 sl = (X,Y),enc, Xy)
" s2 = ((Xy,Z),dec, X)

4. any of the previous cases with s1 and s2 reversed

A sequence of steps S is a pre-attack on M if (1) every
input to every step of S is either in M or the output of an
earlier step of S, and (2) no step of S undoes an earlier
step of S. An M -verifier of a set of steps S is the output of
a step of .S that is in M or the output of another step of .S.
A pre-attack on M, S, is an attack on M iff the output of
every step of S is either an M -verifier of S or the input of
a later step of S. Intuitively, an attack on M represents an
adversary execution, starting from M, such that every step
generates new information, and every step contributes to a
coincidence (i.e., a path to a verifier). Note that attacks are
monotonic: if M C M/’ an attack on M is also an attack
on M’. An attack on M is effective iff it contains a step
outside M. Note also that removing a step inside M from
an (effective) attack on M leaves an (effective) attack on
M.

A guessing attacker is one who, in addition to any other
capabilities, can publish any messages that appear as in-
puts outputs in an attack on the set of published messages’.

example: We illustrate with some examples taken from
[3]. In each case, we assume g is guessable.

5The peculiar requirement on undoing has no real intuitive signifi-
cance, but is chosen to make the proof of the saturation theorem work.
The requirement that the output of s1 is an input of s2 is not strictly nec-
essary, but it makes the proof of completeness part of the theorem easier.

60ne of the weaknesses of our model (and Lowe’s) is that the undoes
relation does not distinguish between it’s inputs. For example, encryption
with a public key followed by decryption with a private key does not re-
veal any new information about the plaintext, but does reveal information
about the keys (namely, that they form a key pair). This is why asymmet-
ric key pairs have to be handled with check steps.

"Because the set of published messages is generally not closed under
adversary actions, an attack might publish new messages even without
using guesses. However, such any message published through such an
attack could equally be published through ordinary adversary actions.

55

o If g, € M, then

((), guess, g), ({9, 9), enc, g,)
is an attack on M

e If g, € M and g is a symmetric key, then

(), guess, g), ({94, 9), dec, g)
is an attack on M

e If M = () and g is a symmetric key, then

(0, guess, g), ({9, 9), enc, gg), ({94, 9), dec, g)

is not an attack, or even a pre-attack, on M, because
the last step undoes the second step.

o If {v,v}, € M, where g is a symmetric key,

<<>7 guess, g>’ <<{U7 U}gv g>7 dec, {U’ U}>a
({{v,v}), car,v), ({({v,v}), cdr,v)

is an attack on M.

If M in the last example is the set of published mes-
sages, the attack has the effect of publishing the messages

g,{v,v}g,{v, v}, and v.
end of example

3 Saturation

How can we prove that there are no effective attacks on
a set of messages M ? One way is to collect together all
messages that might be part of an effective attack on M,
and show that this set has no verifiers. However, this set
is inductively defined and therefore hard to reason about
automatically. We would rather work with a first-order ap-
proximation to this set (called a saturation below); this ap-
proximation might have additional steps (e.g., a set of steps
forming a loop, or steps with an infinite chain of predeces-
sors); nevertheless, as long as it has no verifiers, it will suit
our purposes.

However, there is a catch; to avoid false attacks, we
don’t want to add a step to the set if it undoes a step al-
ready in the set. Thus, adding extra steps to the set might
cause us to not include other steps that should be in the set
(and might be part of an effective guessing attack). Fortu-
nately, it turns out that this can happen only if the set has a
verifier.

Formally, a set of steps S saturates M iff every step
outside M whose inputs are all in M Uoutputs(S) is either
in S or undoes some step in S. The following theorem
says that we can prove M free from effective attacks by
constructing a saturation of M without an M -verifier, and
that this method is complete:

Theorem 1 There is an effective attack on M iff every sat-
uration of M has an M -verifier.

To prove the forward implication, let A be an effective at-
tack on M, and let S saturate M ; we show that S has an
M -verifier. Since A is effective, assume wlog that A has
no steps inside M. If A C S, the M -verifier for A is also
an M-verifier for S. Otherwise, let a be the first step of A
not in S; all inputs of @ are in outputs of previous steps of
A (which are also steps of S) orin M. Since S saturates
M and a € S, a undoes some step s € S; by the condition
on undoing, the output x of s is an input of a. Moreover,
because A is a pre-attack, z is either in M or the output
of an earlier step al of A (hence al € S) that a does not
undo (and hence, since a undoes s, al # s). In either case,
x is an M -verifier for S.

To prove the converse, let S be the set of all steps of
all pre-attacks on M whose steps are outside M ; we show
that (1) S saturates M and (2) if S has a verifier, there
is an effective attack on M. To show (1), let s be a step
outside M whose inputs are all in S U M and does not
undo a step of .S; we have to show that s € S. Since each
input of s that is not in M is the output of a step of a pre-
attack on M, concatenate these pre-attacks together (since
s has only finitely many inputs) and repeatedly delete steps
that undo earlier steps (by the condition on the undoes
relation, such deletions do not change the set of messages
that appear in the sequence); the result is a pre-attack on
M. Since s does not undo any step of .S, it does not undo
any steps of this sequence, so adding it to the end gives
a pre-attack on M; thus s € S. To show (2), suppose S
has an M -verifier x; then there are steps s1,s2 € .S such
that x is the output of s1 and s2 and either x € M or
s1 # s2. By the definition of S, s1 and s2 are elements of
pre-attacks A and B with steps outside M, and x is an M-
verifier for AU B. Thus, A; B is a pre-attack on M with a
verifier; by repeatedly removing from this pre-attack steps
that produce outputs that are neither M -verifiers nor inputs
to later steps, we are eventually left with an effective attack
on M.

4 The secrecy invariant

In our verification method (for nonguessing attackers), the
secrecy invariant has the form

pub(X) = ok(X)

where pub(X) is a state predicate that means X has been
published and ok is the strongest predicate® satisfying the

8Because ok does not occur in the definition of prime, we could
instead define ok as an ordinary disjunction, but it’s more convenient
to work with sets of formulas than big disjunctions. The same remarks
apply to the predicates guessable, checkable, cc, scc, sd, and coreOK
below.

following formulas:

prime(X) = ok(X)
ok (nil)
pub(X) Apub(Y) = ok({X,Y})
pub(X) Apub(Y) = ok(Xy)

The computation of an appropriate definition of the pred-
icate prime and the proof obligations needed to show the
invariance of the secrecy invariant are fully described in
[1]; for our purposes, the relevant properties of prime are

prime({X,Y})
prime(Xy) A dk(Y)

= prime(X) A prime(Y)
= prime(X)

where dk(X) < (3Y : d(X,Y) A pub(Y)). Intuitively,
dk(X) means that the adversary possesses a key to decrypt
messages encrypted under X .

example (continued): Consider the protocol described in
the introduction. To simplify the example, we assume that
k(A) is unpublished, for all A, and that Na and T are
freshly generated every time the protocol is run. For this
protocol, TAPS defines prime to be the strongest predicate
satisfying

ey

where p0(A, Na, T) is a state predicate that records that A
has executed the first step of the protocol with nonce Na
and message 7T'. (Note that if some keys could be pub-
lished, the definition would include additional primality
cases for { Na, T}, Na, and T'.)

end of example

p0(A, Na,T) = prime({Na,T}ja))

To prove that the secrecy invariant is preserved by
guessing steps, we want to prove that any value published
by a guessing attack is ok when the attacker publishes it.
Inductively, we can assume that the secrecy invariant holds
when a guessing attack is launched, so we can assume that
every published message is ok. Because attacks are mono-
tonic in the starting set of messages, it suffices to show that
there are no effective attacks on the set of ok messages; by
the saturation theorem, we can do this by constructing a
saturation without verifiers for the set of ok messages.

5 Generating a Saturation

‘We define our saturation as follows; in each case, we elim-
inate steps inside ok to keep the saturation as small as pos-
sible. We say a message is available if it is ok or is the
output of a step of the saturation. We call car,cdr, and dec
steps destructor steps, and the remaining steps constructor
steps. The main input of a destructor step is the encrypted
message in the case of a dec step and the sole input in the
case of a car or cdr step. A constructor step outside ok is

56

in the saturation iff its inputs are available and it does not
undo a destructor step of the saturation. A destructor step
outside ok is in the saturation if it is a core step (defined
below); we define the core so that it includes any destruc-
tor step outside ok whose inputs are available and whose
main input is either prime, the output of a guessing step,
or the output of a core step.

To see that this definition is consistent, note that if we
take the same definition but include in the core all con-
structor steps outside ok whose inputs are available (i.e.
ignoring whether they undo destructor steps), the condi-
tions on the saturation and availability form a Horn theory,
and so have a strongest solution. Removing from the satu-
ration those constructor steps that undo core steps doesn’t
change the definition of availability or the core (since the
main input to every core step is either prime or the output
of a core step).

To show that this definition yields a saturation of ok,
we have to show that any step outside ok whose inputs are
available is either in the saturation or undoes a step of the
saturation. This is immediate for constructor steps and for
destructor steps whose main input is prime, a guess, or the
output of a core step. A destructor step whose main input is
the output of a constructor step in the saturation (other than
a guess) undoes the constructor step (because encryption
and pairing are injective with disjoint ranges). Finally, for
a destructor step whose main input is ok but not prime, the
main input must be a pair or encryption whose arguments
are published (and hence ok by the secrecy invariant), so
such a destructor step is inside ok.

Finally, we need to define the core. Let sd(Xy)
mean that ({Xy,Z},dec, X) is a core step for some
Z°, let scc({X,Y}) mean that (({X,Y}),car, X) and
(({X,Y}),cdr,Y) are core steps'®, and let cc(X) (“X is
a core candidate”) mean that X is either prime, a guess,
or the output of a core step. For the remainder of the
description, we assume that guessability and primality
are given as the strongest predicates satisfying a finite
set of equations of the forms f = prime(X) and f =
guessable(X). Let F be the set of formulas f = cc(X),
where f = prime(X) is a formula defining prime or
f = guessable(X) is a formula defining guessable. These
formulas guarantee that cc includes all prime messages and
all guessable messages.

example (continued): For our example, we assume that
all keys are guessable, so g is defined as the strongest pred-
icate satisfying

)

9We don’t need to keep track of what decryption key was used (when
creating the saturation), because the undoes relation for decryptions is
independent of decryption key. However, when we check for verifiers, we
have to make sure that at most one decryption key is available for each of
these encryptions.

10For the saturation defined here, each of these steps are in the core iff
ce({X,Y})

guessable(k(A))

57

Since prime and guessable are defined by formulas (1)
and (2) respectively, F initially contains the formulas

3)
“

pO(A,Na,T) = ce({Na,T}ya))

ce(k(A))

end of example

To make sure that F defines a suitable core (as defined
above), we expand F to additionally satisfy the formulas

Q) sd(Xy) = ce(X)

(6) scc({X,Y}) = ce(X)

7 scc({X,Y}) = ce(Y)

8) cc({X, Y} Asc({X,Y}) = sce({X,Y})
) ce(Xy)Ase(Xy) = sd(Xy)
where

se(Xy)e (3Z:d4d(Y,Z) A avail(Z)
AN(—0k(Xy) V —0k(Z) V —0k(X)))
sc({X,Y}) & —ok({X,Y})

(5)-(7) say that cc includes all outputs of core steps; (8)
says that a car or cdr step is in the core if it is outside ok
and its input is in cc; and (9) says that a decryption step
is in the core if it is outside ok and a decryption key is
available. To construct the formulas for sd, scec, and ce
meeting these conditions, we repeatedly add formulas to
JF as follows:

o If (f = cc(Xy)) € F, add to F the formulas

f A se(Xy)
f A se(Xy)

=
=

ce(X)

example (continued): Applying this rule to the for-
mula (3), we add to F the formulas

=
=

pO(Aa NCL, T) A SB({NG,, T}k(A))

p0(A, Na,T) A se({Na, T}) cc({Na,T})
Since k(A) is a symmetric key, d(k(A4),V) sim-
plifies to V k(A), and both avail(k(A)) and
se({Na, T} (ay) simplify to true, so we can simplify
these formulas to

(10)
(1)

p0(A, Na, T)
pO(A, Na, T)

=
=

sd({Na, T} a))
cc({Na,T})

end of example

sd({Na, T}y (a))

o If (f = cc({X,Y})) € F, add to F the formulas

fAsc({X,Y}) = sce({X,Y})
fAsc({X,Y}) = ce(X)
fAsc({X,Y}H) = ce(Y)

example (continued): Applying this rule to (11), and
using the fact that with the given secrecy invariant,
p0(A, Na,T) = —ok({Na,T}), yields the formulas

(12) 0(4,Na,T) = scc({Na,T})
(13) (A Na,T) = cc(Na)
(14) pO0(A,Na,T) = cc(T)

end of example

o If (f = cc(X)) € F, where X is a variable symbol or
an application of a function other than cons or enc,
add to F the formula

f = coreOK (X)
where coreOK is the strongest predicate such that

(se(X) = sce(X))
A(se(X) = sd(X))

coreOK(X) &

Intuitively, coreOK (X) means that we believe that
we don’t need to generate any more core cases to han-
dle X, because we think that f implies that if X is the
main input of a destructor step, then it is already han-
dled by one of the other cases in F. (Typically, it is
because we think that the authentication properties of
the protocol guarantee that X will not be an encryp-
tion or pair'!.) This bold assumption is just a good
heuristic'?; if it turns out to be wrong, TAPS is un-
able to prove the resulting proof obligation, and the
whole protocol proof fails (i.e., the assumption does
compromise soundness).

example (continued): Applying this rule to
(13),(14), and (4) yields the obligations

(15) p0(A,Na,T) = coreOK(Na)
(16) pO0(A,Na,T) = coreOK(T)
(17) coreOK (k(A))

end of example

"Unfortunately, a proof that shows this interplay between authentica-
tion reasoning a safety from guessing would be too large to present here;
analogous proofs that show the synergy between authentication and se-
crecy reasoning are given in [1].

121 ke all such choices in TAPS, the user can override this choice with
hints about how to construct the saturation.

58

After this process reaches a fixed point'3, we define sd
to be the strongest predicate satisfying the formulas of F

of the form f = sd(X), and similarly for scc and cc.

example (continued): The formulas of F generate the
definitions

p0(A, Na,T)

sd({Na,T}ray) <
& pO(A, Na,T)

sce({Na,T})

end of example

These definitions guarantee that the core satisfies (5)-
(7); to show that it satisfies (8)-(9), we also need to prove
explicitly the remaining formulas from F of the form
f = coreOK(X). TAPS delegates these proofs to a res-
olution prover; if these proofs succeed, we have success-
fully defined the core, and hence, the saturation'*

example (continued): The remaining obligations are
(15)-(16) and (17). (15)-(16) follow trivially from the fact
that p0(A, Na, T') implies that A,Na, and T are all atoms;
(17) depends on a suitable axiom defining the keying func-
tion k (e.g., that k(A) is an atom, or is an encryption under
a hash function).

end of example

Finally, we have to prove that the saturation has no ver-
ifiers. Because of the way in which our saturation is con-
structed, we can eliminate most of the cases as follows.
The output of a cons step cannot be the output of any other
step of the saturation —

e it can’t be the output of a core step (because the core
would include the car and cdr steps generated from
the output, which would be undone by the cons step);

e it can’t be the output of another cons step (because
pairing is injective) or an enc step (since cons and
enc have disjoint ranges);

e it can’t be ok, because both of its inputs would also
be published (by the definition of ok), hence ok, and
so the step would be inside ok (hence out of the satu-
ration).

Similarly, the output of an enc step cannot be the output of
another enc step (because enc is injective).

Thus, we can prove the saturation has no verifiers by
showing that each of the remaining cases is impossible:

13The process reaches a fixed point by induction on the size of the term
on the right of the implication; it does not require an induction principle
on messages.

4In fact, the way the TAPS secrecy invariant is constructed, these
proofs are probably not necessary. But they also present no problems
if TAPS can prove the secrecy invariant (we have never seen one fail), so
we have left them in for the sake of safety.

e an enc step whose output v is prime or the output
of a core step, such that no decryption key for v is
available (This case is trivial for symmetric encryp-
tions, since the key (and hence also a decryption key)
is available.)

e two distinct core steps with the same output
e a core step whose output is ok or guessable
e a saturation step whose output is checkable

These cases are relatively easy to check, because they in-
volve messages of known structure and pedigree.

example (continued): To prove that this saturation has no
verifiers, we have to check the following cases:

e the output of a enc step that is prime or the output of
a core step, without an available decryption key: this
case goes away because the only such encryptions are
symmetric.

e a core step that produces an ok value; this case checks
because the secrecy invariant guarantees that neither
Na nor T is ok.

e a core step that produces a guessable value; this de-
pends on an additional assumptions about £k (e.g.,
k(A) is an atom, but not a value generated for Na
or TH).

e two distinct core steps that produce the same value.
A dec step cannot collide with a car or cdr step - the
former produces cons terms, while the latter produce
atoms. Two core dec steps cannot collide because
Na is freshly chosen and thus uniquely determines A
and 7" (and thus, by the injectivity properties of cons,
{Na, T} uniquely determines both { Na, T'} .4y and
k(A); because k(A) is symmetric, it also uniquely de-
termines the decryption key). Two car (respectively,
cdr) steps cannot collide because Na (respectively,
T is freshly chosen, and hence functionally deter-
mines { Na, T'}. Finally, a car and a cdr step cannot
collide because the same value is not chosen as both
an Na value and an T value. Note that these cases
would fail if the same value could be used for Na and
T, orif an Na or T value could be reused.

e a saturation step whose output is checkable; in this
example, this is trivial, since no messages are re-
garded as checkable. Were we not able to prove di-
rectly that T" is uncheckable, the proof would fail.

end of example

5Tn practice, we avoid having to write silly axioms like this by gen-
erating keys like k(A) with protocol actions; nonce unicity lemmas [1]
then give us all these conditions for free.

In general, the total number of proof obligations grows
roughly as the square of the number of core cases, in
contrast to the ordinary protocol reasoning performed by
TAPS, where the number of obligations is roughly linear in
the number of prime cases. Moreover, many of the proofs
depend on authentication properties'® Thus, as expected,
the guessing part of the verification is typically much more
work than the proof of the secrecy invariant itself. For ex-
ample, for EKE, TAPS proves the secrecy invariant and
the authentication properties of the protocol in about half a
second, while checking for guessing attacks takes about 15
seconds!”. However, the proofs are completely automatic.

While we have applied the guessing attack extension
to TAPS to verify a number of toy protocols (and a few
less trivial protocols, like EKE), a severe limitation is that
TAPS (like other existing unbounded crypto verifiers) can-
not handle Vernam encryption. The next major revision of
TAPS will remedy this situation, and allow us to more rea-
sonably judge the usefulness of our approach to guessing.

6 Acknowledgements

This work was done while visiting Microsoft Research,
Cambridge; we thank Roger Needham and Larry Paulson
for providing the opportunity. We also thank Gavin Lowe
for patiently fielding many stupid questions about guessing
attacks, and the referees for their insightful comments.

References

[1] E. Cohen, First-Order Verification of Cryptographic
Protocols. In JCS (to appear). A preliminary version
appears in CSFW (2000)

[2] L. Gong and T. Mark and A. Lomas and R. Needham
and J. Saltzer, Protecting Poorly Chosen Secrets from
Guessing Attacks. IEEE Journal on Selected Areas in

Communications, 11(5):648-656 (1993)

G. Lowe, Analyzing Protocols Subject to Guessing
Attacks. In WITS (2002)

[4] C. Weidenbach, B. Afshordel, U. Brahm, C. Cohrs,
T. Engel, E. Keen, C. Theobalt, and D. Topi¢, System
description: SPASS version 1.0.0. In CADE 15, pages

378-382(1999).

16For example, if a protocol step publishes an encryption with a com-
ponent received in a message, and the message is decrypted in a guess-
ing attack, showing that the destructor step that extracts the component
doesn’t collide depends on knowing where the component came from.

7This is in part due to the immaturity of the implementation; it takes
some time to find the right blend of theorem proving and preprocessing
to optimize performance. For example, the current TAPS implementation
effectively forces the prover into splitting the proof into cases, since the
prover is otherwise reluctant to do resolutions that introduce big disjunc-
tions.

59

A Lowe’s Guessing Model

In this appendix, we describe Lowe’s model for guessing
attacks, and sketch a proof that for the standard model and
with a single guess, Lowe’s model and ours are essentially
equivalent.

Throughout this section, we work in the standard model.
Moreover, to match Lowe’s model, we define the check-
able messages to be all pairs of asymmetric keys, and de-
fine a single value g to be guessable. Let M be a fixed set
of messages. An execution is a finite sequence of distinct
steps such that every input to every step is either in M or
the output of an earlier step of S'8. A message m is new
iff every execution from M that contains m as an input or
output also includes a guessing step; intuitively, new mes-
sages cannot be produced from M without the use of g.
A Lowe attack is an execution with steps sl and s2 (not
necessarily distinct), each with output v, satisfying the fol-
lowing properties:

e sl is either a guessing step or has an input that is new
(Lowe’s condition (3));

e cither (1) s1 # s2, (2) visin M, or (3) v is an asym-
metric key and v~ is in M or the output of a step of
the execution (Lowe’s condition (4))

e neither s1 nor s2 undoes any step of the execution
(Lowe’s condition (5))

Theorem 2 There is a Lowe attack on M iff there is an
attack on M that reveals g.

First, let S be a Lowe attack with s1, s2, and v as in the
definition above; we show how to turn S into an attack on
M that reveals g. Let s3 be a step other than sl or s2. If
the output of s3 is not an input of a later step, then deleting
53 from S leaves a Lowe attack revealing. If s3 undoes an
earlier step of S, then (in the standard model) the output
of s3 is an input of the earlier step, so again deleting s3
from S leaves a Lowe attack revealing g. Repeating these
deletions until no more are possible leaves a Lowe attack
revealing g where no step undoes an earlier step, and where
the output of every step other than s1 and s2 is an input to
a later step.

If s1 # s2, orif s1 = s2 and the output of s1 is in M or
the output of another step of S, then the outputs of s1 and
s2 are verifiers and S is an attack. Otherwise, s1 = s2, v
is an asymmetric key, and v~ is in M or the output of a
step of S. If v is an input to a step that follows s1, then
again S is an attack. If {v,v~'} is neither in M nor the

18] owe actually did not have guessing steps, but instead simply al-
lowed g to appear as inputs to steps of S and as a verifier. However,
because guesses did not appear as explicit steps, he missed the following
case: suppose g is an asymmetric key and M is the set (g~). Obviously
this should be considered to be vulnerable to a guessing attack. However,
there is no attack in Lowe’s original model, because any step producing
g or g— ! would have to undo a previous step.

60

output of a step of G, then add to the end of S the steps
{{(v,v71), cons, {v,v™1}), (({v,v~t}), check,nil) to
create an attack. Otherwise, let s3 = (({v,v™1}), car, v).
If s1 = s3, delete s1 from .S and add to the end of S the
step {{v,v™1}), check,nil); if s1 # s3, add s3 to the end
of S. In either case, the resulting .S is an attack.

Conversely, let S be an attack on M that reveals g. Note
that since S is a pre-attack, no step of S undoes a previous
step of S; since the undoing relation is symmetric in the
standard model, no step of S undoes any other step of .S.
Since g is not derivable from M, it must be the output of a
guessing step of S; without loss of generality, assume it is
the output of the first step.

e If g is a verifier for .S, then since g is not in M, it must
also be the output of another step s1 of S. Because
S is an attack, s1 does not undo any earlier step of S.
Thus, the prefix of S up to and including s1 is a Lowe
attack on M.

e If g is not a verifier for S, then g must be an input to a
later step of S. Because g is new, some step of S has a
new input; since .S is finite, there is a step s of .S with
a new input such that no later step has a new input.
Thus, the output of s is either not new or is a verifier
of S. If the output of s is not new and not a verifier
of S, append to S an execution without guessing or
checking steps that outputs the output of s, deleting
any added steps that undo steps of S. This produces
an attack with a step whose output is a verifier for S
and has an input that is new. If s is not a checking
step, then .S is a Lowe attack. If s is a checking step,
then one input to s is an asymmetric key k that is new,
such that k! is either in M or the output a step that
precedes s. Since k is new, it must be the output of
a step s2 of S that is either a guessing step or has a
new input; in either case, S is a Lowe attack, with s2
in the role of s1.

Automatic SAT-Compilation of Protocol Insecurity Problems via
Reduction to Planning*

Alessandro Armando! and Luca Compagna'

June 28, 2002

Abstract

‘We provide a fully automatic translation from security pro-
tocol specifications into propositional logic which can be
effectively used to find attacks to protocols. Our approach
results from the combination of a reduction of protocol in-
security problems to planning problems and well-known
SAT-reduction techniques developed for planning. We also
propose and discuss a set of transformations on protocol
insecurity problems whose application has a dramatic ef-
fect on the size of the propositional encoding obtained with
our SAT-compilation technique. We describe a model-
checker for security protocols based on our ideas and show
that attacks to a set of well-known authentication protocols
are quickly found by state-of-the-art SAT solvers.

Keywords: Foundation of verification; Confidentiality
and authentication; Intrusion detection.

1 Introduction

Even under the assumption of perfect cryptography, the de-
sign of security protocols is notoriously error-prone. As a
consequence, a variety of different protocol analysis tech-
niques has been put forward [3, 4, 8, 10, 12, 16, 19, 22, 23].
In this paper we address the problem of translating proto-
col insecurity problems into propositional logic in a fully
automatic way with the ultimate goal to build an auto-
matic model-checker for security protocols based on state-
of-the-art SAT solvers. Our approach combines a reduc-
tion of protocol insecurity problems to planning problems'
with well-known SAT-reduction techniques developed for
planning. At the core of our technique is a set of transfor-
mations whose application to the input protocol insecurity
problem has a dramatic effect on the size of the propo-
sitional formulae obtained. We present a model-checker

*This work has been supported by the Information Society Technolo-
gies Programme, FET Open Assessment Project “AVISS” (Automated
Verification of Infinite State Systems), IST-2000-26410.

TDIST — Universita degli Studi di Genova, Viale Causa 13 — 16145
Genova, Italy, {armando,compa} @dist.unige.it

IThe idea of regarding security protocol analysis as a planning prob-
lem is not new. To our knowledge it is also been proposed in [1].

61

for security protocols based on our ideas and show that—
using our tool—attacks to a set of well-known authenti-
cation protocols are quickly found by state-of-the-art SAT
solvers.

2 Security Protocols and Protocol
Insecurity Problems

In this paper we concentrate our attention on error detec-
tion of authentication protocols (see [7] for a survey). As
a simple example consider the following one-way authen-
tication protocol:

(]) A— B: {Na}Kab
(2) B— A:{f(Na)}xk,,

where N, is a nonce? generated by Alice, K, is a sym-
metric key, f is a function known to Alice and Bob, and
{z} denotes the result of encrypting text = with key k.
Successful execution of the protocol should convince Alice
that she has been talking with Bob, since only Bob could
have formed the appropriate response to the message is-
sued in (7). In fact, Ivory can deceit Alice into believing
that she is talking with Bob whereas she is talking with her.
This is achieved by executing concurrently two sessions of
the protocol and using messages from one session to form
messages in the other as illustrated by the following proto-
col trace:

(B) : {Na} Ko
(B) = A: {Na}k,,
— I(B) : {f(Na)} K,y
I(B) = A:{f(Na)} ko

Alice starts the protocol with message (1.1). Ivory in-
tercepts the message and (pretending to be Bob) starts
a second session with Alice by replaying the received
message—cf. step (2.1). Alice replies to this message
with message (2.2). But this is exactly the message Alice

2Nonces are numbers generated by principals that are intended to be
used only once.

is waiting to receive in the first protocol session. This al-
lows Ivory to finish the first session by using it—cf. (1.2).
At the end of the above steps Alice believes she has been
talking with Bob, but this is obviously not the case.

A problem with the above rule-based notation to specify
security protocols is that it leaves implicit many important
details such as the shared information and how the princi-
pals should react to messages of an unexpected form. This
kind of description is therefore usually supplemented with
explanations in natural language which in our case explain
that IV, is a nonce generated by Alice, that f is a function
known to the honest participants, and that K is a shared
key.

To cope with the above difficulties and pave the way to
the formal analysis of security protocols a set of models
and specification formalisms as well as translators from
high-level languages (similar to the one we used above to
introduce our example) into these formalisms have been
put forward. For instance, Casper [18] compiles high-
level specifications into CSP, whereas CAPSL [5] and the
AVISS tool [2] compile high-level specifications into for-
malisms based on multiset rewriting inspired by [6].

