Local Search for Final Placement in VLSI Design*

Oluf Faroe, David Pisinger, Martin Zachariasen'

February 23, 2001

Abstract

The design of a VLSI circuit consists of two main parts: First, the logical func-
tionality of the circuit is described, and then the physical layout of the modules (or
cells/circuits/macros) and connections is settled. In the latter process one wishes to place
the modules such that the necessary wiring becomes as small as possible in order to min-
imize area usage and delays on signal paths. The placement problem is the subproblem
of the layout problem which considers the geometric locations of the modules.

A new heuristic is presented for the general cell placement problem where the objective
is to minimize total bounding box netlength. The heuristic is based on the Guided Local
Search (GLS) metaheuristic. GLS modifies the objective function in a constructive way to
escape local minima. Previous attempts to use local search on final placement problems
have often failed as the neighbourhood quickly becomes too excessive for large circuits.
Nevertheless, by combining GLS with Fast Local Search it is possible to focus the search
on appropriate sub-neighbourhoods, thus reducing the time complexity considerably.

Comprehensive computational experiments with the developed algorithm are reported
on industrial circuits of small, medium and large size, for standard cell and general cell
variants of the problem. The experiments demonstrate that the developed algorithm is
able to improve the estimated routing length of large-sized general cell layouts with as
much as 20 percent.

1 Introduction

The placement problem in VLSI design is the first phase in the process of designing the
physical layout of a chip. This makes the placement problem of paramount importance, since
the quality of the attainable routing is to a high degree determined by the placement. In the
placement problem we are given a set of rectangular modules (or cells/circuits/macros) of
different height and width that should be placed disjointly on the chip surface. Every module
has a number of connection points, so-called pins, and the netlist is a partitioning of the pins
into nets that should be interconnected.

The problem is to place the modules such that an objective function that reflects the
quality of the placement is minimized. Most objective functions in placement add up the
contribution from each net separately, with the overall objective of minimizing total wiring
length after routing. Clearly, such an objective function has the weakness of not taking timing
issues explicitly into account, since minimizing total length may leave critical nets having a

*Tech. Rep. 2001/1, Dept. of Computer Science, University of Copenhagen
tDept. of Computer Science, University of Copenhagen, Universitetsparken 1, DK-2100 Copenhagen @,
Denmark. E-mail: {oluf,pisinger,martinz}@diku.dk

significant signal delay. In this paper we ignore timing issues for individual nets, since there
are ways in which this problem can be addressed in a pre- or post-processing phase.

A netmodel estimates the length of a net after routing. A good netmodel is the length of
rectilinear Steiner minimum tree (RSMT) for the pins, since in practice it is possible to route
most nets with close-to minimum length. Another netmodel is the bounding box (BB) length
which is the half-perimeter of the smallest axis-aligned rectangle that contains the pins. This
model has the advantage of being a good estimate of the RSMT length, but much faster to
compute. In this paper we use the BB netmodel — a choice that is accounted for in Section 2.

The traditional approach in placement is first to construct a global placement that focuses
on minimizing total netlength. That is, the disjointness of the modules is to a large extent
ignored. A classical approach is to use hypergraph partitioning in which the modules are
recursively divided into subsets for which the need for inter-communication is minimized [1,
14]. A more recent approach is to optimize total netlength directly using the clique or star
netmodel, both of which result in a quadratic optimization problem that can be solved quickly.
Combined with hierarchical partitioning that takes the density of the regions into account,
placements with a a limited amount of overlap can be constructed [30, 31].

The task of the final placement problem is to turn an infeasible placement (e.g., a global
placement) into a feasible placement in which all modules are disjoint. One objective is for
example to minimize the total movement of all modules with respect to the global place-
ment. Alternatively, total netlength may be optimized directly using the BB netmodel while
legalizing the placement.

In this paper we present a new iterative placement algorithm that is well-suited for solving
the final placement problem. The algorithm both takes the packing problem, i.e. placing the
modules disjointly, and the total BB netlength into account. The algorithm uses the Guided
Local Search (GLS) metaheuristic [28, 29] for controlling the search. The neighbourhood
structure is simple: Flipping and/or moving a single module along one of the coordinate axes.
This neighbourhood has previously been used [12, 18, 21, 23, 32|, in particular in conjunction
with simulated annealing. The weakness of all these algorithms is the slow convergence
towards good solutions — which is an inherent feature of simulated annealing. By combining
GLS with the Fast Local Search (FLS) approach [28, 29], an algorithm that both finds good
solutions quickly and in the long run converges towards high-quality solutions is obtained.

In addition to its applicability as a final placement algorithm, the new heuristic can be
used in the following setting. Current layout algorithms use a feedback approach in which
a placement is evaluated by performing (partial) routing and timing analysis; the output of
this analysis is then used to construct an improved placement. This iterative nature of the
design process calls for placement algorithms that take an existing placement and construct
an improved placement that resembles the original one, but in which the information from
the routing/timing analysis is taken into account.

Finally, the new algorithm can be used to construct high-quality placements of small gen-
eral cell circuits. This is known to be a very difficult problem in practice, and our experimental
results show that the new algorithm on average produces significantly better solutions than
existing algorithms from the literature. For some instances the total netlength is reduced by
more than 20 percent when compared to the recent results for the O-Tree algorithm [9].

The paper is organized as follows. In Section 2 we define the final placement problem
in details. Section 3 introduces GLS and FLS, and in Section 4 we present the details of
applying GLS and FLS to the final placement problem. Extensive computational results are
presented in Section 5, and concluding remarks are given in Section 6.

2 The Final Placement Problem

The placement problem asks to assign locations to the modules of a circuit such that these are
within the available placement area and do not overlap. We assume that modules may have
arbitrary rectangular dimensions, thus the considered layout style is general cell layout. The
objective of the problem is to minimize the total length of the nets connecting the modules.
To be more formal, a circuit C is defined by the tuple C = (A, M, P, N) where A is the
placement area, M is the set of modules, P is the set of pins, and A is the netlist defining
which pins should be connected. We will assume that the placement area is defined as the

integer grid
A={0,...,W} x{0,...,H}. (1)

Without loss of generality we may assume that all modules and pins must be placed at integer
coordinates within A. For each module m € M the corresponding width is wy,, and height
is hp,. Moreover let (z,,,y,) denote the coordinate of the lower left corner of the module in
the placement area A. In order to not exceed A the coordinates of module m must satisfy

Tm € {0,..., W —wp,} Ym €{0,...,H — hp} (2)

For technical reasons, some of the modules may be fixed at a given position. In this case the
module coordinates (Z,, ym) may not be changed. If some part of the circuit area A is not
available for the modules, this space may be represented by one or more fixed modules which
do not have any pins.

Depending on the restrictions from the layout style and the fabrication technology, mod-
ules may be allowed to change orientation. In the present definition we will allow modules
to be rotated in steps of 90 degrees and to be reflected around the z- and y-axis. This gives
eight different orientations of each module. To make the following discussion simpler, we will
not mention the orientations explicitly, although they should be taken into account in all
definitions and algorithms.

