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Abstract

Predator is a freely available database system. This paper studies the
performance of the Predator query execution engine using high-level and
low-level profiling. We describe the aspects of running database systems
on modern processors and the tools available for investigating how these
aspects influence performance. We follow the methodology of previous
work in database systems profiling. Our results confirm previous findings
and we investigate further into the causes of these findings by looking at
how various parameters of variation affect performance of query execution.

1 Introduction

The Predator Database System is an open source database system which is
freely available. It was developed by Praveen Seshadri at Cornell University
and is now maintained at University of Copenhagen.

The goal of this project is to study the performance of the Predator query
execution engine. Even if Predator has not been designed for performance,
but for extensibility and flexibility, its architecture is representative of current
database systems: a query execution engine is used as a virtual machine to
evaluate compiled queries.

Because we have the source code for Predator we can study performance us-
ing both high level and low level profiling. High level profiling aims at mapping
performance bottlenecks to source code organisation. This is done by construct-
ing flat program profiles, i.e. listings that show the individual execution times
for functions in the program. More sophisticated profiling comes from program
paths [1], records of the dynamic order of a program’s blocks or functions as the
program runs.

Low-level profiling has been studied in the context of database systems by
Ailamaki [2]. It focuses on processor and memory behaviour as the program
executes. Low-level profiling provides insight into how well the system utilises
the hardware it runs on, and can thus help identify limitations in the implemen-
tation of critical parts of the code.

Applying both high level and low level perspectives in the study of per-
formance is important in order to get a complete understanding of a system’s
characteristics. Consider for instance a very performance-conscious, low over-
head software design: it will not yield the desired performance if the compiled
code and data structures are bad at utilising the platform on which the system
runs. Likewise, a system with well-tuned critical functions will perform poorly
if the system design induces unnecessary overhead.

In this project we study high level and low level profiling of the Predator
query execution engine using experiments similar to those conducted by [1] and



[2]. The basic motivation for the experiments is to find out how the execution
engine can be improved. We use profiling to understand the details of query ex-
ecution. In particular, it is interesting to investigate what impact the flexibility
and extensibility design decisions have had on performance. We focus on identi-
fying inefficiencies at the call graph level: what are the program paths travelled
too often and which program paths are unnecessarily long? A long term goal is
to study how beneficial it would be to specialise the query execution engine for
a given query. Our hope is that such a specialisation can lead to more efficient
call graphs.

We have two goals for our low-level study. First, we investigate how several
parameters of variation influence query execution at the low level. We then map
these findings to source code organisation. Second, we compare our results to
those of Ailamaki [2], studying whether Predator shows similar limitations in
hardware utilisation.

Predator is a complex system with a large code base. As an added benefit,
our profiling efforts will make it easier to understand the coupling between the
components of the system, thus making it easier for us to maintain and extend
Predator.

We make the following contributions:

e We develop an experiment framework that allows for many different kinds
of profiling. It will allow people working on Predator to easily profile the
changes they make. This framework is now available online [3].

e We combine the profiling tools to study the performance of the Predator
query execution engine

e We find that Predator, like other database systems, rarely spend more
than 40 percent of total query time doing actual computation. The rest
is spent stalling in the processor for various reasons.

e We identify the causes of these stalls as coming from choice of algorithm,
critical parts of code or software design issues.

The rest of the report is organised as follows. In section 2 we present the back-
ground for our experiments. We explain the approaches taken by [1] and [2] for
the high level and low-level profiling, respectively. Furthermore we describe the
tools available for performing the experiments. Section 3 details the experiment
setup. In section 4 we analyse the results of our experiments. We pick out
four different issues pertaining to query execution. In each case we interpret
the results of low-level profiling and map these results to high level issues where
applicable. Section 5 concludes and gives pointers to future work.

2 Background

This section describes the background for our experiments. We explain the
different aspects of high level and low level profiling and the methods used in
the project. We also describe the tools used in the experiments.



2.1 High Level Profiling

The most common type of profiling produces flat profiles. Flat profiles list the
execution times for each function called together with the number of times a
function was called. Flat profiles are ideal for identifying hot spots in the code,
i.e. functions that are candidates for optimisation. When a critical function
has been identified, further analysis can be made using code coverage tools that
report how many times statements in the code are reached.

The reason flat profiling is such an effective tool, is that most programs
follow the 80-20 rule: 80 percent of a programs execution takes place in 20
percent of the code [1]. Performance gains in these 20 percent will have a high
impact on the total running time of the program.

While finding hot spots in the code is important, it does not always suffice.
First, it might be the case that the hot spots, i.e. the critical functions, are
already well-optimised and cannot be improved upon. Second, the program
might not follow the 80-20 rule, in which case there are no easily identifiable
functions to optimise!. Last, a program can exhibit performance problems even
if the flat profile does not point to any hot spots. This is due to high level design
decisions such as function relationships and indirections that lead to too many
function calls.

These cases require one to look at program execution at a higher level to
discover performance issues that are not inferable from the flat profile.

To approach analysis at a higher level, we can use the concept of program
paths. Program paths record the dynamic order of program blocks or functions
as the program executes. Ball and Larus [1] introduced them at the intraproce-
dural level, whereas Larus [4] extended the concept to whole program paths, i.e.
paths that cover the entire dynamic flow of a program execution. A simple kind
of whole program path is a call graph, i.e. a graph showing the relationship
between functions as they are called during execution. This definition of paths
is well suited to our needs, since we are interested in reasoning about the paths
from a design point of view. The call graph can tell us which functions a specific
function calls, and how many times it calls them. This gives us information to
reason about design problems, e.g. indirections, redundancy and other ineffi-
ciencies. It can help us identify hot paths in the program, i.e. paths that are
candidates for optimisation. Optimisation can be approached by investigating
whether these paths or parts of them are unnecessarily long or travelled more
than needed.