2.1 The Model

‘We model the concurrent execution of a protocol by means
of a state transition system. Following [16], we represent
states by sets of atomic formulae called facts and transi-
tions by means of rewrite rules over sets of facts. For
the simple protocol above, facts are built out of a first-
order sorted signature with sorts user, number, key,
func, text (super-sort of all the previous sorts), int,
session, nonceid, and 1ist_of text. The con-
stants 0, 1, and 2 (of sort int) denote protocols steps,
1 and 2 (of sort session) denote session instances, a
and b (of sort user) denote honest participants, k,; (of
sort key) denotes a symmetric key and na (of sort non-
ceid) is a nonce identifier. The function symbol {_}_ :
text X key — text denotes the encryption function,
f @ number — func denotes the function known to
the honest participants, nc : nonceid X session —
number, and s : session — session are nonce and
session constructors respectively. The predicate symbols
are ¢ of arity text, fresh of arity number, m of arity
intxXuserXuserxtext,and wof arity int Xuser X
userx list_of textXlist_of text Xsession:

e i(t) means that the intruder knows ¢.
e fresh(n) means that n has not been used yet.

e m(j,s,r,t) means that principal s has (supposedly)?
sent message t to principal r at protocol step j.

3 As we will see, since the intruder may fake other principals’ identity,
the message might have been sent by the intruder.

e w(j,s,r, ak, ik, c) represents the state of execution of
principal r at step j of session c; in particular it means
that knows the terms stored in the lists ak (acquired
knowledge) and ik (initial knowledge) at step j of ses-
sion ¢, and—if j # 0—also that a message from s to
r is awaited for step j to be executed.

4

Initial States. The initial state of the system is:

w(0,a,a,[],[a,b, ke, 1) «w(1,a,b,[], [b,a, kap),1)

(1)
. w((), bv b7 Hv [ba a, kab]vz) " w(lv b7 a, H7 [a, ba kab]az)

2
« fresh(nc(na, 1)) « fresh(ne(na, s(1))) 3)
. fresh(ne(na, 2)) « fresh(ne(na, s(2))) 4)
vi(a) . i(b) &)

Facts (1) represent the initial state of principals a and b
(as initiator and responder, resp.) in session 1. Dually,
facts (2) represent the initial state of principals b and a
(as responder and initiator, resp.) in session 2. Facts (3)
and (4) state the initial freshness of the nonces. Facts (5)
represent the information initially known by the intruder.

Rewrite rules over sets of facts are used to specify the
transition system evolves.

Protocol Rules. The following rewrite rule models the
activity of sending the first message:

w(0, A, A,[],[A, B, Ka),C) « fresh(nc(na, C))

step1 (A,B,C Kap) m(1, A, B, {nc(na,C)}k.,)

w(2, B, A, [nc(na, C)], [A, B, Kaw],C) (6)

Notice that nonce nc(na,C) is added to the acquired
knowledge of A for subsequent use. The receipt of the
message and the reply of the responder is modeled by:

m(1, A, B,{nc(ID,C1)}k.,)
stepy (A,B,C,C1,K q4,,ID)

.w(1, A, B,[],[B, A, Ku),0)
m(27 BvA7 {f(nc(ID> Cl))}Kab)

«w(l, A, B,[],[B, A, Kawl],s(C)) (7)
The final step of the protocol is modeled by:
m(2,B, A, {f(nc(ID,C1))}k.,)
«w(2,B, A, [nc(ID,C1)],[A, B, K], C)
step3(A,B,C,C1,Kq,ID)
w(0,A4, A [],[4, B, Ka),s(C)) (8)

4To improve readability we use the “.” operator as set constructor. For
instance, we write “z . y « 2 to denote the set {z,y, z}.

62

Intruder Rules. There are also rules specifying the be-
havior of the intruder. In particular the intruder is based on
the model of Dolev and Yao [11]. For instance, the follow-
ing rule models the ability of the intruder of diverting the
information exchanged by the honest participants:

m(J, S, R, T) 22T BST) ey (RYi(T) (9)
The ability of encrypting and decrypting messages is mod-

eled by:

i(T) wi(K) S D oy (K i({TY k)
(10)
i{TYx) wi(K) D, 3050) i) (1n

Finally, the intruder can send arbitrary messages possibly
faking somebody else’s identity in doing so:

fake, (R,5,T)
e

i(T) . i(8) . i(R) i(T) . i(S) . i(R)

.m(1,8,R,T) (12)
i(T) vi(S) 2 i(R) 2251 iy i(S) vi(R)
.m(2,5,R,T) (13)

Bad States. A security protocol is intended to enjoy a a
specific security property. In our example this property is
the ability of authenticating Bob to Alice. A security prop-
erty can be specified by providing a set of “bad” states, i.e.
states whose reachability implies a violation of the prop-
erty. For instance, it is easy to see that any state containing
both w(0,a,a, [], [a,b, ka),s(1)) (i.e. Alice has finished
the first run of session 1) and w(1,a,b,[],[b,a, kap], 1)
(i.e. Bob is still at the beginning of session 1) witnesses
a violation of the expected authentication property of our
simple protocol and therefore it should be considered as a
bad state.

2.2 Protocol Insecurity Problems

The above concepts can be recast into the concept of pro-
tocol insecurity problem. A protocol insecurity problem
isatuple = = (S, L, R,Z,B) where S is a set of atomic
formulae of a sorted first-order language called facts, £
is a set of function symbols called rule labels, and R is

a set of rewrite rules of the form L 4, R, where L and
R are finite subsets of S such that the variables occurring
in R occur also in L, and ¢ is an expression of the form
() where [€ £ and Z is the vector of variables obtained
by ordering lexicographically the variables occurring in L.

Let S be a state and (L 5 R) € R, if o is a substitu-
tion such that Lo C S, then one possible next state of .S is

S’ = (S\Lo)URo and we indicate this with § %> . We

assume the rewrite rules are deterministic i.e. if S %> S’
and S 2%, S”, then S’ = S”. The components Z and B
of a protocol insecurity problem are the initial state and a
sets of states whose elements represent the bad states of the
protocol respectively. A solution to a protocol insecurity
problem E (i.e. an attack to the protocol) is a sequence of
states S1,...,.5, such that S; Lo, ir1fori=1,...,n
and 7 = 57, and there exists S € B such that Sz C S,,.

3 Automatic SAT-Compilation of
Protocol Insecurity Problems

Our proposed reduction of protocol insecurity problems to
propositional logic is carried out in two steps. Protocol
insecurity problems are first translated into planning prob-
lems which are in turn encoded into propositional formu-
lae.

A planning problem is a tuple I = (F, A, Ops, I, G),
where F and A are disjoint sets of variable-free atomic for-
mulae of a sorted first-order language called fluents and ac-
tions respectively; Ops is a set of expressions of the form

op(Act, Pre, Add, Del)

where Act € A and Pre, Add, and Del are finite sets of
fluents such that Add N Del = @; I and G are boolean
combinations of fluents representing the initial state and
the final states respectively. A state is represented by a
set of fluents. An action is applicable in a state .S iff the
action preconditions occur in S and the application of the
action leads to a new state obtained from S by removing
the fluents in Del and adding those in Add. A solution
to a planning problem 11 is a sequence of actions whose
execution leads from the initial state to a final state and the
precondition of each action appears in the state to which it
applies.

3.1 Encoding Planning Problems into SAT

Let IT = (F, A, Ops,I,G) be a planning problem with
finite 7 and A and let n be a positive integer, then it is
possible to build a set of propositional formulae ®7; such
that any model of ®7; corresponds to a partial-order plan
of length n which can be linearized into a solution of II.
The encoding of a planning problem into a set of SAT for-
mulae can be done in a variety of ways (see [17, 13] for a
survey). The basic idea is to add an additional time-index
to the actions and fluents to indicate the state at which the
action begins or the fluent holds. Fluents are thus indexed
by 0 through n and actions by 0 throughn — 1. If pis a flu-
ent or an action and ¢ is an index in the appropriate range,
then ¢:p is the corresponding time-indexed propositional
variable.

The set of formulae ®7; is the smallest set (intended con-
junctively) such that:

63

o Initial State Axioms: 0:7 € d7;
e Goal State Axioms: n:G € OF;

e Universal Axioms: for each op(«a, Pre,Add, Del) €
Opsandi=0,...,n—1:

(i:a D A{i:p|p € Pre}) € D},

(i:aD A{(i+1):p|p € Add}) € D}
(t:aD N{-(i+1):p|p € Del}) € D},

e Explanatory Frame Axioms: for all fluents f and
1=0,...,n—1:

(t:fA=(E+1):f) D \/
{i:a| op(ax, Pre,Add, Del) € Ops, f € Del} € Oy

(mi:fA(E+1):f)D \/
{i:a| op(ax, Pre,Add, Del) € Ops, f € Add} € DY,

e Conlflict Exclusion Axioms: fori =0,...,n — 1:
—(i:ag Nitag) € PRy

for all a1 # « such that op(aq, Prey, Addy, Dely) €
Ops, op(ag, Pres,Adds, Dely) € Ops, and Preq N
Dely # 0 or Pres N Dely # ().

It is immediate to see that the number of literals in ®7} is
in O(n|F| + n|A|). Moreover the number of Universal
Axioms is in O(nPy|.A|) where P, is the maximal num-
ber of fluents mentioned in an operator (usually a small
number); the number of Explanatory Frame Axioms is in
O(n|F]); finally, the number of Conflict Exclusion Ax-
ioms is in O(n|AJ?).

3.2 Protocol Insecurity Problems as Plan-
ning Problems

Given a protocol insecurity problem = = (S, L, R,Z, B),
it is possible to build a planning problem Iz =
(F=, A=, Opsg, Iz, G=) such that each solution to Il
can be translated back to a solution to =: Fz= is the set
of facts S; A= and Opsz are the smallest sets such that
lo € Az and op(lo, Lo, Ro \ Lo, Lo \ Ro) € Ops for

all (L EN R) € R and all ground substitutions o; fi-
nally Iz = A{f | f € IYN{~/ | f € S.f ¢ T} and
Gz = Vg,es N f | f € Sg}. For instance, the actions
associated to (6) are of the form:

op(step1(A, B,C, Kap),
[w(0,4, A,[],[4, B, Ka],C),
fresh(nc(na, C))],
[m(lv Av Bv {nC(C)}KQb>’
w(2, B, A, [nc(na, C)], [4, B, Ku), C)],
[w(0,4, A,[],[4, B, K], C),
fresh(ne(na, C))])

The reduction of protocol insecurity problems to plan-
ning problems paves the way to an automatic SAT-
compilation of protocol insecurity problems. However a
direct application of the approach (namely the reduction of
a protocol insecurity problem = to a planning problem Iz
followed by a SAT-compilation of IIz) is not immediately
applicable. We therefore devised a set of optimizations
and constraints whose combined effects often succeed in
drastically reducing the size of the SAT instances.

3.3 Optimizations

Language specialization. We recall that for the reduc-
tion to propositional logic described in Section 3.1 to be
applicable the set of fluents and actions must be finite. Un-
fortunately, the protocol insecurity problems introduced in
Section 2 have an infinite number of facts and rule in-
stances, and therefore the corresponding planning prob-
lems have an infinite number of fluents and actions. How-
ever the language can be restricted to a finite one since the
set of states reachable in n steps is obviously finite (as long
as the initial states comprise a finite number of facts). To
determine a finite language capable to express the reach-
able states, it suffices to carry out a static analysis of the
protocol insecurity problem.

To illustrate, let us consider again the simple
protocol insecurity problem presented above and let
7, then |int| = {0,1,2}, |luser| =
{a,b}, ||[iuser| = {a,b,intruder}, |key| =
{kab}, |nonceid| = {na}, |session| =
UL D) i1y Ll 0] 51(2), where K is the number
of protocol steps in a session run (in this case & = 2),’
|[number| = mnc(nonceid, session), |[func| =
U?;Ol fi{(number), |[text| = |iuser| U |key| U
|[number|| U || func|| U {func}key.b

Moreover, we can safely replace
list_of text with [text, text, text].
The set of facts is then equal to i(text) U
fresh(number) U m(int,iuser,iuser,text) U
w(int, iuser,user,list of text,list.of
text,session) which consists of 102 facts. This
language is finite, but definitely too big for the practical
applicability of the SAT encoding.

A closer look to the protocol reveals that the above
language still contains many spurious facts. In par-
ticular the m(...), w(...), and i(-) can be specialized
(e.g. by using specialized sorts to restrict the message
terms to those messages which are allowed by the proto-
col). By analyzing carefully the facts of the form m(...)
and w(...) occurring in the protocol rules of our exam-

n =

5The bound on the number of steps implies a bound on the maximum
number of possible session repetitions.

o1f S1,...,Sm and S’ are sorts and f is a function symbol of ar-
ity S1,...,Sm — S’, then ||S;|| is the set of terms of sort S; and
f(S1,...,Sm) denotes {f(t1,...,tm) |t € |Sill,i =1,...,m}.

64

ple we can restrict the sort func in such a way that
[func|| = {f(number)} and replace 1ist_of text
with [iuser, iuser, key|] U [number]|. Thanks to this
optimization, the number of facts drops to 12, 620.

An other important language optimization borrowed
from [15] splits message terms containing pairs of
messages such as m(j, s,r, (msg1, msge)) (where (_,)
is the pairing operator) into two message terms
m(j,s,r,msg1,1) and m(j, s,r,msgs,2). (Due to the
simplicity of the shown protocol, splitting messages has
no impact on its language size.)

Fluent splitting. The second family of optimizations
is based on the observation that in w(j, s,r, ak, ik, c),
the union of the first three arguments with the sixth
form a key (in the data base theory sense) for the rela-
tion. This allows us to modify the language by replacing
w(J, 8,7, ak, ik, c) with the conjunction of two new pred-
icates, namely wk(j, s,r, ak,c) and inknw(j, s,r, ik, c).
Similar considerations (based on the observation that
the initial knowledge of a principal r does not depend
on the protocol step 7 nor on principal s) allow us to
simplify inknw(j, s,r, ik, c) to inknw(r,ik,c). Another
effective improvement stems from the observation that
ak and ik are lists. By using the set of new facts
wk (4, s,7,aky,1,¢), ..., wk(j,s,r, aky,l,c) in place of
wk (4, s,r, [aki, ..., ak], c) the number of wk terms drops
from O(|text|') to O(l|text|).” In the usual simple ex-
ample the application of fluent splitting reduces the num-
ber of facts to 1, 988.

Exploiting static fluents. The previous optimization en-
ables a new one. Since the initial knowledge of the honest
principal does not change as the protocol execution makes
progress, facts of the form inknw(r, ik, ¢) occurring in the
initial state are preserved in all the reachable states and
those not occurring in the initial state will not be intro-
duced. In the corresponding planning problem, this means
that all the atoms i : inknw(r, ik, c) can be replaced by
inknw(r, ik, c) fori = 0,...,n — 1 thereby reducing the
number of propositional letters in the encoding. Moreover,
since the initial state is unique, this transformation enables
an off-line partial instantiation of the actions and therefore
a simplification of the propositional formula.

Reducing the number of Conflict Exclusion Axioms.
A critical issue in the propositional encoding technique de-
scribed in Section 3.1 is the quadratic growth of the num-
ber of Conflict Exclusion Axioms in the number of actions.
This fact often confines the applicability of the method to
problems with a small number of actions. A way to lessen
this difficulty is to reduce the number of conflicting ax-
ioms by considering the intruder knowledge as monotonic.

7If S is a sort, then | S| is the cardinality of ||S]|.

65

Let f be a fact, S and S’ be states, then we say that f is
monotonic iff for all S'if f € Sand S — S’, then f € S".
Since a monotonic fluent never appears in the delete list of
some action, then it cannot be a cause of a conflict. The
idea here is to transform the rules so to make the facts of
the form (-) monotonic. The transformation on the rules
is very simple as it amounts to adding the monotonic facts
occurring in the left hand side of the rule to its right hand
side. A consequence is that a monotonic fact simplifies
the Explanatory Frame Axioms relative to it. The nice ef-
fect of this transformation is that the number of Conflict
Exclusion Axioms generated by the associated planning
problems drops dramatically.

Impersonate. The observation that most of the messages
generated by the intruder by means of (12) and (13) are
rejected by the receiver as non-expected or ill-formed sug-
gests to restrict these rules so that the intruder sends only
messages matching the patterns expected by the receiver.
For each protocol rule of the form:

e om s,m) w (G s,y ak, ik, o) . S

we use a new rule of the form:

ew(g, s, ryak, ik,) vi(s) i(r) it ...

{mpersonate,(-..) em(g, s,) cw(g, s, 1, ak, ik, c)

vi(s) wi(r) it .

This rule states that if agent 7 is waiting for a message ¢
from s and the intruder knows a term ¢’ matching ¢, then
the intruder can impersonate s and send ¢’. This optimiza-
tion (borrowed from [16]) often reduces the number of rule
instances in a dramatic way. In our example, this optimiza-
tion step allows us to trade all the 1152 instances of (12)
and (13) with 120 new rules.

It is easy to see that this transformation is correct as it
preserves the existing attacks and does not introduce new
ones.

Step compression. A very effective optimization, called
step compression has been proposed in [9]. It consists of
the idea of merging intruder with protocol rules. In partic-
ular, an impersonate rule:

w(i, X1, T2, 3, Ta,T5) « i(21) « 1(z2) v i(x6)

impersonate,(...) ,
—————— m(i, 1, 72, Tg)

cw(i, 1, T2, 3,24, 25) «0(x1) «i(22) «i(x) (14)
a generic protocol step rule:
. . step;(...)
w(l7 Y1,Y2,Y3,Y4, y5) . m(l) Y1, Y2, yG) -
w(j,Y1,Y2, Y7, Y4, ys) « m(i + 1, y2,y1,ys) (15)

and a divert rule:

di’Ue’l’t.H,l(...) Z(Zl) . l(z2) . 7/(23)
(16)

m(i+1, 21, 22, 23)

can be replaced by the following rule:

w(i, X1, T2, T3, Ta, T5)0 «i(21)0 « i(x2)0 +i(26)0
step_comp;(...)o
_—

U)(], Y1,Y2,Y7,Ya, y5)0 . Z(Zl)
o i(z2)0 «i(z3)0

where o = o1 o o9 with o3 =
mgu({w(i, x1, T2, T3, T4, 75) = w(i,Y1,Y2,Y3, Y4, Y5),
m(i,x1,x2,26) = m(i,y1,Y2,Y6)}) and o9 =
mgu({m(i+ 1,y2,y1,y8) = m(i + 1, 21, 22, 23) }).

The rationale of this optimization is that we can safely
restrict our attention to computation paths where (14),
(15), and (16) are executed in this sequence without any
interleaved action in between.

By applying this optimization we reduce both the num-
ber of facts (note that the facts of the form m(...) are no
longer needed) and the number of rules as well as the num-
ber of steps necessary to find the attacks. For instance, by
using this optimization the partial-order plan correspond-
ing to the attack to the Needham-Schroeder Public Key
(NSPK) protocol [21] has length 7 whereas if this opti-
mization is disabled the length is 10, the numbers of facts
decreases from 820 to 505, and the number of rules from
604 to 313.

3.4 Bounds and Constraints

In some cases in order to get encodings of reasonable size,
we must supplement the above attack-preserving optimiza-
tions with the following bounding techniques and con-
straints. Even if by applying them we may loose some
attacks, in our experience (cf. Section 4) this rarely occurs
in practice.

Bounding the number of session runs. Let n and k be
the bounds in the number of operation applications and in
the number of protocol steps characterizing a protocol ses-
sion respectively. Then the maximum number of times a
session can be repeated is |n/(k + 1)]. Our experience
indicates that attacks usually require a number of session
repetitions that is less than [n/(k + 1)|. As a matter of
fact two session repetitions are sufficient to find attacks to
all the protocols we have analyzed so far. By using this op-
timization we can reduce the cardinality of the sort ses—
sion (in the case of the NSPK protocol, we reduce it by
a factor 1.5) and therefore the number of facts that depend
on it.

Multiplicity of fresh terms. The number of fresh terms
needed to find an attack is usually less than the number
of fresh terms available. As a consequence, a lot of fresh
terms allowed by the language associated with the proto-
col are not used, and many facts depending on them are
allowed, but also not used. Often, one single fresh term
for each fresh term identifier is sufficient for finding the
attack. For instance the simple example shown above has
the only fresh term identifier na and to use the only nonce
ne(na, 1) is enough to detect the attack. Therefore, the ba-
sic idea of this constraint is to restrict the number of fresh
terms available, thereby reducing the size of the language.
For example, application of this constraint to the analysis
of the NSPK protocol protocol preserves the detection of
the attack and reduces the numbers of facts and rules from
313 to 87 and from 604 to 54 respectively. Notice that for
some protocols such as the Andrew protocol [7] the multi-
plicity of fresh terms is necessary to detect the attack.

Constraining the rule variables. This constraint is best
illustrated by considering the Kao-Chow protocol (see e.g.

[7D:

A—S:A BN,
S— B: {AvB>NaaKab}Kasa {A;B;NazKab}Kbs
B—A: {AvaNavKab}Ka& {Na}KabaNb

During the step (2) S sends B a pair of messages of which
only the second component is accessible to B. Since B
does not know K,;, then B cannot check that the oc-
currence of A in the first component is equal to that in-
side the second. As a matter of fact, we might have dif-
ferent terms at those positions. The constraint amounts
to imposing that the occurrences of A (as well as of
B, N,, and K,p) in the first and in the second part of
the message must coincide. Thus, messages of the form
{a,b,nc(na, s(1)) tkas, {a, b, nc(nb, s(1)) } kbs would be
ruled out by the constraint. The application of this con-
straint allows us to get a feasible encoding of the Kao-
Chow protocols in reasonable time. For instance, with
this constraint disabled the encoding of the Kao Chow Re-
peated Authentication 1 requires more than 1 hour, other-
wise it requires 16.34 seconds.

4 Implementation and Computer
Experiments

We have implemented the above ideas in SATMC, a
SAT-based Model-Checker for security protocol analysis.
Given a protocol insecurity problem =, a bound on the
length of partial-order plan n, and a set of parameters spec-
ifying which bounds and constraints must be enabled (cf.

66

Section 3.4), SATMC first applies the optimizing transfor-
mations previously described to = and obtains a new proto-
col insecurity problem Z’, then Z’ is translated into a corre-
sponding planning problem II=/ which is in turn compiled
into SAT using the methodology outlined in Section 3.1.
The propositional formula is then fed to a state-of-the-art
SAT solver (currently Chaff [20], SIM [14], and SATO
[24] are supported) and any model found by the solver is
translated back into an attack which is reported to the user.

SATMC is one of the back-ends of the AVISS tool [2].
Using this tool, the user can specify a protocol and the
security properties to be checked using a high-level spec-
ification language and the tool translates the specification
in an Intermediate Format (IF) based on multiset rewriting.
The notion of protocol insecurity problem given in this pa-
per is inspired by the Intermediate Format. Some of the
features supported by the IF (e.g. public and private keys,
compound keys as well as other security properties such
as authentication and secrecy) have been neglected in this
paper for the lack of space. However, they are supported
by SATMC.

We have run our tool against a selection of problems
drawn from [7]. The results of our experiments are re-
ported in Table 1 and they are obtained by applying all the
previously described optimizations, by setting n = 10, by
imposing two session runs for session, by allowing mul-
tiple fresh terms, and by constraining the rule variables.
For each protocol we give the kind of the attack found
(Attack), the number of propositional variables (Atoms)
and clauses (Clauses), and the time spent to generate the
SAT formula (EncT) as well as the time spent by Chaff
to solve the corresponding SAT instance (SolveT). The la-
bel MO indicates a failure to analyze the protocol due to
memory-out.® It is important to point out that for the ex-
periments we found it convenient to disable the generation
of Conflict Exclusion Axioms during the generation of the
propositional encoding. Of course, by doing this, we are
no longer guaranteed that the solutions found are lineariz-
able and hence executable. SATMC therefore checks any
partial order plan found for executability. Whenever a con-
flict is detected, a set of clauses excluding these conflicts
are added to the propositional formula and the resulting
formula is fed back to the SAT-solver. This procedure
is repeated until an executable plan is found or no other
models are found by the SAT solver. This heuristics re-
duces the size of the propositional encoding (it does not
create the Conflicts Exclusion Axioms) and it can also re-
duce the computation time whenever the time required to
perform the executability checks is less than the time re-
quired for generating the Conflict Exclusion Axioms. The
experiments show that the SAT solving activity is carried
out very quickly and that the overall time is dominated by

8Times have been obtained on a PC with a 1.4 GHz Processor and
512 MB of RAM. Due to a limitation of SICStus Prolog the SAT-based
model-checker is bound to use 128 MB during the encoding generation.

67

the SAT encoding.

5 Conclusions and Perspectives

We have proposed an approach to the translation of pro-
tocol insecurity problems into propositional logic based
on the combination of a reduction to planning and well-
known SAT-reduction techniques developed for planning.
Moreover, we have introduced a set of optimizing trans-
formations whose application to the input protocol insecu-
rity problem drastically reduces the size of the correspond-
ing propositional encoding. We have presented SATMC, a
model-checker based on our ideas, and shown that attacks
to a set of well-known authentication protocols are quickly
found by state-of-the-art SAT solvers.

Since the time spent by SAT solver is largely dominated
by the time needed to generate the propositional encoding,
in the future we plan to keep working on ways to reduce
the latter. A promising approach amounts to treating prop-
erties of cryptographic operations as invariants. Currently
these properties are modeled as rewrite rules (cf. rule (10)
in Section 2.1) and this has a bad impact on the size of
the final encoding. A more natural way to deal with these
properties amounts to building them into the encoding but
this requires, among other things, a modification of the ex-
planatory frame axioms and hence more work (both theo-
retical and implementational) is needed to exploit this very
promising transformation.

Moreover, we would like to experiment SATMC against
security problems with partially defined initial states.
Problems of this kind occur when the initial knowledge of
the principal in not completely defined or when the ses-
sion instances are partially defined. We conjecture that
neither the size of the SAT encoding nor the time spent
by the SAT solver to check the SAT instances will be sig-
nificantly affected by this generalization. But this requires
some changes in the current implementation of SATMC
and a thorough experimental analysis.

References

[1] Luigia Carlucci Aiello and Fabio Massacci. Verify-
ing security protocols as planning in logic program-
ming. ACM Transactions on Computational Logic,

2(4):542-580, October 2001.

[2] A. Armando, D. Basin, M. Bouallagui, Y. Cheva-
lier, L. Compagna, S. Moedersheim, M. Rusinow-
itch, M. Turuani, L. Vigano, and L. Vigneron. The
AVISS Security Protocols Analysis Tool. In /4th In-
ternational Conference on Computer-Aided Verifica-

tion (CAV’02). 2002.

David Basin and Grit Denker. Maude versus haskell:
an experimental comparison in security protocol

(3]

Table 1: Performance of SATMC

| Protocol | Attack | Atoms | Clauses | EncT | SolveT |
ISO symmetric key 1-pass unilateral authentication Replay 679 2,073 0.18 0.00
ISO symmetric key 2-pass mutual authentication Replay 1,970 7,382 0.43 0.01
Andrew Secure RPC Protocol Replay 161,615 | 2,506,889 80.57 2.65
ISO CCF 1-pass unilateral authentication Replay 649 2,033 0.17 0.00
ISO CCF 2-pass mutual authentication Replay 2,211 10,595 0.46 0.00
Needham-Schroeder Conventional Key Replay STS 126,505 370,449 29.25 0.39
Woo-Lam I1 Parallel-session 7,988 56,744 3.31 0.04
Woo-Lam Mutual Authentication Parallel-session 771,934 | 4,133,390 | 1,024.00 7.95
Needham-Schroeder Signature protocol MM 17,867 59,911 3.77 0.05
Neuman Stubblebine repeated part Replay STS 39,579 312,107 15.17 0.21
Kehne Langendorfer Schoenwalder (repeated part) | Parallel-session - - MO -
Kao Chow Repeated Authentication, 1 Replay STS 50,703 185,317 16.34 0.17
Kao Chow Repeated Authentication, 2 Replay STS 586,033 | 1,999,959 339.70 2.11
Kao Chow Repeated Authentication, 3 Replay STS | 1,100,428 | 6,367,574 | 1,288.00 MO
ISO public key 1-pass unilateral authentication Replay 1,161 3,835 0.32 0.00
ISO public key 2-pass mutual authentication Replay 4,165 23,883 1.18 0.01
Needham-Schroeder Public Key MM 9,318 47474 1.77 0.05
Needham-Schroeder Public Key with key server MM 11,339 67,056 4.29 0.04
SPLICE/AS Authentication Protocol Replay 15,622 69,226 5.48 0.05
Encrypted Key Exchange Parallel-session 121,868 | 1,500,317 75.39 1.78
Davis Swick Private Key Certificates, protocol 1 Replay 8,036 25,372 1.37 0.02
Davis Swick Private Key Certificates, protocol 2 Replay 12,123 47,149 2.68 0.03
Davis Swick Private Key Certificates, protocol 3 Replay 10,606 27,680 1.50 0.02
Davis Swick Private Key Certificates, protocol 4 Replay 27,757 96,482 8.18 0.13

MM: Man-in-the-middle attack
MO: Memory Out

Legenda:

68

Replay STS: Replay attack based on a Short-Term Secret

[4]

[11]

[13]

analysis. In Kokichi Futatsugi, editor, Electronic
Notes in Theoretical Computer Science, volume 36.
Elsevier Science Publishers, 2001.