Each pin p € P has a relative position within its module m. Let zogser(p) € {0, - .., wy,—1}
denote the offset along the z-axis, and yYomset(p) € {0, .., hm — 1} denote the offset along the
y-axis. Assuming that the module m has coordinates (., ym) the absolute coordinates of
the pin becomes (., + Toffset (P), Ym + Yofset())- The netlist A is defined as a partitioning of
the pins P, such that every pin p € P is part of exactly one net N € N.

The length of the wires which are required to connect the pins for net N € N is called
the netlength of N. Thus a simple formulation of the placement problem for a circuit C can

be stated as
minimize)y netlength(N)

subject to P is a feasible placement of C

(3)

It is not possible to determine the netlength of a given placement P without routing the chip.
As routing is very time consuming and thus only will be done after the placement problem
has been solved, it is necessary to use netlength estimates in the objective function. For a
given placement P we let N, C Z? denote the set of pin coordinates corresponding to net
N € N. A netmodel is defined as a function M which to each finite net N, assigns a real
number which estimates the actual netlength after routing. In other words, given a placement
of a circuit the netmodel determines an estimated netlength for each net N € N.

In order to make it possible to differentiate between how much the individual nets should
contribute to the objective function, we introduce a net weight function as w : N' — Ry,

which to each net N € N assigns some weight w(N). A weight function makes it possible to
assign higher weights to critical nets such that these will become shorter. Given the definition
of some netmodel M we can formulate the min-sum placement problem as:

Placement Problem: For a given circuit C find a placement P which minimizes the objective

S w(N) - M(N,)

NeN

for all feasible placements P of C.

It is clear that the choice of netmodel is crucial, as it must provide the algorithm with a
good estimate of the netlength after routing. Several netmodels have been proposed in the
literature, where the most important ones are: Rectilinear Steiner Minimum Tree (RSMT),
Rectilinear Minimum Spanning Tree (RMST), Clique (CL), Star (ST), and Bounding Box
(BB). These netmodels are illustrated in Figure 1.

LL@

) RSMT) RMST c) CL»
d) ST

Figure 1: Five different netmodels for a finite net Np with 5 points. The RSMT, RMST and BB are
illustrated with the L; metric, while CL and ST are illustrated with the L, metric.

Experimental results by Hetzel [10] on industrial VLSI circuits show that the RSMT net-
model very closely estimates the actual netlength after routing. A drawback with the RSMT
netmodel is that the RSMT problem is NP-hard and thus inappropriate to use in a local
search heuristic. Based on the theoretical and empirical study by Brenner and Vygen [2, 3]
we chose to use the Bounding Box netmodel. This netmodel is defined as the length of the
half perimeter of the smallest box which contains all the points in Np. Due to its simplicity
and good approximation to the RSMT the BB netmodel is by far most popular model in the
placement literature. For a set of points Ny in the plane the Bounding Box netmodel BB(Np)
is formally defined as:

BB(Np) = max £ — min £ + max y — min gy 4)

(way)ENP (way)ENP (w7y)€NP (w7y)€NP
BB(Njp) can be computed in linear time O(|Np|). One of the attractive properties of the BB
model is that only the points on the perimeter of the boundary box need to be known to
derive the value. Another attractive property is that its deviation from RSMT is bounded by

BB(N,) < RSMT(N,) and RSMT(Np) < ([v/INs]] + 2)/2 - BB(N;). For |N;| < 3 we have
RSMT(Np) = BB(Np). These bounds were proven by Chung and Graham [4] with additional
notes by Brenner and Vygen [3].

To further correct the BB netmodel a multiplier function wgp(N) may be applied. Bren-
ner [2] empirically show that using the multiplier function wes(N) = &|N |i means that the
Bounding Box netmodel gets very close to the RSMT. In our implementation, however, no
multiplier function is used since this only makes a very small difference in practice [6]. Also,
using no multiplier function makes it easier to compare our solution values with those from
the literature.

3 Guided Local Search and Fast Local Search

In this section we introduce the metaheuristic Guided Local Search (GLS) and the concept
of Fast Local Search (FLS). The use of GLS for placement was motivated by recent results
on packing problems in two and three dimensions [7]. Since a feasible placement is a packing
of the modules with the additional objective of minimizing total netlength, it is natural to
consider an extension of the algorithm for the packing problem.

The GLS metaheuristic has proven to be effective on a wide range of problems [15, 27,
28, 29]. GLS can be applied to any combinatorial optimization problem given by a solution
space X for which an objective function value f(x) and neighborhood N (x) C X is defined
for every solution x € X. In the following we consider minimization problems only.

Given an initial solution xy € X, local search visits a sequence of solutions xg, X1, - .., Xy
such that x; € M (x;_1) for every 1 = 1,2,...,k. When the series of solutions xg,x1,-..,Xg
fulfills f(xg) > f(x1) > ... > f(xx) the process is denoted local optimization. Local op-
timization stops when the current solution xj is a local minimum, that is, when N (xy)
contains no solution better than x;. Applying local optimization to a solution using the
objective function f will be denoted by the operator LOCALOPT;. In the above case we have
X = LOCALOPT(xy).

GLS extends local search with the concept of features, i.e., a set of attributes which
characterize a solution to the problem in a natural way. GLS assumes that any solution can
be described using a set of M features, that is, a solution x € X either has or does not have
a particular feature i € {1,...,M}. The indicator function I;(x) is 1 if x has feature 7 and
0 otherwise. Features should be defined such that the presence of a feature in a solution
has a more or less direct contribution to the value of the objective function. This direct or
indirect contribution is reflected in the cost ¢; of the feature. A feature with a high cost
is not attractive and may be penalized. The cost of a feature may be constant or variable
(see Section 3.1). The number of times a feature has been penalized is denoted by p;, and
is initially zero. Penalties are incorporated into the search by constructing an augmented
objective function

M
hx) = () + X3 pi L(x) @

where) is a regularization parameter which balances the objective function to the contribution
from the penalty term (see Section 3.2). Instead of optimizing the function f, GLS optimizes
the augmented objective function h.

The main GLS algorithm performs a number of optimization steps, each transforming a
solution x into a local minimum x* = LOCALOPT,(x). Note that since all penalties initially
are zero, the first local optimization actually finds a local optimum with respect to f. At
each local minimum x* GLS takes a modification action which modifies h by penalizing one
or more features by incrementing their p; value by one. The idea is to penalize the features
in x* which have the largest contribution to the value of the objective function, but doing
this in a controlled manner. The modification action therefore penalizes those features which
have the maximum utility defined as

C;

pailx7) = 5 T - Li(x") (6)

Informally, these are the features with maximum cost in x* which have not been penalized
too often in the past. After having penalized these features, the local optimization continues
from x* — now with respect to the modified A function.

3.1 Feature Costs and Duration of Penalties

We distinguish between soft and hard features. A soft feature indicates whether a feasible
solution has or does not have a certain attribute. In many applications of GLS only this type
of features is used. Hard features are related to the infeasibility of solutions. The presence
of a hard feature in a solution means that the solution is not feasible, corresponding to the
violation of a constraint. This is typically reflected through a penalty term in the objective
function — in a manner similar to Lagrangian relaxation.

The fundamental difference between soft and hard features affects the costs of features and
the duration of their penalties. Soft features are often given fixed costs while hard features
have variable costs which depend on the amount of violation of the respective constraint.