It is possible to produce both static and dynamic call graphs. For complex
applications, static call graphs tend to become very large as the number of
possible paths is very high. Dynamic graphs are easier to analyse, because they
report only the functions that were actually called at run-time. Furthermore,
dynamic graphs can be compared between different runs of the program, for
instance in an effort to answer why one run is significantly slower than the
other.

In this project we use dynamic call graphs to understand and illustrate
Predator’s high level design.

1 Confusingly, this kind of flat profile is said to be ’flat’, as opposed to the typical ’steep’
profile.
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Figure 1: Out-of-order pipeline (adapted from [7])

2.1.1 Tools

The tool gprof [5] that comes with the popular gec compiler can produce flat
profiles as well as call graphs for executables that have been instrumented during
compilation. The number of function calls reported for each function are exact,
but the run-time results are obtained through sampling, and are thus subject
to statistical inaccuracy.

We use gprof to construct the call graphs. We then use Graphviz [6] to
visualise the call graphs by converting the call graph data into a format Graphviz
can understand. Graphviz does automatic graph layout, which is advantageous
because call graphs typically contain many nodes and edges.

2.2 Low Level Profiling

Modern CPUs are superpipelined and superscalar [7, 8]. Superpipelined proces-
sors allow for high clock rates because the traditional pipeline steps are further
subdivided. The Pentium II processor used in our experiments has 14 pipeline
stages whereas the newer Pentium 4 has 20 stages (see e.g. [9]). Superscalar
processors have multiple execution units to allow instructions to be executed in
parallel. Typical processors are capable of executing 3-8 instructions per cycle
[10].

Several factors prevent the processor from running at full speed. Superscalar
execution requires that the instructions executed in parallel are independent of
each other. For instance, two instructions ¢ and j executed in parallel cannot
use as source the output of each other. This is typically the case when e.g.
instruction 4 loads data from the memory system into a register and instruc-
tion j uses that register in an arithmetic operation. Instruction j cannot be
executed until ¢ has fetched the data. This problem is particularly acute when
the load instruction causes cache misses, because of the so-called memory gap:
the processor can execute instructions much faster than the memory system can
deliver them.

To hide some of the stall costs a processor uses out-of-order execution (see
figure 1). Out-of-order execution means that the processor fetches and decodes
instructions and places them in an instruction pool. Special hardware then
examines the instructions, and executes those that have no outstanding depen-
dencies, allowing the processor to do more useful work. When the instruction
has been executed it is placed in a retire buffer. From there instructions are
retired in program-order.

Branch instructions change the program flow, but the decision of whether
to follow a branch or not is not known until the branch condition has been
evaluated a couple of stages into the pipeline. To prevent this from stalling the
pipeline, modern processors use speculative execution. Branch prediction hard-
ware guesses whether a branch is taken or not and the processor fetches and



executes the next block of instructions speculatively according to the predic-
tion. This means that the processor does not need to stall when it encounters
a conditional branch instruction, and that the penalty of branch instructions
is limited to the case when conditional branches are mispredicted by the hard-
ware. However, mispredicting a branch means that the instructions executed in
advance have to be discarded. Since the pipeline is deep and the processor can
issue several instructions per clock cycle, many instructions will have been is-
sued before the branch condition is actually evaluated. In case of misprediction,
the instructions executed in advance prevent useful instructions from executing.
This makes branch mispredictions expensive.

Most modern CPUs allow programs to access special hardware performance
counters. These counters are registers that can be configured using special
instructions to measure hardware events. The events are for instance number
of branch instructions executed, number of requests to memory, and number
of instructions retired. Using these events the low level behaviour of program
code can be characterised [11, 12]. For instance, the ratio between number of
branch instructions and mispredicted branch instructions characterises how well
a program exploits the branch prediction hardware.

2.2.1 A model for understanding hardware behaviour of database
workloads.

Another way to use the performance counters is to break down total execution
time into its low level constituents. This is done for the SPEC95 benchmark
suite in [12] and more systematically for database management systems in the
recent work by Ailamaki [2]. Ailamaki shows that database systems do not scale
well to the performance offered by modern CPUs. More than half of the time
is spent stalling when executing simple queries. The model she used to obtain
these results breaks total running time into computation time and stall time.
The stall time is further divided into components based on the reason for the
stall. Total execution time T is decomposed into the following components:

To=Tc+Tu+Ts+Tr—Tove

Tc is the actual computation time; T corresponds to stalls related to cache
misses; T iscorresponds to stalls related to branch mispredictions and T’y corre-
sponds to resource stall time. Resource stalls are stalls caused by unavailability
of resources in the processor, such as functional units and buffer slots. Some of
the stalls are overlapped by the processor, which is why an additional component
Tovy is subtracted to obtain the total time.

Table 1 shows how Ailamaki’s model is further divided into components
that correspond to hardware events that can be measured using the hardware
performance counters. The numbers obtained from the hardware counters are
not directly comparable. For some events the actual stall time in clock cycles
is returned whereas others return the number of events. For the latter, the
event count has to be converted to cycles by multiplying the event count with
an architecture specific cycle penalty. We explain the events and how to obtain
them briefly. A more thorough explanation can be found in [2].

