Supporting intellectual work through artifact rendering
and group review

Lars Yde
Department of Computing, University of Copenhagen

Universitetsparken 1, DK-2100 Copenhagen East, Denmark
larsyde@diku.dk

Jyrki Katajainen
Department of Computing, University of Copenhagen
Universitetsparken 1, DK-2100 Copenhagen East, Denmark
jyrkiediku.dk

Abstract: Intellectual teamwork, such as that done by software development teams,
is characterized by the intangibility of its subject matter. This can make it difficult
for team members and outside stakeholders to gain an overview of the product being
built. Many software tools of various designs have addressed this problem, often by
using graphs and charts to model on-going projects. In this paper, we suggest a design
based on artifact rendering and group review and argue that it can promote overview
and communication. We also present software built from that design and describe its
potential uses and audience as well as its implementation.

Keywords: Computer-supported collaborative work, component-based development
Category: H.4.3, H.5.3, K.4.3

1 Introduction

Two persistent problems in software engineering are inadequate under-
standing and poor communication among the participants in software de-
velopment projects [Sommerville 1996]. These problems have been known
for decades [Naur and Randell 1969] and numerous development method-
ologies and tools have been offered as solutions to them. Among the
tools have been computer-aided software-engineering (CASE) software
and groupware for supporting various aspects of the development process.
A central goal of the CASE category has been to create overview of the
structure and progress of software projects, often by means of abstract,
static representations such as charts and graphs — a choice of form that
has several consequences. Firstly, users must be familiar with the con-
ventions of the tool and its notation to use and understand it properly.
Secondly, abstraction trades overview for completeness in that the more
abstractly a project is modelled, the less detail is available. Thirdly, by ab-
stracting away detail, CASE tools typically remove access to the content

underlying the model, thus wasting opportunities for use, for example,
in code inspection and group discussion. Lastly, by using static or man-
ually updated models, many tools report not the actual, on-going state
of a project but rather an intended or perceived state whose accuracy is
dependent on how well the model is updated by the users.

Furthermore, one reason why software engineering has not achieved
the predictability, stability and success rate of conventional engineering
disciplines is lack of feedback. Consider construction engineering where,
put crudely, the status of a project at any given moment is reflected by
the status of the physical structure being built. Or take an electrical en-
gineering project where the degree of correlation between blueprint and,
say, a piece of circuitry can be continuously monitored by simply compar-
ing the two, in addition, of course, to testing and inspecting the system
under construction. This relationship between conception, design, and re-
alization, where an idea is translated into detailed specification and then
gradually realized as a physical entity, is not found in software engineering
as the end product, the software itself, is inherently intangible. Software
engineers, and, indeed, everyone engaged in intellectual work, therefore
lack the overview that other engineers are often provided by the laws of
physics, so to speak.

This suggests a potential need for software tools or systems that can
give developers an accurate and concurrently updated representation of
the artifact being built so that project status and progress can be contin-
uously monitored. In [Section 2] we describe a prototype of such a tool
which is intended to support intellectual teamwork in general. That is,
we aim at supporting any process in which a symbolic product, an arti-
fact, is being produced by individuals in group collaboration, so the use
is not limited to software developers. Our main design goal was to pro-
mote overview by artifact rendering and communication by group review.
By artifact rendering we mean the representation of intellectual artifacts
by some medium to facilitate processing by humans, and by group review
the activity through which team members exchange information and com-
mentary on the artifact being built. Our prototype uses visualization to
render an artifact that consists of textual and graphical documents, but
other forms can be envisaged, i.e. auditory representation. Also, discussion
fora can be associated with parts of the artifact rendered.

Our prototype was developed using the Java programming language
and a set of compatible component technologies. In [Section 3] we dis-
cuss both and argue that implementation was possible only through such
component-based development, given our limited resources. Next, in [Sec-
tion 4], we propose some potential uses of the prototype, both in its present
form and in subsequent versions. We then go on to discuss earlier related
work in [Section 5] and finally, in [Section 6], we outline our plans for a

more advanced system.

2 Description of the Prototype

The prototype aimed at fulfilling the basic needs of artifact rendering
and group review was named PeerView and work on it was begun in the
middle of May 2000 as part of Lars Yde’s M. Sc. thesis. At the time of
writing (mid October), a beta release has been completed and a stable
version is planned for release before the end of the year. The system is
released under a freeware license both in its binary and source form. In
this section, we outline PeerView’s design.

2.1 System Overview

PeerView provides users with a dynamic representation of on-going work
by rendering the artifact of that work in a form which allows easy overview
as well as inspection and discussion of detail. PeerView accomplishes this
by allowing groups of users to share documents and have them rendered
in a scalable visual panorama. The set of documents is constantly kept
updated so as to provide a real-time window onto the artifact (e.g., a col-
lection of code files) being developed. With each document is associated
a discussion forum that enables a group to have discussions on the doc-
ument in a manner similar to a USENET [WebMagic 2000] newsgroup
having discussions of a set topic.