When using variable feature costs, it is necessary to retract penalties dynamically; penal-
ized features may become less unattractive as the search progresses. Several retract strategies
were proposed and evaluated by Voudouris [26]. One possibility is to reset all penalties at cer-
tain intervals during the search, denoted the Reset strategy. Another option is to use a short
term memory: record the last ¢ features which are penalized. The memory is implemented
as a circular list of length ¢ of penalized features. As the penalty of a feature is increased
it is recorded in the list at the current position, and the feature previously recorded at this
position is decreased. In this way the effect of a feature penalty will have limited duration.

A problem with this strategy is that GLS only gets a limited memory. This might create
cycling where GLS keeps returning to the same local minimum. To alleviate this problem
Voudouris creates an identical set of features where the penalties only increase (the cost of
all these features is constant). This second set is the long term memory which is applied to
prevent cycling and make a diverse search of the solution space. This last strategy Voudouris
coins the Multiple Feature Sets (MFS) strategy.

3.2 The)\ Parameter

The value of A determines to what degree an increased penalty will modify the augmented
objective value and push the local search out of a local minimum. The choice of A is problem
specific. A large value of A will make the search more aggressive to avoid solutions with
penalized features and force the search to make large jumps in the solution space without

paying much attention to the original objective function f. In contrast, a small A may require
more penalties to escape a local minimum, which results in a cautious — but slower and more
restricted — exploration of the solution space.

Another issue is the effect of the penalty term as more and more penalties are assigned
to all the features. By looking at function (5) we see that in the long term this can cause the
ratio between the original objective and the penalty term to change such that the penalty
dominates the original objective function. In this respect the value of A determines to what
extent the search should be controlled by the penalties rather than by f.

3.3 Fast Local Search

A bottleneck in many applications of GLS is the LOCALOPT), operation. Searching large
neighborhoods for an improving solution can be very time consuming. Fast Local Search
(FLS) is a modification of local search which speeds up the search by shadowing less promising
parts of the neighborhood. Although the development of FLS was closely connected to its
application in the GLS framework, it can be used with other local search metaheuristics as
well.

In FLS the neighborhood is divided into a number of smaller sub-neighborhoods which can
be either active or inactive. Initially all sub-neighborhoods are active. FLS now continuously
visits the active sub-neighborhoods in some order. If a sub-neighborhood is examined and
does not contain any improving move it becomes inactive. Otherwise it remains active and
the improving move is performed; this may cause some sub-neighborhoods to be reactivated,
if we expect these to contain improving moves as a result of the move just performed. As
the solution value improves, more and more sub-neighborhoods become inactive, and when
all sub-neighborhoods have become inactive the best solution found is returned by FLS as a
(pseudo) local minimum.

The neighborhood is split into sub-neighborhoods by making an association between fea-
tures and sub-neighborhoods. The association should enable us to know exactly which sub-
neighborhoods have a direct effect upon the state of a certain feature. This association is
used each time GLS settles in a local minimum. As penalties are assigned to one or more
features, the sub-neighborhoods associated with the penalized features are activated and FLS
is restarted. The limited reactivation and the association between the penalized features and
the reactivated sub-neighborhoods focuses the search. Each local optimization using FLS will
be aimed at removing the penalized features from the solution instead of exploring all possible
moves.

4 Application of GLS to the Placement Problem

One of the key obstacles in applying local search heuristics to placement problems is the lack
of a natural representation of a solution space and a corresponding neighbourhood function
which permits a natural traversal between all feasible placements. As even the construction
of a feasible solution is N'P-complete some of the constraints need to be relaxed in order to
allow a simple representation of a neighbourhood. A natural choice of relaxation is to remove
the constraint that no modules may overlap, and instead penalize overlap in the objective
function. A similar solution space was introduced by Jepsen et al. [12] for the placement
problem and by Dowsland [5] and Faroe et al. [7] in the context of packing.

Placement area

3 L Overlap

Figure 2: Illustration of possible moves of a single module. The moves are (1) change of orientation
combined with either (2) translation along the z-axis or (3) translation along the y-axis. Modules are
allowed to overlap.

The problem handed to the GLS heuristic is thus a Relazed Placement Problem where all
the modules must be placed within the placement area and the objective is to minimize total
netlength as well as the overlap between individual modules.

To be more formal, we define the solution space X as all possible orientations and positions
of the (free) modules m € M within the placement area. For a placement solution x € X' let
Zrm (%) and y,,(x) denote the coordinates for modules m € M. Thus, the domain of feasible
coordinates is given as:

Tm(x) €{0,..., W —wy, } ym(x) € {0,...,H — hy,} (7)

Although not explicitly formulated, the modules may have eight different orientations as
described in Section 2. In this case the width and height of the module and the pin offsets
are updated accordingly.

For a solution x € X we define the neighborhood N (x) as the set of solutions which can
be obtained by orienting and translating any single module along one of the coordinate axis.
The possible moves of a single module are illustrated on Figure 2. The neighbourhood N (x)
thus satisfies that it is possible to traverse between any pair of solutions by following a path of
neighboring solutions. The neighbourhood size O(|M|(W + H)) is not polynomial in the input
size, but with the application of FLS described in Section 4.5 and a neighborhood reduction
scheme described in Section 4.6, a best neighboring solution can be found in polynomial time.
A similar neighborhood function was used by Faroe et al. [7] for the three-dimensional bin
packing problem.

4.1 Objective Function

As discussed earlier the objective in the placement problem is to minimize total netlength
while minimizing overlap between modules. By using the BB netmodel as an estimate for the
netlength (see Section 2), the objective value f(x) of a given solution x € X may be defined
as a linear combination of the two terms:

fx)= 3 overlap,(x) + 6 Y BBy(x) (8)

m,neM NeN

Here overlap,,, (x) of two distinct modules m,n € M is defined as the area of the intersection
between the modules. The first sum in (8) is only evaluated for each pairs of modules where
m < n, assuming some linear ordering of the modules. We observe that x € X is a feasible
solution to the final placement problem if and only if), .\, overlap,,, (x) = 0.

The parameter § is used to balance the two conflicting terms of the objective function.
A reduction in the overlap term will nearly always increase the bounding box value and
vice versa. As the bounding box term is linear while the overlap term is quadratic, Upton et
al. [25] note that this makes it difficult to assign a suitable value to 5. A linear overlap function
might therefore have been more suitable (e.g., the perimeter of the rectangular intersection),
but experiments with the two alternative formulations indicated that the quadratic overlap
function resulted in a faster convergence towards feasible placement solutions. The actual
setting of # is discussed in Section 5.2.

4.2 Features

Two sets of features are defined, each reflecting the contribution of the overlap and the contri-
bution of the total netlength in the objective function. The first contribution is characterized
through an overlap feature and the second through a connection feature.