Computation time (T¢) Computation time is the time spent doing useful
computation. The Pentium IT converts instructions into so-called pops



| Component | Description | Measurement method |

Tc Computation time 0.3333 * #puops retired

Tv | Trip Level 1 data cache stalls #misses x dcycles
Trar Level 1 instruction cache stalls #misses x dcycles
Trop Level 2 data cache stalls #misses x 72 cycles
Tror Level 2 instruction cache stalls #misses x 72 cycles
Tprre | DTLB stalls Not measured
Trrre | ITLB stalls #misses x 32 cycles

T Branch misprediction stalls #branch mispredictions

retired x 17 cycles

Tr | Try Functional unit stalls actual stall time
Tpep Dependency stalls actual stall time
Trp Instruction-length decoder stalls | actual stall time

Tovt Overlap time not measured

Table 1: Execution time components and measurement method on a Pentium
IT processor (adapted from Ailamaki [2]).

(micro operations) before executing them. The Pentium II can execute
up to 5 pops each cycle. We calculate T using a pessimistic measure
of 3 pops per cycle times the number of pops retired. This means that
possibly fewer cycles are spent doing computations [13].

Memory stalls (Tjs) The memory stalls are divided according to whether
they are caused by instruction fetch or data load. Furthermore, we cate-
gorise the stalls by whether they occur in the small and fast level 1 cache
or the larger and slower level 2 cache. The penalty of 4 cycles for level
1 cache misses is from [2]. The 72 cycles penalty for level 2 cache misses
is the measured memory latency on our test platform. We measured this
value using the Imbench benchmark suite [14]. ITLB and DTLB (Instruc-
tion or Data Translation Lookaside Buffer) are caches used for translating
virtual addresses into physical ones. An ITLB miss costs 32 cycles. On
the Pentium platform it is not possible to measure DTLB misses, which
means that cycles spent due to this stall condition are not included in the
results.

Branch misprediction stalls (T5) Branch misprediction stall time is com-
puted from the number of retired mispredicted branch instructions. The
penalty is 17 cycles.

Resource stalls (T'r) Resource stalls are divided into stalls caused by func-
tional unit contention (Try), stalls caused by instruction dependencies
(Tprp), and instruction length decoder stalls (Trrp). Trp accounts for
stalls that occur when the Pentium II translates instructions into pops.
For all three events the hardware measures the actual stall time.

Overlap time (TovL) As detailed above modern processors hide some of the
cost of stalls by speculative execution and out-of-order scheduling. Whereas
we account for the speculative execution by only attributing stall penal-
ties to mispredicted branches, we have no way to measure the influence of
out-of-order execution on the execution time. This means that the time



we attribute to stall components that can be overlapped, notably data
cache misses, will be upper bounds.

We use the model to investigate whether Predator shows similar behaviour as the
DBMSs investigated by Ailamaki. Whereas Ailamaki was interested in finding
the general execution time break down for database systems, we can go further
with Predator since the source code is available. We investigate the mapping
between stall time and source code to find pieces of code that make poor use of
the hardware.

2.2.2 Tools

There are numerous tools available for accessing performance counters on Linux
platforms, which we use as software platform for our experiments. We use the
Intel Pentium II processor as our hardware platform. An easy tool to use is
Rabbit [15]. Even though the Pentium II only has two performance counters
available, Rabbit can measure an arbitrary number of events in one run of
the program by multiplexing the counters. However, Rabbit suffers a number of
caveats. First, multiplexing makes the event counts obtained less accurate. Sec-
ond, Rabbit collects counts on a system basis. This means that other processes’
performance will pollute the results.

Ailamaki used the cross platform tool PAPI, the Performance API [16, 17]
for the parts of her experiments performed on the Linux platform. It is avail-
able for many different variants of Unix and for Windows and for many different
hardware architectures. It uses the native performance counters of the archi-
tecture on which it runs but presents a uniform API across platforms, making
it easy to move experiments between platforms. PAPI counts events on a per
process basis. On the Linux platform, this feature requires a kernel patch. Fur-
thermore, PAPI is a library, so it requires that the program being examined
is instrumented to set up and tear down performance measurement. For our
remake of Ailamaki’s experiments we use PAPI because of its precision and its
ability to collect profiling data on a per-process basis.

OProfile is a tool for doing system-wide profiling [18]. It uses platform spe-
cific performance counters to implement a low-overhead continuous profiler. It
runs on Linux systems using either Intel x86 or Athlon processors. It does not
require any kernel patch but relies on a loadable kernel module. Once OProfile
has been started it monitors all system activity. As events occur they are at-
tributed to the currently active process using the overflow capabilities of the per-
formance counters. When profiling is finished, various kinds of post-processing
can be made. A percentwise distribution of events over all the running pro-
cesses can be generated. A detailed profile of a specific program can also be
produced. This profile can be thought of as a flat profile like the ones gprof
produces. However, instead of showing running time breakdown, it shows the
hardware event occurrence breakdown. In addition, if programs have been com-
piled with debugging information, a tool can generate annotated source code,
where events are attributed to a specific source code line. This feature is not
accurate; compiler optimisations such as inlining make it difficult to attribute
events accurately to source code lines.



| Component

Native hardware event

| PAPI equivalent

Te UOPS_RETIRED N/A

Ty Trip DCU_LINES_IN PAPI_L1_DCM
Trar L2_IFETCH PAPI_L1_ICM
Trop L2_LINES_IN - BUS_TRAN_IFETCH | PAPI_L2_TCM - PAPI_L2_ICM
Tror BUS_TRAN_IFETCH PAPI_L2_ICM
TDTLB N/A N/A
Trrr | ITLB_MISS PAPI_TLB

T BR_MIS_PRED_RETIRED PAPI_BR_MSP

Tgr Try RESOURCE_STALLS PAPI_RES_STL
Tpep PARTIAL_RAT_STALLS N/A
Trp ILD_STALL N/A

Tovi N/A N/A

Table 2: Mapping stall time components to native performance counter events
and the equivalent PAPI events.