2.2 Architecture

PeerView is a client/server application with “fat” clients and a “thin”
server, meaning that most system functionality is placed in the client
application and relatively little in the server. Each PeerView user is as-

sumed to be running a single instance of the client program on his or

File Setup Heip

&/ &l =/8 H e e |

Name: D: arsl CPHSTL index. himl
Author: Lars Yde

Size: 3432 bytes

Last updated: 15-10-0010:426

The Copenhagen STL

DIKU Course #5085, autumn 2000

[——

Table of Contents

o Qutline
®Elan

® Pogress.
® Downioads
.

o Literalure

Course outline

av
@ UD\‘E'S\CPHST\E: This is the discussion forum for the document Di\lars\CPRSTL\index.htul which was added by Lars Yde on Sun Oct 15
0 Systemnot g | |10:42:07 IDT 2000
=

@

Message area: double-chick here 10 open in separ ate window

Figure 1: The PeerView client window.

her machine, but multiple instances are possible, provided they are run-
ning from separate locations (different directories). The server may run
on one of the users’ machines or it may run on a separate host. Currently,
PeerView supports two types of connection: TCP/IP sockets and HTTP.
The former is intended for local or closed networks, the latter for use over

the Internet, but both may of course be used differently.

2.3 The PeerView Client

The client application provides a window onto a set of documents via
a zoomable panorama [Fig. 1, centre] where documents can be arranged
in an arbitrary pattern and zoomed to arbitrary scale as well as moved
and sized individually. By centring a document, the user can access its
discussion forum [Fig. 1, bottom] and read as well as add contributions
to the on-going discussion on that document. The top of the client window
is occupied by a selection panel consisting of standard drop-down menus
and toolbar buttons. The drop-down box in the right-hand side of the
toolbar panel lists the documents currently displayed in the panorama so

I

=y PeeView client

File Setup Help

daEage — ~|

Group name | Description [# of docurne . [Total data vo_ [Active partici[Creation date| Created
Group 1 A group 2 900276 1 Sun Oet15 .. Lars Yae
Group 2 Another gro |0] 0 Sun Oct 15 Lars Yde
Group 3 Yetanother_ |0]] Sun Oct 16 _ Lars Yde

fy| B

iv

@}
]
@]

Message area: double-chick here 10 open in separ ate window

Figure 2: Panorama overview and group directory.

that each can be selected by name as well as by navigating the panorama
using a mouse.

From the selection panel, the user can choose to add or remove docu-
ments, customize the client using a preferences dialog or access and modify
the group directory, i.e., the list of groups currently available. The direc-
tory appears on top of the main window as shown in fig. 2 where the
panorama is zoomed to overview, displaying in this case 32 documents
arranged in a grid pattern which can be customized by the user from
the preferences dialog available from the drop-down menus. Each group is
listed with its current number of participants, the number of documents
it comprises and their total volume in bytes. Using the button panel at
the bottom of the group directory box, the user can join, create, edit and
delete groups. After joining a group, the other group members, if any, are
instructed by the client application to submit their documents so that
they can be added to the panorama of the new group member. The new
member’s own documents are then broadcast to the other group members
so that their panoramas can be similarly updated.

© 3 DWars\CPHSTLlindex htmi, authored hial:mis is the discussion forum for the document D:'lars\CPHSTL\index.htal which was added by Lars Yde
System nofice, by localhost on Sun on Sun Dct 15 10:42:07 EDT 2000
31 gont like the layout
[1 dontlike the layout, by Lars Yol =2
[} reason for choosing i, by Jyrki
@ [1sthe font 0K ?
[} 1= the font 0K 2, by Jyrki Kat

Message area: double-Click here to open in separate window

Figure 3: Discussion forum.

Asindicated earlier, centring a document (by double-clicking it) causes
the PeerView client to request the discussion forum for that document
from the server and, upon receipt, display it in the bottommost section
of the main window. From there, the user can select a position in the
topic tree [Fig. 3, left] and using the small vertical toolbar panel choose
to compose a new message, delete an existing message that has not yet
been responded to, or view the property sheet of the selected message.

2.4 The PeerView Server

The central purpose of the server is to maintain a database of clients,
groups and discussion fora which is reflected in its user interface [see
Fig. 4]. It consists of little else than a listing of the groups supported,
a toolbar and a menu panel from which a few, basic functions (setup and
help) can be selected.