D. Bolignano. Towards the formal verification of
electronic commerce protocols. In Proceedings of
the IEEE Computer Security Foundations Workshop,
pages 133-146. 1997.

Common Authentication Protocol Specification Lan-
guage. URL http://www.csl.sri.com/
"millen/capsl/.

Cervesato, Durgin, Mitchell, Lincoln, and Scedrov.
Relating strands and multiset rewriting for secu-
rity protocol analysis. In PCSFW: Proceedings of
The 13th Computer Security Foundations Workshop.
IEEE Computer Society Press, 2000.

John Clark and Jeremy Jacob. A Survey of
Authentication Protocol Literature: Version 1.0,
17. Nov. 1997. URL http://www.cs.york.
ac.uk/”jac/papers/drareview.ps.gz.

Ernie Cohen. TAPS: A first-order verifier for crypto-
graphic protocols. In Proceedings of The 13th Com-
puter Security Foundations Workshop. IEEE Com-
puter Society Press, 2000.

Sebastian Moedersheim David Basin and Luca Vi-
gand. An on-the-fly model-checker for security pro-
tocol analysis. forthcoming, 2002.

Grit Denker, Jonathan Millen, and Harald Ruef3. The
CAPSL Integrated Protocol Environment. Technical
Report SRI-CSL-2000-02, SRI International, Menlo
Park, CA, October 2000. Available at http://
www.csl.sri.com/ millen/capsl/.

Danny Dolev and Andrew Yao. On the security of
public-key protocols. IEEE Transactions on Infor-
mation Theory, 2(29), 1983.

B. Donovan, P. Norris, and G. Lowe. Analyzing a
library of security protocols using Casper and FDR.
In Proceedings of the Workshop on Formal Methods
and Security Protocols. 1999.

Michael D. Ernst, Todd D. Millstein, and Daniel S.
Weld. Automatic SAT-compilation of planning prob-
lems. In Proceedings of the I5th International
Joint Conference on Artificial Intelligence (IJCAI-
97), pages 1169-1177. Morgan Kaufmann Publish-
ers, San Francisco, 1997.

Enrico Giunchiglia, Marco Maratea, Armando Tac-
chella, and Davide Zambonin. Evaluating search
heuristics and optimization techniques in propo-
sitional satisfiability. In Rajeev Goré, Aleander

69

[16]

[19]

[22]

[24]

Leitsch, and Tobias Nipkow, editors, Proceedings of
IJCAR’2001, LNAI 2083, pages 347-363. Springer-
Verlag, Heidelberg, 2001.

Mei Lin Hui and Gavin Lowe. Fault-preserving sim-
plifying transformations for security protocols. Jour-
nal of Computer Security, 9(1/2):3-46, 2001.

Florent Jacquemard, Michael Rusinowitch, and Lau-
rent Vigneron. Compiling and Verifying Security
Protocols. In M. Parigot and A. Voronkov, editors,
Proceedings of LPAR 2000, LNCS 1955, pages 131-
160. Springer-Verlag, Heidelberg, 2000.

Henry Kautz, David McAllester, and Bart Selman.
Encoding plans in propositional logic. In Luigia Car-
lucci Aiello, Jon Doyle, and Stuart Shapiro, editors,
KR’96: Principles of Knowledge Representation and
Reasoning, pages 374-384. Morgan Kaufmann, San
Francisco, California, 1996.

Gawin Lowe. Casper: a compiler for the analysis
of security protocols. Journal of Computer Security,
6(1):53-84, 1998. See also http://www.mcs.
le.ac.uk/"gl7/Security/Casper/.

Catherine Meadows. The NRL protocol analyzer:
An overview. Journal of Logic Programming,
26(2):113-131, 1996. See also http://chacs.
nrl.navy.mil/projects/crypto.html.

Matthew W. Moskewicz, Conor F. Madigan, Ying
Zhao, Lintao Zhang, and Sharad Malik. Chaff: En-
gineering an Efficient SAT Solver. In Proceedings of
the 38th Design Automation Conference (DAC’01).
2001.

R. M. (Roger Michael) Needham and Michael D.
Schroeder. Using encryption for authentication in
large networks of computers. Technical Report CSL-
78-4, Xerox Palo Alto Research Center, Palo Alto,
CA, USA, 1978. Reprinted June 1982.

L.C. Paulson. The inductive approach to verifying
cryptographic protocols. Journal of Computer Secu-
rity, 6(1):85-128, 1998.

D. Song. Athena: A new efficient automatic checker
for security protocol analysis. In Proceedings of the
12th IEEE Computer Security Foundations Workshop
(CSFW ’99), pages 192-202. IEEE Computer Soci-
ety Press, 1999.

H. Zhang. SATO: An efficient propositional prover.
In William McCune, editor, Proceedings of CADE
14, LNAI 1249, pages 272-275. Springer-Verlag,
Heidelberg, 1997.

Session:
Security Protocols

Identifying Potential Type Confusion in Authenticated Messages

Catherine Meadows
Code 5543
Naval Research Laboratory
Washington, DC 20375
meadows @itd.nrl.navy.mil

Abstract

A type confusion attack is one in which a principal accepts
data of one type as data of another. Although it has been
shown by Heather et al. that there are simple formatting
conventions that will guarantee that protocols are free from
simple type confusions in which fields of one type are sub-
stituted for fields of another, it is not clear how well they
defend against more complex attacks, or against attacks
arising from interaction with protocols that are formatted
according to different conventions. In this paper we show
how type confusion attacks can arise in realistic situations
even when the types are explicitly defined in at least some
of the messages, using examples from our recent analysis
of the Group Domain of Interpretation Protocol. We then
develop a formal model of types that can capture potential
ambiguity of type notation, and outline a procedure for de-
termining whether or not the types of two messages can be
confused. We also discuss some open issues.

1 Introduction

Type confusion attacks arise when it is possible to confuse
a message containing data of one type with a message con-
taining data of another. The most simple type confusion
attacks are ones in which fields of one type are confused
with fields of another type, such as is described in [7], but
it is also possible to imagine attacks in which fields of one
type are confused with a concatenation of fields of another
type, as is described by Snekkenes in [8], or even attacks in
which pieces of fields of one type are confused with pieces
of fields of other types.

Simple type confusion attacks, in which a field of one
type is confused with a field of another type, are easy to
prevent by including type labels (tags) for all data and au-
thenticating labels as well as data. This has been shown
by Heather et al. [4], in which it is proved that, assuming
a Dolev-Yao-type model of a cryptographic protocol and
intruder, it is possible to prevent such simple type con-
fusion attacks by the use of this technique. However, it
is not been shown that this technique will work for more
complex type confusion attacks, in which tags may be con-

fused with data, and terms or pieces of terms of one type
may be confused with concatenations of terms of several
other types.! More importantly, though, although a tag-
ging technique may work within a single protocol in which
the technique is followed for all authenticated messages, it
does not prevent type confusion of a protocol that uses the
technique with a protocol that does not use the technique,
but that does use the same authentication keys. Since it
is not uncommon for master keys (especially public keys)
to be used with more than one protocol, it may be nec-
essary to develop other means for determining whether or
not type confusion is possible. In this paper we explore
these issues further, and describe a procedure for detect-
ing the possibility of the more complex varieties of type
confusion.

The remainder of this paper is organized as follows. In
order to motivate our work, in Section Two, we give a brief
account of a complex type confusion flaw that was recently
found during an analysis of the Group Domain of Authen-
tication Protocol, a secure multicast protocol being devel-
oped by the Internet Engineering Task Force. In Section
Three we give a formal model for the use of types in pro-
tocols that takes into account possible type ambiguity. In
Section Four we describe various techniques for construct-
ing the artifacts that will be used in our procedure. In Sec-
tion Five we give a procedure for determining whether it is
possible to confuse the type of two messages. In Section
Six we illustrate our procedure by showing how it could be
applied to a simplified version of GDOI. In Section Seven
we conclude the paper and give suggestions for further re-
search.

2 The GDOI Attack

In this section we describe a type flaw attack that was
found on an early version of the GDOI protocol.

The Group Domain of Interpretation protocol (GDOI)
[2], is a group key distribution protocol that is undergo-
ing the IETF standardization process. It is built on top

'We believe that it could, however, if the type tags were augmented
with tags giving the length of the tagged field, as is done in many imple-
mentations of cryptographic protocols.

of the ISAKMP [6] and IKE [3] protocols for key man-
agement, which imposes some constraints on the way in
which it is formatted. GDOI consists of two parts. In the
first part, called the Groupkey Pull Protocol, a principal
joins the group and gets a group key-encryption-key from
the Group Controller/Key Distributor (GCKS) in a hand-
shake protocol protected by a pairwise key that was origi-
nally exchanged using IKE. In the second part, called the
Groupkey Push Message, the GCKS sends out new traffic
encryption keys protected by the GCKS’s digital signature
and the key encryption key.

Both pieces of the protocol can make use of digital sig-
natures. The Groupkey Pull Protocol offers the option
of including a Proof-of-Possession field, in which either
or both parties can prove possession of a public key by
signing the concatenation of a nonce NA generated by the
group member and a nonce NB generated by the GCKS.
This can be used to show linkage with a certificate con-
taining the public key, and hence the possession of any
identity or privileges stored in that certificate.

As for the Groupkey Push Message, it is first signed by
the GCKS’s private key, and then encrypted with the key
encryption key. The signed information includes a header
HDR, (which is sent in the clear), and contains, besides the
header, the following information:

1. a sequence number SEQ (to guard against replay at-
tacks);

2. a security association SA;
3. a Key Download payload KD, and;

4. an optional certificate, CERT.

According to the conventions of ISAKMP, HDR must
begin with a random or pseudo-random number. In pair-
wise protocols, this is jointly generated by both parties, but
in GDOI, since the message must go from one to many,
this is not practical. Thus, the number is generated by the
GCKS. Similarly, it is likely that the Key Download mes-
sage will end in a random number: a key. Thus, it is rea-
sonable to assume that the signed part of a Groupkey Push
Message both begins and ends in a random number.

We found two type confusion attacks. In both, we as-
sume that the same private key is used by the GCKS to
sign POPs and Groupkey Push Messages. In the first of
these, we assume a dishonest group member who wants to
pass off a signed POP from the GCKS as a Groupkey Push
Message. To do this, we assume that she creates a fake
plaintext Groupkey Push Message GPM, which is missing
only the last (random) part of the Key Download Payload.
She then initiates an instance of the Groupkey Pull Proto-
col with the GCKS, but in place of her nonce, she sends
GPM. The GCKS responds by appending its nonce NB
and signing it, to create a signed (GPM,NB). If NB is of
the right size, this will look like a signed Groupkey Push

Message. The group member can then encrypt it with the
key encryption key (which she will know, being a group
member) and send it out to the entire group.

The second attack requires a few more assumptions. We
assume that there is a group member A who can also act
as a GCKS, and that the pairwise key between A and an-
other GCKS, B, is stolen, but that B’s private key is still se-
cure. Suppose that A, acting as a group member, initiates a
Groupkey Pull Protocol with B. Since their pairwise key is
stolen, it is possible for an intruder I to insert a fake nonce
for B’s nonce NB. The nonce he inserts is a fake Groupkey
Push Message GPM’ that it is complete except for a prefix
of the header consisting of all or part of the random number
beginning the header. A then signs (NA,GPM’), which, if
NA is of the right length, will look like the signed part of
a Groupkey Push Message. The intruder can then find out
the key encryption key from the completed Groupkey Pull
Protocol and use it to encrypt the resulting (NA,GPM’) to
create a convincing fake Groupkey Push Message.

Fortunately, the fix was simple. Although GDOI was
constrained by the formatting required by ISAKMP, this
was not the case for the information that was signed within
GDOI. Thus, the protocol was modified so that, when-
ever a message was signed within GDOI, information was
prepended saying what the purpose was (e.g. a member’s
POP, or a Groupkey Push Message). This eliminated the
type confusion attacks.

There are several things to note here. The first is that
existing protocol analysis tools are not very good at find-
ing these types of attacks. Most assume that some sort of
strong typing is already implemented. Even when this is
not the case, the ability to handle the various combinations
that arise is somewhat limited. For example, we found the
second, less feasible, attack automatically with the NRL
Protocol Analyzer, but the tool could not have found the
first attack, since the ability to model it requires the abil-
ity to model the associativity of concatenation, which the
NRL Protocol Analyzer lacks. Moreover, type confusion
attacks do not require a perfect matching between fields of
different types. For example, in order for the second attack
to succeed, it is not necessary for NA to be the same size
as the random number beginning the header, only that it be
no longer than that number. Again, this is something that
is not within the capacity of most crypto protocol analy-
sis tools. Finally, most crypto protocol analysis tools are
not equipped for probabilistic analysis, so they would not
be able to find cases in which, although type confusion
would not be possible every time, it would occur with a
high enough probability to be a concern.

The other thing to note is that, as we said before, even
though it is possible to construct techniques that can be
used to guarantee that protocols will not interact insecurely
with other protocols that are formatted using the same
technique, it does not mean that they will not interact in-
securely with protocols that were formatted using differ-

72

ent techniques, especially if, in the case of GDOI’s use
of ISAKMP, the protocol wound up being used differently
than it was originally intended (for one-to-many instead
of pairwise communication). Indeed, this is the result one
would expect given previous results on protocol interaction
[5, 1]. Since it is to be expected that different protocols
will often use the same keys, it seems prudent to inves-
tigate to what extent an authenticated message from one
protocol could be confused with an authenticated message
from another, and to what extent this could be exploited by
a hostile intruder. The rest of this paper will be devoted to
the discussion of a procedure for doing so.

3 The Model

In this section we will describe the model that underlies
our procedure. It is motivated by the fact that different
principals may have different capacities for checking types
of messages and fields in messages. Some information,
like the length of the field, may be checkable by anybody.
Other information, like whether or not a field is a random
number generated by a principal, or a secret key belonging
to a principal, will only be checkable by the principal who
generated the random number in the first case, and by the
possessor(s) of the secret key in the second place. In order
to do this, we need to develop a theory of types that take
differing capacities for checking types into account.

We assume an environment consisting of principals who
possess information and can check properties of data based
on that information. Some information is public and is
shared by all principals. Other information may belong to
only one or a few principals.

Definition 3.1 A field is a sequence of bits. We let v denote
the empty field. If x and y are two fields, we let x||y denote
the concatenation of x and y. If T and iy are two lists of
fields, then we let append(T,) denote the list obtained by
appending i to T.

Definition 3.2 A type is a set of fields, which may or may
not have a probability distribution attached. If P is a prin-
cipal, then a type local to P is a type such that membership
in that type is checkable by P. A public type is one whose
membership is checkable by all principals. If G is a group
of principals, then a type private to G is a type such that
membership in that type is checkable by the members of G
and only the members of G.

Examples of a public type would be all strings of length
256, the string “key,” or well-formed IP addresses. Exam-
ples of private types would be a random nonce generated
by a principal (private to that principal) a principal’s pri-
vate signature key (private to that principal), and a secret
key shared by Alice and Bob (private to Alice and Bob,
and perhaps the server that generated the key, if one ex-
ists). Note that a private type is not necessarily secret; all

that is required is that only members of the group to whom
the type is private have a guaranteed means of checking
whether or not a field belongs to that type. As in the case
of the random number generated by a principal, other prin-
cipals may have been told that a field belongs to the type,
but they do not have a reliable means of verifying this.

The decision as to whether or not a type is private or
public may also depend upon the protocol in which it is
used and the properties that are being proved about the pro-
tocol. For example, to verify the security of a protocol that
uses public keys to distribute master keys, we may want to
assume that a principal’s public key is a public type, while
if the purpose of the protocol is to validate a principal’s
public key, we may want to assume that the type is pri-
vate to that principal and some certification authority. If
the purpose of the protocol is to distribute the public key
to the principal, we may want to assume that the type is
private to the certification authority alone.

Our use of public and local types is motivated as fol-
lows. Suppose that an intruder wants to fool Bob into ac-
cepting an authenticated message M from a principal Al-
ice as an authenticated message N from Alice. Since M
is generated by Alice, it will consist of types local to her.
Thus, for example, if M is supposed to contain a field gen-
erated by Alice it will be a field generated by her, but if it
is supposed to contain a field generated by another party,
Alice may only be able to check the publically available
information such as the formatting of that field before de-
ciding to include it in the message. Likewise, if Bob is
verifying a message purporting to be N, he will only be
able to check for the types local to himself. Thus, our goal
is to be able to check whether or not a message built from
types local to Alice can be confused with another message
built from types local to Bob, and from there, to determine
if an intruder is able to take advantage of this to fool Bob
into producing a message that can masquerade as one from
Alice.

We do not attempt to give a complete model of an in-
truder in this paper, but we do need to have at at least
some idea of what types mean from the point of view of
the intruder to help us in computing the probability of an
intruder’s producing type confusion attacks. In particular,
we want to determine the probability that the intruder can
produce (or force the protocol to produce) a field of one
type that also belongs to another type. Essentially, there
are two questions of interest to an intruder: given a type,
can it control what field of that type is sent in a message,
and given a type, will any arbitrary member of that type be
accepted by a principal, or will a member be accepted only
with a certain probability.

Definition 3.3 We say that a type is under the control of
the intruder if there is no probability distribution associ-
ated with it. We say that a type is probabilistic if there a
a probability distribution associated with it. We say that a
probabilistic type local to a principal A is under the con-

73

trol of A if the probability of A accepting a field as a mem-
ber of X is given by the probability distribution associated
with X.

The idea behind probabilistic types and types under con-
trol of the intruder is that the intruder can choose what
member of a type can be used in a message if it is under
its control, but for probabilistic types the field used will be
chosen according to the probability distribution associated
with the type. On the other hand, if a type is not under the
control of a principal A, then A will accept any member of
that type, while if the type is under the control of A, she
will only accept an element as being a member of that type
according to the probability associated with that type.

An example of a type under the control of an intruder
would be a nonce generated by the intruder, perhaps while
impersonating someone else. An example of a probabilis-
tic type that is not under the control of A would be a nonce
generated by another principal B and sent to A in a mes-
sage. An example of a probabilistic type that is also under
the control of A would be a nonce generated by A and sent
by A in a message, or received by A in some later message.

Definition 3.4 Let X and Y be two types. We say that
X MY holds if an intruder can force a protocol to produce
an element x of X that is also an element of Y .

Of course, we are actually interested in the probabil-
ity that X MY holds. Although the means for calculating
P(X MY) may vary, we note that the following holds if
there are no other constraints on X and Y":

1. If X and Y are both under the control of the intruder,
then P(X MY)is 1if X NY # ¢ and is zero other-
wise;

2. If X is under the control of the intruder, and Y is a
type under the control of A, and the intruder knows
the value of the member of Y before choosing the
member of X, then PY M X) = P(Z € X NY),
where 7 is the random variable associated with X;

3. If X a type under the control of A, and Y is a type
local to B but not under the control of B, then P(X M
Y)=P@eXnNY);

4. If X is under the control of A and Y is under the con-
trol of some other (non-intruder) B, then P(YX) =
P(% = ¢) where £ is the random variable associated
with X, and ¢ is the random variable associated with
Y.

Now that we have a notion of type for fields, we extend
it to a notion of type for messages.

Definition 3.5 A message is a concatenation of one or
more fields.

Definition 3.6 A message type is a function R from lists
of fields to types, such that:

1. The empty list is in Dom(R);

2. {x1, .., k) € Dom(R) if and only if
(@1, ey Tpe1) € Dom(R) and =z €
R((-rla"'amk—l));

3. If (x1,...,2x) € Dom(R), and x) = 1, then
R({(x1, ...y zi)) = {¢}, and ;

4. For any infinite sequence S = (..., x;,...) such that
all prefixes of S are in Dom(R), there exists an n
such that, for all i > n, x; = L.

The second part of the definition shows how, once the
first k — 1 fields of a message are known, then R can be
used to predict the type of the k’th field. The third and
fourth parts describe the use of the empty list ¢ in indi-
cating message termination. The third part says that, if the
message terminates, then it can’t start up again. The fourth
part says that all messages must be finite. Note, however,
that it does not require that messages be of bounded length.
Thus, for example, it would be possible to specify, say, a
message type that consists of an unbounded list of keys.

The idea behind this definition is that the type of the
n’th field of a message may depend on information that
has gone before, but exactly where this information goes
may depend upon the exact encoding system used. For ex-
ample, in the tagging system in [4], the type is given by
a tag that precedes the field. In many implementations,
the tag will consist of two terms, one giving the general
type (e.g. “nonce”), and the other giving the length of the
field. Other implementations may use this same two-part
tag, but it may not appear right before the field; for ex-
ample in ISAKMP, and hence in GDOI, the tag refers, not
to the field immediately following it, but the field imme-
diately after that. However, no matter how tagging is im-
plemented, we believe that it is safe to assume that any
information about the type of a field will come somewhere
before the field, since otherwise it might require knowl-
edge about the field that only the tag can supply (such as
where the field ends) in order to find the tag.

Definition 3.7 The support of a message type R is the
set of all messages of the form x1l|...||x, such that
(x1,...,xn) € Dom(R).

For an example of a message type, we consider a mes-
sage of the form

“nonce”, Ny, NONCE, “nonce”, No, NONCE»
where NONCE) is a random number of length N; gen-
erated by the creator of the message, V; is a 16-bit integer,
and NONC'E5 is a random number of length N5, where
both NONCE5 and Ny are generated by the intended re-
ceiver, and Ny is another 16-bit integer. ;From the point
of view of the generator of the message, the message type
is as follows:

74

1. R({)) = “nonce”.

2. R({“nonce”)) = {X|length(X) = 16}. Since Ny
is generated by the sender, it is a type under the con-
trol of the sender consisting of the set of 16-bit inte-
gers, with a certain probability attached.

3. R((“nonce”,N1)) = {Xllength(X) = Ni}.
Again, this is a private type consisting of the set of
fields of length /V;. In this case, we can choose the
probability distribution to be the uniform one.

4. R({“nonce”, N1, NONCE)) = {“nonce”}.

5. R({“nonce”, Ny, NONCE1, “nonce’)) =
{X|length(X) = 16}. Since the sender did
not actually generate Na, all he can do is check
that it is of the proper length, 16. Thus, this type
is not under the control of the sender. If N, was
not authenticated, then it is under the control of the
intruder.

6. R({“nonce”, N1, NONCE, “nonce”, Na)) =
{Y|length(Y') = N2}. Again, this value is not under
the control of the sender, all the principal can do is
check that what purports to be a nonce is indeed of
the appropriate length.

7. R({“nonce”, Ny, NONCE1, “nonce”, Na,
NONCE;,,)) = {¢} . This last tells us that the mes-
sage ends here.

(From the point of view of the receiver of the message,
the message type will be somewhat different. The last two
fields, No and NON CE5 will be types under the control
of the receiver, while N1 and NONC'E; will be types not
under its control, and perhaps under the control of the in-
truder, whose only checkable property is their length. This
motivates the following definition:

Definition 3.8 A message type local to a principal P is a
message type R whose range is made up of types local to

P.
We are now in a position to define type confusion.

Definition 3.9 Let R and S be two message types. We
say that a pair of sequences (x1,...,Zn) € Dom(R) and
(Y1, .oy Yn) € Dom(S) is a type confusion between R and
Sif:

1. 1€ R(<1317 ---7$n>);

2.1 €S{Y1y ey Ym)), and;
3. x|l xen = w1l ym-

The first two conditions say that the sequences describe
complete messages. That last conditions says that the mes-
sages, considered as bit-strings, are identical.

Definition 3.10 Let R and S be two message types. We
say that R 'S holds if an intruder is able to force a pro-
tocol to produce an T in Dom(R) such that there exists i
in Dom/(S) such that (Z,7) is a type confusion..

Again, what we are interested in is computing, or at least
estimating, P(R M S). This will be done in Section 5.

4 Constructing and Rearranging
Message Types

In order to perform our comparison procedure, we will
need the ability to build up and tear down message types,
and create new message types out of old. In this section
we describe the various ways that we can do this.

We begin by defining functions that are restrictions of
message types (in particular to prefixes and postfixes of
tuples).

Definition 4.1 An n-postfix message type is a function R
from tuples of length n or greater to types such that:

1. Forallk >0, (z1,...,xntr) € Dom(R) if and only
otk € RUT1, ooy Trgk—1));

2. If {x1, ..., Tpyr) € Dom(R), and xpir = t, then
R{x1, ey Tpykt1)) = {t}, and ;

3. For any infinite sequence S = (..., x;,...) such that
all prefixes of S of length n and greater are in
Dom(R), there exists an m such that, for all i > m,
Tr; = L.

We note that the restriction of a message type R to se-
quences of length n or greater is an n-postfix message type,
and that a message type is a O-postfix message type.

Definition 4.2 An n-prefix message type is a function R
Jfrom tuples of length less than n to types such that:

1. R is defined over the empty list;

2. Forallk < n, (x1,...,x5) € Dom(R) if and only if
xp € R({x1, ..., Tk—1)), and;

3. Ifk<n—1,and (z1,...,x;) € Dom(R), and xj, =
t, then R({x1, ..., xry1)) = {t}.

We note that the restriction of a message type to se-
quences of length less than n is an n-prefix message type.

Definition 4.3 We say that a message type or n-prefix mes-
sage type R is t-bounded if R(x) = ¢ for all tuples x of
length t or greater.

In particular, a message type that is both t-bounded and
t-postfix will be a trivial message type.

75

Definition 4.4 Let R be an n-postfix message type. Let
X be a set of m-tuples in the pre-image of R, where m
> n. Then R|X is defined to be the restriction of R to
the set of all (x1,...,Tm,...,2r) in Dom(R) such that
(1, .y) € X.

Definition 4.5 Let R be an n-prefix message type. Let X
be a set of n-1 tuples. Then R[X is defined to be the re-
striction of 'R to the set of all tuples T such that T € X, or
Z = (w1, ...x;) such that there exists (Yi+1, .-, Yn—1) Such
that (x4, ... Ti, Yit1y o Yn—1) € X.

Definition 4.6 Let R be an n-postfix message type. Then
Split(R) is the function whose domain is the set of all
(X1, ooy Ty Y1, Y2, T2y -ey T) Of length n+1 or greater
such that (x1,...,Tn, Y1]|Y2, Tnt2s ooy Tm) € Dom(R)
and such that

a. For the tuples of length i > n +],
Spl’l:t(R)(<l’1,...,$n,y17y2,$n+2,...,Xm>) =
RUx1y ooy Ty Y1 1|Y2y Trtay ooy T), and;

b. For tuples of length n +1 ,
SPUt(R) (Y1 -+ yn1)) = {2 | (Y1, ynta|l2) €
Dom(R).

Definition 4.7 Let R be an n-prefix message type. Let F
be a function from a set of n-tuples to types such that there
is at least one tuple (x;y1...,2,) in the domain of F such
that (x;41..., Tn_1) is in the domain of R. Then R{F, the
extension of R by F), is the function whose domain is

a. For i < n, the set of all (xy....,x;) such that
(X1...;x;) € Dom(R), and such that there ex-
ists (Tit1..., Tn) Such that (Ty....,T;, Tiz1...,Tn) €
Dom/(F);

b Fori = n, the set of all (x1....,2n_1,2y) such that
(1.0, Tp—1) € Dom(R) and {x1....,Tpn_1,Tn) €
Dom/(F);

and whose restriction to tuples of length less than n is R,
and whose restriction to n-tuples is F'.