2.2.3 Mapping of PAPI counters to native performance counters

Table 2 shows how the running time components are mapped to the Pentium
I’s hardware events. Tprrp does not have a corresponding hardware event
and is thus not measured. Furthermore some events are not available directly
in PAPI as a predefined event. Fortunately, PAPI supports measuring such
native events by specifying their native event number. Also note that there is
no hardware event for measuring level 2 data cache misses. Instead we derive
the count by subtracting the level 2 instruction cache misses from the total level
2 cache misses.

During our work with PAPI we discovered some inconsistencies regarding
level 2 cache misses. PAPI reported a higher number of level 2 instruction
cache misses than total level 2 cache misses! It turned out that PAPI mapped
the native Pentium II event IFU_IFETCH_MISS to PAPI_L2_ICM, i.e. level 2 in-
struction cache misses. We conducted a series of tests that indicated that the
correct native event to use is BUS_TRAN_IFETCH, as reported in table 2. This
mapping has now been adopted by PAPI. However, the Pentium II Software
Developer’s Manual [19] is ambiguous in its wording on the meaning of the dif-
ferent counters. Intel confirmed that we are actually using the correct mapping
[20].

3 Experiment Setup

This section describes the experiment setup used in the project. We describe
the hardware used for the experiments (section 3.1), give details about the
software and experiment framework (section 3.2), and describe the workload
used (section 3.3).

3.1 Hardware

For our experiments, we have used a system with a 450 MHz Pentium IT pro-
cessor and 256 MB ram.



For the low-level experiments the choice of hardware is important. The
Pentium IT is the same processor used by Ailamaki. This gives us the benefit
that we can adopt the model used by Ailamaki directly. This is fortunate, since
the hardware event penalties detailed in table 1 are not well documented in the
literature.

The Pentium IT is not a new processor. The newest processors are now
clocked at well over 2 GHz and the pipeline depth has also increased steadily.
Thus, it is reasonable to expect that the impact of stall conditions discovered by
studying the Pentium II will be even more significant when studying the newest
processors available. However improvements in processor implementation might
mask or even revert some of these trends. For instance, the newest processor in
the Pentium series, the Pentium 4, has a significantly larger branch prediction
buffer and a new kind of level 1 instruction cache, called a trace cache (for
details see e.g. [21]). Thus it would be interesting as future work to redo the
experiments on a Pentium 4 or a similar new processor.

3.2 Experiment framework

We have developed an elaborate experiment framework for Predator. The frame-
work provides ways to easily run the different tests used in this project (gprof,
PAPI, OProfile). It is implemented through the use of Makefiles and a single
perl-script, that starts and stops the server and makes a client program issue
queries to the server. Adding a new kind of workload to the test-suite amounts
to creating a new directory, creating queries for setting up and tearing down the
tables and indices used in the workload and then placing the workload queries
in separate files in the directory. The experiment framework is available on the
Predator web site [3], so people working with Predator have an easy way of
profiling the changes they make. It is our hope that the insight produced this
way will go back into improving Predator.

Running different experiments requires that the Predator server is compiled
with the right options. For OProfile to do annotated source output, the exe-
cutable needs to have debugging information built in. To produce gprof profiles
and call graphs the executable must be instrumented to trace function calls
at compile time. Finally, to use PAPI, the Predator executable must be in-
strumented to start and stop counting. To allow maximum flexibility, we have
implemented this as two commands, papi_start and papi_stop, that can be is-
sued in the Predator server at the desired time. The framework issues these
commands just before and just after the query is executed, respectively.

The Predator source code configuration provides parameters to manage all
these different options as well as options for controlling compiler optimisations.

Our experiments have been carried out on Debian Linux system using ver-
sion 2.4.17 of the Linux kernel. The kernel has been patched with the Perfctr
performance counter patch that PAPI requires. The compiler used is gcc-2.95-
4. Both PAPT and OProfile are still projects in development, so both programs
have been obtained from the projects’ version control systems.

3.3 Workload

For our experiments, we follow the lead of Ailamaki and choose a workload of
range selection queries and table equijoins on a memory-resident database. We



do this to leave out the costs of concurrency control and the I/O subsystem
(Predator uses the Shore storage manager [22] for this) thereby focusing on
the pure CPU and memory performance of the execution engine. Furthermore,
when we inspect the code more closely, we focus mainly on CPU performance.
We have added a CPU intensive query from the FinTime benchmark suite [23]
to our workload. The workload queries are listed in appendix A. Queries A.1,
A.2 and A.3 are from Ailamaki. Query A.4 is from FinTime.