An overlap feature is defined for each pair of modules m,n € M. For a given pair of modules
m,n € M a particular solution x € X exhibits an overlap feature if the modules overlap. The
presence of the feature is given by the indicator function:

1 if overlap,,, (x) >0

I’(’J{”(X) :{ 0 otherwisemn())
All overlap features must be eliminated to produce a feasible placement. The overlap feature
cost should reflect the contribution of the feature to the overlap term in the objective function.
As in [7] we identify bad overlaps with the general principle that an overlap between large
modules is worse than an overlap between small modules. This observation is also made in
most packing heuristics, where better solutions usually are obtained if the boxes (modules)
which cover a large area are placed prior to the small. Thus, the overlap feature cost c;’rf”
should both depend on the overlap between the modules m and n, and on the area of the
modules. We define the overlap feature cost as:

of (x) = overlap,,, (x) + area(m) + area(n) if overlap,,, (x) > 0
mnAT 0 otherwise

c (10)
This definition places a high cost on features which correspond to pairs of large overlapping
modules. The utility function corresponding to the overlap features is defined as in (6).

A connection feature is defined for each pair of modules m,n € M. For a given pair of
modules m < n and a particular solution x € X we let x exhibit a connection feature if there
is a net connecting the modules and the rectilinear distance between the modules is positive.
The presence of the connection feature is given by the indicator function:

I (x) = 1 if rdisty,(x) > 0 and m,n connected (1)
mni™ 1 0 otherwise

where the rectilinear distance between two modules m and n is defined as

rdistn (%) = dxmn (%) + dy,.., (%) (12)

Here dxmy, (x) is the z-distance between modules m and n measured as the minimum distance
between a gridpoint in m and a gridpoint in n. dy,,,(x) is defined in a similar way with
respect to the y-distances.

For modules m and n the connection feature cost ¢S should somehow reflect how much
the modules contribute to the BB netlength of the nets which connect m and n. As rdist,, (x)
is a lower bound of the BB netlength for the nets which connect m and n, pairs of connected
modules which are placed at a large rectilinear distance from each other should be punished:

¢ (x) = rdisty, (x) (13)
Again, the utility function is given by (6).

4.3 Augmented Objective Function

We can now state the augmented objective function for the relaxed placement problem as:

h(X) = f(x) +)‘Of Z p'ror{n) I%n(x) + ACf Z p%ﬂ : Ircrl:n(x) (14)
m,neM m,neM

The sums are only evaluated for pairs of modules where m < n. Parameters A\°f and X! are the
regularization parameters corresponding to the overlap and connection features, respectively.
The concrete choice of these will be discussed in Section 5.2.

As the neighbourhood A (x) allows translation of a module along the horizontal or vertical
axis it is suitable to also split the indicator function I, into a horizontal and a vertical part.
This means that the penalty term for the connection features in the augmented objective
function becomes

AN i (T () + Iy (x) (15)
m,neEM

where I¢ (x) = 1 if and only if the horizontal distance between two connected modules m,n
. . o . ny
is strictly positive, and Iy (x) is defined in a similar way.

4.4 Feature Costs and Duration of Penalties

The augmented objective function (14) contains two terms related to the overlap features
and connection features. The penalties corresponding to the overlap features are chosen such
that they increase monotonously as this makes it easier to balance the conflicting terms in
the augmented objective function (14). At the beginning of the search the overlap penalties
will be small and the search will mostly be guided by the total bounding box length. As the
overlap penalties increase, the control is gradually transferred to eliminate overlap between
modules. When a feasible placement is found all penalties are reset; this is a variation of the
Reset strategy described in Section 3.1. This allows the search to escape from the current
minimum and make a diverse exploration of the solution space.

The connection features are soft and thus some techniques are needed to restrict the
duration of the penalties as described in Section 3. Both the Reset and the Multiple Feature
Sets (MFS) strategies were implemented but without any major success. Instead a new
strategy was developed based on a refinement of the MFS strategy. As described in Section

10

3.1, two sets of counters p; and f; are used where f; is increased each time the penalty p; is
increased. But whereas the penalty is decreased after ¢ iterations, f; continues to increase.
As opposed to the MFS strategy, only the penalty term appears in the augmented objective
function while the f; values are used in the utility function for the overlap features as follows
c:
pi(x*) -

= rfz - I;(x") (16)

Thus the short term memory list is used to retract the penalty from the objective function
after ¢ FLS calls, but the frequency memory is maintained in f;, thus providing diversity in
the utility function.

4.5 Fast Local Search

To apply Fast Local Search (FLS) we let each module m € M correspond to a sub-neighborhood.
A sub-neighborhood thus holds moves for all orientations and all translations of a single mod-
ule along the coordinate axes. A module can be either active or inactive corresponding to
the state of the sub-neighborhood. The active modules are kept in a queue.

The FLS optimization repeatedly removes a module from the queue and evaluates the
moves which can be performed for the module. If a move exists which improves the aug-
mented objective function the move is performed and the module is re-appended to the queue.
Otherwise the module is made inactive. FLS stops when the queue is empty and returns the
current solution as the local minimum.

Features are penalized when FLS terminates in a local minima. Each penalized feature
corresponds to a pair of modules on the placement area. After the features have been pe-
nalized we therefore reactivate 1) the pair of modules corresponding to the penalized overlap
feature and all modules which overlap with these two module, and 2) the pair of modules
corresponding to the penalized connection feature and all modules which are connected to
these two modules. This reactivation scheme permits FLS to pay attention not just to the
penalized modules but also to the modules interacting with the concerned modules.

In the worst case the evaluation of the feature utilities (6) may demand O(|]M|?) time,
which for large circuits can be very time consuming. Thus it may be profitable to penalize
more than one feature in a FL.S minimum. This makes it possible to reactivate more modules
after each FLS and shifts the computational effort from the penalty assignment to the eval-
uation of FLS instead. The number of penalties assignments after FLS is called the penalty
depth of GLS. The setting of this parameter is discussed in Section 5.2.

4.6 Fast Evaluation of the Neighbourhood

A bottleneck in the FLS algorithm is the size of the sub-neighborhoods. Each sub-neighborhood
corresponds to the solutions that can be obtained by changing the orientation of a single mod-
ule m € M and moving it along one of the coordinate axes. A sub-neighbourhood can be
evaluated in pseudo-polynomial time O((|M| + |N| + |P|)(W + H)).

The following description will only cover translation of a module m € M along the z-
axis as a symmetrical result can be obtained by considering the other axis. We will reduce
the complexity of the evaluation to a polynomial expression by observing that the objective
function is a piecewise linear function in z,,. This piecewise linear function will take its
extreme values in one of the breakpoints or discontinuities. A necessary property is that

11

the functions considered take the smallest value of the two possible function values in the
discontinuities. This property is satisfied for the augmented objective function (14). For
module m € M the problem to be solved in FLS is

B A A(x) + B(x) + C(x) + D(x) (17)

where

Ax)= Y overlap,,,(x) B(x)=# Y BBy(x)

neM,n#m NeNm
f f f f f £
Cx) =X > pon- I (%) D) =" Y pha In(x)
neEM,n#m neEM,n#m

Here N, C N is the subset of nets which contain a pin of module m. A(x) is the amount
of overlap between m and the other modules, B(x) is the bounding box of the nets which
contain a pin of module m, C(x) is the contribution of overlap penalties, and finally D(x) is
the contribution of connection penalties along the z-axis.