Proposition 4.1 If R is an n-postfix message type, then
R| X is an m-postfix message type for any set of m-tuples
X, and Split(R) is an (n+1)-postfix message type. If R
is t-bounded, then so is R|X, while Split(R) is (t+1)-
bounded. Moreover, if S is an n-prefix message type, then
so is STY forany set of n-1 tuples Y, and S§F is an (n+1)-
prefix message type for any function F' from n-tuples to
types such at for at least one element (X;11..., 2Ty,) in the
domain of F, (Ti11..., Xn—1) is in the domain of S.

We close with one final definition.

Definition 4.8 Let F' be a function from k-tuples of fields
to types. We define Pre(F) to be the function from k-tuples
of fields to types defined by Pre(F)(x) is the set of all
prefixes of all elements of F(x).

76

S The Zipper: A Procedure for
Comparing Message Types

We now can define our procedure for determining whether
or not type confusion is possible between two message
types R and S, that is, whether it is possible for a ver-
ifier to mistake a message of type R generated by some
principal for a message of type S generated by that same
principal , where R is a message type local to the gener-
ator, and S is a message type local to the verifier. But, in
order for this to occur, the probability of R 1S must be
nontrivial. For example, consider a case in which R is a
type local to and under the control of Alice consisting of
a random variable 64 bits long, and S consists of another
random 64-bit variable local to and under the control of
Bob. It is possible that R M S holds, but the probability
that this is so is only 1/ 264 On the other hand, if R is
under the control of the intruder, then the probability that
their support is non-empty is one. Thus, we need to choose
a threshold probability, such that we consider a type con-
fusion whose probability falls below the threshold to be of
negligible consequence.

Once we have chosen a threshold probability, our strat-
egy will be to construct a “zipper’between the two mes-
sage types to determine their common support. We will
begin by finding the first type of R and the first type of S,
and look for their intersection. Once we have done this,
for each element in the common support, we will look for
the intersection of the next two possible types of R and
S, respectively, and so on. Our search will be compli-
cated, however, by the fact that the matchup may not be
between types, but between pieces of types. Thus, for ex-
ample, elements of the first type of R may be identical to
the prefixes of elements of the first type of S, while the re-
mainders of these elements may be identical to elements of
the second type of R, and so forth. So we will need to take
into account three cases: the first, where two types have a
nonempty intersection, the second, where a type from R
(or a set of remainders of types from) has a nonempty
intersection with a set of prefixes from the second type of
S, and the third, where a type from S (or a set of remain-
ders of types from S) has a nonempty intersection with a
set of prefixes from the second type of R. All of these will
impose a constraint on the relative lengths of the elements
of the types from S and R, which need to be taken into
account, since some conditions on lengths may be more
likely to be satisfied than others.

Our plan is to construct our zipper by use of a tree in
which each node has up to three possible child nodes, cor-
responding to the three possibilities given above. Let R
and S be two message types, and let p be a number be-
tween 1 and 0, such that we are attempting to determine
whether the probability of constructing a type confusion
between R and S is greater than p. We define a ter-
tiary tree of sept-tuples as follows. The first entry of each

sept-tuple is a set U of triples (z, 7, Z), where x is a bit-
string and § = (y1, ..., Yn) and Z = (21, ..., Zy) such that
yl|..||yn = 21]|.--||2m = x. We will call U the support of
the node. The second and third entries are n and m postfix
message types, respectively. The fourth and fifth are mes-
sage types or prefix message types. The sixth is a probabil-
ity q. The seventh is a set of constraints on lengths of types.
The root of the tree is of the form (¢, R, S, (), (), 1, D),
where D is the set of length constraints introduced by R
and S.

Given a node, (U, H,Z,J, K, q,C), we construct up to
three child nodes as follows:

1. The first node corresponds to the case in which a term
from H can be confused with a term from I. Let 7" be
the setof all (x, §, Z) € U such that P(H(§)NZ(Z) #
@) - ¢ > p. Then, if T is non-empty, we construct a
child node as follows:

a. The first element of the new tuple is the set
T’ of all («/,y,z') such that there exists
(x,7,z) € T such that 2’ = z||ly;, where
y1 € Ho(y), ¥ = append(y, (y1)), and 2’ =
append(z, (y1));

Note that, by definition y; is an element of Z(Zz)
as well as H(7).

b. The second element is the (n+1)-
postfix message type H|Wg, where
Wr ={y'|(=",5,2) € T'};

c. The third element is the (m+1)-postfix message
type Z|Ws, where Wg = {Z'|{(z/,7,Z") €
T'},

d. The fourth element is (J#H,)[Vg, where
Ve = {yl{z,9,2) € T};

e. The fifth element is (KtZ,,)[Vs, where Vg =
{2l(z,9,2) € T};

f. The sixth element is maz({P(H,(y) N
Im(Z) # ¢ | Jxs.t(x,4,2) € T)}) - ¢, and;

g. The seventh element is C'U{c; }, where ¢y is the
constraint length(H,,) = length(Z,).

We call this first node the node generated by the con-
straint length(H,,) = length(Z,,).

2. The second node corresponds to the case in which a
type from H can be confused wit prefix of a type from
7.

Let T be the set of all (x, 7, Z) such that P(H,,(g) M
Pre(Z,,)(2)) - ¢ > p. Then, if T is non-empty, we
construct a child node as follows:

a. The first element of the new tuple is the set
T’ of all («/,7,z') such that there exists
(x,7,z) € T such that @’ = z||ly;, where

77

y1 € Hn(y), § = append(y.(y1)), and z/ =
append(z, (y1));

Note that, in this case y; is an element of
Pre(Z,,)(2)) as well.

b. The second element is the (n+l)-
postfix message type H|Wg, where
Wr ={y'[{=",¥,2") € T'};

c. The third element is the m-postfix message type
Split(T)|Ws , where Wg = {Z'|(2/, 7, Z') €
T’}

d. The fourth element is (J#H,)[Vg, where
Ve ={yl(z,y,2) € T}

e. The fifth element is (KfPre(Z,,))[Vs, where
VS = {2|<$,g,2> € T},

f. The sixth element of the tuple is
mar({P(Ha.(y) 1 Pre(Zm)(2) |
Jxs.t.(x,y,2) €T))}) - ¢, and;

g. The seventh element is C'U{c; }, where ¢y is the
constraint length(H,,) < length(Z,,).

We call this node the node generated by the constraint
length(H,,) < length(Z,,).

. The third node corresponds to the case in which a pre-

fix of a type from H can be confused with a type from
T

Let T be the set of all (x,7,%) in Usuch that
P(Pre(H,)(y) MZ(z)) - ¢ > p. Then, if T is
nonempty, we construct a child node as follows:

a. The first element of the new tuple is the set
T’ of all (2/,%’,z’) such that there exists
(x,9,zZ) € T such that 2’ = z||ly;, where
y1 € Pre(Hn)(y), ¥ = append(y, (y1)), and
z' = append(Z, (y1);

Note that, in this case 1 is an element Z,,,(Z) as
well.

b. The second element is the n-postfix mes-
sage type Split(H)|Wgr, where Wr =
{:'j/|<1‘,/7g/7 2/) c T/} ;

c. The third element is the (m+1)-postfix message
type Z|Ws , where Wy = {Z'|(«/,7,Z) €
T'},

d. The fourth element is (J#Pre(H,)))[Vr,
where Vi = {y|(z,9,2) € T};

e. The fifth element is (K4Z,,)[Vs, where Vg =
{2[(z,9,2) € T}

f. The sixth element is maz({P(Pre(H,)(g) N
Im(2)) | Jzs.t.(z,9,2) € T)}) - g, and;

g. The seventh element is CU{¢c; }, where ¢y is the
constraint length(7,,) > length(Z,,).

We call this node the node generated by the constraint
length(H,,) > length(Z,,).

The idea behind the nodes in the tree is as follows. The
first entry in the sept-tuple corresponds to the part of the
zipper that we have found so far. The second and third
corresponds to the portions of R and S that are still to be
compared. The fourth and fifth correspond to the portions
of R and S that we have compared so far. The sixth entry
gives an upper bound on the probability that this portion
of the zipper can be constructed by an attacker. The sev-
enth entry gives the constraints on lengths of fields that are
satisfied by this portion of the zipper.

Definition 5.1 We say that a zipper succeeds if it contains
anode (U, (), (), T, K, q,C).

Theorem 5.1 The zipper terminates for bounded message
types, and, whether or not it terminates, it succeeds if there
are any type confusions of probability greater than p. For
bounded message types, the complexity is exponential in
the number of message fields.

6 An Example:
GDOI

An Analysis of

In this section we give a partial analysis of the signed mes-
sages of a simplified version of the GDOI protocol.

There are actually three such messages. They are: the
POP signed by the group member, the POP signed by the
GCKS, and the Groupkey Push Message signed by the
GCKS. We will show how the POP signed by the GCKS
can be confused with the Groupkey Push Message.

The POP is of the form NONCFE 4, NONC Ep where
NONCE, is a random number generated by a group
member, and NONCEp is a random number generated
by the GCKS. The lengths of NONCFE 4 and NONCEp
are not constrained by the protocol. Since we are inter-
ested in the types local to the GCKS, we have NONCE 4
the type consisting of all numbers, and NONCFEp the
type local to the GCKS consisting of the the single nonce
generated by the GCKS.

We can thus define the POP as a message type local to
the GCKS as follows:

1. R({)) = NONCE, where NONCUE} is the type
under the control of the intruder consisting of all
numbers, and;

2. R({y1)) = NONCEp where NONCEp is a type
under control of the GCKS.

We next give a simplified (for the purpose of exposition)
Groupkey Push Message. We describe a version that con-
sists only of the Header and the Key Download Payload:

78

NONCE,kd, MESSAGE_LENGTH,sig,
KDLENGTH,KDHEADER,KEYS

The NONCEp at the beginning of the header is
of fixed length (16 bytes). The one-byte kd field
gives the type of the first payload, while the 4-byte
MESSAGE_LENGTH gives the length of the message
in bytes. The one-byte sig field gives the type of the next
payload (in this case the signature, which is not part of the
signed message), while the 2-byte K DLENGTH gives
the length of the key download payload. We divide the key
download data into two parts, a header which gives infor-
mation about the keys, and the key data, which is random
and controlled by the GCKS. (This last is greatly simpli-
fied from the actual GDOI specification).

We can thus define the Groupkey Push Message as the
following message type local to the intended receiver:

1. S({)) = NONCEy where NONCEY is the type
consisting of all 16-byte numbers;

2. S({z1)) = {kd};

3. S({z1,22)) = MESSAGE_LENGTH, where
MESSAGE_LENGTH is the type consisting of
all 4-byte numbers;

4. S({z1,x0,73)) = {sig};

5. S(<I1,IL‘2,$3,$4>) = KDLENGTH, where
KDLENGTH is the type consisting of all 2-byte
numbers;

6. S({x1,x2,23,24,25)) = KDHEADER, where
the type KDHEADER consists of all possi-
ble KD headers whose length is less than z3 —
length(zq||z2||zs||x4||z5) and the value of x5.

7. S({x1, 2, 23,24, T5,26)) = KEYS, where
KFEY S is the set of all numbers whose length is less
than a3 — length(xy||z2||z3||24]|25||z6) and equal
to x5 — length(zg). Note that the second constraint
makes the first redundant.

All of the above types are local to the receiver, but under
the control of the sender.

We begin by creating the first three child nodes.
All three cases length(y;) = length(z;), length(y;) <
length(x1), and length(y;) > length(x;), are non-trivial,
since x1 € NONCFEp is an arbitrary 16-byte number,
and y3 € NONCE, is a completely arbitrary number.
Hence the probability of NONCE, M NONCUEpg is one
in all cases. But let’s look at the children of these nodes.
For the node corresponding to length(y;) = length(xy),
we need to compare x5 and y3. The term x5 is the pay-
load identifier corresponding to “kd”. It is one byte long.
The term y5 is the random nonce NONCEp generated
by the GCKS. Since ys is the last field in the POP, there
is only one possibility; that is, length(zs) < length(y2).

But this would require a member of Pre(NONCEpR)
to be equal to “kd”. Since NONCUEpg is local to
the GCKS and under its control, the chance of this is
1/28. If this is not too small to worry about, we con-
struct the child of this node. Again, there will be only
one, and it will correspond to length(xs) < length(ys2) -
length(x2). In this case, xs is the apparently arbitrary
number M ESSAGE_LENGT H. But there is a nontriv-
ial relationship between M ESSAGE_LENGTH and
NONCEpg, in that MESSAGE_LENGTH must de-
scribe a length equal to M + N, where M is the length of
the part of NONC Ep remaining after the point at which
MESSAGE_LENGTH appears in it, and N describes
the length of the signature payload. Since both of these
lengths are outside of the intruder’s control, the probabil-
ity that the first part of NONC Ep will have exactly this
value is 1/2'6. We are now up to a probability of 1/224,

When we go to the next child node, again the only possi-
bility is length(x4) < length(ys) - length(z3) - length(xs),
and the comparison in this case is with the 1-byte repre-
sentation of “sig”. The probability of type confusion now
becomes 1/232. If this is still a concern, we can continue
in this fashion, comparing pieces of NONC Ep with the
components of the Groupkey Push Message until the risk
has been reduced to an acceptable level. A similar line of
reasoning works for the case length(y;) < length(x;).

We now look at the case length(y;) > length(z;), and
show how it can be used to construct the attack we men-
tioned at the beginning of this paper. We concentrate on
the child node generated by the constraint length(y;) -
length(z1) > length(xy). Since y3 € NONCEy is an
arbitrary number, the probability that x5 can be taken for a
piece of y;, given the length constraint, is one. We con-
tinue in this fashion, until we come to the node gener-
ated by the constraint length(z7) <length(y;) - Zle Z;.
The remaining field of the Groupkey Pull Message, z7 €
KFEYS is an arbitrary number, so the chance that the re-
maining field of the POP, y» together with what remains
of y1, can be mistaken for 7, is one, since the concatena-
tion of the remains of y; with ys, by definition, will be a
member of the abitrary set K EY'S.

7 Conclusion and Discussion

We have developed a procedure for determining whether
or not type confusions are possible in signed messages in
a cryptographic protocol. Our approach has certain advan-
tages over previous applications of formal methods to type
confusion; we can take into account the possibility that an
attacker could cause pieces of message fields to be con-
fused with each other, as well as entire fields. It also takes
into account the probability of an attack succeeding. Thus,
for example, it would catch message type attacks in which
typing tags, although present, are so short that it is possible
to generate them randomly with a non-trivial probability.

Our greater generality comes at a cost, however. Our
procedure is not guaranteed to terminate for unbounded
message types, and even for bounded types it is exponen-
tial in the number of message fields. Thus, it would have
not have terminated for the actual, unsimplified, GDOI
protocol, which allows an arbitrary number of keys in the
Key Download payload, although it still would have found
the type confusion attacks that we described at the begin-
ning of this paper.

Also, we have left open the problem of how the prob-
abilities are actually computed, although in many cases,
such as that of determining whether or not a random
number can be mistaken for a formatted field, this is
fairly straightforward. In other cases, as in the compari-
son between NONCFEpg and MESSAGE_LENGTH
from above, things may be more tricky. This is be-
cause, even though the type of a field is a function of
the fields that come before it in a message, the values
of the fields that come after it may also act as a con-
straint, as the length of the part of the message appear-
ing after M ESSAGE_LENGTH does on the value of
MESSAGE_LENGTH.

Other subtleties may arise from the fact that other
information that may or may not be available to
the intruder may affect the probability of type con-
fusion. For example, in the comparison between
MESSAGE_LENGTH and NONCEpg, the intruder
has to generate NONCE 4 before it sees NONCEp. If
it could generate NONCE 4 after it saw NONCEp, this
would give it some more control over the placement of
MESSAGE_LENGTH with respectt to NONCEp.
This would increase the likelyhood that it would be able
to force MESSAGE_LENGTH to have the appropri-
ate value.

But, although we will need to deal with special cases
like these, we believe that, in practice, the number of dif-
ferent types of such special cases will be small, and thus
we believe that it should be possible to narrow the prob-
lem down so that a more efficient and easily automatable
approach becomes possible. In particular, a study of the
most popular approaches to formatting cryptographic pro-
tocols should yield some insights here.

8 Acknowledgements

We are greatful to MSec and SMuG Working Groups, and
in particular to the authors for the GDOI protocol, for
many helpful discussions on this topic. This work was sup-
ported by ONR.

References

[1] J. Alves-Foss. Provably insecure mutual authentica-
tion protocols: The two party symmetric encryption

79

[4]

case. In Proc. 22nd National Information Systems Se-
curity Conference., Arlington, VA, 1999.

Mark Baugher, Thomas Hardjono, Hugh Harney,
and Brian Weis. The Group Domain of Interpreta-
tion. Internet Draft draft-ietf-msec-gdoi-04.txt, In-
ternet Engineering Task Force, February 26 2002.
available at http://www.ietf.org/internet-drafts/draft-
ietf-msec-gdoi-04.txt.

D. Harkins and D. Carrel. The Internet Key
Exchange (IKE). RFC 2409, Internet Engineer-
ing Task FOrce, November 1998. available at
http://ietf.org/tfc/rfc2409.txt.

James Heather, Gavin Lowe, and Steve Schneider.
How to prevent type flaw attacks on security proto-
cols. In Proceedings of 13th IEEE Computer Security
Foundations Workshop, pages 255-268. IEEE Com-
puter Society Press, June 2000. A revised version is to
appear in the Journal of Computer Security.

John Kelsey and Bruce Schneier. Chosen interactions
and the chosen protocol attack. In Security Protocols,
Sth International Workshop April 1997 Proceedings,
pages 91-104. Springer-Verlag, 1998.

80

[6]

D. Maughan, M. Schertler, M. Schneider, and
J. Turner. Internet Security Association and Key
Management Protocol (ISAKMP). Request for Com-
ments 2408, Network Working Group, November
1998. Available at http://ietf.org/rfc/rfc2408.txt.

Catherine Meadows. Analyzing the Needham-
Schroeder public key protocol: A comparison of
two approaches. In Proceedings of ESORICS ’96.
Springer-Verlag, 1996.

Einar Snekkenes. Roles in cryptographic protocols.
In Proceedings of the 1992 IEEE Computer Secu-
rity Symposium on Research in Security and Privacy,
pages 105-119. IEEE Computer Society Press, May
4-6 1992.

Finding Counterexamples to Inductive Conjectures
and Discovering Security Protocol Attacks

Graham Steel, Alan Bundy, and Ewen Denney
Division of Informatics
University of Edinburgh

{grahams, bundy, ewd}@dai.ed.ac.uk

Abstract

We present an implementation of a method for finding
counterexamples to universally quantified conjectures in
first-order logic. Our method uses the proof by consis-
tency strategy to guide a search for a counterexample and
a standard first-order theorem prover to perform a concur-
rent check for inconsistency. We explain briefly the theory
behind the method, describe our implementation, and eval-
uate results achieved on a variety of incorrect conjectures
from various sources.

Some work in progress is also presented: we are apply-
ing the method to the verification of cryptographic security
protocols. In this context, a counterexample to a security
property can indicate an attack on the protocol, and our
method extracts the trace of messages exchanged in order
to effect this attack. This application demonstrates the ad-
vantages of the method, in that quite complex side condi-
tions decide whether a particular sequence of messages is
possible. Using a theorem prover provides a natural way
of dealing with this. Some early results are presented and
we discuss future work.

1 Introduction

Inductive theorem provers are frequently employed in the
verification of programs, algorithms and protocols. How-
ever, programs and algorithms often contain bugs, and pro-
tocols may be flawed, causing the proof attempt to fail. It
can be hard to interpret a failed proof attempt: it may be
that some additional lemmas need to be proved or a gener-
alisation made. In this situation, a tool which can not only
detect an incorrect conjecture, but also supply a counterex-
ample in order to allow the user to identify the bug or flaw,
is potentially very valuable. The problem of cryptographic
security protocol verification is a specific area in which in-
correct conjectures are of great consequence. If a security
conjecture turns out to be false, this can indicate an attack
on the protocol. A counterexample can help the user to see
how the protocol can be attacked. Incorrect conjectures

81

also arise in automatic inductive theorem provers where
generalisations are speculated by the system. Often we en-
counter the problem of over-generalisation: the speculated
formula is not a theorem. A method for detecting these
over-generalisations is required.

Proof by consistency is a technique for automating in-
ductive proofs in first-order logic. Originally developed
to prove correct theorems, this technique has the prop-
erty of being refutation complete, i.e. it is able to refute
in finite time conjectures which are inconsistent with the
set of hypotheses. When originally proposed, this tech-
nique was of limited applicability. Recently, Comon and
Nieuwenhuis have drawn together and extended previous
research to show how it may be more generally applied,
[10]. They describe an experimental implementation of
the inductive completion part of the system. However, the
check for refutation or consistency was not implemented.
This check is necessary in order to ensure a theorem is
correct, and to automatically refute an incorrect conjec-
ture. We have implemented a novel system integrating
Comon and Nieuwenhuis’ experimental prover with a con-
current check for inconsistency. By carrying out the check
in parallel, we are able to refute incorrect conjectures in
cases where the inductive completion process fails to ter-
minate. The parallel processes communicate via sockets
using Linda, [8].

The ability of the technique to prove complex induc-
tive theorems is as yet unproven. That does not concern
us here — we are concerned to show that it provides an
efficient and effective method for refuting incorrect con-
jectures. However, the ability to prove at least many small
theorems helps alleviate a problem reported in Protzen’s
work on disproving conjectures, [22] — that the system ter-
minates only at its depth limit in the case of a small unsat-
isfiable formula, leaving the user or proving system none
the wiser.

We have some early results from our work in progress,
which is to apply the technique to the aforementioned
problem of cryptographic security protocol verification.
These protocols often have subtle flaws in them that are
not detected for years after they have been proposed. By

devising a first-order version of Paulson’s inductive for-
malism for the protocol verification problem, [21], and ap-
plying our refutation system, we can not only detect flaws
but also automatically generate the sequence of messages
needed to expose these flaws. By using an inductive model
with arbitrary numbers of agents and runs rather than the
finite models used in most model-checking methods, we
have the potential to synthesise parallel session and replay
attacks where a single principal may be required to play
multiple roles in the exchange.

In the rest of the paper, we first review the litera-
ture related to the refutation of incorrect conjectures and
proof by consistency, then we briefly examine the Comon-
Nieuwenhuis method. We describe the operation of the
system, relating it to the theory, and present and evaluate
the results obtained so far. The system has been tested
on a number of examples from various sources including
Protzen’s work [22], Reif et al.’s, [24], and some of our
own. Our work in progress on the application of the system
to the cryptographic protocol problem is then presented.
Finally, we describe some possible further work and draw
some conclusions.

2 Literature Review

2.1 Refuting Incorrect Conjectures

At the CADE-15 workshop on proof by mathematical in-
duction, it was agreed that the community should address
the issue of dealing with non-theorems as well as theo-
rems'. However, relatively little work on the problem has
since appeared. In the early nineties Protzen presented a
sound and complete calculus for the refutation of faulty
conjectures in theories with free constructors and complete
recursive definitions, [22]. The search for the counterex-
ample is guided by the recursive definitions of the function
symbols in the conjecture. A depth limit ensures termina-
tion when no counterexample can be found.

More recently, Reif et al., [25], have implemented a
method for counterexample construction that is integrated
with the interactive theorem prover KIV, [23]. Their
method incrementally instantiates a formula with construc-
tor terms and evaluates the formulae produced using the
simplifier rules made available to the system during proof
attempts. A heuristic strategy guides the search through
the resulting subgoals for one that can be reduced to false.
If such a subgoal is not found, the search terminates when
all variables of generated sorts have been instantiated to
constructor terms. In this case the user is left with a model
condition, which must be used to decide whether the in-
stantiation found is a valid counterexample.

'The minutes of the discussion are available from
http://www.cee.hw.ac.uk/ air/cadel5/

cade-15-mind-ws—-session-3.html.

Ahrendt has proposed a refutation method using model
construction techniques, [1]. This is restricted to free
datatypes, and involves the construction of a set of suit-
able clauses to send to a model generation prover. As first
reported, the approach was not able in general to find a
refutation in finite time, but new work aims to address this
problem, [2].

2.2 Proof by Consistency

Proof by consistency is a technique for automating induc-
tive proof. It has also been called inductionless induction,
and implicit induction, as the actual induction rule used
is described implicitly inside a proof of the conjecture’s
consistency with the set of hypotheses. Recent versions
of the technique have been shown to be refutation com-
plete, i.e. are guaranteed to detect non-theorems in finite
time.> The proof by consistency technique was developed
to solve problems in equational theories, involving a set of
equations defining the initial model®, E. The first version
of the technique was proposed by Musser, [20], for equa-
tional theories with a completely defined equality predi-
cate, This requirement placed a strong restriction on the
applicability of the method. The completion process used
to deduce consistency was the Knuth-Bendix algorithm,
[17].

Huet and Hullot [14] extended the method to theories
with free constructors, and Jouannaud and Kounalis, [15],
extended it further, requiring that ' should be a convergent
rewrite system. Bachmair, [4], proposed the first refuta-
tionally complete deduction system for the problem, using
a linear strategy for inductive completion. This is a re-
striction of the Knuth-Bendix algorithm which entails only
examining overlaps between axioms and conjectures. The
key advantage of the restricted completion procedure was
its ability to cope with unoriented equations. The refuta-
tional completeness of the procedure was a direct result of
this.

The technique has been extended to the non-equational
case. Ganzinger and Stuber, [12], proposed a method
for proving consistency for a set of first-order clauses
with equality using a refutation complete linear system.
Kounalis and Rusinowitch, [18], proposed an extension to
conditional theories, laying the foundations for the method
implemented in the SPIKE theorem, [6]. Ideas from the
proof by consistency technique have been used in other in-
duction methods, such as cover set induction, [13], and test
set induction, [5].

2Such a technique must necessarily be incomplete with respect to
proving theorems correct, by Godel’s incompleteness theorem.

3The initial or standard model is the minimal Herbrand model. This
is unique in the case of a purely equational specification.

82

2.3 Cryptographic Security Protocols

Cryptographic protocols are used in distributed systems
to allow agents to communicate securely. Assumed to be
present in the system is a spy, who can see all the traffic in
the network and may send malicious messages in order to
try and impersonate users and gain access to secrets. Clark
and Jacob’s survey, [9], and Anderson and Needham’s ar-
ticle, [3], are good introductions to the field.

Although security protocols are usually quite short, typ-
ically 2-5 messages, they often have subtle flaws in them
that may not be discovered for many years. Researchers
have applied various formal methods techniques to the
problem, to try to find attacks on faulty protocols, and to
prove correct protocols secure. These approaches include
belief logics such as the so-called BAN logic, [7], state-
machines, [11, 16], model-checking, [19], and inductive
theorem proving, [21]. Each approach has its advantages
and disadvantages. For example, the BAN logic is attrac-
tively simple, and has found some protocol flaws, but has
missed others. The model checking approach can find
flaws very quickly, but can only be applied to finite (and
typically very small) instances of the protocol. This means
that if no attack is found, there may still be an attack upon
a larger instance. Modern state machine approaches can
also find and exhibit attacks quickly, but require the user to
choose and prove lemmas in order to reduce the problem
to a tractable finite search space. The inductive method
deals directly with the infinite state problem, and assumes
an arbitrary number of protocol participants, but proofs are
tricky and require days or weeks of expert effort. If a proof
breaks down, there are no automated facilities for the de-
tection of an attack.

3 The Comon-Nieuwenhuis Method

Comon and Nieuwenhuis, [10], have shown that the pre-
vious techniques for proof by consistency can be gener-
alised to the production of a first-order axiomatisation A
of the minimal Herbrand model such that AU E U C' is
consistent if and only if C is an inductive consequence
of E. With A satisfying the properties they define as an
I-Axiomatisation, inductive proofs can be reduced to first-
order consistency problems and so can be solved by any
saturation based theorem prover. We give a very brief sum-
mary of their results here. Suppose [is, in the case of
Horn or equational theories, the unique minimal Herbrand
model, or in the case of non-Horn theories, the so-called
perfect model with respect to a total ordering on terms,
=4

Definition 1 A set of first-order formulae A is an 1-
Axiomatisation of I if

“4Saturation style theorem proving always requires that we have such
an ordering available.