The FinTime query A.4 uses the tables prescribed by the the FinTime bench-
mark suite. The tables R and S used in queries A.1, A.2 and A.3 both have
three integer fields, al, a2 and a3. R_w _idz is identical to R, but has a non-
clustered index on the field a2. Ailamaki added padding fields to the tables to
make the record size 100-bytes. This record size will reveal more about data
cache performance. Our experiments have primarily focused on finding map-
pings from low level performance to source code organisation. Thus we have
chosen to ignore the padding fields. In addition, our table R contains only
120, 000 records, whereas Ailamaki’s R table contains 1.2 million records.

To ensure that the data involved in the queries is resident in memory we rely
on Shore’s caching abilities. We start the Predator server and issue the queries
multiple times before starting measurements. This puts the relevant tables and
indices in memory, and warms up the caches.

4 Experimental Results

This section analyses our experimental results. We have identified a number of
issues that can be compared across queries. We compare files scans with index
scans (section 4.1), the impact of selectivity in range selections (section 4.2),
the behaviour of different join methods (section 4.3) and the impact of selection
criteria on performance (section 4.4). In section 4.5 we extract some general
trends from the comparative analysis.

In the following sections, we use these abbreviations:

SRS sequential range selection (query A.1)
IRS indexed range selection (query A.2)
SJ sequential join (query A.3)

FTA FinTime aggregate (query A.4)

4.1 Sequential scans vs. index scans

Figure 2 shows the execution time breakdown (a) and the number of instruc-
tions executed per record (b) for SRS and IRS with 10% selectivity. IRS is
approximately 2 times slower than SRS.

IRS’s execution time is dominated by memory stalls and resource stalls. Only
25% of the CPU time is spent on actual computation. 25% of total execution is
attributed to level 2 data cache stalls (T2p). Likewise 28% comes from resource
stalls caused by contention for functional units (Try). Using OProfile, we can

10
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Figure 2: Range selection using 10 % selectivity. (a) Execution time breakdown.
(b) Number of instructions executed per record. For SRS 79% of Ty comes from
level 1 instruction cache misses. For IRS 64% of Ty comes from level 2 data
cache misses.

see that the majority of stalls for both level 2 cache misses? and functional
unit contention occurs in the same five functions. Even though the correlation
between cache misses and functional unit stalls is not one-to-one, we believe that
it is caused by a contention for the processor’s load/store unit. See appendix
B.1 for the OProfile output.

That IRS is dominated by data cache misses is due to the random distri-
bution of the range attribute a2. Since the index is non-clustered the records
pointed to by the index will be randomly distributed throughout the table.
With a ten percent selectivity we must expect to retrieve many cache lines at
random and return to them when they might have been evicted from the cache.
This is a smaller scale instance of the performance degradation that is common
when swapping many pages between disk and main memory due to capacity
constraints in main memory. It intuitively supports the notion that the proces-
sor cache is to primary memory what primary memory is to external memory.
SRS’s performance, data cache-wise, is much better. Since the table is scanned
sequentially, each record is brought into cache exactly once.

Looking at the SRS query we see that the branch stall time component
account for approximately 18% of SRS’s execution time. Since we have a 10%
selectivity, we expect that the branch misses occur when a record is selected for
inclusion in the aggregate calculation (the uncommon case). However, OProfile
tells us that selection criteria evaluation (ExprEval and related functions) are
only a partial cause of mispredictions. Most branch mispredictions are caused
by calls to functions related to buffer management and locking. These are also
part of the critical path that is evaluated for each record. This seems to support
the findings of [2] that even for simple workloads, the number of branches on
the critical path are so high that the size of the branch prediction buffer is
insufficient to store the results of all branches. The processor therefore resolves

2We cannot measure level 2 data cache misses separately, so we have to look at total level
2 cache misses instead. However, level 2 instruction cache misses for IRS are only 1% of the
total level 2 cache misses, so the OProfile output for total level 2 cache misses must be nearly
identical to level 2 data cache misses.

11
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Figure 3: Range selection using 50 % selectivity. (a) Execution time breakdown.
(b) Number of instructions executed per record.

to static prediction which is correct only half the time on average.

The other major stall factor for SRS is level 1 instruction cache misses. These
account for 23% of the total running time. As shown by [2], there is a strong
correlation between branch mispredictions and instruction misses, because mis-
predictions changes the instruction flow. Appendix B.2 shows the functions that
cause most branch mispredictions and most level 1 instruction misses. Although
there is not a one-to-one correlation, the profile confirms Ailamaki’s results.

From figure 2 (b) we see that the number of instructions executed is twice
as many for IRS than for SRS. Looking at the instruction execution profile (ap-
pendix B.3), we see a recurrence of some of the functions that causes data cache
misses and resource stalls. This means that efforts to reduce the running time of
indexed access should simultaneously focus on improving the cache performance
and the instruction count for these functions.

4.2 Impact of selectivity

This experiment tests the impact of selectivity on performance. We run the same
queries as in the previous experiment but change the range of the selection so
that 50% of the records match. For both SRS and IRS, figure 3 (a) shows that
the relative breakdown of execution time is nearly identical to the case with 10%
selectivity. Not surprisingly, the performance of SRS 50% is only slightly slower
than SRS 10%. The same number of records are scanned (i.e. all of them) which
means that the number of data cache misses is unchanged. The extra execution
time is reflected in a slightly higher number of instructions executed per record.
More work has to be done when more records are part of the final result.