W, Wn

(@m, vm)]

overlap,,,, (x) bptl bpt2 bpt® bptt

Y

Tm

Figure 3: Tllustration of the overlap breakpoints. The topmost illustration shows two modules, m
and n, which overlap as m is translated along the z-axis. Below is seen the overlap function as m
is translated to the right. In the figure Aa denotes the height of the overlap. The breakpoints are
indicated with dashed lines.

Each of the four terms is a piecewise linear function with possible discontinuities. For
the overlap term A(x) the linearity follows from the fact that the overlap of two modules
m,n grows linearly as module m is translated along the z-axis (see Figure 3) until the two
modules overlap completely or the two modules are disjoint. For the bounding box term B(x)
the linearity follows from the fact that as long as the pin in module m is on the perimeter of
the bounding box the term will grow linearly as module m is translated along the z-axis (see
Figure 4). When the pin in module m is inside the bounding box rectangle, the bounding box
term remains unchanged. It can easily be verified in a similar way that the piecewise linearity
also holds for the last two terms C(x) and D(x). The sum of piecewise linear functions is

12

re

3
mnrE-=- *
P11 {

bpﬁv

BBw (X) bP?}v

Y

Tm

Figure 4: Illustration of the net breakpoints. The topmost illustration shows module m as the shaded
box. The pins in net N are marked as black dots and the corresponding bounding box drawn using
dashed lines. Below the function BB y(x) is illustrated as module m is translated along the z-axis.

obviously also a piecewise linear function where the breakpoints and discontinuities correspond
to the union of the breakpoints and discontinuities of the individual terms.

For the overlap term A(x), each module n # m gives rise to four breakpoints as illustrated
in Figure 3, thus the term contributes with at most 4| M| points. The bounding box term B(x)
gives rise to two breakpoints for each module n # m thus in total we get at most 2| M| points
from this term. The last two terms C(x) and D(x) each contribute with 2| M| breakpoints.
As we also need to consider the end points of the domain of module m we need to evaluate the
objective function in at most 10| M|+2 points. To find the minimum of the objective function
(17) we sort the breakpoints according to the z-position and then evaluate the objective value
in each of the points in constant time per. breakpoint as follows: Starting at the current
position of module m we consider the breakpoints to the right of m in increasing order of
z-coordinates. Keeping track on the current objective value, the increment in the objective
can be determined in constant time for each breakpoint by maintaining the sum of the slopes
of the individual terms in the objective. The process is then repeated by moving m to the left.
In total the minimum of (17) can be found in time O((]M| + |N|+|P|) log(|IM|+ |N|+ |P]))
where the most expensive part is the sorting of the points.

4.7 Problem Subdivision for Large Problems

Although much effort has been done to reduce the complexity of each iteration of FLS,
practical experience indicates that the algorithm performs badly for instances with a huge
number of modules. Thus a technique was developed where the placement problem is divided
into a number of overlapping regions, each region being of appropriate size for the algorithm.
The regions are then considered by the GLS heuristic in a round-robin fashion. As the
regions overlap, modules are allowed to traverse between the regions and move over the
whole placement area. The technique has similarities to the tiles of overlapping windows by
Kennings [13].

The overlapping regions are constructed such that they contain at least M modules, where

13

M is an experimentally determined constant (see Section 5.2). Initially the whole placement
area A is split into a grid, where each grid cell is marked as a candidate cell for growing a
region. Then the algorithm repeatedly selects an unmarked candidate cell, grows a region
around the cell, and marks all the encircled cells.

The GLS algorithm is repeatedly applied to a region keeping all cells outside the region
fixed. The regions are considered according to increasing density, such that the easiest regions
are considered first. The GLS algorithm moves from one region to another when no improving
placement has been found within some fixed number of FLS calls.

5 Computational Experiments

In this section we present the results from the computational experiments. The GLS heuristic
was applied to three different layout styles which besides the general cell layout included pure
standard cell layout and large real-life circuits with mixed cell layout. Of the three layout
styles, the general cell layout best explores the potential of the GLS heuristic with respect to
the problem definition given in Section 2. General cell circuits contain rectangular modules of
various dimensions, which makes it difficult to produce even feasible placements for circuits
with only a few modules. This challenges the inherited packing ability of the GLS heuristic [7].

In order to evaluate the placements produced by GLS three different placement heuristics
are used as benchmarks: O-Tree [9], TimberWolf v.1.2 commercial edition (TW) [24] and
XQ [30]. The core in TW is a simulated annealing placement heuristic which is specialized
for standard cell placement [22]. The XQ placement program uses quadratic optimization
and sophisticated partitioning.

In Section 5.1 we describe the computational environment and the benchmarks used in
our computational study. The setting of parameters is presented in Section 5.2. Finally, in
Section 5.3 the computational results are presented and compared with the output from other
heuristics.

5.1 Computational Environment and Benchmark Circuits

The GLS placement heuristic was implemented in C++ and compiled using the aNU C++
compiler. All tests were performed on an Intel Pentium III 800Mhz with 1GB memory
running the Linux RedHat 6.1 operating system. The LEDA library [16] was used to produce
all the graphical output and to some degree to implement complex data types. Circuit data
was represented using the XI data model [19], made available by courtesy of the Research
Institute for Discrete Mathematics, University of Bonn. To implement the sparse matrix
representation, the SparseLib++ [20] and IML++ [11] libraries from NIST were used.
The following benchmark circuits were used in the experiments:

¢ MCNC general cell circuits

These circuits were considered in a recent paper published on the O-Tree heuristic [9];
this heuristic reports some of the best results on these circuits. One problem with these
results is that O-Tree has no restrictions on the size of the placement area. To resolve
this problem we have chosen to create a square placement area with the same area as
reported for placements produced by O-Tree. This solution does not allow an exact
comparison between O-Tree and the GLS heuristic, but on the other hand does not

14

favor GLS: It restricts the GLS heuristic to a square placement area and reduces the
number of possible placements.

There are five circuits in the MCNC general cell benchmark set. Table 1 describes the
characteristics of the circuits. All 8 orientations are possible for the modules and the
placement area contains no blockages nor fixed modules.

Circuit Modules Blockages Pins Nets
Free Fixed Non-I/O I/O

Apte 9 0 0 287 73 97

Xerox 10 0 0 698 2| 183

Hp 11 0 0 309 45 71

Ami33 33 0 0 520 40| 122

Ami49 49 0 0 953 22| 396

Table 1: Characteristics of the MCNC general cell circuits.

e MCNC standard cell circuits

The MCNC standard cell circuits were obtained from the recent GSRC release [8].
The circuits are published with benchmark placements produced by TW, which has
produced some of the best results published on these circuits [24]. Table 2 describes the
characteristics of the MCNC standard cell circuits. Only the basic orientation of the
modules is allowed — that is, no rotation nor flipping is allowed.