1. Ais a set of purely universally quantified formulae

2. I is the only Herbrand model of E'U A up to isomor-
phism.

An I-Axiomatisation is normal if A |= s # t for all pairs
of distinct normal terms s and t

The I-Axiomatisation approach produces a clean separa-
tion between the parts of the system concerned with induc-
tive completion and inconsistency detection. Completion
is carried out by a saturation based theorem prover, with
inference steps restricted to those produced by conjecture
superposition, a restriction of the standard superposition
rule. Only overlaps between conjecture clauses and ax-
ioms are considered. Each non-redundant clause derived
is checked for consistency against the I-Axiomatisation. If
the theorem prover terminates with saturation, the set of
formulae produced comprise a fair induction derivation.
The key result of the theory is this:

Theorem 1 Let A be a normal I-Axiomatisation, and
Co, C1, . .. be a fair induction derivation. Then I |= Cy iff
AU {c} is consistent for all clauses c in | J; C;.

This theorem is proved in [10]. Comon and Nieuwenhuis
have shown that this conception of proof by consistency
generalises and extends earlier approaches. An equality
predicate as defined by Musser, a set of free constructors
as proposed by Huet and Hullot or a ground reducibility
predicate as defined by Jouannaud and Kounalis could all
be used to form a suitable I-Axiomatisation. The tech-
nique is also extended beyond ground convergent spec-
ifications (equivalent to saturated specifications for first-
order clauses) as required in [15, 4, 12]. Previous methods,
e.g. [6], have relaxed this condition by using conditional
equations. However a ground convergent rewrite system
was still required for deducing inconsistency. Using the
I-Axiomatisation method, conjectures can be proved or
refuted in (possibly non-free) constructor theories which
cannot be specified by a convergent rewrite system.
Whether these extensions to the theory allow larger the-
orems to be proved remains to be seen, and is not of in-
terest to us here. We are interested in how the wider ap-
plicability of the method can allow us to investigate the
ability of the proof by consistency technique to root out a
counterexample to realistic incorrect conjectures.

4 Implementation

Figure 1 illustrates the operation of our system. The in-
put is an inductive problem in Saturate format and a
normal I-Axiomatisation (see Definition 1, above). The
version of Saturate customised by Nieuwenhuis for im-
plicit induction (the right hand box in the diagram) gets the
problem file only, and proceeds to pursue inductive com-
pletion, i.e. to derive a fair induction derivation. Every

83

Inputs:
Problem file
I-Axiomatisation file

I-Axiomatisation file

linda server

Problem file

L

refutation control

client

standard
saturate

(possibly several)

all generated
clauses

inductive completion
saturate

>

"> File for each
spawned

saturate

Figure 1: System operation

non-redundant clause generated is passed via the server to
the refutation control program (the leftmost box). For ev-
ery new clause received, this program generates a problem
file containing the I-Axiomatisation and the new clause,
and spawns a standard version of Saturate to check the
consistency of the file. Crucially, these spawned Sat-
urates are not given the original axioms — only the I-
Axioms are required, by Theorem 1. This means that al-
most all of the search for an inconsistency is done by the
prover designed for inductive problems and the spawned
Saturates are just used to check for inconsistencies be-
tween the new clauses and the I-Axiomatisation. This
should lead to a false conjecture being refuted after fewer
inference steps have been attempted than if the conjecture
had been given to a standard first-order prover together
with all the axioms and I-Axioms. We evaluate this in the
next section.

If, at any time, a refutation is found by a spawned
prover, the proof is written to a file and the completion pro-
cess and all the other spawned Saturate processes are
killed. If completion is reached by the induction prover,
this is communicated to the refutation control program,
which will then wait for the results from the spawned pro-
cesses. If they all terminate with saturation, then there are
no inconsistencies, and so the theorem has been proved (by
Theorem 1).

There are several advantages to the parallel architecture
we have employed. One is that it allows us to refute in-
correct conjectures even if the inductive completion pro-

84

cess does not terminate. This would also be possible by
modifying the main induction Saturate to check each
clause in tern, but this would result in a rather messy and
unwieldy program. Another advantage is that we are able
to easily devote a machine solely to inductive completion
in the case of harder problems. It is also very convenient
when testing a new model to be able to just look at the de-
duction process before adding the consistency check later
on, and we preserve the attractive separation in the theory
between the deduction and the consistency checking pro-
cesses.

A disadvantage of our implementation is that launching
a new Saturate process to check each clause against
the I-Axiomatisation generates some overheads in terms
of disk access etc. In our next implementation, when a
spawned prover reaches saturation (i.e. no inconsisten-
cies), it will clear its database and ask the refutation con-
trol client for another clause to check, using the existing
sockets mechanism. This will cut down the amount of
memory and disk access required. A further way to re-
duce the consistency checking burden is to take advantage
of knowledge about the structure of the I-Axiomatisation
for simple cases. For example, in the case of a free con-
structor specification, the I-Axiomatisation will consist of
clauses specifying the inequality of non-identical construc-
tor terms. Since it will include no rules referring to defined
symbols, it is sufficient to limit the consistency check to
generated clauses containing only constructors and vari-
ables.

Table 1: Sample of results. In the third column, the first number shows the number of clauses derived by the inductive
completion prover, and the number in brackets indicates the number of clauses derived by the parallel checker to spot
the inconsistency. The fourth column shows the number of clauses derived by an unmodified first-order prover when

given the conjecture, axioms and I-Axioms all together.

Counterexample No. of clauses No. of clauses
Problem derived to derived by a
found .
find refutation standard prover
VYN, M.~(s(N)+ M = s(0)) N=0,M=0 2(+0) 2
X#AYANX#OANY #0 X = 5(0)
= (X>YAY £0)V v — (s(X7)) 4 (+3) 6
(X#£0AY =0)
app(K,L) = app(L, K) K=0,L=s(X) 9(+11) stuck in loop
sort(ly) Nla = ap(ly, [head(l3)])
Nlength(ls) > 2 x length(ly) I = [s(X)],
Als # nil A la = [s(X),0] 55(+1) 76
member(head(l1), tail(l3)) I3 =10,s(X)|Y]
= sort(la)
All graphs are acyclic le(a,a)] 99 123
All loopless graphs are acyclic le(s(a),a),e(a, s(a))] 178 2577
ged(X,X) =0 X =5(0) 17(+2) 29
Impossibility property
for Neuman-Stubblefield [msg(%), msg(fﬁ’ 866 (+0) 1733
key exchange protocol ML), msg
Authenticity property for see section 6 730(+1) 3148
simple protocol from [9]

5 Evaluation of Results

Table 1 shows a sample of results achieved so far. The
first three examples are from Protzen’s work, [22], the next
two from Reif et al’s, [25], and the last three are from
our work. The gcd example is included because previous
methods of proof by consistency could not refute this con-
jecture. Comon and Nieuwenhuis showed how it could
be tackled, [10], and here we confirm that their method
works. The last two conjectures are about properties of
security protocols. The ‘impossibility property’ states that
no trace reaches the end of a protocol. Its refutation com-
prises the proof of a possibility property, which is the first
thing proved about a newly modelled protocol in Paulson’s
method, [21]. The last result is the refutation of an authen-
ticity property, indicating an attack on the protocol. This
protocol is a simple example included in Clark’s survey,
[9], for didactic purposes, but requires that one principal
play both roles in a protocol run. More details are given in
section 6.

Our results on Reif et al.’s examples do not require the
user to verify a model condition, as the system described
in their work does. Interestingly, the formula remaining
as a model condition in their runs is often the same as
the formula which gives rise to the inconsistency when
checked against the I-Axiomatisation in our runs. This

85

is because the KIV system stops when it derives a term
containing just constructors and variables. In such a case,
our I-Axiomatisation would consist of formulae designed
to check validity of these terms. This suggests a way to
automate the model condition check in the KIV system.

On comparing the number of clauses derived by our sys-
tem and the number of clauses required by a standard first-
order prover (SPASS), we can see that the proof by consis-
tency strategy does indeed cut down on the number of in-
ferences required. This is more evident in the larger exam-
ples. Also, the linear strategy allows us to cope with com-
mutativity conjectures, like the third example, which cause
a standard prover to go into a loop. We might ask: what
elements of the proof by consistency technique are allow-
ing us to make this saving in required inferences? One is
the refutation completeness result for the linear strategy, so
we know we need only consider overlaps between conjec-
tures and axioms. Additionally, separating the I-Axioms
from the theory axioms reduces the number of overlaps be-
tween conjectures and axioms to be considered each time.
We also use the results about inductively complete posi-
tions for theories with free constructors, [10]. This applies
to all the examples except those in graph theory, where we
used Reif’s formalism and hence did not have free con-
structors. This is the probable reason why, on these two
examples, our system did not make as large a saving in

derived clauses.

The restriction to overlaps between conjectures and ax-
ioms is similar in nature to the so-called set of support
strategy, using the conjecture as the initial supporting set.
The restriction in our method is tighter, since we don’t con-
sider overlaps between formulae in the set of support. Us-
ing the set of support strategy with the standard prover on
the examples in Table 1, refutations are found after de-
riving fewer clause than required by the standard strategy.
However, performance is still not as good as for our sys-
tem, particularly in the free constructor cases. The set of
support also doesn’t fix the problem of divergence on un-
oriented conjectures, like the commutativity example.

The efficiency of the method in terms of clauses derived
compared to a standard prover looks good. However, ac-
tual time taken by our system is much longer than that
for the standard SPASS. This is because the Saturate
prover is rather old, and was not designed to be a seri-
ous tool for large scale proving. In particular, it does not
utilise any term indexing techniques, and so redundancy
checks are extremely slow. As an example, the impossi-
bility property took about 50 minutes to refute in Satu-
rate, but about 40 seconds in SPASS, even though more
than twice as many clauses had to be derived. We used
Saturate in our first system as Nieuwenhuis had al-
ready implemented the proof by consistency strategy in the
prover. A re-implementation of the whole system using
SPASS should give us even faster refutations, and is one of
our next tasks.

Finally, we also tested the system on a number of small
inductive theorems. Being able to prove small theorems al-
lows us to attack a problem highlighted in Protzen’s work:
that if an candidate generalisation (say) is given to the
counterexample finder and it returns a result saying that
the depth limit was reached before a counterexample was
found, the system is none the wiser as to whether the gen-
eralisation is worth pursuing. If we are able to prove at
least small examples to be theorems, this will help allevi-
ate the problem. Our results were generally good: 7 out
of 8 examples we tried were proved, but one was missed.
Comon intends to investigate the ability of the technique
to prove more and larger theorems in future.

More details of the results including some sample runs
and details of the small theorems proved can be found at
http://www.dai.ed.ac.uk/ “grahams/linda.

6 Application to Cryptographic Se-
curity Protocols

We now describe some work in progress on applying our
technique to the cryptographic security protocol problem.
As we saw in section 2.3, one of the main thrusts of re-
search has been to apply formal methods to the problem.
Researchers have applied techniques from model check-

ing, theorem proving and modal logics amongst others.
Much attention is paid to the modelling of the abilities
of the spy in these models. However, an additional con-
sideration is the abilities of the participants. Techniques
assuming a finite model, with typically two agents playing
distinct roles, often rule out the possibility of discovering a
certain kind of parallel session attack, in which one partic-
ipant plays both roles in the protocol. The use of an induc-
tive model allows us to discover these kind of attacks. An
inductive model also allows us to consider protocols with
more than two participants, e.g. conference-key protocols.

Paulson’s inductive approach has used been used to ver-
ify properties of several protocols, [21]. Protocols are for-
malised in typed higher-order logic as the set of all pos-
sible traces, a trace being a list of events like ‘A sends
message X to B’. This formalism is mechanised in the Is-
abelle/HOL interactive theorem prover. Properties of the
security protocol can be proved by induction on traces.
The model assumes an arbitrary number of agents, and any
agent may take part in any number of concurrent protocol
runs playing any role. Using this method, Paulson discov-
ered a flaw in the simplified Otway-Rees shared key pro-
tocol, [7], giving rise to a parallel session attack where a
single participant plays both protocol roles. However, as
Paulson observed, a failed proof state can be difficult to
interpret in these circumstances. Even an expert user will
be unsure as to whether it is the proof attempt or the con-
jecture which is at fault. By applying our counterexample
finder to these problems, we can automatically detect and
present attacks when they exist.

Paulson’s formalism is in higher-order logic. However,
no ‘fundamentally’ higher-order concepts are used — in
particular there is no unification of higher-order objects.
Objects have types, and sets and lists are used. All this
can be modelled in first-order logic. The security protocol
problem has been modelled in first-order logic before, e.g.
by Weidenbach, [26]. This model assumed a two agent
model with just one available nonce’ and key, and so could
not detect the kind of parallel session attacks described.
Our model allows an arbitrary number of agents to partici-
pate, playing either role, and using an arbitrary number of
fresh nonces and keys.

6.1 Our Protocol Model

Our models aims to be as close as possible to a first-order
version of Paulson’s formalism. As in Paulson’s model,
agents, nonces and messages are free data types. This al-
lows us to define a two-valued function eq which will tell
us whether two pure constructor terms are equal or not.
Since the rules defining eq are exhaustive, they also have
the effect of suggesting instantiations where certain condi-
tions must be met, e.g. if we require the identities of two
agents to be distinct. The model is kept Horn by defin-

5 A nonce is a unique identifying number.

86

ing two-valued functions for checking the side conditions
for a message to be sent, e.g. we define conditions for
member(X, L) = true and member(X, L) = false us-
ing our eq function. This cuts down the branching rate of
the search.

The intruder’s knowledge is specified in terms of sets.
Given a trace of messages exchanged, X7, we define
analz(XT) to be the least set including X7 closed un-
der projection and decryption by known keys. This is ac-
complished by using exactly the same rules as the Paul-
son model, [21, p. 12]. Then, we can define the messages
the intruder may send, given a trace X7', as being mem-
bers of the set synth(analz(XT)), where synth(X) is the
least set including agent names closed under pairing and
encryption by known keys. Again this set is defined in our
model with the same axioms that Paulson uses.

A trace of messages is modelled as a list. For a specific
protocol, we generally require one axiom for each protocol
message. These axioms take the form of rules with the in-
formal interpretation, ‘if X7 is a trace containing message
n addressed to agent za, then the trace may be extended
by za responding with message n + 1’. Once again, this is
very similar to the Paulson model.

An example illustrates some of these ideas. In Figure 2
we demonstrate the formalism of a very simple protocol
included in Clark and Jacob’s survey to demonstrate paral-
lel session attacks, [9]. Although simple, the attack on the
protocol does require principal A to play the role of both
initiator and responder. It assumes that A and B already
share a secure key, K 45. N4 denotes a nonce generated
by A.

In a symmetric key protocol, principals should respond
to key(A, B) and key(B, A), as they are in reality the
same. At the moment we model this with two possible
rules for message 2, but it should be straightforward to ex-
tend the model to give a cleaner treatment of symmetric
keys as sets of agents. Notice we allow a principal to re-
spond many times to the same message, as Paulson’s for-
malism does.

The second box, Figure 3, shows how the refutation of a
conjectured security property leads to the discovery of the
known attack. At the moment, choosing which conjectures
to attempt to prove is tricky. A little thought is required in
order to ensure that only a genuine attack can refute the
conjecture. More details of our model for the problem,
including the specification of intruder knowledge, can be
foundathttp://www.dai.ed.ac.uk/ grahams/
linda.

This application highlights a strength of our refutation
system: in order to produce a backwards style proof, as
Paulson’s system does, we must apply rules with side con-
ditions referring as yet uninstantiated variables. For ex-
ample, a rule might be applied with the informal interpre-
tation, ‘if the spy can extract X from the trace of mes-
sages sent up to this point, then he can break the secu-

87

rity conjecture’. At the time the rule is applied, X will be
uninstantiated. Further rules instantiate parts of the trace,
and side conditions are either satisfied and eliminated, or
found to be unsatisfiable, causing the clauses containing
the condition to be pruned off as redundant. The side con-
ditions influence the path taken through the search space,
as smaller formulae are preferred by the default heuristic
in the prover. This means that some traces a naive coun-
terexample search might find are not so attractive to our
system, e.g. a trace which starts with several principals
sending message 1 to other principals. This will not be
pursued at first, as all the unsatisfied side conditions will
make this formula larger than others.

7 Further Work

Our first priority is to re-implement the system using
SPASS, and then to carry out further experiments with
larger false conjectures and more complex security pro-
tocols. This will allow us to evaluate the technique more
thoroughly. A first goal is to rediscover the parallel session
attack discovered by Paulson. The system should also be
able to discover more standard attacks, and the Clark sur-
vey, [9], provides a good set of examples for testing. We
will then try the system on other protocols and look for
some new attacks. A key advantage of our security model
is that it allows attacks involving arbitrary numbers of par-
ticipants. This should allow us to investigate the security
of protocols involving many participants in a single run,
e.g. conference key protocols.

In future, we also intend to implement more sophisti-
cated heuristics to improve the search performance, util-
ising domain knowledge about the security protocol prob-
lem. Heuristics could include eager checks for unsatisfi-
able side conditions. Formulae containing these conditions
could be discarded as redundant. Another idea is to vary
the weight ascribed to variables and function symbols, so
as to make the system inclined to check formulae with pre-
dominantly ground variables before trying ones with many
uninstantiated variables. This should make paths to attacks
more attractive to the search mechanism, but some careful
experimentation is required to confirm this.

The Comon-Nieuwenhuis technique has some remain-
ing restrictions on applicability, in particular the need for
reductive definitions, a more relaxed notion of reducibility
than is required for ground convergent rewrite systems. It
is quite a natural requirement that recursive function def-
initions should be reducing in some sense. For example,
the model of the security protocol problem is reductive
in the sense required by Comon and Nieuwenhuis. Even
so, it should be possible to extend the technique for non-
theorem detection in the case of non-reductive definitions,
at the price of losing any reasonable chance of proving a
theorem, but maintaining the search guidance given by the
proof by consistency technique. This would involve al-

The Clark-Jacob protocol demonstrating parallel session attacks. At the end of a run, A should now be assured
of B’s presence, and has accepted nonce NN 4 to identify authenticated messages.

1. A= B:{ Nalk.p
2. B—=A:{Na+ 1k p

Formula for modelling message 1 of the protocol. Informally: if XT is a trace, XA and XB agents, and XNA
a number not appearing as a nonce in a previous run, then the trace may be extended by XA initiating a run,
sending message 1 of the protocol to XB.

m(XT) = true A agent(XA) = true A agent(XB) = true A number(XNA) = true
Amember(sent(X,Y, encr(nonce(XNA), K)), XT) = false =
m([sent(XA, XB, encr(nonce(XNA), key(XA, XB)))|XT]) = true

Formulae for message 2. Two formulae are used to make the response to the shared key symmetric (see text).
Informally: if XT is a trace containing message 1 of the protocol addressed to agent XB, encrypted under a
key he shares with agent XA, then the trace may be extended by agent XB responding with message 2.

member(sent(X, XB, encr(nonce(XNA), key(XA, XB))), XT) = true Am(XT) = true =
m([sent(XB, XA, encr(s(nonce(XNA)), key(XA, XB)))|XT]) = true.

member(sent(X, XB, encr(nonce(XNA), key(XB, XA))), XT) = true Am(XT) = true =
m([sent(XB, XA, encr(s(nonce(XNA)), key(XB, XA)))|XT]) = true.

Figure 2: The modelling of the Clark-Jacob protocol

The parallel session attack suggested by Clark and Jacob [9]. At the end of the attack, A believes B is
operational. B may be absent or may no longer exist:

1. A= Cp:{ Nalk.,,
2.Cp — A:{ Nalk.p
3. A= Cp s(Na)ba
4. Cp — A { s(NA)b s

Below is the incorrect security conjecture, the refutation of which gives rise to the attack above. Informally
this says, ‘for all valid traces 7', if A starts a run with B using nonce N 4, and receives the reply s(/V4) from
principal X, and no other principal has sent a reply, then the reply must have come from agent B.

member(sent(XA, XB, encr(nonce(XNA), K), XT) = true
AXT = [sent(X, XA, encr(s(nonce(XNA)), K)|T)
Amember(sent(Y, XA, encr(s(nonce(XNA)), K), T) = false
Am(XT) = true = eq(X, XB) = true

The final line of output from the system, giving the attack.

sent
sent
sent
sent

spy,a,encr (s (nonce (0)),key(a,s(a)))),
a,s(a),encr (s (nonce(0)),key(a,s(a)))),
spy,a,encr (nonce (0) ,key(a,s(a))))

a,s(a),encr (nonce (0),key(a,s(a)))

—~ e~~~

c(
c(
c(
c(

),nil))))

Figure 3: The attack and its discovery

88

lowing inferences by standard superposition if conjecture
superposition is not applicable.

8 Conclusions

In this paper we have presented a working implementation
of a novel method for investigating an inductive conjec-
ture, with a view to proving it correct or refuting it as false.
We are primarily concerned with the ability of the system
to refute false conjectures, and have shown results from
testing on a variety of examples. These have shown that
our parallel inductive completion and consistency check-
ing system requires considerably fewer clauses to be de-
rived than a standard first-order prover does when tackling
the whole problem at once. The application of the tech-
nique to producing attacks on faulty cryptographic secu-
rity protocols looks promising, and the system has already
synthesised an attack of a type many finite security models
will not detect. We intend to produce a faster implemen-
tation using the SPASS theorem prover, and then to pursue
this application further.

References

[1] W. Ahrendt. A basis for model computation in free
data types. In CADE-17, Workshop on Model Com-
putation - Principles, Algorithmns, Applications,
2000.

W. Ahrendt. Deductive search for errors in free
data type specifications using model generation. In
CADE-18,2002.

(2]

[3] R. Anderson and R. Needham. Computer Science To-
day: Recent Trends and Developments, volume 1000
of LNCS, chapter Programming Satan’s Computer,

pages 426-440. Springer, 1995.

L. Bachmair.
Birkhauser, 1991.

(4]

Canonical Equational Proofs.

[5] A. Bouhoula, E. Kounalis, and M. Rusinowitch.
Automated mathematical induction. Rapport de
Recherche 1663, INRIA, April 1992.

[6] A.Bouhoulaand M. Rusinowitch. Implicit induction
in conditional theories. Journal of Automated Rea-

soning, 14(2):189-235, 1995.

[7] M. Burrows, M. Abadi, and R. Needham. A logic
of authentication. ACM Transactions on Computer

Systems, 8(1):18-36, February 1990.

[8] N. Carreiro and D. Gelernter. Linda in context. Com-
munications of the ACM, 32(4):444-458, 1989.

89

(9]

[10]

[11]

[12]

[14]

[15]

[16]

[18]

[19]

[20]

J. Clark and J. Jacob. A survey of authenti-
cation protocol literature: Version 1.0. Avail-
able via http://www.cs.york.ac.uk/Jac/
papers/drareview.ps.gz, 1997.

H. Comon and R. Nieuwenhuis. Induction = I-
Axiomatization + First-Order Consistency. Informa-
tion and Computation, 159(1-2):151-186, May/June
2000.

D. Dolev and A. Yao. On the security of public key
protocols. IEEE Transactions in Information Theory,
2(29):198-208, March 1983.

H. Ganzinger and J. Stuber. Informatik — Festschrift
zum 60. Geburtstag von Giinter Hotz, chapter Induc-
tive theorem proving by consistency for first-order
clauses, pages 441-462. Teubner Verlag, 1992.

M. S. Krishnamoorthy H. Zhang, D. Kapur. A mech-
anizable induction principle for equational specifica-
tions. In E. L. Lusk and R. A. Overbeek, editors,
Proceedings 9th International Conference on Auto-
mated Deduction, Argonne, Illinois, USA, May 23-
26, 1988, volume 310 of Lecture Notes in Computer
Science, pages 162—-181. Springer, 1988.

G. Huet and J. Hullot. Proofs by induction in equa-
tional theories with constructors. Journal of the As-
sociation for Computing Machinery, 25(2), 1982.

J.-P. Jouannaud and E. Kounalis. Proof by induction
in equational theories without constructors. Informa-
tion and Computation, 82(1), 1989.

R. Kemmerer, C. Meadows, and J. Millen. Three sys-
tems for cryptographic protocol analysis. Journal of
Cryptology, 7:79-130, 1994.

D. Knuth and P. Bendix. Simple word problems in
universal algebra. In J. Leech, editor, Computational
problems in abstract algebra, pages 263-297. Perga-
mon Press, 1970.

E. Kounalis and M. Rusinowitch. A mechanization
of inductive reasoning. In AAAI Press and MIT
Press, editors, Proceedings of the American Associ-
ation for Artificial Intelligence Conference, Boston,

pages 240-245, July 1990.

G. Lowe. Breaking and fixing the Needham
Schroeder public-key protocol using FDR. In Pro-
ceedings of TACAS, volume 1055, pages 147-166.
Springer Verlag, 1996.

D. Musser. On proving inductive properties of ab-
stract data types. In Proceedings 7th ACM Symp. on
Principles of Programming Languages, pages 154—
162. ACM, 1980.

[21]

[23]

[24]

L.C. Paulson. The Inductive Approach to Verifying
Cryptographic Protocols. Journal of Computer Secu-
rity, 6:85-128, 1998.

M. Protzen. Disproving conjectures. In D. Ka-
pur, editor, 11th Conference on Automated Deduc-
tion, pages 340-354, Saratoga Springs, NY, USA,
June 1992. Published as Springer Lecture Notes in
Artificial Intelligence, No 607.

W. Reif. The KIV Approach to Software Verifica-
tion. In M. Broy and S. Jdhnichen, editors, KORSO:
Methods, Languages and Tools for the Construction
of Correct Software, volume 1009. Springer Verlag,
1995.

W. Reif, G. Schellhorn, and A. Thums. Fehlersuche
in formalen Spezifikationen. Technical Report 2000-
06, Fakultit fur Informatik, Universitit Ulm, Ger-
many, May 2000. (In German).

W. Reif, G. Schellhorn, and A. Thums. Flaw de-
tection in formal specifications. In IJCAR’01, pages
642-657,2001.

C. Weidenbach. Towards an automatic analysis of se-
curity protocols in first-order logic. In H. Ganzinger,
editor, Automated Deduction — CADE-16, 16th In-
ternational Conference on Automated Deduction,
LNAI 1632, pages 314-328, Trento, Italy, July 1999.
Springer-Verlag.

90

Session:
Specification and Verification

Eager Formal Methods for Security Management

Amy L. Herzog Joshua D. Guttman

The MITRE Corporation
{aherzog, guttman}@mitre.org

June 28, 2002

Abstract

Achieving a security goal in a networked system requires the cooperation of a variety
of devices, each potentially requiring different configurations. Many information security
problems may be solved given appropriate models of these devices and their interactions.
We present a unique approach, eager formal methods, which front-loads the contribution of
formal methods to problem-solving.

With eager formal methods, we formally model the network and a class of practically
important security goals. The models derived suggest algorithms which, given system con-
figuration information, return security goals satisfied in the system. The formal methods
provide rigorous justification, yet the algorithms are implemented as ordinary computer
programs.

We have applied this approach to several problems; in this extended abstract we briefly
describe two: distributed packet filtering and the use of IP security (IPSEC) gateways. We
have developed and implemented solutions to these two problems separately. We also de-
scribe how to unify the two solutions, jointly enforcing these mechanisms on a single network.

1 Introduction

Controlling complexity is a core problem in information security. Achieving a security goal in
a networked system requires the cooperation of many devices, such as routers, firewalls, virtual
private network gateways, and individual host operating systems. Different devices may require
different configurations, depending on their purposes and network locations. Many information
security problems may be solved given models of these devices and their interactions. We have
focused for several years on these problems, using eager formal methods as our approach.

Eager formal methods front-loads the contribution of formal methods to problem-solving. The
focus is on modeling devices, their behavior as a function of configurations, and the consequences
of their interactions. A class of practically important security goals must also be expressible in
terms of these models.

These models suggest algorithms taking as input information about system configuration, and
returning the security goals satisfied in that system. In some cases, we can also derive algorithms
to generate configurations to satisfy given security goals. The formal models provide a rigor-
ous justification of soundness. By contrast, algorithms are implemented as ordinary computer
programs requiring no logical expertise to use. Resolving practical problems then requires little
time, and no formal methods specialists.

We have applied this approach to several problems. In this extended abstract, we briefly
describe two problems and the modeling frameworks that lead to solutions. The first is the

91

distributed packet filtering problem, in which packet-filtering routers are located at various points
in a network with complex topology. The problem is to constrain the flow of different types of
packets through the network. The second problem concerns configuring gateways for the IP
security protocols (IPsec); the problem is to ensure that authentication and confidentiality goals
are achieved for specific types of packets traversing the network. Solutions to these problems
have been published [3, 4, 5] and implemented. We also describe how to unify the two solutions,
so that packet filtering goals and IPsec authentication and confidentiality are jointly enforced on
a network.