A more interesting observation is that the branch misprediction rate is un-
changed (it still accounts for 18% of total running time). When selectivity is
50%, the branch that decides whether a record is included in the result or not
will be taken exactly half the time. This is a so-called hard-to-predict branch
[10] that will be mispredicted on average half of the time, causing an increase
in branch mispredictions. However, as described in section 4.1 above, it is likely
that the branch prediction buffer is insufficient to store all branches on the crit-
ical path, so the branch prediction hardware is already exhibiting worst-case

12
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Figure 5: Sequential join. (a) Execution time breakdown. (b) memory stall
breakdown

behaviour.

As expected the running time suffers when using an index to select 50% of
the records. The running time is 5 times slower than for 10% IRS. A larger part
of the index is scanned, which generates more random accesses to the table.
This creates more data misses and functional unit stalls. However relative to
the other stall components, data cache misses have not increased. The reason is
again the extensive use of the hash table lookup function, which is responsible
for more than half of the instructions retired.

4.3 Join methods

This experiment compares the behaviour of two different join methods. We
do this by executing the same query twice, in each case instructing the query
optimizer to use a specific join method. The query we use is SJ. The two
methods we use is page-nested loop (PNL) and sort-merge join (SM). Because
PNL is very inefficient for large joins, the experiments were carried out using
scaled down versions of R and S. We used tables one tenth of the original sizes,
i.e. R contained 12000 records and S contained 4000.
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Figure 4 shows the query execution plans for SJ using (a) page-nested loop
and (b) sort/merge join. The PNL algorithm iterates over the outer table R,
each time retrieving a page of records. For each page of records, PNL iterates
over the records of the inner table S and evaluates the join to find matching
tuples. SM first sorts the two tables of the join based on the join attributes,
and then merges the sorted tables in one pass. Sort-merge join is much more
efficient than page-nested loop. It takes approx. 1.7 seconds to execute the
query using SM whereas PNL uses approx. 73 seconds.

Figure 5 shows the execution time breakdown (a) and the memory stall com-
ponents in detail (b). The difference in runnning times is due to the difference
in algorithm, so the graphs cannot be used to explain that. Instead, they show
how the choice of algorithm affects low-level behaviour.

The most apparent observation about PNL is that more than 80% of the
time is spent doing computation. Looking closer at where time is spent we
see that the 10 most active functions all have to do with record fetching and
expression evaluation (see appendix B.4). When we examine the memory stall
breakdown (figure b), PNL is dominated by level 1 instruction cache misses
(49%) and instruction translation lookaside buffer misses (38%). This obviously
indicates that the system is using a lot of instructions to execute the query.
More importantly, the number of ITLB misses is higher than for the other
queries. An ITLB miss occurs when a translation from virtual memory address
to physical memory address is not cached in the ITLB. This indicates that more
instructions are executed and also that the instructions cover a larger portion
of the code base. This is either because the system accesses more pages of
code (code coverage), or because of bad code layout, i.e. code used by PNL is
distributed over unnecessarily many pages.

The sort-merge join algorithm shows similar low-level behaviour as the range
selection queries we have studied in sections 4.1 and 4.2. This means that
approximately 40% of the time is spent doing useful computation. The functions
accounting for most of the time are sorting or buffer managment (see appendix
B.4).

Memory stall time for SJ is dominated by level 2 data cache stalls. This
is due to the random table access patterns created by sorting the tables R
and S. Overall, SM has more level 2 instruction cache misses than PNL2, but
significantly fewer level 1 instruction cache misses. This might at first seem
contradictory, but it makes sense if you consider level 2 instruction cache misses
to be indicative of the amount of code that has to be covered to execute the
query, and level 1 instruction cache misses to be indicative of the number of
instructions needed to execute it. For SM, a higher number of level 2 instruc-
tion cache misses points to the two phase nature of the sort/merge algorithm:
code for both sorting and merging has to be covered. The low number of level
1 instruction cache misses compared to PNL (approx. one tenth in absolute
numbers) is due mostly to the more efficient algorithm. SM has another ad-
vantage over PNL. Since the merge step cannot be activated until the tables
are completely sorted, and since the sort and merge steps seen in isolation are
simpler than page nested loop (requires less code). the amount of code active
at any given time is smaller. SM therefore benefits from temporal locality in its
instruction access patterns.

3For PNL it is less than 1% of the memory stall time, and cannot be seen on the graph.
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Figure 6: Comparing 10% SRS and FTA. (a) Execution time breakdown. (b)
Number of instructions executed per record.

This kind of experiment is useful for showing how choosing different join
methods impact performance. Even though in this particular case the choice
is clear, such experiments can provide insight into the validity of the query
optimiser’s choice of execution plan.

4.4 Selection criteria

The purpose of this comparison is to examine how selection criteria affect per-
formance. We do this by comparing two sequential selection queries, SRS and
FTA. FTA is a modified version of query 1 of the Historical Market Information
part of FinTime (see [23]). In order for us to more easily compare to SRS, we
have removed the group by clause and only have one aggregation. Furthermore,
the table generation software that comes with FinTime outputs rows ordered
by date. We have permuted the records of the table because we want the distri-
bution of the range attributes to be random as it is for SRS. This way the only
thing that separates SRS from FTA is the selection criteria.

Figure 6 shows the execution time breakdown (a) and the number of in-
structions executed per record (b) for SRS and FTA. Figure (a) reveals that
for FTA approximately 90% of the time is spent doing computation. This is
contrary to the trend that the other selection queries show. However, FTA is
almost 10 times slower than SRS, which for the most part is due to the number
of instructions required to perform the more complex expression evaluation.