Circuit Modules Blockages Pins Nets
Free Fixed Non-I/O 1I/0O
Fract 125 0 0 463 24 147
Primaryl 752 0 0 2,941 130 903
Struct 1,888 0 0 5,471 64 1,920
Industryl || 2,271 0 0 8,837 814 2,593
Primary2 2,907 0 0 11,226 188 3,029
Biomed 6,417 0 0 21,040 97 5,742
Industry2 || 12,142 0 0 48,404 495 | 13,419
Industry3 || 15,059 0 0 68,418 374 | 21,940
Avqlarge || 25,114 0 0 82,752 64 | 25,385
Golem3 99,932 0 0| 338,623 2768 | 144,950

Table 2: Characteristics of the MCNC Standard Cell Circuits. The first five instances are
denoted small instances, while the remaining are denoted large instances.

e Industrial IBM circuits

The GLS heuristic has also been applied to real-life industrial IBM circuits made avail-
able by courtesy of IBM in Boblingen and Research Institute for Discrete Mathematics,
University of Bonn. Three IBM circuits and the corresponding placements produced by
the XQ placement program were made available. Table 3 describes some of the charac-
teristics of these circuits. The circuits consist of a few very large fixed modules and a
large number of (mainly) small standard cells.

15

The layout of the CLK, DECODER and PU circuits is different from the circuits de-
scribed earlier. Firstly, all the modules must be placed on coordinates which corre-
spond to standard cell rows — even if their height exceeds the standard cell row height.
Secondly, every other row is flipped. That is, only two orientations are allowed on
non-flipped rows: The basic orientation and flipping around the y-axis. But on every
other row the modules are also flipped around the z-axis. This is a technological con-
straint which is necessary in order to take into account the power supply. Since this
constraint is not implemented in the GLS heuristic it was necessary to run an additional
legalization program on the placements produced by the GLS heuristic. This legaliza-
tion program flips the modules such that they are oriented correctly — at the cost of
increased netlength.

Circuit Modules Blockages Pins Nets
Free Fixed Non-I/O I/O

CLK 29,056 42 354 | 111,902 414 | 30,293

DECODER || 54,911 17 19 | 188,275 1,016 | 59,256

PU 163,960 96 550 | 617,190 744 | 184,231

Table 3: Characteristics of the IBM circuits.

5.2 Parameter Settings

In the following we briefly describe the setting of all the parameters in the GLS heuristic. For
a more thorough discussion and motivation of these values, we refer to [6]. To ensure that
the heuristic performs well on a large range of instances, the values of the parameters were
made dependent on some general characteristics of the instances. Numerous computational
results indicated that the average module area, denoted by a, was suitable for this purpose.

The bounding box weight 3 in the objective function (8) is used to balance the contribution
of the total netlength to the amount of overlap in the placement solution. As the objective
function is a sum of a linear and quadratic function a variable value of 8 was chosen. Initially
Binitiar = V@ and after each FLS call we let 8 decrease by 1%, until some lower limit is reached.
Each time a feasible placement is found, the value of 3 is doubled to stimulate the process
of finding alternative placements. The value of the A parameters in (14) determines to what
degree an increased feature penalty modifies the augmented objective value. Suitable values
were found to be X\°f = A\°f = @/10.

With respect to the length of the connection feature memory described in Section 4.4, the
best results were obtained for a very short memory of length ¢t = 3- penalty depth (cf. Section
4.5). A penalty depth of 1 was used on circuits with less than 100 modules while the penalty
depth was 3 for larger circuits.

The minimum subproblem size as defined in Section 4.7 was set to M = 80. Thus fairly
small subproblems were considered for large circuits.

5.3 Results
MCNC general cell circuits

The results for the small general cell circuits described in Table 1 are presented in Table 4. For
these instances we used the so-called flat configuration of GLS which starts from a random

16

initial placement. A certain fixed time limit is given to the heuristic. The heuristic runs
until the number of non-improving FLS calls exceeds 20,000 or the time limit is exceeded.
In case the GLS heuristic terminates before the time limit is exceeded a shuffle algorithm
is applied to the placement and the algorithm restarted with the shuffled placement as the
initial solution. The shuffle algorithm performs a random displacement of all modules, but
restricts the displacement distance to 10% of the maximum displacement distance. Thus the
randomization makes small changes to the placements which may help the algorithm to find
new improving solutions.

Circuit GLS O-Tree | Impr.
BBsjsec BB ¢sec BB30sec BBgpsec BB %
Min || 355,705 355,705 355,705 355,705 | 317,000 | -12.2
Apte Avr || 357,227 356,785 355,925 355,720 | 347,000 -2.5
Max || 362,373 361,440 360,730 356,088 - -
Min | 378,044 371,997 371,121 371,121 | 368,000 -0.8
Xerox Avr | 440,048 409,228 389,176 384,370 | 426,000 | 9.8
Max || 617,490 409,228 389,176 384,370 - -
Min || 129,477 129,477 129,449 129,347 | 153,000 | 15.5
Hp Avr | 131,216 130,747 130,318 130,262 | 163,000 | 20.1
Max || 140,034 140,034 131,706 131,706 - -
Min | 43,311 43,311 40,421 39,23/ | 51,500 | 23.8
Ami33 Avr | 55,846 58,710 47,217 }4,786 | 57.200 | 21.7
Max | 93,504 93,504 60,967 52,827 - -
Min | 658,597 558,963 551,161 546,100 | 636,000 14.1
Ami49 Avr || 815,189 687,773 622,558 601,861 | 734,000 18.0
Max || 994,846 829,094 696,708 677,851 - -

Table 4: Results for the MCNC general cell circuits. Rows indicate the minimum, average
and maximum results for 100 runs with random initial solutions. Emphasized entries indicate
an improved solution value as compared to O-Tree.

For each circuit 100 runs were performed with a time limit of 60 seconds. The results
are sampled at different breakpoints and the “GLS” column in Table 4 shows the minimum,
average and maximum total netlength after 5, 10, 30 and 60 seconds, respectively.

In the last column we compare the minimum and average solutions of the final GLS
solutions to the corresponding solutions for the O-Tree heuristic as reported by Guo et al. [9].
No results are reported on maximum O-Tree solutions. The O-Tree experiments were run on
a 200MHz Ultra-1 Sparc station with 512 MB memory. No run times are reported for these
results, but for similar results the authors report approximate run times of less than 1 second
for Apte and Xerox, 6 seconds for Hp, 25 seconds for Ami33 and 177 seconds for Ami49.

On average, GLS finds significantly better solutions for the three largest circuits within a
time frame comparable to the running time of O-Tree. For the Xerox circuit, GLS was only
able to improve the average solution, while for Apte, GLS does not find as good solutions as
O-Tree. It is notable that when GLS finds better solutions than O-Tree this happens within
10 seconds. An explanation why GLS performs worse for the Apte and Xerox circuits may
be the restriction to a fixed placement area (cf. Section 5.1).

17

MCNC standard cell circuits

For the MCNC standard cell instances given in Table 2, high-quality placements produced
by the TW and XQ heuristics exist. Our initial experiments using GLS as a stand-alone
heuristic with the initial solution provided by a simple quadratic optimization and partitioning
algorithm were not successful, and are therefore not reported here (for details see [6]). Instead
we report on improving the placement provided by TW using the region-based GLS algorithm
described in Section 4.7.

For the TW results no exact run time information is supplied. Approximate run times
were obtained from Madden [17] who reported around 30 hours for the Golem3, an order of
an hour for Avqlarge, half an hour for Biomed and 1-2 minutes for Fract on a Sparc 10 with
512MB memory. For the X(Q placer the run times were significantly smaller, in the order of
minutes for the small instances and a few hours for the Golem3 instance on an Intel Pentium
II 500 Mhz with 1GB memory. It should be noted that the TW placements are not very
suitable as initial solutions. In these placements all the modules are compressed as much as
possible to the left. This creates a very dense placement which is potentially difficult for GLS
to rearrange into alternative feasible placements.