Steps in Eager Formal Methods Our eager formal methods requires four steps, at least
conceptually. In carrying out an eager formal methods project, “earlier” steps must often be
revised so that later steps can succeed. The steps are:

Modeling Construct a simple formal model of the problem domain. For instance, in modeling
packet filtering, the model contains a bipartite graph, in which nodes are either routers
or network regions. Edges represent interfaces, and each interface may have packet filters
representing the set of packets permitted to traverse that edge in each direction. Selecting
this model will constrain what security goals are achievable or even expressible. Thus,
simplicity in the model must be balanced against representing the right problems. The
benefit of the model is to allow these problems to be solved systematically, in isolation from
other issues raised by the reality of the system.

Security Goals Each model limits the properties of systems that are expressible. Within each
model, we identify one or a few “logical forms” that define security-critical aspects of the
systems. For instance, in our treatment of IPsec, one logical form characterizes assertions
about authenticity; confidentiality is expressed using a different logical form. A particular
system’s security policy is expressed as a set of statements taking these logical forms.

Goal Enforcement The security goals and underlying model must be chosen so that there
is an algorithm that, given a system as represented in the model, and a particular goal
statement of one of the selected logical forms, determines whether the system satisfies that
goal. Typically, different logical forms of security goals require different algorithms. In
some cases, given some information about a system and some desired goal statements, an
algorithm may fill in the details to describe a system satisfying the goals.

The essence of eager formal methods is to provide a rigorous proof of correctness for these
algorithms.

Implementation Having defined and verified one or several goal enforcement algorithms, one
writes a program to check goal enforcement. The inputs to this program consist of goal
statements that should be enforced, and system configuration information. For instance, in
our work, the system configuration information consists of network topology information,
and the router configuration files. The program then enumerates which goals are met, and
gives counterexamples for unmet goals. The algorithm may also generate new and better
configuration files.

We will proceed now to illustrate this method in three successive cases.

2 Packet-Filtering Routers

Packet filtering routers are frequently an important component of network layer access control.
The largest difficulty in implementing access control policies is that of localization. Since several

92

Periphery

Figure 1: A Simple Example

different networks (and even companies) can be involved in an access control policy, routers in
several locations sometimes must cooperate. It is difficult to manually determine what division
of labor among the routers ensures policy enforcement, particularly since routing tables can
be unpredictable. We will briefly introduce the network model, security goal format used, and
discuss enforcement of this work before describing the tool suite implemented. Readers interested
in a more formal treatment are directed to [3, 4].

2.1 Network Model

The network is regarded as a bipartite graph where the two types of nodes are areas and routers.
Areas represent networks we wish to separate; routers connect the areas and move packets between
them. There is an edge between a router and an area if the router has an interface on that area.
(In Figure 1, Engineering, External, and Allied are all areas, and the black squares indicate
routers.) A path through the network is a sequence of immediately connected nodes on the
associated bipartite graph. This framework allows us to ignore issues of routing, so that our
conclusions will hold even on the (realistic) assumption that routing tables change. Note that
within this framework, access control security goals can only be enforced if they involve flow of
packets from one area to another. Thus, the security goals themselves determine the granularity
of the model.

Sets of packets form a boolean algebra, and the behavior of a system consists of the boolean
algebra of sets of packets traversing the edges of a bipartite graph. The edges of the graph
represent the interfaces to routers. Each router has a filter to apply to packets traversing the
edge inbound into the router, and another filter to apply to packets traversing the edge outbound
from the router. These filters are also regarded as sets of packets. Thus, the packets that survive
all of the filters along a given path may be calculated if we are given the boolean algebra of sets of
packets. Likewise, the set of packets that can pass from one given area to another (along any path
in the graph) may be calculated using a graph algorithm that calls boolean algebra operations
as a primitive. Other algorithms may be used to calculate what filters should be attached to
specific edges so that the network will satisfy useful constraints.

We implement the boolean algebras using binary decision diagrams [2, 1], a representation
that is reasonably efficient for the sets that arise naturally in actual networks [4].

2.2 Security Goals

These security goals rely upon two sorts of information: areas the packet has actually traversed,
and packet header contents. The goal statements concern two distinct areas occurring in the
actual path of the packet, and a predicate ¢ of packets (such as membership in a certain set of
abstract apackets). If p ranges over packets, then

93

If p was previously in a1 and later reaches ag, then ¢(p).

is a policy statement when a; # as. It requires that as be protected against non-¢ packets if
they have ever been in a;. For example:

If p was ever in the External area and later reaches the Engineering area, then p
should have service smtp.

Observe that the security goals are designed to be meaningful properties of a boolean algebra of
sets of packets traversing a bipartite graph.

2.3 Goal Enforcement

Goals are enforced by assigning filters to routers. Filters, as mentioned above, are sets of packets,
representing all packets allowed to pass that filtering point.

To check that a set of filters enforces a given security policy, we examine each path between the
appropriate areas to ensure that the set of packets that survive all filters traversed is included in
the policy statement. The set of packets which survives all filters on a path is called the feasibility
set for that path. For a path o from a; to as, we check that the feasibility set for o is included
in the set of abstract packets permitted (according to policy) to travel from a1 to as.

One can use a variant of this checking algorithm to generate a filtering assignment as well:
start with an extremely permissive filtering assignment, and check the assignment against a
desired policy to see where the assignment fails. One can then “tighten” the filter assignments
until the policy is enforced.

2.4 Implementation: The Network Policy Enforcer

This method for checking a set of routing filters against a policy was implemented in 1997 in the
Network Policy Tool (NPT) [3]. Since that time, NPT has been updated, and packaged with
a suite of complementary tools to form the Network Policy Enforcer (NPE). NPE is concerned
with the entire life-span of policy discovery, analysis, and enforcement. It begins by building
a network map from router, switch, and firewall configuration files. It parses vendor-specific
configuration files into Binary Decision Diagrams representing the sets of packets that survive
each filter.! It calculates from these filters an “effective policy” containing the most permissive
policy statements enforced by the given collection of configuration files. It also calculates the
violations of this effective policy relative to an administrator-defined desired policy, suggesting
local tightening for specific filters. NPE also records the changes in the effective policy over time,
as the network evolves.

3 The IP Security Protocols (IPsec)

The IP security protocols (see [9, 7, 8], and also [10, 6]), collectively termed IPSEC, are an impor-
tant set of security protocols that include ensuring confidentiality, integrity, and authentication
of data communications in an IP network. The IPSEC protocols are a set of recipes for applying
cryptographic transformations to packets traversing the network. The transformations include
encryption for confidentiality and computing a keyed hash for authentication. A new header
is prefixed to the packet when these operations occur. This header is removed when the peer
does a matching decryption or checks the keyed hash. The peers performing the cryptographic

LCurrently, only the Cisco configuration language is supported. Other languages are, however, not too different.

94

operations may be the original source and final destination of the packet, or they may also be
security gateways operating on their behalf.

In [5], we formalized the types of security goal that IPSEC is capable of achieving. Continuing
our use of eager formal methods, we then provided criteria that entail that a particular network
achieves its IPSEC security goals. We present a brief overview of past work; the interested reader
is directed to [5] for more information.

3.1 Network Model

We again regard the network as a bipartite graph, containing areas as before, and devices, repre-
senting the hosts or gateways which perform IPSEC processing. A location [is a node of such a
network graph. We must extend the previous network model specifically in the area of headers,
which IPSEC layers and modifies.

Formally, a header is a triple consisting of a source, a destination, and a protocol data value.
This protocol data value may mark the packet as ftp, telnet, or sunrpc using the tcp or udp
port information, or it may reflect the fact that the packet has a cryptographic IPSEC header. If
the set of all protocol data is P, then A C P is a set of authenticated protocol data (and represents
those headers that provide IPSEC authentication and integrity services). The set C' C A is a set
of confidentiality protocol data. To reason about headers, we pay strict attention to the state of
a packet.

Definition 1 A packet state is a non-empty sequence (h,...,h,) of headers h;.

Since header sequences may be arbitrarily long, we require some way of determining if any
more IPSEC processing should happen at a given location. The special processing state ready,
denoted &, indicates that the packet is now ready to move through an interface to a device or
network.

The travels of a packet through a system are modeled as the evolution of a state machine.
The packet may not yet have started to travel; this is the start state. The packet may no longer
be traveling; this is the finished state. Every other state is a triple of a node [in the graph,
indicating where the packet is currently situated; a processing state indicating if the packet is
ready to move; and a packet state, indicating the sequence of headers nested around the payload
of the packet.

State machine transitions include packet creation, discard, and movement operators; header
prefixing and popping operators; and null operators (which change only the processing state).
The total set of transitions is constrained both by security goals and the actual network graph—for
example, the move operator is undefined when there is no edge between the two relevant nodes.

The state machine corresponding to a particular network configuration is determined using
the same modeling ideas as before. The bipartite graph determines the possible atomic motions
of the packet, which can only move across from a node to an adjacent edge (or vice versa). The
IPSEC configuration indicates which cryptographic headers must be added or removed at each
processing location. At each processing location, there are sets of packets for which a type of
header will be added, as well as sets of packets that are permissible results when a cryptographic
header is removed. The additional state machine structure in analyzing IPSEC is needed because
the processing may change the form of the packet.

3.2 Security Goals

IPSEC can achieve the two primary security goals of authentication and confidentiality. Authen-
tication allows a packet recipient to take a packet “at face value”. Thus, for a packet p selected
for protection by an authentication goal,

95

If A is the value in the source header field of p as received by B, then p actually
originated at A in the past, and the payload has not been altered since.

Confidentiality goals provide for the privacy of packet content. The confidentiality goal for a
packet with source field A, requiring protection from disclosure in some network location C,
stipulates:

If a packet originates at A, and later reaches the location C, then while it is at C' it
has a header providing confidentiality.

(The proviso that the packet was once at A is necessary, because in most cases we cannot prevent
someone at C' from creating a spoofed packet. However, a spoofed packet cannot compromise
A’s data if it has no causal connection to A.)

3.3 Goal Enforcement

We make the assumption that cryptographic operations work as advertised, and hence that any
tampering with a cryptographically protected packet can be detected. This allows us to view
cryptographic operations as a tunnel; while cryptographic protection is in place any tampering
with the packet will cause the packet to be dropped. Thus the set of locations accessible before or
after cryptographic tunnel protection are the only ones of real importance for goal achievement.
We will call these locations outside tunnel protection trust sets for particular security goals. A
trust set is goal-specific, and not typically connected. Of special importance are those systems
inside a trust set with a direct connection to outside systems: the trust set boundary.

Goal enforcement is achieved via behavior restrictions on trust set members, dependent on
both the goal and if the member is also in a boundary.

Authentication. The Creation Rule states that trust set nodes must not spoof packets with
trust set sources. The Pop Rule codifies the notion that only nodes in the trust set should be
able to certify a packet as coming from the trust set. It states that if a device processes an
IPSEC packet p with source not in the trust set, and removing this header leads to a packet p’
with source in the trust set, p’ must be discarded. Finally, the Inbound Ready Rule requires that
the boundaries of the trust set must not pass an inbound packet which should have presented
authentication headers, but did not.

Confidentiality. Two behavior restrictions apply to trust set members for confidentiality goals.
The Destination Prefiz Rule ensures that whenever an IPSEC system inside the trust set adds a
confidentiality header to a packet requiring protection, the source and destination of the added
header are also in the trust set. Boundary IPSEC devices must also abide by the Outbound Ready
Rule: the device passes a packet p only if its topmost layer is a confidentiality header, or else it
has no IPSEC headers and p does not require confidentiality.

These purely local behavior restrictions guarantee that authentication and confidentiality
goals will be met [5].

3.4 Implementation: The Confidentiality and Authentication IPsec
Checker (CAIC)

Checks for these behavior restrictions were implemented in the “Confidentiality and Authenti-
cation IPSEC Checker” (or CAIC, pronounced “cake”). When given Cisco IPSEC configuration
files and a network / policy specification, CAIC will check trust sets and boundaries for the
behavior restrictions described above. It returns to the user both a verdict (the goal is enforced

96

or not) and a description of goal failure (if appropriate). It describes which behavior restriction
was not met, and the specific sorts of packets upon which the goal fails. CAIC shares most of
its implementation with NPE, and uses Binary Decision Diagrams to represent the packet sets
relevant to each network configuration.

4 Combined Packet Filtering and IPsec

In protecting its communication, an organization is likely to use a variety of different tools in
tandem. Of special interest here, most companies use both packet-filtering firewalls and the
IPSEC protocols (for example, as part of a VPN). We have presented mechanisms that ensure
that both sorts of security goals are achievable individually, but the use of these two tools in a
heterogeneous environment presents complications.

Recall that packet headers were assumed to be unchanged when network access control was
the only aim. IPSEC is primarily concerned with the addition and deletion of packet headers;
thus when the two tools are used in conjunction the assumptions underlying the packet filtering
firewall analysis are false, and the use of IPSEC could easily compromise the achievement of
packet-filtering goals.

We combine the approaches of [5, 3] retaining the eager formal methods approach, and emerge
with a more general framework, capable of ensuring goal achievement for both types of objective.

4.1 Network Model Modifications

In addition to nodes representing network and devices, we add nodes corresponding to interfaces
on devices, using the Enriched System Representation described in [5]. This allows us to represent
the conceptual location of a packet when either IPSEC or packet-filtering processing is occurring,
as the packet is traversing either the inbound or the outbound interface to (or from) that device.
We call these conceptual locations directed interfaces. This produces a directed graph with three
kinds of nodes—networks, devices, and directed interfaces. A location [is a node, and packet
states are as before: non-empty sequences (hy, ..., h,) of packet headers.

To simplify our reasoning as much as possible, we will be very concerned with the originator
of a given packet; we will see the use of this notion in Section 4.2.

One remaining network modification relates to the notion of a trust set (required for IPSEC-
style security goals). This notion of systems “near” the source and destination of a particular
packet holds significance even for non-IPSEC packets. Rather than denoting potentially vulner-
able locations, they represent the “last line of defense” for any filtering to occur.

Definition 2 A pre-filtering set (respectively, a post-filtering set) S for G = (V, E) consists
of a set R C V of networks, including the source node (respectively, the destination node) of
goal-relevant packets, together with all devices g adjacent to networks in R and all interfaces i 4[*]
and og[*].

The inbound boundary of S, written ™S is the set of all interfaces iy[r] oriy[g'] where g € S
andr,g' € S.

The outbound boundary of S, written 9°“'S is the set of all interfaces i4[r] or ig4lg’] where
geSandr,g' & 5.

A location £ is responsible for a header state h if either h is of length 1 and ¢ originated the
packet, or £ is of length greater than 1 and ¢ affized the outermost header in the sequence h.

Pre-filtering sets are those locations close to the source of a packet, and represent the first
places filtering can occur. Post-filtering sets are those locations close to the destination of a
packet, and represent the last places filtering can occur.

The remainder of the network specification is as described in [5].

97

4.2 Uniform Goal Statements

In order to reason about the achievement of goals in a heterogenous network, we require a goal
format which represents the three types of security goals uniformly. Our security goals will be a
collection of one or more statements (formulae involving the trajectory of the packet). Focusing
on two locations n and n/, there will be a constraint ¢ on header states while at n and n’, based
on a set of headers of interest s at some early location. This allows the statements to focus on
simple headers (the packet header while at the first node) rather than some later node with a
potentially complex and arbitrary header stack. A general statement follows here:

if n responsible for h and h € s
and later state (n',k, ')
then ¢(h,h')

It is straightforward to represent all security goals in this format. We describe only confiden-
tiality goals here.

Confidentiality Goals. Confidentiality goals should protect packets from ever appearing in
“dangerous” areas without a confidentiality header. A general form of the goal:

if /¢y responsible for h and h € s
and later state ({2, k, h')
then h'={(--(x,y,cnf)---h)

We briefly mention goal equivalence before addressing enforcement.

4.3 Goal Achievement

Given that the general security goal statements are equivalent to those in [3, 5], previous proofs
for goal achievement are still valid when tools are used alone. In a heterogeneous environment,
IPSEC security goals are still provably achievable—any packet filtering goal could not affect IPSEC
filtering. headers directly; they can only cause packets to be passed or with service requirements,
packet goal achievement.

Authentication and confidentiality goals can affect the achievement of packet-filtering goals,
however. The addition of headers may obscure the payload of a packet, perhaps causing the
packet to miss some crucial filtering. A trivially provable solution to this problem is simply to
install a complete set of filters on every router in the system. This solution is certainly sub-
optimal. We therefore offer a description of filter assignment which is more efficient, and ensures
that filtering is never missed, regardless of IPSEC activity.

4.3.1 Filter Assignment

Before any filter adjustment, IPSEC security goal enforcement rules are put in place; this involves
the choosing of trust sets for the goals. (We discuss the tensions related to choosing trust sets in
Section 4.4.) For a specific packet-filtering goal, the pre- and post-filtering sets are then chosen.
To ensure achievement of this goal, we impose two behavior restrictions in the style of [5] on pre-
and post-filtering set members. Fix a pre- or post-filtering set S.

Inbound Protection Rule (Part One). For any transition

(61, R, h)
I
(b2, K/, h)

98

If ¢ € 0'™S and ¢; € S, then ¢, discards the packet. This rule ensures boundary members
discard externally forged packets.

Given the presence of IPSEC, we also must impose an IPSEC restriction on all pre- and post-
filtering set members. Even in the absence of an authentication goal, we do not wish to grant
devices outside the pre- and post-filtering set the authority to authenticate systems inside.

Inbound Protection Rule (Part Two). For any transition

(fa K, <[S’ d7 A]7 [a7 B _]>)
I
(67 HI? <[a7) 7]>)

If¢eSandaecS, thenseS.

If these behavior restrictions hold, then provided the filtering rules are applied, goal achieve-
ment is ensured. To assign filtering rules, first use the method described in [3]. Then use the
following procedure, expanding and contracting the set of filters in the system.

For any filtering at any point within a pre- or post-filtering set, duplicate the filters to all
other tunnel entrance/exit points in the set. This ensures that regardless of where in a pre- and
post-filtering set a packet could enter or exit a tunnel, filtering occurs.

Then pick a filtering point p not in either the pre- or post-filtering set. Assume it implements
a filter ¢. Trace all non-cyclic paths from p to the destination portion of the pre- and post-filtering
set. At each potential tunnel endpoint along each path, assign ¢. Repeat this process until all
filtering points outside the post-filtering set have been processed. Repeat this filter expansion for
every filtering point outside the pre- and post-filtering sets.

To contract unnecessary filters, now trace all non-cyclic paths between the source and desti-
nation of the filtering goal. If some individual filtering rule 1) happens on every path regardless of
tunnel activity, it can be removed from all filters on the paths previous to the eventual occurrence.

The filters are now assigned and will enforce the packet-filtering security goal if the following
heuristic is used when a packet emerges from a tunnel.

When To Discard. Upon exiting a tunnel, a packet must receive any missed filtering. There
are two types of tunnel in this case—tunnels with a source in the pre- or post-filtering set (which
authenticate senders in the set), and ad-hoc tunnels which may meet user-defined goals.

When a packet p emerges from a tunnel of the first type, goals are checked for p.1.src and
p.l.dst. If p € Safe, the packet is passed; otherwise, discarded. When a packet p emerges from
a tunnel of the second type, p.1.src is not authenticated, so goals must be checked for all origins
and p.1.dst. p is discarded if there exists a source such that p is not a member of Safe.

4.3.2 Why This Works

It is clear that IPSEC goals are guaranteed achievement if the behavior restrictions laid out in [5]
are met, regardless of packet-filtering activity. In the absence of any IPSEC tunnels, packet-
filtering goal achievement is ensured as outlined in [3].

The question, then, is of filtering goals in the presence of IPSEC tunnels. There are four cases:

Both tunnel endpoints in pre- / post-filtering set. Forged packets cannot enter the pre-
and post-filtering sets due to the Inbound Protection Rules, and the tunnel exit-point can
verify (via cryptographic means) the veracity of the tunnel, and then trust the tunnel source
to authenticate the packet source.

99

Only tunnel entrance in pre- / post-filtering set. Achievement of filtering goals relies upon
our filtering assignment. If the packet would normally have missed filtering, our assignment
ensures that the necessary filters are along all paths to the destination.

Ounly tunnel exit in pre- / post-filtering set. When the packet exits the tunnel, the exit-
point will not trust any authentication present for the source, and will check goals with the
destination of the packet for all sources. This will prevent a forged packet from successfully
being delivered, and hence ensure goal enforcement.

Neither tunnel endpoint in pre- / post-filtering set. In this case, we can be assured through
our filter assignments that any necessary filtering will happen.

Thus regardless of tunnel activity, if the filtering assignments and behavior restrictions above
are followed, packet-filtering goals are achieved. Management of goals in this heterogeneous
environment can be cumbersome. We briefly present strategies to minimize that burden.

4.4 Management Tactics

It is possible to construct networks and goals such that in order that packet-filtering goals be
achieved, nearly every device in the system must have a full copy of all filters. Given some care
in design, this is very unlikely.

Most filtering problems arise when relatively short IPSEC tunnels cross some sort of “bound-
ary”. There are two ways in which this can happen. First, the “boundary” crossed may be literal:
A tunnel may begin in a pre- or post-filtering set, and end outside the set (or vice-versa). The
second type of “boundary” is a filtering point. In traditional filter assignment a filter ¢ may be
assigned to a device far from a pre- or post-filtering set. If a tunnel of one or two hops crosses
that filtering point, a boundary has been crossed (this type of tunnel necessitated our filtering
assignment “expansion”).

There are two immediate tactics to reduce the annoyance of these short tunnels. The first
tactic to reduce management burden is to ensure that pre- and post-filtering sets match existing
IPSEC trust sets. This is simpler and ensures that a higher percentage of legal packets will actually
be delivered (since a greater number of packets exiting tunnels will have verifiable sources).

In addition to coordinating pre- and post-filtering sets with trust sets, one can also attempt
to eliminate these short tunnels entirely. The first type of boundary hopping tunnel discussed
above can be avoided by coordinating the filtering and trust sets as above. The second can be
avoided in two ways: First, alter security goals so that they do not require filters outside of the
pre- or post-filtering set (which may perhaps be a wise choice anyway; it is possible such devices
may not be truly trustworthy). One could also limit the number of IPSEC capable devices in the
network to advantageous locations.

5 Conclusion

We have introduced eager formal methods, a verification method that differs in approach from
more common methods: First, formally outline general security properties one desires from a
given mechanism (such as packet-filtering). Then find a simple set of conditions which, if met,
imply the security property is held. This implication is formally verified, allowing for quick checks
of simple conditions for each instantiation of the mechanism. We have seen that many security
desires can be verified in this way; from authentication and confidentiality goals to standard
packet filtering aims, to a combination.

Many advantages are granted by this approach. It is efficient, allowing for the time-consuming
task of formal verification to be done only once. Further, this verification can be separate from

100

any property-checking tools, allowing those tools to be implemented quickly, and run efficiently.
We illustrated this approach by reprising previous work on packet-filtering and IPsSEC formal
verification. We also introduced a new instance of this verification approach which ensures
achievement of both packet-filtering goals and IPSEC desires.

In addition to this work, there are many future possibilities for eager formal methods. Policy

analysis work for Mandatory Access Controls is ongoing, and follows the same procedure.

References

1]

2]

Karl S. Brace, Richard L. Rudell, and Randal E. Bryant. Efficient implementation of a BDD
package. In 27th ACM/IEEE Design Automation Conference, pages 40-45, 1990.

Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans-
actions on Computers, C-35(8):677-691, August 1986.

Joshua D. Guttman. Filtering postures: Local enforcement for global policies. In Proceedings,
1997 IEEE Symposium on Security and Privacy, pages 120-29. IEEE Computer Society
Press, May 1997.

Joshua D. Guttman. Security goals: Packet trajectories and strand spaces. In Roberto

Gorrieri and Riccardo Focardi, editors, Foundations of Security Analysis and Design, volume
2171 of LNCS. Springer Verlag, 2001.

Joshua D. Guttman, Amy L. Herzog, and F. Javier Thayer. Authentication and confiden-
tiality via IPsec. Technical report, The MITRE Corporation, March 2000.

D. Harkins and D. Carrel. The Internet Key Exchange (IKE). IETF Network Working
Group RFC 2409, November 1998.

S. Kent and R. Atkinson. IP Authentication Header. IETF Network Working Group RFC
2402, November 1998.

S. Kent and R. Atkinson. IP Encapsulating Security Payload. IETF Network Working Group
RFC 2406, November 1998.

S. Kent and R. Atkinson. Security Architecture for the Internet Protocol. IETF Network
Working Group RFC 2401, November 1998.

D. Maughan, M. Schertler, M. Schneider, and J. Turner. Internet Security Association and
Key Management Protocol (ISAKMP). IETF Network Working Group RFC 2408, November
1998.

101

High-performance deduction for verification: a case study in the

theory of arrays

Alessandro Armando Maria Paola Bonacina *
DIST Aditya Kumar Sehgal'
Universita degli Studi di Genova, Italy Department of Computer Science
armando@dist.unige.it The University of lowa, USA

{bonacina, asehgal} @cs.uiowa.edu

Silvio Ranise?
Michaél Rusinowitch
LORIA & INRIA-Lorraine, Villers-les-Nancy, France
{Silvio. Ranise, Michael. Rusinowitch} @Qloria. fr

Abstract

We outline an approach to use ordering-based theorem-proving strategies as satisfiability
procedures for certain decidable theories. We report on experiments with synthetic benchmarks
in the theory of arrays with extensionality, showing that a theorem prover — the E system —
compares favorably with the state-of-the-art validity checker CVC.

Introduction

Satisfiability procedures for theories of standard data-types, such as arrays, lists, bit-vectors,
are at the core of most state-of-the-art verification tools (e.g., ACL2 [8], PVS [12], Simplify [7],
CVC [18]).
efficiency. Satisfiability problems have the form T'U S, where S is a set of ground literals (read

They are required for a wide range of verification tasks and are fundamental for

as conjunction), T is a background theory, and the goal is to prove that T'U S is unsatisfiable.

The endeavour of designing, proving correct, and implementing a satisfiability procedure for
each decidable theory of interest is far from simple. First, most problems involve more than one
theory, so that one needs to combine satisfiability procedures [11, 16]. Combination is complicated:
for example, understanding, formalizing and proving correct the method in [16] required signif-
icant effort (e.g., [14]). With a theorem prover, one may simply give in input the union of the
axiomatizations of the theories. Second, every satisfiability procedure needs to be proved correct
and complete: a key ingredient is to show that whenever the algorithm reports “satisfiable,” its

*Supported in part by NSF grant CCR-97-01508 and a Dean Scholar Award, The University of Iowa.
fSupported in part by NSF grant CCR-97-01508.
tAlso supported by Universita degli Studi di Genova.

103

ouput represents a model of T'U S. Model-construction arguments can be complex, and the more
concrete is the description of the procedure, the more difficult are the proofs (e.g., [14, 19]). If
one develops an abstract framework (e.g., [2]), the additional clarity is gained at the expense
of proximity with concrete procedures. On the other hand, if a theorem-proving strategy has a
sound and refutationally complete inference system, and a fair search plan, it is a semi-decision
procedure for unsatisfiability, and we can use it without additional proofs.

Given these attractive features of theorem proving, it would be all the more precious if we
could exclude the risk of non-termination on the decidable theories of interest. Results of this
nature were presented recently in [1], for the theories of lists, arrays with extensionality, and their
combination, among others. The analysis in [1] showed that a standard, paramodulation-based
inference system, for first-order logic with equality, is guaranteed to terminate on T°'U S, if T is
any of the above theories. The proofs of termination rest on case analyses demonstrating that
the inference system can generate only finitely many clauses from such inputs. Thus, a strategy
that combines this inference system with a fair search plan is in itself a decision procedure for
satisfiability in those theories, and a theorem prover that implements it can be used off the shelf
as a validity checker. One could question whether a specific theorem prover is a sound and com-
plete implementation of such a theorem-proving strategy. However, this question applies also to a
validity checker implementing decision procedures, and perhaps even more seriously, considering
the common practice of designing and implementing from scratch both data structures and al-
gorithms for each new procedure. In contrast, a deduction-based approach also has potential for
better software reuse, since one can envision constructing satisfiability procedures, by combining
the generic reasoning modules offered by state-of-the-art theorem provers.