Most of this slowdown comes from the more complex expression evalua-
tion required. Appendix C.1 and C.2 show the call graphs for the expression
evaluation part of the execution path for SRS and FTA, respectively. Because
the range selection attributes Id and TradeDate of FTA are of more complex
types than the integer used by SRS, the expression evaluation requires some
additional work to retrieve the values from storage (XxxADTClass: : TypeCopy
and related functions). Furthermore, examining whether the current record’s
I4 is in the list of strings is done by iterating over the values of the list. For
each list item the value is put into a generic type-buffer along with type informa-
tion (by the function XxxConstValue: :ConstStringPlan: :Evaluate) and then
checked for equality with the current record value by the function ExprEval.
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For this particular case we have used a list of ten strings. The number of calls
to XxxConstValue: :ConstStringPlan: :Evaluate and ExprEval corresponds
roughly to the size of the table (120,000) times the number of items in the list
(10) (we select 10 out of 120 different string values, so all items of the list will
be considered for most records, namely those that do not match).

Even though the ten-fold increase in running time can mostly be attributed
to the extra number of instructions required for selection evaluation, there is
also an increase in absolute values of the stall time components compared to
SRS. Level 2 data cache misses are increased by a factor of three and level 1
data cache misses by a factor of 10, because the FTA query fetches more data
out of each row of the table. This is followed by an increase in functional unit
stalls as we also observed in section 4.1.

The larger number of instructions executed causes more instruction cache
misses at both level 1 (16% increase) and level 2 (33% increase). As we saw in
the case for page-nested loop in section 4.3 the ITLB misses are also high here.
Compared to SRS there are twice as many ITLB misses. Again, it indicates
that we access many pages of instructions on the critical path.

4.5 General trends

Looking at our experiments in general, a number of trends are evident. First of
all, our results show that, overall, Predator behaves like the database systems
investigated by Ailamaki. Effective computation time accounts for less than half
of the total execution time, except when we force the system to use suboptimal
query plans.

Memory stall times range from 30 to 40 percent. This supports the findings
reported by many studies (eg. [2, 10]) that the memory hierarchy is the single
most important cause of bottlenecks on modern CPUs. When execution time
is dominated by data cache misses, time spent on computation drops to around
25 percent of total execution time. This is the case for 10% IRS, 50% IRS, and
SJ using sort-merge join. Furthermore, the clear correlation between data cache
misses and functional unit contention stalls adds an indirect cost to data cache
misses. This makes a strong case for the use of cache optimised data structures.

Compared to the database systems investigated by Ailamaki, Predator uses
significantly more instructions per record to execute a query. Because the num-
ber of level 1 instruction cache misses is always high, even when the workload is
dominated by data cache misses, it indicates that the amount of code that has
to be covered on the critical path that is executed for each record, is large. We
see this trend even for simple queries. For more complex queries, we see ITLB
misses becoming a significant contributor to the memory stall time component,
indicating that many pages of code has to be accessed when Predator executes.
Another performance bottleneck is the number of branches executed on the crit-
ical path. Our results seem to indicate that the branch prediction hardware is
insufficient to cope with the number of branches on the critical path.

This means that improving the query execution engine should be approached
by reducing both the number of instructions and the number of branches on the
critical paths of the execution engine. However, it should also be realised that
database workloads are different from scientific workloads. This is indeed why
they have not been able to scale as well to advances in hardware. Whereas sci-
entific workloads typically apply a small body of code to large amounts of data,
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commercial strength database systems are inherently more complex. Issues such
as concurrency control and buffer management complicate the design and make
it difficult to avoid stall time components altogether.

5 Conclusion

In this paper we have investigated the Predator query execution engine. We
have developed an experiment framework that allows for many different kinds
of profiling. We have combined these profiling techniques to gain insight into
the Predator query execution engine. We have looked at four different aspects,
in each case describing the low level behaviour. Where applicable, this insight
has been mapped to high level issues. Our results show that the query execution
engine behaviour is comparable to other database systems, in that actual com-
putation time rarely accounts for more than 40 percent of total execution time.
In Predator’s case we find that the code size of the critical path that is executed
for each record is causing many instruction cache misses, i.e. stall conditions
that are hard to overlap. In addition, the critical path also makes poor use of
the branch prediction hardware. When queries are executed that have many
random accesses to data, the dominant component becomes level 2 data cache
misses. Even in these cases, there is a constant overhead in the form of instruc-
tion misses and branch mispredictions, which means that actual computation
time becomes lower. Our experiments have shown how low level profiling can
give insight into performance characteristics and how these characteristics map
to source code issues. To improve the Predator query execution engine we must
develop our understanding of these mappings further.

5.1 Future Work

Our experiments point to several issues that can be investigated further.

As mentioned, the Pentium II is not a new processor. Redoing our exper-
iments on e.g. the Pentium 4 would be interesting, because its trace cache
and improved branch prediction hardware addresses some of the things we have
found to be performance bottlenecks for Predator. Such a study would be able
to tell if and how commercial type workloads such as database systems benefit
from new hardware features.

Another issue that must be further investigated is the performance of indexed
selections. We found that a few functions were responsible for a large part of
computation time, resource stalls and cache misses. Optimising these functions
or the use of them would bring immediate performance improvements.