In Table 5 we present detailed results for the smallest Fract instance. For this instance
we used random initial placements and a time limit of 300 seconds. The time limit in the
other instances, which used the TW placement as the initial solution, was 3,600 seconds
for the small circuits and 10,800 seconds for the large circuits (cf. Table 2). These results
are presented in Table 6 and 7. Even if GLS is not designed for standard cell problems,
significant improvements can be obtained on several circuits. It is interesting that for most
of the circuits there are notable improvements already within the first 600 seconds, even for
the large Golem3 circuit.

Table 6 and 7 also provide information on the improvements over the placements produced
by XQ, which were slightly inferior to the TW placements. It is important that the reader
does not use these results to compare TW and XQ and conclude that TW in general produces
better results than X(Q. The primary reasons are that due to conversion issues the TW results
may have changed, and that the X(Q results were produced on a very preliminary Linux
version which was not stable. The XQ program is also aimed at much larger circuits and is
not expected to perform well on such “small” instances.

Circuit GLS Imprrw
BBossec BBsosec BBisosec BB300sec %

Min || 62,431 62,378 61,191 61,191 9.3

Fract Avr | 67,328 65,720 63,940 63,042 2.4
Max | 73,718 73,164 70,847 66,335 3.4

Table 5: Results for the Fract circuit. Rows indicate the minimum, average and maximum
results for 50 runs with random initial placements.

Industrial IBM circuits

The results on the standard cell benchmarks showed promising results for the region-based
GLS heuristic with regard to improving existing placements produced by TW or XQ. In this
section GLS is applied to real-life placements produced by X(Q for the three IBM circuits

18

Circuit GLS Imprrw | Imprxq

BBgoosec BB1goosec BB3600sec %o %o
Primaryl 955,159 949,587 949,353 3.8 16.6
Struct 756,623 747,627 744,521 4.3 3.8
Industryl || 1,742,048 1,695,917 1,634,801 12.4 6.4
Primary? | 3,614,241 3,613,442 3,612,800 0.7 11.8

Table 6: Results for the small MCNC standard cell circuits with the TW placement as the

initial solution.

Circuit GLS Impryw | Impryxqg

BBgosec BB36oosec BB10800sec % %
Biomed 3,457,618 3,447,534 3,442,250 0.7 20.3
Industry? | 14,318,272 14,299,904 14,288,855 1.2 15.5
Industry3 | 42,622,856 42,612,226 42,582,937 0.2 12.6
Avqlarge 6,876,002 6,846,046 6,786,482 1.3 20.6
Golem3 || 118,341,850 116,347,638 113,614,220 4.2 4.3

Table 7: Results for the large MCNC standard cell circuits with the TW placement as the
initial solution.

CLK, DECODER and PU described in Table 3.

For each circuit we let GLS run for 12 hours and output the solution after 3, 6 and
12 hours. As described in Section 5.1, there are some additional technological constraints
on the placements of the IBM circuits which are not implemented in GLS. Thus, it was
necessary to perform a legalization of the GLS placements by swapping the orientation of
some modules which again caused an increase in the netlength. The increase in netlength due
to the legalization was between 3% and 4% for CLK, between 4% and 5% for DECODER
and less than 2% for PU.

Table 8 compares the results of GLS (after the legalization) using the XQ placements as
initial solutions. GLS is able to produce significant improvements on all placements. Even
for the large PU circuit GLS improves the placement 6.1% within 3 hours, and after 12 hours
the placement is improved by 16.0%. It is interesting to see that larger circuits give rise to
larger improvements.

Figure 5 plots the development of the improving solutions over the 12 hours of running
time. Solution values before legalization are plotted. For the smallest circuit, CLK, the GLS
heuristic converges very quickly and most of the improvement happens within the first 4
hours. For DECODER the improvement converges more slowly, but GLS still manages to
produce most of the improvements within the time frame of 12 hours. For the PU circuit the
plot shows that 12 hours are not enough for GLS to converge properly.

In Figure 6 we show the displacements vectors for the PU circuit. A displacement is
indicated by an arrow for each module which has been moved by GLS to a new location.
Several interesting observations can be made from these illustrations. Note first that GLS
has made many small modifications over the whole placement area. With respect to the
displacements which are longer than 6% of the maximum displacement, the majority of these
represent modules which have been moved across fixed macros. Most of the displacements
are not parallel to the z- or y-axis, indicating that GLS has performed more than one move

19

on the modules.

Circuit GLS

BBj3y, Impr. BBg, Impr. BBi9y, Impr.
CLK 4,959,800 6.2% | 4,933,650 6.7% | 4,903,923 7.2%
DECODER 7,186,454 7.6% | 7,082,260 9.0% | 7,022,407 9.8%
PU 58,557,990 6.1% | 55,763,712 10.6% | 52,414,317 16.0%

Table 8: Results for the IBM circuits with the XQ placement as the initial solution.

Finally, a few notes on the routability of the placements produced by GLS. The packing
ability of the GLS heuristic results in placements for which dense clusters of modules appear
more frequently than in the corresponding XQ placements. This could potentially cause
problems for the router. In order to investigate this, we performed global routing on the PU
circuit using an industrial quality router. Preliminary results indicated that the reduction in
total netlength after routing was similar to the reduction given by the BB netlength. Also,
the circuit was no harder to route; in fact, the number of nets that were routed by the global
router decreased by more than 10%. The reason is that more nets belonged entirely to a tile
in the division made by the global router.

6 Conclusion

A new local search heuristic based on Guided Local Search (GLS) has been presented for
the final placement problem. The GLS heuristic differs from previous local search heuristics
based on simulated annealing by having a greedy nature which makes it possible to quickly
improve on existing solutions. By using Fast Local Search (FLS) it is possible to shadow
parts of the solution space thus quickly performing local improvements.

The computational comparison with the industrial codes TW and X(Q showed promising
results. The GLS algorithm was able to handle circuits with as many as 160.000 modules and
600.000 pins, obtaining total netlength reductions of up to 20 percent. Obviously, it is unre-
alistic to expect the GLS heuristic to outperform the other heuristics on all the benchmark
circuits. This is especially true when it comes to producing placements of the large standard
cell circuits, where both TW and XQ produce high quality solutions. TW and XQ are both
advanced placement programs — specialized for standard cell problems — which have been
developed over many years. The success of the GLS heuristic should instead be measured
from its ability to produce good results for general cell circuits, and for the capability of
improving on placements produced by TW and XQ.

From a theoretical point of view the presented results are interesting as they indicate that
solutions generated by current techniques still are quite far from optimum. As we do not have
any tight lower bounds for the final placement problem it is difficult to assess the quality of
the solutions proposed. High-quality solutions, obtained through local search (even at the
expense of unreasonable solution times), can be used for this purpose.