Even after termination has been proved and a higher degree of assurance about the soundness
of the procedure can be offered, the issue of efficiency remains. The general expectation is that
an implementation of a satisfiability procedure, with the theory built-in as a background theory,
will be always much faster than a theorem prover that takes 7T in input. In this paper, we
suggest that this may not be obvious. We consider synthetic benchmarks, because they allow to
assess the scalability of an approach by experimental asymptotic analysis. We propose two sets of
synthetic benchmarks in the theory of arrays with extensionality, and we report on experiments
with two tools: the E theorem prover [15], and the CVC validity checker [18]. E implements (a
variant of) the inference system used in [1] with several search plans. CVC combines decision
procedures in the style of [11], as described in [3], including that of [19] for the theory of arrays
with extensionality, and featuring either GRASP [17] or Chaff [10] as propositional solver. The
experiments show that, for both sets of benchmarks, there is a configuration of the general-purpose
prover that is competitive with the validity checker. This is preliminary, encouraging evidence
that the approach of [1], in addition to being theoretically elegant, is also applicable in practice.

2 A deduction-based approach and the E prover
The termination results of [1] require that the literals in S be flat. This means that the sum of the

depths of the sides of an equation, or disequation, has depth at most 1, or at most 0, respectively
(assuming constants and variables have depth 0). Literals that are not flat can be flattened by

104

introducing new constant symbols:

Example 1 Assume the function symbols store: ARRAY X INDEX X ELEMent — ARRAY and
select: ARRAY X INDEX — ELEMent denote the operations of storing and retrieving a value at
a position in an array, respectively (e.g., [11]). The ground literals in S = {store(s,a,v) =
store(sy,aq,v1); select(s,a) = v; select(si,a1) = v1; a = ay; v # v1} can be flattened by
introducing new constants cy,ca,cs,cq, yielding S = {store(s,a,v) = c1; store(sy,a1,v1) =
co; select(s,a) = c3; select(si,a1) = ¢4; €1 = €93 €3 = v; ¢4 = v1; a = ay; v # v1}. This
trasformation preserves satisfiability: T U S is satisfiable if and only if T U S’ is, for arbitrary T.

Flattening can be done in different ways: we call it strict, if all occurrences of a subterm
are replaced by the same constant, and non-strict, if each subterm occurrence is replaced by a
new constant. Non-strict flattening yields an under-constrained problem, whose unsatisfiability
obviously implies unsatisfiability of the strictly flattened version. Strict flattening minimizes the
number of new constants introduced, hence the number of clauses, “sharing” subterms as much
as possible. A non-strictly flattened version has less sharing of subterms and more clauses. After
this pre-processing, T'U S can be given to any fair theorem-proving strategy with the following
inference system (e.g., [1]): ordered superposition/paramodulation, reflection (also known as equal-
ity factoring), and ordered factoring, as expansion inference rules, and subsumption, simplification
and deletion (of trivial equations), as contraction inference rules.

Like most ordering-based provers, E implements search plans based on the given-clause loop
[9]. The prover works with two lists of clauses, say To-be-selected and Already-selected: at every
iteration, it extracts a clause, the given clause, from To-be-selected, moves it to Already-selected,
performs all expansion inferences between the given clause and clauses in Already-selected, and
appends the normal forms of all new clauses thus generated to To-be-selected. Practical ordering-
based strategies require that contraction be applied eagerly, to avoid generating clauses from
clauses that can be deleted by contraction. Variants of the given-clause loop differ in the imple-
mentation of eager contraction: while the Otter version aims at keeping the union of To-be-selected
and Already-selected inter-reduced, E implements a version that keeps only Already-selected inter-
reduced, on the ground that all parents of expansion inferences are in Already-selected, with the
downside that clauses in To-be-selected are not applied as simplifiers.

The features of the search plans in E that were most relevant to our experiments are clause
selection and term ordering, and literal selection to a lesser extent. For clause selection, given a
heuristic evaluation function f, the given-clause loop implements a best-first search, by selecting
at each iteration a clause C' such that f(C) is minimum. E uses pairs of functions (f1, f2), where
f11s the clause priority function and fo the heuristic weight function, to pick a clause of smallest
weight among those of highest priority. Ties are broken by selecting the oldest clause. Every pair
(f1, f2) defines a priority queue: E allows the user to activate and weight any number of them,

resulting in a weighted round robin scheme.

Considering that our problems have the form T°U S, one may think of a set-of-support strategy,
with T as consistent set and S as set of support. However, E does not emphasize supported
strategies, because using a set of support is complete for resolution, but not for (ordered) resolution
and paramodulation, unless T' is saturated. If T is saturated, by definition, all inferences from T

105

are redundant, and therefore using its complement as set of support does not add focus to the
search: e.g., T' may generate very few clauses that are subsumed right away. This is the case for
the first presentation considered in our experiments (named 7% and introduced in Section 3): its
two axioms generate only one trivial clause. The second presentation we used (named T5 and
also introduced in Section 3), is not saturated, so that one could consider using T as consistent
set and S as set of support, since incomplete strategies are often used in experiments. However,
E, unlike Otter, does not let the experimenter choose the input set of support: with its clause
priority function SimulateS0S, which prefers supported clauses, the set of support is initialized
by the prover to contain the input negative clauses. Nevertheless, we chose to use it.

Among weight functions, we tried both Clauseweight and Refinedweight. The former, e.g.,
Clauseweight (x,y,z), is the number of symbols in the clause, with weights x for non-variable
symbols and y for variable symbols, and the resulting weight of each positive literal multiplied
by z. Refinedweight (x,y,z,w,t) is similar, but aims at taking the term ordering into account,
by multiplying the resulting weight of each maximal term and maximal (or selected) literal by w
and t, respectively. The term ordering is the ordering on terms and literals used for well-founded
rewriting and to restrict paramodulation/superposition. E implements Knuth-Bendiz ordering
(KBO), and lezicographic path ordering (LPO) (e.g., [6]), and we experimented with both. These
orderings require a precedence on function symbols that can be given by the user, built by the
prover, or a combination of the two. KBO also requires to weight the symbols: by default, E
assigns all symbols weight 1, except the first non-constant maximal symbol which gets weight 0.
The literal selection functions select literals in clauses to restrict ordered paramodulation further.
We tried a few and settled for SelectComplex: it selects the first literal in the form x # y; if the
clause has none, it picks the smallest ground negative literal; if the clause has none, it picks an
arbitrary negative literal among those with the largest difference in number of symbols between
left and right side. In automatic mode, E determines automatically clause evaluation function,
term ordering and literal selection function for the given input.

3 Synthetic benchmarks in the theory of arrays

The presentation of the theory of arrays with extensionality is given by the following axioms:

VA, I E. select(store(A,I,E),I)=FE (1)
VA, I,J, E. (I #J = select(store(A,I,E),J) = select(A,J)) (2)
VA, B. (VI.select(A,I) = select(B,I) = A = B) (3)

where A and B are variables of sort ARRAY, I and J are variables of sort INDEX, and F is a
variable of sort ELEMent. The clausal forms of axioms (1) and (2) are given in input to the prover
together with the ground literals of the specific problem. Axiom (3), the extensionality aziom, is
a universal-existential formula of sorted first-order logic with equality, which is not given to the
prover, but handled by pre-processing the input set of ground literals [1]. This pre-processing step
consists of replacing every disequality of the form ¢ # t/, where ¢t and t' are terms of sort ARRAY,
by the disequality select(t, sk(t,t’)) # select(t', sk(t,t")), where sk is a skolem function of type
ARRAY X ARRAY — INDEX. Indeed, this is the result of applying a resolution step to ¢ # ¢’ and

106

the clausal form of axiom (3), select(A, sk(A, B)) # select(B, sk(A, B))V A = B. Unsatisfiability
in the theory is clearly preserved. Intuitively, sk(t,t’) is an index where the arrays ¢ and ¢’ differ.

An alternative axiomatization of the theory of arrays with extensionality (e.g., [11]), leaves
axioms (1) and (2) unchanged, and replaces (3) by:

VA, I. store(A,I,select(A,I)) = A (4)
VA,I, E,F. store(store(A,I,E),I,F) = store(A,I, F) (5)
VA, I, J,E. (I # J = store(store(A, 1, E),J, F) = store(store(A, J,F),I,E)) (6)

where A is a variable of sort ARRAY, I and J are variables of sort INDEX, and F and F' are variables
of sort ELEMent. We shall refer to the first axiomatization as T} and to the second one as T5. An
axiomatization for finite maps similar to T was given in [5] together with a model built in HOL:
it includes axioms (1), (2), (5), (6), plus an induction principle that allows one to derive (3) and
(4) as theorems. One can easily prove by hand that T} entails T, so that if T U S is unsatisfiable,
T U S is unsatisfiable also. T was not used in [1] and there is no termination result for this
presentation. Not surprisingly, saturation of 75, that we tried on the side of our experiments
with E, did not terminate. Thus, when working with 75, the theorem-proving strategy acts as a
semi-decision procedure, taking in input the clausal form of To U S.

We present two sets of synthetic benchmarks for this theory. For the first one, the idea
is to express the “commutativity” of storing elements at distinct places in an array a. Let
{ki1,...,kn} be N indices and C3' denote the set of 2-combinations over {1,...,N}. To say
that they are distinct, we write /\(p,q)ECéV ky # kg eg., for N =3, k1 # ko Nk1 # ks N ko #
k3. Then, if i1,...,ixy and ji,...,jN§ are two distinct permutations of 1,..., N, the equation
store(... (store(a, ki, ei,),.. . kiy,€iy)...) = store(...(store(a,kj,,ej,),... kjy,€jy) - .) captures
the desired property. For example, for N = 3, and permutations (1,2,3) and (2,1,3), we
get store(store(store(a,ki,e1), ke, es), ks, e3) = store(store(store(a, ka,e2),ki,e1),ks,es). Alto-
gether we have the following schema:

(/\(pg)ECéV kp % kq) =

store(... (store(a, ki, €i)), ... kiy,€iy)...) = store(...(store(a,kj;,ej,), ... kjy,€n))

Each choice of permutations generates a different instance of the schema, and since there are N!

permutations of {ki,...,kx}, the number of instances is the number of 2-combinations of N!
N!
2

at most 10 permutations, hence 45 instances, in order to reduce the dependence of the results on

permutations, hence (*)’) or (N!(N!—1))/2. In our experiments, for each value of N, we sampled

the structure of the formula. We use storecomm(N) to denote the generated instances for size N
and the problem of checking their validity, or the unsatisfiability of their negation.

For the second group, the intuition is that swapping pairs of elements in an array a in two
different orders yields the same array. The equations can be defined recursively. In the base case,
p=0,k=2p=0, and for N = k + 2 = 2 elements, the equation is Lo = Ry, where

Ly = store(store(a, iy, select(a,iy)), ig, select(a,iy))
Ry = store(store(a, g, select(a,i1)), i1, select(a,ip))

107

assuming Ly = Ry = a. In the recursive case, for any p > 0, k = 2p, the number of elements

swapped is N = k + 2, and the equation is Lo = Rgyo, where

Lo = store(store(Ly, ixy1, select(Ly,ix)), ik, select(Ly, ig+1))
Ry1o = store(store(Ry, iy, select(Ry,ix+1)), ig+1, Select(Ry, ix)).

For example, for N =4 (k = 2), we get Ly = Ry with

L4 = store(store(Lo, i3, select(La, i2)), i2, select(La, i3))
Ry = store(store(Ra, i, select(Ra, i3)), i3, select(Rz, i2)).

For every N we get different instances by choosing different permutations of the operations, e.g.,
for N =4, we can also generate L) = R}, where L, = L4, and

Rl = store(store(Ra, i3, select(Ra, i2)), iz, select(Ra,i3)).

The above recursive definition only generates equations where all the pairs are exchanged. We also
consider instances where only some of the pairs are exchanged. Thus, for NV elements, there are N!
permutations, and N!(2V/2 — 1) instances, where 2V/2 — 1 is obtained from Ef\;/f (NZ./Q) = oN/2_q,
Indeed, (N Z/ 2) is the number of i-combinations over the set of N/2 pairs, or the number of ways
of picking 7 pairs (for exchanging them) out of N/2. This expression counts each equation twice
(e.g., L =R and R = L), so that the number of distinct instances is 1/2(N!(2¥/2 — 1)). In our
experiments, for each value of N, we sampled at most 16 permutations and 20 instances. We use

swap(N) to denote both the set of generated instances and the corresponding problem.

4 The experiments with E and CVC

We ran E (version 0.62 “Mullootar”) and CVC on a dual AMD Athlon 1.2GHz machine, with
512MB of RAM, running Linux 2.4.7. We used both CVC/GRASP and CVC/Chaff, because they
are two different versions of CVC, the latter released later. The SAT solver should not play a role
with the theory of arrays. For all experiments, we gave precedence select > store = sk, completed
by E by making all constant symbols smaller than the function symbols. As an exercise, we tried
eight problems in the theory of arrays from the SVC distribution (SVC was CVC’s predecessor:
http://sprout.Stanford.EDU/SVC/). E in automatic mode solved each problem in 0.01 sec or
less, with or without flattening, and CVC did each problem in approximately 0.04 sec.

We wrote a Prolog program that, given N, generates the instances of storecomm(N) and
swap(N), in either E-LOP syntax, the Prolog-like syntax of E, or CVC syntax; it applies flatten-
ing for the experiments with F, and pre-processes the generated equations with respect to exten-
sionality, for the experiments with £ and Tj. Different instances of the same problem may have
different numbers of distinct subterms: since the latter determines the number of new constants
introduced by flattening, and each new constant is defined by an equation, different instances
yield sets of equations of different size. The reported performance of a system on storecomm(N),

or swap(N), is the average performance over all generated instances for size N.

We start with storecomm(N), with presentation 77 and strict flattening for the input to E. In
Figure 1, E-Auto refers to E in automatic mode, while E-SOS refers to the plan (SimulateS0S,Re-
finedweight(2,1,2,1,1)), with selection function SelectComplex and ordering LPO, which was

108

among the best we observed. The curve for E-SOS is just a bit above those for CVC/GRASP
and CVC/Chaff up to N = 110, then crosses them, and stays clearly below them for N > 110.
The curve for E-Auto remains above the others, and is very smooth, which appears a welcome
sign of regularity, considering how theorem provers have been often considered very sensitive to
even minor input variations. Altogether, the theorem prover fared very well.

240
230
220
210
200
190
180
170
160
150
140
130
120
110
100
90
80
70
60
50
40
30
20
10

0 L L I e = L L L L I I)
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Input Size - N

'CVC-Grasp’
'CVC-Chaff’ —---

Time in seconds

Figure 1: Behavior of E, with presentation 77, and CVC on storecomm(N), for N ranging from 2 to 150.

For swap(N), we report the data in Table 1, because N ranges only from 2 to 10, since both E,
with presentation T3, and CVC, with either GRASP or Chaff, ran out of memory on any instance
of swap(12). We tried both strict and non-strict flattening, and E did best with the latter and a
slight modification of the above search plan: (SimulateS0S,Refinedweight(3,2,3,2,1)) with
SelectComplex and KBO. With the exception of swap(2), CVC performed better than E by one
order of magnitude. The outcome is strikingly different, however, if we give Ts in input to E,
while using strict flattening. Figure 2 compares the performance of E on this input with that of
CVC-Chaff from Table 1. Both E-Auto and E-SOS terminate successfully also for N > 12: the
curve for E-SOS (with LPO and weights as for storecomm(N)) grows extremely slowly, while
that for E-Auto is much higher but still smooth for the most part.

When we submitted in error redundant versions of storecomm(N), E surpassed CVC sooner
(in Figure 1, the E-SOS curve was below the CVC curves for N > 60 instead of N > 110).
This suggests that E may be better than CVC in deleting redundant data. The algorithm of
[19], in essence, pre-processes the input problem with respect to the axioms in 77, eliminates
the occurrences of store by recurring to partial equations, and computes a congruence closure.
Thus, there might not be a provision to eliminate redundant equations, as theorem provers do
by contraction. For E, the presentation 75 may represent more information than 737 with pre-
processing with respect to extensionality, so that the prover behaves better on swap(N), even if

109

| N | E-Auto | E-SOS | CVC-GRASP | CVC-Chaff
2 [0.010 0.010 0.043 0.057
4| 0144 0.136 0.059 0.060
6 | 2205 2.110 0.189 0.187
8 | 63.630 | 62.230 4.091 2.400
10 | 2069.700 | 2039.700 | 1297.000 95.780

Table 1: Behavior of E with presentation 77 and CVC on swap(N).

100

Time in seconds
(&2
o
T

= B T b St —
2 4 6 8 10 12 1 16 18 20 22 24
Input Size - N

Figure 2: Behavior of E, with presentation T5, and CVC on swap(N), for N ranging from 2 to 24.

Ts is not saturated and the prover is acting as a semi-decision procedure. We regard this behavior
as evidence of the flexibility of an approach based on general-purpose deduction. Both E and
CVC come with proof checkers. The E distribution features two tools, e2pcl, to extract a proof
object from E’s output, and checkproof, to check it by using another prover. While we did not
use flea, the proof checker for CVC [20], we tried e2pcl, checkproof and Otter on sample outputs
of E, and no error was detected.

5 Discussion

We tested the usage of theorem-proving strategies as decision procedures, on synthetic benchmarks
in the theory of arrays with extensionality. The results indicate that this investigation should
continue, and we envision several directions, in experimentation, implementation, and theory.
For experimentation, we intend to work with more synthetic benchmarks (e.g., in the theory of

110

extensional finite sets, also covered in [1]), real-world problems (e.g., completing those in [4],
already successfully started in [1]), problems involving other theories (e.g., for other data-types
[13]) and combinations of theories. We also plan to conduct more experiments to understand the
role of flattening better. Flattening aids by inducing a fully shared representation of terms as
dags, which has been traditionally considered an advantage of congruence closure, and by making
terms shallow, while increasing the number of equations. The first factor might not play such a
key role for E, however, since E represents terms internally as perfectly shared terms regardless
of the input [15]. The second factor might, since shallow terms simplify matching and all term
indexing operations. The impact of the additional equations should be negligible, since provers are
designed to handle millions, and a prover that inter-reduces its input uses only then an equation
reducing a complex term to a constant. Surprisingly, and unlike Otter, E does not inter-reduce
its input before starting the search.

It would be interesting to try other provers, especially those that implement the Otter version
of the given-clause loop, to see whether a broader application of eager contraction helps in these
problems. In our experiments, the difference between automatic mode and user-selected search
plan had a visible impact on asymptotic behavior. This, together with the need of reducing
the time spent testing search plans, invites more work on the automatic mode of provers, and
more attention to search plan design. We felt at times that architecture and presentation of

contemporary provers overemphasize blind saturation at the expense of search control.

Directions for theoretical research include termination and complexity results for more decid-
able theories. Satisfiability of a conjunction of literals in the theory of arrays with extensionality
is NP-complete [19]. The algorithm of [19] has worst-case time complexity O(271°8™), where n is
the size of the set of literals. For the deduction-based approach, the upper bound on the num-
ber of clauses that can be generated from 7' U S, where T' contains the first two axioms of the
theory and S is a set of flat equational literals, pre-processed with respect to extensionality, is
0(2"2) [1]. However, this analysis refers to saturation, and does not take any search plan into
account. The complexity of theorem-proving strategies, defined as the combination of inference
system and search plan, is still largely unexplored, primarily because the underlying problem is
only semi-decidable in the general first-order case. Results such as those of [1] exclude infinite
derivations, and open the way to studying the complexity of concrete theorem-proving strategies
for specific decidable theories. For theories where termination of saturation may not be proved,
one may investigate obtaining a decision procedure by integrating theorem proving and model
building. Indeed, the perspective of system integration encompasses all these directions: since one
of the motivations for studying decision procedures is to integrate them into proof assistants, using
theorem-proving strategies as decision procedures goes in the direction of fostering the integration
of proof assistants and theorem provers.

Acknowledgements We would like to thank Stephan Schulz, for making E available and an-

swering our questions on his prover, and the anonymous referees for their comments.

111

References

[1]

2]

[10]

[11]

[12]

[19]

[20]

Alessandro Armando, Silvio Ranise, and Micha€l Rusinowitch. A rewriting approach to satisfiability
procedures. Information and Computation, to appear, 2002.

Leo Bachmair, Ashish Tiwari, and Laurent Vigneron. Abstract congruence closure. Journal of Auto-
mated Reasoning, to appear, 2002.

Clark W. Barrett, David L. Dill, and Aaron Stump. A framework for cooperating decision procedures.
In David McAllester, editor, Proc. CADE-17, volume 1831 of LNAI, pages 79-97. Springer, 2000.

Jerry R. Burch and David L. Dill. Automatic verification of pipelined microprocessor control. In
David L. Dill, editor, Proc. CAV-6, volume 818 of LNCS, pages 68-80. Springer, 1994.

Graham Collins and Donald Syme. A theory of finite maps. In Proc. TPHOLs, LNCS. Springer, 1995.

Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In Jan van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, pages 243-320. Elsevier, 1990.

D. L. Detlefs, G. Nelson, and J. Saxe. Simplify: the ESC Theorem Prover. Technical report, DEC,
1996.

Matt Kaufmann, Panagiotis Manolios, and J Strother Moore, Eds. Computer Aided Reasoning : ACL2
Case Studies. Kluwer, 2000.

William W. McCune. Otter 3.0 reference manual and guide. Technical Report 94/6, MCS Division, Ar-
gonne National Laboratory, 1994. See also the web page http://www-unix.mcs.anl.gov/AR/otter/.

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff:
Engineering an efficient SAT solver. In Proc. 89th Design Automation Conf., 2001.

Greg Nelson and Derek C. Oppen. Simplification by cooperating decision procedures. ACM TOPLAS,
1(2):245-257, 1979.

Sam Owre, John M. Rushby, and Natarajan Shankar. PVS: a prototype verification system. In Deepak
Kapur, editor, Proc. CADE-11, volume 607 of LNAI pages 748-752. Springer, 1992.

John C. Reynolds. Theories of Programming Languages. Cambridge University Press, 1998. See also
the web page http://www-2.cs.cmu.edu/afs/cs.cmu.edu/user/jcr/wuw/.

Harald Rue8 and Natarajan Shankar. Deconstructing Shostak. In Proc. LICS-16. IEEE, 2001.

Stephan Schulz. E — a brainiac theorem prover. AI Communications, 2002. See also the web page
http://wwwjessen.informatik.tu-muenchen.de/~schulz/WORK/eprover.html.

Robert E. Shostak. Deciding combinations of theories. J. ACM, 31(1):1-12, 1984.

Joao Marques Silva and Karem A. Sakallah. GRASP: a search algorithm for propositional satisfiability.
IEEFE Transactions on Computers, 48(5):506-521, 1999.

Aaron Stump, Clark W. Barrett, and David L. Dill. CVC: a Cooperating Validity Checker. In Kim G.
Larsen and Ed Brinksma, editors, Proc. CAV-14, volume to appear of LNCS. Springer, 2002. See also
the web page http://verify.stanford.edu/CVC/.

Aaron Stump, Clark W. Barrett, David L. Dill, and Jeremy Levitt. A decision procedure for an
extensional theory of arrays. In Proc. LICS-16. IEEE, 2001.

Aaron Stump and David L. Dill. Faster proof checking in the Edinburgh Logical Framework. In
Andrei Voronkov, editor, Proc. CADE-18, volume to appear of LNAI Springer, 2002.

112

Translating the Object Constraint Language into
First-order Predicate Logic

Bernhard Beckert, Uwe Keller, and Peter H. Schmitt

Universitat Karlsruhe
Institut fiir Logik, Komplexitdt und Deduktionssysteme
Am Fasanengarten 5, D-76128 Karlsruhe
Fax: +49 721 608 4211, Email: {beckert,keller,pschmitt}@ira.uka.de

Abstract. In this paper, we define a translation of UML class diagrams with OCL
constraints into first-order predicate logic. The goal is logical reasoning about UML
models, realized by an interactive theorem prover. We put an emphasis on usability of
the formulas resulting from the translation, and we have developed optimisations and
heuristics to enhance the efficiency of the theorem proving process.

The translation has been implemented as part of the KeY system, but our implemen-
tation can also be used stand-alone.

1 Introduction

Overview. The Unified Modeling Language (UML) [15] has been widely accepted as the
standard object-oriented modelling language and is supported by a great number of CASE
tools. The Object Constraint Language (OCL) is an integral part of UML, and was introduced
to express subtleties and nuances of meaning that diagrams cannot convey by themselves.

There is by now a great number of papers attributing a rigorous meaning to UML class di-
agrams (without OCL constraints) by translating them into a language with known semantics,
for example: the CASL-LTL language (an extension of CASL) [16], the Z specification lan-
guage [6] and its extension Object Z [13], the logical language of PVS [14], the Mathematical
System Model (MSM) [5], EER diagrams [7], the Maude language [2].

Clarification of the semantics of UML class diagrams, as provided by these papers, is a
necessary prerequisite for a rigorous semantics of OCL, as e.g. developed in [8,9,17] and in
the draft [4]. We believe that the semantics of UML class diagrams with OCL, both the
issues of common consent and controversial open issues, are by now understood well enough
to serve as a basis for further developments. The translation developed in this paper can be
applied to OCL constraints in any UML diagram type. But since the semantical status of
OCL constraints in other diagram types, such as state or sequence diagrams, is less clear, we
restrict attention for the moment to OCL constraints in class diagrams.

We present in this paper a translation of UML/OCL into first-order predicate logic. The
translation covers the complete OCL language definition, except that we do not support the
three valued logic of OCL. Further, minor restrictions, will be mentioned in the body of the
paper.

Our goal is logical reasoning about UML models. The novel features of our work are that
we put an emphasis on usability of the formulas resulting from the translation, and we offer
alternatives for the translation of model elements. Where possible, we develop optimisations
and heuristics to enhance the efficiency of the theorem proving process. For interactive theorem
proving ease of use for the interacting human prover is a central factor for efficiency. Therefore
readability of the translated formulas becomes a crucial issue.

The KeY Project. The work reported here is part of the KeY project (see the overview paper [1]
or the web page 112www.ira.uka.de/ key for more information). The logical language used in
this project is Dynamic Logic, a multi-modal extension of first-order predicate logic specially
suited to reason about properties of programs. In this present account we restrict attention
to translation into first-order logic, which is the crucial part anyhow. The extension of the

translation to the OCL constructs that require Dynamic Logic as the target language, e.g.
@pre and result in post-conditions and the iterate operation, is rather straightforward and
can be found in [12]. An extensive account of how to treat the @pre operator in Dynamic
Logic is given in [3].

Implementation. We have implemented our translation, including some optimisations and
heuristics. The implementation, which is written in JAvVA, is part of the KeY system and
works automatically without user interaction. For those who wish to use the translation in a
different context, we have provided a stand-alone version that reads the UML class diagram
and the OCL constraints to be translated from an XML file and generates a text file containing
the resulting formulas. It uses the XML dialect XMI, which is a standard for the textual
representation of UML diagrams. For parsing OCL constraints, we have integrated the parser
component of the OCL compiler developed by Hulmann et al. [11].

We tried to keep the implementation flexible and it should be easy to adapt to different
needs arising from other application areas, such as a different syntax for the output formulas,
new optimisations, and new heuristics for choosing between several possible translations. Also,
adaptations to future changes in the UML/OCL standard will not require much effort.

Both the KeY system and the stand-alone version, as well as additional documentation
and examples, can be downloaded from i12www.ira.uka.de/ key.

To the best of our knowledge, this is the first implementation of such a translation. We
hope that it can serve as a means helping to promote the use and application of OCL.

Structure of this Paper. In Section 2, we briefly review the semantical pre-requisites and
describe the semantical properties of our translation. The basic translation is presented in
Sections 3 and 4, while Section 5 is devoted to possible optimisations that improve the read-
ability and usability of the resulting first-order formulas. Section 6 concludes with an outlook
and future extensions.

All examples presented in the following refer to the class diagram shown in Figure 1.

Contract
job: String
income: Integer favourites {ordered}
1.7
0.* 1.7
Person Company
employees employer [hame: String
name: String 0.* numberOfEmployees: Integer
age: Integer manages ”
sex: String employ(aCandidate: Person): Boolean
boss companies stockPrice(): Real
startAccount(aBank: Bank): Boolean "
unemployed(): Boolean 1.7 worksfor 0..
employees employer
Account Bank
Customer laccountNumber: Integer bankID: Integer
accountBalance: Integer
customerNumber: Integer N
customers withDraw(anAmount: Integer): Integer
payOut(anAmount: Integer): Integer 1=
0. 1.* 0.*
1.4 uses administers
accountOwner accounts accounts
hasCustomers

Fig. 1. Example for a UML class diagram.