For the case of branch mispredictions and instruction misses, the gcc com-
piler can do profile-based optimisations. Based on profiles of previous runs of
the program, the compiler can lay out the code to better accommodate the typ-
ical pattern of use for the program. For branches, this involves writing branch
code so that it fits to the static branch prediction algorithm of the processor. To
reduce instruction misses the compiler can link the program in such a way that
functions that are used together often are placed close together in the compiled
code. This kind of optimisation is unobtrusive.

A more drastic approach is to investigate how different query representations
can improve performance. For instance it should be investigated whether there
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are parts of the code that is executed during query execution that can be moved
to the query compilation stage.
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A Workload queries

A.1 Sequential Range Selection

select avg(a3)
from R
where a2 < high and a2 > low

A.2 Indexed range selection

select avg(a3)
from R_w_idx
where a2 < high and a2 > low

A.3 Sequential Join

select avg(R.a3)
from R, S
where R.a2 = S.al;

A.4 FinTime Aggregate

select Avg(ClosePrice)

from HistPrice hp

where Id in <string list>

and TradeDate > Date "2001-09-02"
and TradeDate < Date "2010-09-02";

B OProfile output

This appendix lists various OProfile post processing results. For clarity, cer-
tain details such as function addresses and function parameter lists have been
removed.

B.1 Correlation between level 2 cache misses and func-
tional unit stalls

The ten functions in 10% IRS attributing most to level 2 cache misses (L2_LINES_IN,
left side) and functional unit stalls (RESOURCE_STALLS, right side).

30.293 hash_lru_t<...>::_replacement() 21.870 w_hash_t<...>::lookup()
23.127 w_hash_t<>::1lookup() 19.714 w_link_t::detach()

19.869 w_link_t::detach() 19.295 hash_lru_t<>::_replacement ()
12.052 serial_t::operator=() 9.096 serial_t::operator=()

3.583 hash_lru_t<...>::grab() 7.579 hash_lru_t<...>::grab()

1.954 zkeyed_p::rec() 3.922 1lid_m::lookup()

1.302 file_p: :next_slot() 2.518 w_link_t::attach()

0.977 btrec_t::set() 2.438 file_p::next_slot()

0.651 smutex_t::release() 1.899 lid_m::1lid_entry_t::_init_id()
0.651 btree_p::search() 1.681 zkeyed_p::rec()
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B.2 Correlation between level 1 instruction cache misses

and branch mispredictions.

The ten functions in 10% SRS attributing most to level 1 instruction cache
misses (L2_IFETCH, left side) and branch mispredictions (BR_MSP_RETIRED, right
side).

6.38642
6.30558
5.57801
4.28456
4.
4
4
2
2
2

28456

.28456
.28456
.82943
.82943
. 74859

pin_i::_pin() 11
XxxShoreFileRelation: :FScanCursorInfo: :NextRecord() 7.
bf_m::_fix()

bf_core_m: :find ()

prologue_rc_t: :prologue_rc_t ()
scan_file_i::_next()
XxxStorageManager: :GetObjectPreAlloc()
pin_i::_repin()

XxxShoreFileRelation: :NextIteml()
XxxRelBooleanPlan: :ExprEval()

NWbh oo o N

.0048 XxxShoreFileRelation::FScanCursorInfo: :NextRecord()

6555 bf_core_m::find ()

.6555 scan_file_i::_next()

.2201 bf_m::_fix()

.74163 pin_i::_repin()

.26316 XxxStorageManager: :GetObjectPreAlloc()
.26316 XxxRelBooleanPlan::ExprEval()

.30622 pin_i::repin()

.34928 XxxShoreFileRelation::NextIteml()
.87081 XxxRelBooleanPlan::Evaluate()

B.3 Executed instructions for 10% IRS

The ten functions in 10% IRS executing most instructions (INST_RETIRED)

15.2384
13.0088
8.

83203

8.22396
6.39641
4.87456
3.
3
2
2

65177

.45572
.9274
.68815

hash_lru_t<...>::grab()
hash_lru_t<...>::_rep1acement()
1lid_m::lookup()
w_hash_t<...>::1lookup()
file_p::get_rec()

file_p: :next_slot()
serial_t::operator=()
1lid_m::_add_to_cache()
w_link_t::detach()
smutex_t::release()

B.4 Executed instructions for PNL SJ and SM SJ

The ten functions in PNL SJ (left) and SM SJ (right) executing most instruc-
tions (INST_RETIRED)

.421

. 7904
.0822
.9391
.0269
.09951
.00509
.94438
.86745
.53725

XxxRecord: :GetField () 20.7669
XxxRelBooleanPlan: :Evaluate () 5.25183
RelPNLPlanOp: :checkFinal() 4.55581
RelNLPlan0Op: : GetNextRecord () 4.23943
XxxBooleanExpressionPlan: :MakeConjunction() 4.08757
XxxUnknownValue: : UnknownValuePlan: :Evaluate() 3.89775
RelPNLPlanOp: :getNextItem() 1.97418
XxxRelBooleanPlan: :ExprEval() 1.78436
RelPNLPlanOp: :reclaimCurrent () 1.72108
XxxBooleanExpressionPlan: :MakeConjunction() 1.69577

20

run_mgr: : _KeyCmp ()
bf_m::is_bf_page ()
pin_i::unpin()
pin_i::"pin_i()
skey_t::ptr()
pin_i::_init_constructor()
sort_keys_t::int4_cmp()
histoid_t::__find_page()
skey_t::contig_length()
run_mgr::_rec_in_run()



C Call Graphs

C.1 SRS Expression Evaluation
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