The framework for evaluating the neighbourhood in polynomial time as described in Sec-
tion 4.6 is to our knowledge new, when applied to the final placement problem. The Bounding
Box netmodel lends itself well to this approach, as opposed to the other models considered in
Section 2. The fast evaluation of the neighbourhood means that FLS terminates faster, and
thus GLS can perform more iterations within the same time limit.

20

5.3e+06 T
CLK —

5.2e+06

5.1e+06

BB

5e+06

4.9e+06

4.8e+06

L L L L L L L L
5000 10000 15000 20000 25000 30000 35000 40000 45000
Time in seconds

4.7e+06
0

7.8e+06

DECODER —

7.6e+06

7.4e+06

BB

7.2e+06

7e+06

6.8e+06

L L L L L L L L
5000 10000 15000 20000 25000 30000 35000 40000 45000
Time in seconds

6.6e+06
0

6.4e+07 T

6.2e+07

6e+07

5.8e+07

BB

5.6e+07

5.4e+07

5.2e+07

! ! ! ! ! ! ! !
0 5000 10000 15000 20000 25000 30000 35000 40000 45000

5e+07

Time in seconds

Figure 5: Plots which show the improving solution of GLS for the CLK, DECODER and PU circuit.
The y-axis measures the total BB netlength in grid line units before legalization.

21

Figure 6: Displacements made by GLS on the PU circuit after 12 hours. At the top are shown the
displacements from 0% to 2% of the maximum displacement. In the middle the displacements from
2% to 6% and at the bottom the displacements which are longer than 6%.

22

The GLS algorithm is still in an initial phase of development. Trimming of the parameters
involved, and experimenting with other strategies for the duration of penalties may lead to
additional improvements in solution quality. Also, experiments with increased solution time
should be performed as the results for, e.g., the PU circuit indicate that the algorithm could
improve the solution further if given additional time. A final topic of further research is to
verify that the routability of the GLS solutions is not worse compared to other algorithms.
As described in Section 5.3, the preliminary results seem promising.

Acknowledgments

The authors would like to thank Ulrich Brenner, Karsten Muuss, Jiirgen Schietke and Jens Vygen at
the Research Institute for Discrete Mathematics, University of Bonn, for valuable help and fruitful
discussions. Also, we would like to thank Jirgen Kohl at the IBM Research Center in Béblingen for
providing industrial benchmarks circuits. The work was partially supported by SNF grant number
9701414 entitled “Experimental Algorithmics”.

References
[1] C. J. Alpert, J.-H. Huang, and A. B. Kahng. Multilevel circuit partitioning. In Proceedings of
the 34th ACM/IEEE Design Automation Conference, pages 530-533, 1997.

[2] U. Brenner. Plazierung im VLSI-design. Master’s thesis, Research Institute for Discrete Mathe-
matics, University of Bonn, 2000.

[3] U. Brenner and J. Vygen. Worst-case ratios of networks in the rectilinear plane. Technical Report
00904, Research Institute for Discrete Mathematics, University of Bonn, 2000.

[4] F.R.K. Chung and R.L. Graham. On Steiner trees for bounded point sets. Geom. Dedicata,
11:353-361, 1981.

[5] K. Dowsland. Some experiments with simulated annealing techniques for packing problems.
European Journal of Operational Research, 68:389-399, 1993.

[6] O. Faroe. Placement of modules in VLSI layout. Master’s thesis, Dept. of Computer Science,
University of Copenhagen, 2000.

[7] O. Faroe, D. Pisinger, and M. Zachariasen. Guided local search for the three-dimensional bin
packing problem. Technical Report 99-13, Dept. of Computer Science, University of Copenhagen,
1999.

[8] Gigascale Silicon Research Center. http://www.gigascale.org,.

[9] P.-N. Guo, C.-K. Cheng, and T. Yoshimura. An O-Tree representation of non-slicing floorplan
and its applications. In Proceedings of the 36th Design Automation Conference, pages 268-273,
1999.

[10] A. Hetzel. Verdrahtung im VLSI-Design: Spezielle Teilprobleme und ein sequentielles
Lésungsverfahren. PhD thesis, Research Institute for Discrete Mathematics, University of Bonn,
1995.

[11] IML++ v. 1.2a. http://math.nist.gov/iml++/.

[12] D.W. Jepsen and C.D. Gelatt, Jr. Macro placement by monte carlo annealing. Proc. IEEFE Intl.
Conference on Computer Design, pages 495-498, 1983.

[13] A.Kennings. Cell Placement Using Constructive and Iterative Improvement Methods. PhD thesis,
University of Waterloo, 1997.

23

[14]
[15]

[16]
[17]
[18]

[19]

[20]
[21]

[22]
[23]

[24]
[25]

[26]
[27]

[28]

[29]
[30]
[31]

[32]

B.W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. The Bell
System Technical Journal, 49:291-307, 1970.

P. Kilby, P. Prosser, and P. Shaw. Guided local search for the vehicle routing problem. In 2nd
International Conference on Metaheuristics - MIC97, 1997.

LEDA v. 4.1. http://www.mpi-sb.mpg.de/LEDA/.
Patrick Madden, 2000. Personal communication.

S. Mallela and L. K. Grover. Clustering based simulated annealing for standard cell placement.
In Proceedings of the 25th ACM/IEEE Design Automation Conference, pages 312-317, 1988.

Karsten Muuss. XI Data Model. Research Institute for Discrete Mathematics, University of Bonn,
1996.

NIST SparseLib v. 1.5c. http://math.nist.gov/sparselib++/.

C. Sechen. VLSI Placement and Global Routing Using Simulated Annealing. Kluwer Academic
Publishers, Boston, 1988.

W.-J. Sun and C. Sechen. Efficient and effective placement for very large circuits. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, 14(3):349-359, 1995.

W. Swartz and C. Sechen. New algorithms for the placement and routing of macro cells. Proc.
27th Design Automation Conference, pages 336-339, 1990.

TimberWolf v.1.2. http://wuw.internetcad. com.

M. Upton, K. Samii, and S. Sugiyama. Integrated placement for mixed macro cell and standard
cell designs. In 27th ACM/IEEE Design Automation Conference, pages 32-35, 1990.

C. Voudouris. Guided Local Search for Combinatorial Optimization Problems. PhD thesis, Dept.
of Computer Science, University of Essex, Colchester, UK, 1997.

C. Voudouris and E. Tsang. Partial constraint satisfaction problems and guided local search. In
Proceedings of Practical Application of Constraint Technology (PACT96), pages 337-356, 1996.

C. Voudouris and E. Tsang. Fast local search and guided local search and their application
to British Telecom’s workforce scheduling problem. Operations Research Letters, 20(3):119-127,
1997.

C. Voudouris and E. Tsang. Guided local search and its application to the traveling salesman
problem. European Journal of Operational Research, 113:469—-499, 1999.

J. Vygen. Algorithms for large-scale flat placement. Proceedings of the 3/th Design Automation
Conference, pages 746-751, 1997.

J. Vygen. Plazierung im VLSI-Design und ein zweidimensionales Zerlegungsproblem. PhD thesis,
Research Institute for Discrete Mathematics, University of Bonn, 1997.

D.F. Wong, H.-W. Leong, and C.L. Liu. Simulated Annealing for VLSI Design. Kluwer Academic
Publishers, 1988.

24