114

2 Properties of the Translation

We start with a given UML class diagram D that is enriched by OCL constraints C1, ..., C,.
Together, D and C1, . .., C, describe the possible states of the system to be modelled. A system
state, sometimes also called a snapshot in the UML framework, is a complete description of
an instance of the modelled system. It details what objects exist (they are instances of the
classes in D), gives the values of attributes for the existing objects, and defines which pairs of
objects (or more general, n-tuples of objects) are instances of the associations between classes
in D. We use first-order structures S to represent system states.

The vocabulary X = Y'p of S, i.e., the set of types, function, and relation symbols, is read
off from the diagram D. Sometimes there are choices in which symbols to include in Y'p: A
binary association between classes A and B with multiplicity 1 at the B-end may give rise
to the inclusion of a binary relation symbol in Xp or of a unary function symbol. To have
a common platform for comparing these alternatives, we include (in this and similar cases)
both symbols in X'p. The definition of Xp follows shortly.

Of course, not all X'p-structures are valid system states of D. We will say that a structure S
conforms to D in case that S satisfies the diagram D and its OCL constraints C,...,C,,
i.e., it is a possible system state according to the UML/OCL semantics [15].

In the next two sections, we describe how to associate with a UML class diagram D and
OCL constraints C1, ..., Cy, formulas Thp,Thc,,...,Thc, . Since new symbols are added by
the translation, they are formulas over an extended signature X* = X'p U X,.. Therefore, the
correctness property of our translation reads: For every Yp-structure S,

S conforms to D with C1,...,C,, if and only if
S* =EThp ANThe, A ... \NThe, for every X*-extension S* of S.

A detailed analysis of the correctness property of such a translation can be found in [12].

Our translation does not handle meta level features—with the exception of 0CLAny and
allInstances. This is due to that fact, that the future role of the meta level is unclear. In
version 2.0 of the UML standard, now under discussion, it may undergo substantial changes
or be eliminated alltogether.

3 Translating the Class Diagram

3.1 Extracting the Signature from the Class Diagram

In the following, we summarise how the first-order signature X'p is extracted from a class
diagram D. A more extensive account may be found in [18]. The set of types of Xp contains:

1. A type for every class in D. Types will be denoted by the same names as the corresponding
class, starting with an upper-case letter.

2. The types Integer, Real, Boolean, String.

3. If T is a type, then Collectiony, Setr, Bagr, Sequencer are types. Types of this form
are called collection types. These collection types are only generated when T is not itself
a collection type, i.e., no nesting of the collection type operators is allowed.

4. Y'p will furthermore contain the type Any, which serves as the translation of the OCL
type OCLAny.

The subtype relation S7 <p Ss is defined as in [19]. For each type T there will be an infinite
supply of variables x:T, y:T, x;:T of type T. The set of functions and relations in Xp contains:

1. For every binary association r in D with association ends e, e; there are two functions in
Xp, which will be referred to by the role name r; at the association end e; (i =0,1). If
no role name is given, the name of the class attached to e; will be used. Function names
start with a lower-case letter. If e; is attached to class S;, then the function is of signature
r;: S1—; — Setg,. In case the multiplicity at the end e; is 1, the signatureis r;: S1_; — 5.
If the e;-end has the stereotype <ordered>>, then it is r;: S1_; — Sequenceg,. For n-ary
relations we proceed correspondingly.

115

2. For every n-ary association r in D there is, in addition, an n-ary predicate in Xp.

3. For every attribute a of a class S in D there is a function in Y'p that is referred to by
the name of the attribute and has signature a: S — S,, where S, is the value type of
attribute a as specified in D. If a is a class attribute (sometimes this is also called a
static attribute), then a constant of type S, is added to Xp. The concrete syntax of this
constant is S.a.

4. For every operation c of a class S with parameters of type Si,..., S, and result type S’
there is a function f.: S x S; X ... x Sy — S" in Xp. In accordance with the OCL speci-
fication [15] we require that ¢ has no side effects, i.e., it satisfies the property isQuery().

5. For every association class C' attached to an association r, where r associates the classes
S1 and Ss, there are unary projection functions s;: C — S and s3 : C' — S5 in Xp.

6. All properties of the pre-defined OCL types, as detailed in the standard [15], are functions
or relations in Xp.

7. The symbol = will be used to denote equality. By overloading we use the same symbol
for all types.

3.2 Extracting Formulas from the Class Diagram

The translation Thp = (A Azapr A N\ Axp A A\ Constrp) of a class diagram D consists of
three parts: Az apr is actually independent of D. It contains the axioms of the Abstract
Data Types (ADTs) that are used to represent the built-in data types of OCL (Integer,
Boolean, etc.), and the axioms for the ADTs Setr, Bagr, etc. that are used to represent the
corresponding collection types of OCL.

The second part Azp is a set of axioms that depend on D but that do not express intrinsic
information of D. They deal with inter-dependencies among the function and relation symbols
extracted from D that reflect, for example, the symmetry of associations in UML.

Ezample 1. Consider the association worksfor between the classes Person and Company (Fig-
ure 1). The signature X'p contains two function symbols and a relation symbol representing
this association: employer with argument type Person and value type Setcompany, employees
with argument type Company and value type Setperson, and the binary relation symbol
worksfor with first argument of type Person and second argument of type Company.

To restrict the interpretation of these symbols appropriately, the set Azp contains the
following axioms:

Vp: Person Ve: Company (¢ € employer(p) < p € employees(c))
Vp: Person Ve: Company (¢ € employer(p) < worksfor(p, c))
Vp: Person Ve: Company (p € employees(c) «— worksfor(p, c))

The third part Constrp of Thp contains formulas representing the restrictions on system
states expressed graphically in D, e.g. multiplicity constraints, subtyping restrictions, and
others. We require in Constrp also that an abstract class is the union of its concrete subclasses
and that enumerations are sets containing exactly their enumeration literals as elements. A
detailed account of this topic is given in [12]. Instead of giving a formal definition of Constrp,
we present a typical example:

Ezxample 2. Consider the association uses between the classes Customer and Account. The
set Constrp contains the following formulas expressing the multiplicity constraints attached
to uses:

Ve: Customer (size(accounts(c)) > 1)
Va:Account (1 < size(accountOuwner(a)) A size(accountOuwner(a)) < 4)

116

4 Translating the OCL Constraints

4.1 Overview

OCL constraints consist of an OCL expression of type Boolean and some declaration connect-
ing the OCL expression to an item in the class diagram. In the case of pre- and post-conditions,
the constraint is bound to an operation; invariants are bound to a class. The translation pro-
cedure for OCL constraints, therefore, cannot process OCL expressions as isolated entities
but also has to take into account the diagram and the information it contains.

In our basic translation described below, OCL expressions in most cases are translated
into a first-order term of the appropriate Abstract Data Type (ADT). The only exceptions
are expressions of OCL type Boolean, which are usually transformed into first-order formulas.
The first-order term resp. formula that is the result of translating an OCL expression exp is
denoted by [exp].

The translation procedure works by structural recursion on the expressions. When certain
OCL features are translated (as described in the following subsections), new function or
predicate symbols are introduced (they are elements of the extended signature X*) as well as
axioms that constrain the interpretation of the introduced symbols according to the semantics
of UML/OCL.

Note, that OCL allows a modeller to use some shorthand notations. We assume that
constraints have been normalised to their (longer) standard form before they are translated (in
our implementation we use a normalisation provided by Humann et al.’s OCL compiler [11]).

The set Ax.,, generated during the translation of an expression exp includes all those
axioms that are generated by the recursive translation of subexpressions of exp—besides the
axioms that stem from the translation of the “top-level” OCL feature of exp.

The translation of OCL expressions is extended to OCL constraints as follows. Let I be
an OCL invariant of form “context C inv: b”, where C' is a class in the diagram D and b is
an OCL expression of type Boolean. The invariant states that, for every instance self of C'
existing in a system state, the property described by b holds. Accordingly, the translation T'hy
of the invariant I is:

/\Azb — Vself:C'[b] .

Pre- and post-conditions can be translated in a similar way; only the @Qpre operator, which
may occur in post-conditions, requires a special treatment (see [3] and [12] for a detailed
account).

4.2 Translating Built-in OCL Types

Translating Boolean Expressions. As said above, we usually translate OCL expressions of type
Boolean into first-order formulas. The boolean operators and, or, implies, not are translated
into the corresponding first-order operators. Equality of Boolean expressions is represented
by the operator «.

Translating Integer, Real, String Fxpressions. The OCL type Integer corresponds to an ADT
Integer. As said above, the signature Xp contains a symbol for every feature! of Integer.
Every feature of Integer is translated into the corresponding function or predicate symbol
of the ADT. In the same way, the OCL types Real and String are handled with the help of
ADTs Real and String.

Hufmann et al. [10] have argued convincingly that the encapsulation concepts of ADTs
and UML classes are very different and that UML classes can, as a consequence, not smoothly
be translated into ADTs. However, their analysis applies primarily to user defined classes and
does not affect the translation of the basic OCL types just mentioned.

Ezample 3. Given the following OCL expression (with respect to class Person)

1 According to OCL terminology a feature of some OCL type T is any operation that can be applied
to instances of T'.

117

self.age >= 0 and self.employer->size >= 1

that states that person self is employed and has a non-negative age the translation results in
the formula age(self) > 0 A size(employer(self)) > 1.

4.3 Translating the alllnstances Operator

The OCL operator allInstances can be applied to a class (to be more precise it is applied
to the object of type OclType that corresponds to the class in the diagram D). It returns the
set of all instances of that class in the current state. To translate this operator, we introduce a
new symbol allInstancesc for each class C' and define [C'.allInstances| = alllnstancesc.
The additional axiom Vo:C (o € allInstancesc) is introduced to specify the meaning of the
new constant.

4.4 Translating Collection Operators
Overview. OCL offers a common super-type Collection(T') for the collection types Set(T),
Bag(T), and Sequence(T). Since OCL defines this super-type to be abstract, it does not
occur in actual OCL constraints, but is used to define features that all collection types
have in common (e.g., the size operator). Consequently, we provide ADTSs to represent sets,
bags, sequences and collections of all occurring types (e.g., Set ank, BagBank, Sequence gank,
Collectiongank), where the ADTs Collectiony are only relevant for the purpose of typing in
pathological borderline situations and play no role for modelling with OCL in practice.
Below, we describe the translation of the features that the collection types have in common.

Translating size, count, sum, includes, append, etc. These features are translated into the
functions that are their direct counterparts in the ADTs Setr, Bagr, and Sequencer. For
example, [c->size]| = size([c]) and [s->union(c)] = union([s], [c]).
Translating FEquality. We translate the equality s1=s2 of sets s1,s2 of OCL type Set(T) by
expressing that they have the same elements: [s1=s2] = Ve:T (e € [s1] <> e € [s2]). Here and
in all similar situations below, e:T" is a new variable that has not been used before.

For bags we get the formula [by1=bs] = Ve:T (count([b1],e) = count([bz2],e)), and for se-
quences a similar translation is generated.

Translating includesAll, excludesAll. F = cy->includesAll(cy) expresses that the col-

lection ¢ is a subset of ¢;. Thus, [E] =Ve:T (e € [c2] — e € [e1]). excludesAll expresses
that no element of ¢, is an element of ¢; and is treated similarly.

Translating notEmpty, isEmpty. The translation of the expression F = c->notEmpty is the
formula [E| = Je:T (e € [c]). isEmpty is treated as the negation of notEmpty.

Translating forAll, exists. The meaning of 1 = c->forAll(el| b) is that b evaluates to
true for all possible instantiations of e with elements of the collection ¢. Thus, the trans-
lation of Ey is [Ey] =Ve:T ((e € [¢]) — [b]). To translate Ey = c->exists(el| b) we use
[Ey] = 3e:T ((e € [c]) A Tb]).

Ezample 4. Consider the following OCL expression, which formalises “For different objects
of class Bank, the attribute bankID has different values.”

Bank.allInstances->forAll(bi,b2 |
not (bl = b2) implies not (bl.bankID = b2.bankID))

Its translation is the following formula (a much shorter and optimised translation is given in
Section 5.3):
Translation:

Vb1:Bank (b1 € alllnstances pani, — Vba:Bank (be € alllnstances pank —
(—(by = ba) — —(bankID(by) = bankID(bs)))))
Additional axiom:

Vb: Bank (b € alllnstances pank)

118

Translating isUnique. The meaning of E = c->isUnique(elexp) is that the evaluation
of exp results in a different value for each instantiation of e with elements of c. So,

[E] = Vep:TVex:T ((e1 € [c] ANeg € [c] A
[expl{e/er} = [expl{e/ea}) — e1 =€) 2

where e1:T, eo:T are two distinct new variables.

Translating sortedBy. The value of F = c->sortedBy(e|exp) is a sequence with (a) the same
elements as collection ¢, which are (b) ordered according to the values of the expression exp
(this only makes sense if there is some order < defined on the OCL type of exp. To translate F,
we introduce a new function symbol sorted Byg. Let p1, ..., p, be the free variables occurring
in the translations [c]| and [exp] of the subexpressions—excluding the variable e. Then, the
translation of E is [E| = sortedByg(p1, .. .,pn). To ensure that sorted Byg has the desired
interpretation with properties (a) and (b), the following two axioms are added to Az g:

Vp1:Ty .. pp:TpVe': T (count([c], ') = count(sortedByg(pi1,...,pn),€'))
Vp1:Ty .. Vpp: Ty Vi Integer, j: Integer (
(I1<ini<jnj<size(sortedByg(pi,...,pn))) —
[exp|{e/at(sortedByr(p1,.-.,pn), 1)}
< [exp|{e/at(sortedByg(pi,-..,0n),j)})

where e’:T and i:Integer, j:Integer are distinct new variables.

Translating select, reject. The expression F = c->select (e|b) denotes the collection con-
sisting of those elements of ¢ for which b evaluates to true when e is instantiated with the
element. The translation is based on introducing a new function symbol selectg. Let p1,...,py
be the free variables occurring in the translation [b] of the condition b excluding e. Then,
the translation of F is [E] = selectg([c],p1,...,pn).> Three axioms are added to specify the
meaning of selectp. Their form depends on whether c is a set, a bag, or a sequence. Here, we
present the axioms for sets (the axioms for the other types are similar):

Vp1:11 .. . Vpu: T, selectg(emptySetr,p1,...,pn) = emptySetr
Vp1: 11 .. . Vpn:T,Vs:SetrVe:T (

[b] — selectg(insert(s,e),p1,...,pn) = insert(selectp(s,p1,...,pn),€))
Vp1:11 .. . Vpn:T,Vs:SetrVe:T (

—[b] — selectg(insert(s,e),p1,...,pn) = selectg(s,p1,...,pn))

Since the reject operator is just the opposite of select, we treat it by negating the filter
condition b and then applying the above translation.

Ezxample 5. The following OCL expression E formalises “There is no person who works for
both company ‘BankA’ and company ‘BankB’.”

Person.alllnstances->select(p| p.employer->exists(cl,c2 |
cl.name = ‘BankA’ and c2.name = ‘BankB’))->isEmpty

2 The notation t{e/s} denotes the result of syntactically replacing all occurrences of the variable e
in the term t by the term s.

3 In [9], a similar abbreviation technique is used for the translation of the select operator. There,
however, the free variables p1, ..., pn are not made arguments of the new function, which leads to
incorrect results.

119

Its translation is the following formula (a much shorter and optimised translation is given in
Section 5.3):

Translation:

Vp:Person (—(p € select g(alllnstances person)))

Additional axioms:

Vp:Person (p € alllnstances person)

select p(emptySet porson) = eMPLYSet person

Vs:Set person Vp: Person (3c1: Company (¢c1 € employer(p)
Jea: Company (co € employer(p)
name(c1) = ‘BankA‘ A name(ca) = ‘BankB‘)) —
select g (insert(s,p)) = insert(select g(s),p))

Vs:Set person Vp: Person (—(3er: Company (¢1 € employer(p) A
Jea: Company (ca € employer(p) A
name(c1) = ‘BankA‘ A name(cz) = ‘BankB'‘))) —
select g(insert(s,p)) = select g(s))

A
A

4.5 Translating Other Constructs of OCL

Translating oc1IsKindOf, oc1IsTypeOf. These operators allow to check which type the value
of an expression exp has. The translation of exp.oclIsKind0f (T") is Je:T e = [exp]. The
operator oc1IsTypeOf can be expressed by oc1IsKindOf using the subtype relation extracted
from the diagram D.

Translating oclAsType. To translate the cast operator oclAsType, we introduce a new func-
tion symbol ocl AsT'yper, 7, : T; — T4 for every pair T, T'» where T’ is a subtype of Ty, and
we define [0.0clAsType (I2)] = oclAsTyper, 1,([0]) (where o is of type T;). The additional
axioms specifying these symbols are of the form Va:T5 (ocl AsTyper, 1, (x) = x).

Translating Variables and Literals. The translation of an OCL variable v, including self, is
a first-order variable with the same name, i.e., [v] = v.

OCL literals of type Boolean, Integer, Real, or String are translated into a term over
the corresponding ADT. To translate literals of collection types, in case they enumerate the
elements of a collection, we construct a term over the ADT Setr (resp. Bagr or Sequencer).
For example,

[Set{1,2,3}] = insert(insert(insert(emptySet mieger, 1), 2),3) .

To translate collection literals that specify a range of elements, such as £ = Set{e;..e2}, we
introduce a new function symbol setg and define [E| = setg(p1,...,pn) (where p1,...,pn
are the free variables occurring in the translations of the bounds e; and e3). The additional
axiom specifying setpg is

Vp1:Ty .. Vpp: T, ViT (i € setp(p1,...,pn) < ([er] <ini<Jel])) .

For bags and sequences, the translation is similar. However, additional axioms are needed
to express that (a) every element in the range occurs exactly once in the result and (b) for
sequences, that the elements are ordered.

Ezample 6. The following OCL expression (used as an invariant for class Customer) for-
malises “A customer’s favourite companies are ordered according to their stock price.”

Sequence {1 .. self.favourites->size}->forAll(i,jl| j >= i implies
self.favourites->at(i).stockPrice() >=
self.favourites->at(j).stockPrice())

120

Its translation is the following formula (a much shorter and optimised translation is given in
Section 5.3):

Translation:

Vi:Integer (i € seqo(self) — Vj:Integer (j € seqo(self) — (j > i —
stock Price(at(favourites(self),i)) >
stock Price(at(favourites(self), 7)))))

Additional axioms:

Ve:Customer Vi:Integer (i € seqo(c) <
1 <iNi < size(favourites(c)))
Ve:Customer Vi:Integer, j:Integer (1 < i Ai < j A j < size(seqo(c)) —
at(seqo(c), i) < at(seqo(c), 7))
Ve:Customer Vi:Integer (count(seqo(c),i) < 1)

5 Optimisations and Simplifications

5.1 Motivation

It is crucial for the usability of the formulas generated by the translation (in particular in
interactive theorem proving)—and for the usefulness of such a translation itself—that the
formulas are as easy to understand as the original OCL expressions. One way for achieving
this goal is to generate a formula that is syntactically as close as possible to the translated
OCL expression. For example, the names of the function symbols used in a formula should
as far as possible coincide with the names of the corresponding features in OCL. We tried to
satisfy this demand with our basic translation described in Section 4.

But, although the generated formulas are very similar to the original expression in their
syntactic structure, they are sometimes unnecessarily complicated and hard to read. This
is due to the additional axioms introduced in order to constrain the interpretation of new
function symbols, which mainly represent OCL collections. Even for small OCL expression
there can be a large number of constraining axioms.

A technique that aims to overcome this problem is presented in this section. The idea is
to use a different representation for OCL collections. That can help to reduce the number of
additional function symbols and axioms, because most of them are introduced when collection
operators are translated (such as select and asSequence).

Note, that often the readability of formulas can be improved by applying rewriting rules.
But there are also many cases where the effects of an unsuitable translation cannot be undone
by mere simplification but where the form of the original constraint has to be known to choose
a good first-order representation; such choices, consequently, have to be made at the time and
as part of translation.

5.2 Representing Collections with Predicates

The translation described in Section 4 uses a functional representation of OCL collections, i.e.,
expressions of type Set, Sequence, or Bag are translated into first-order terms. An alternative
is to translate such expressions predicatively, i.e., to represent them by a formula.

For sets a predicative translation is easy to define: A set expression s is translated into a
“characteristic” formula ¢s(e) that is equivalent to e € [s]. Using such a presentation allows us
to translate most OCL set operators without the need to introduce new function symbols. For
example, the expression E = s->select(e|b) can then be represented by ¢ = ¢s(e) A [b].

Unfortunately, there are also cases where a predicative representation is not useful. For
example, when an expression of the form s->size is translated, it is better to apply a func-
tional translation to the subexpression s. Also, for bags and sequences, a useful predicative
representation is more difficult to define than for sets, and the resulting formulas are often
hard to understand.

121

Our investigation of examples showed however, that a predicative translation of sets is
preferable in most cases. Moreover, in many OCL constraints, expressions of type bag or
sequence are actually used as sets, i.e., the additional information they contain is irrelevant.
For example, when an expression £ = s—>forAll(el|b) is translated, the order of elements in s
and the number of their occurrences is of no importance, and E can be translated predicatively.
This basic idea gives rise to a simple but powerful heuristics to decide whether a predicative
translation is preferable to a functional form. Usually such a decision has to be made globally
for a whole expression, because combining the translations of subexpressions that use different
representations (functional resp. predicative) is awkward and leads to formulas that are hard
to read. For a detailed account of this topic please refer to [12].

5.3 Examples for Predicative Translations

In this section, we present the predicative translations of the OCL expression from the ex-
amples in Section 4. They are shorter and easier to read than the functional translations.
Moreover, it is not necessary anymore to generate additional axioms since no new symbols
are introduced.

Example 7. The predicative translation of the expression from Example 4 is:
Vby:Bank Yby:Bank (—(by = bz) — —(bankID(b1) = bankID(b3)))
Example 8. The OCL expression from Example 5 translates to:

Vp:Person (— (3er:Company (¢1 € employer(p) A
Jeg:Company (c2 € employer(p) A
name(c1) = ‘BankA* A name(cz) = ‘BankB"))))

Example 9. The predicative translation of the expression from Example 6 is:

Vi:Integer (1 < j A j < size(favourites(self)) —
Vi:Integer (1 < i Ai < size(favourites(self)) —
(j>i—
stock Price(at(favourites(self),i)) >
stock Price(at(favourites(self), j)))))

6 Conclusions and Future Work

We have presented in this paper a translation of the logical information contained in UML
class diagrams and OCL constraints into first-order predicate logic. It has been implemented
as part of the KeY system. It should be easy to use it with other systems, since first-order
logic by its universal nature can be readily mapped into almost all logical languages used in
formal methods.

We have provided a first set of optimisations. Experimenting with case studies will give
insight if and which further optimisations are necessary or desirable. In the present implemen-
tation the optimisations are chosen by a fixed built-in heuristic. It would be easy to extend
the implementation to allow custom-made heuristics.

In the present account, we have deliberately excluded some items, e.g. the iterate oper-
ator, that are better expressed in a higher-order logic. These issues are treated in [12].

It also remains future research to compare and possibly adapt our translation to version 2.0
of UML/OCL standard once it is agreed upon.

122

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

W. Ahrendt, T. Baar, B. Beckert, M. Giese, E. Habermalz, R. Hahnle, W. Menzel, and P. H.
Schmitt. The KeY approach: Integrating object oriented design and formal verification. In
M. Ojeda-Aciego, I. P. de Guzman, G. Brewka, and L. M. Pereira, editors, Proceedings, Logics
in Artificial Intelligence (JELIA), Malaga, Spain, LNCS 1919. Springer, 2000.

A. T. Alvarez and J. L. F. Aleman. Formally modeling UML and its evolution: A holistic
approach. In S. Smith and C. Talcott, editors, Proceedings, Formal Methods for Open Object-
based Distributed Systems, Stanford, USA, pages 183—206. Kluwer, 2000.

T. Baar, B. Beckert, and P. H. Schmitt. An extension of Dynamic Logic for modelling OCL’s
@pre operator. In Proceedings, Fourth Andrei Ershov International Conference, Perspectives of
System Informatics, Novosibirsk, Russia, LNCS. Springer, 2001.

Boldsoft, Rational Software Co., and IONA. Response to the UML 2.0 OCL RfP. Initial submis-
sion, August 2001.

R. Breu, R. Gosu, F. Huber, B. Rumpe, and W. Schwerin. Towards a precise semantics for
object-oriented modeling techniques. In J. Bosch and S. Mitchell, editors, ECOOP Workshop,
Jyvdskyld, Finland, LNCS 1357, pages 205-210. Springer, 1998.

R. France. A problem-oriented analysis of basic UML static modeling concepts. In Proceedings,
Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA),
Denver, USA, volume 34 (10) of ACM SIGPLAN notices. ACM Press, 1999.

M. Gogolla and M. Richters. On constraints and queries in UML. In M. Schader and A. Korthaus,
editors, The Unified Modeling Language: Technical Aspects and Applications, pages 109-121.
Physica-Verlag, 1998.

A. Hamie, F. Civello, J. Howse, S. Kent, and M. Mitchell. Reflections on the Object Constraint
Language. In Post Workshop Proceedings of UML98. Springer, 1998.

A. Hamie, J. Howse, and S. Kent. Interpreting the Object Constraint Language. In Proceedings,
Asia Pacific Conference in Software Engineering. IEEE Press, July 1998.

H. HuBSimann, M. Cerioli, G. Reggio, and F. Tort. Abstract data types and UML models. Technical
Report DISI-TR-99-15, DISI — Universita di Genova, Italy, 1999.

H. Huimann, B. Demuth, and F. Finger. Modular architecture for a toolset supporting OCL.
In A. Evans, S. Kent, and B. Selic, editors, Proceedings, International Conference on the Unified
Modeling Language (UML), York, UK, LNCS 1939, pages 278-293. Springer, 2000.

U. Keller. Ubersetzung von OCL-Constraints in Formeln einer Dynamischen Logik fiir Java.
Diplomarbeit, Fakultat fiir Informatik, Universitat Karlsruhe, 2002. In German.

S.-K. Kim and D. Carrington. Formalizing the UML class diagram using Object-Z. In R. France
and B. Rumpe, editors, Proceedings, Unified Modeling Language, Fort Collins, USA, LNCS 1723,
pages 83-98. Springer, 1999.

P. Krishnan. Consistency checks for UML. In Proceedings, Asia Pacific Software Engineering
Conference (APSEC), pages 162-169, 2000.

Object Management Group, Inc., Framingham/MA, USA, www.omg.org. OMG Unified Modeling
Language Specification, Version 1.3, June 1999.

G. Reggio, M. Cerioli, and E. Astesiano. An algebraic semantics of UML supporting its multiview
approach. In D. Heylen, A. Nijholt, and G. Scollo, editors, Proceedings, AMiLP 2000, number 16
in Twente Workshop on Language Technology. University of Twente, 2000.

M. Richters and M. Gogolla. On formalizing the UML object constraint language OCL. In
Proceedings, Conceptual Modeling, LNCS 1507, pages 449-464. Springer, 1998.

P. H. Schmitt. A model theoretic semantics of OCL. In B. Beckert, R. France, R. Hahnle,
and B. Jacobs, editors, Proceedings, IJCAR Workshop on Precise Modelling and Deduction for
Object-oriented Software Development, Siena, Italy, pages 43-57. Technical Report DII 07/01,
Dipartimento di Ingegneria dell’Informazione, Universita degli Studi di Siena, 2001.

J. Warmer and A. Kleppe. The Object Constraint Language: Precise Modelling with UML. Object
Technology Series. Addison-Wesley, 1999.

123

Index of Authors

AW APDPEl . 41
ACArmMando 61,103
B.Beckert 113
C.Benzmiiller 29
M.P.Bonacina 103
ABUNAY ..o 81
E.Cohen 53
L. Compagnao.iiniit i e 61
E.Denney e 81
C.Giromini 29
JoD.Guttman ... e 91
AL HEIZOZ ..o 91
U. Keller 113
D.Kroning e 5
FoIMIaSSACCE ..ot 1
CoMeadOWS . ..ottt ettt e 71
N.G.Michael 41
ACNONNENGATt 29
ScRaMISe ..o 103
M. Rusinowitch 103
P.H. Schmidt 113
A K. Sehgal ... 103
G.oSteel .. 81
AL SHUMP .o 41
VoVanackereo.iiiiii 17
R. Virga o 41
JoZimmer ... 29

125