[Peerview server

Setup Help

o =me

Groupname | Description | #of documents [Total data. | Active participants| |
Group 2 Another group |0 0 0 -
Growp 1 Agroup 2 248008 1 2

w0 w

Group 3 Vet another group|D 0 0

Figure 4: The PeerView server window.

2.5 Design Rationale

The choice of a client /server architecture was made based on the responsi-
bilities of the server. A peer-to-peer architecture would have been equally
feasible but would merely have placed the server functionality in an ar-
bitrary client, resulting in little discernible difference to the user. More
significant is the use of a zoomable panorama. As explained earlier, the
underlying motivation is to provide overview without loss of content. The
user can achieve this by zooming the arrangement of documents to his
or her preferred scale, of course, but by combining zooming with a linear
setup, an effect similar to that found in work by Kick et al. on the visual-
ization tool SeeSoft [Stasko et al. 1998, p. 315] can be produced. SeeSoft
uses a linear arrangement of multi-coloured columns to render an overview
of a collection of code files and their associated statistics (such as time of
modification), thus giving users access to large amounts of information at
a glance.

On a more theoretical level, the idea of a customizable panorama that
can be viewed at arbitrary levels of detail is in keeping with the notion of
micro/macro readings as described by Tufte in [Tufte 1990, p. 38 ff.]:

“...the power of micro/macro designs holds for every type of data
display as well as for topographic views and landscape panora-
mas. Such designs can report immense detail, organizing complex-
ity through multiple and (often) hierarchical layers of contextual
reading.”

Tufte’s focus is on the presentation of cartographical and scientific data
but his observations seem to apply equally well here.

3 Implementation Overview

The most important considerations in choosing implementation technol-
ogy for PeerView were: broad user appeal, ease-of-use, high degree of
portability, extensible structure and reliability. The Java programming
language seemed the obvious choice given these requirements, but imple-
menting all of the planned functionality bottom-up within the set time-
frame of four months was almost surely infeasible since implementation

was in the hands of a single developer (Lars Yde). The solution lay in using

component libraries to implement some of the low-level features such as
data distribution and visualization that would otherwise have demanded
weeks of development, testing, and fine-tuning to function satisfactorily.
The specific choice of components and the reason for choosing them are
detailed below.

3.1 The User Interface

The PeerView interface is implemented using the Swing classes found
in the Java Development Kit (version 1.2.2) [Sun Microsystems 2000a].
These are light-weight graphical components meaning that they make
no (or only very limited) use of operating-system-specific code, thus en-
suring maximum portability and a minimum of visual variability across
platforms. The zoomable panorama which occupies the centre portion of
the client window is built using the Jazz toolkit (version 1.0) [HCIL 2000],
which provides primitives for building scenegraphs and scaling text and /or
graphics. (A scenegraph is a tree structure for organizing graphical ob-
jects.) Jazz interacts smoothly with other Java technologies and its struc-
ture facilitates future extensions and modifications. In that sense, it allows
development time to be shortened without imposing arbitrary restrictions

on future development efforts.

3.2 Communication and Data Distribution

The PeerView communication infrastructure is implemented using the
Java Shared Data Toolkit (JSD'T, version 2.0) [Sun Microsystems 2000b].
It is a relatively low-level toolkit compared to some of the alternatives
surveyed, such as NCSA Habanero [NCSA 1999], TANGO Interactive
[WebWisdom.com 1999], and DreamTeam [LPI2 2000], all available on-
line and free of charge. However, it has the distinct advantage of being
100% pure Java, meaning that the risk of incompatibility problems — a
frequent stumbling block to developers — seemed minimized.

The JSDT requires a server to maintain a directory of clients and
groups, and allows all members of a group to communicate and exchange
data using an arbitrary number of channels. Currently, PeerView uses
only a single channel per group, but extending the design later on would
be easy as would adding a number of advanced features such as data

encryption, access restriction and communication statistics gathering, all
of which are supported in part or whole by the JSDT'.

As mentioned earlier, PeerView currently supports two communication
protocols, namely TCP /IP sockets and HTTP, but can easily be extended
with additional protocols since the JSDT design is completely indepen-
dent of its underlying implementation. Such an extension is, however, a
low priority as other, more interesting features (suggested in the previous

paragraph) are higher on the agenda.

4 Potential Uses for PeerView

PeerView was designed for a specific purpose, namely support of intellec-
tual teamwork, but was deliberately made flexible through simple design
and portable technology. It is therefore suited for other uses than that of
facilitating intellectual work. Some possible applications of PeerView are
listed below. Many of these are inspired by examples found at the Jazz
website [HCIL 2000].

Repository inspection: PeerView could be used for the inspection of
document repositories such as those maintained by the version man-
agement systems that are often used in software development. It is
planned to try this in practice in the near future by allowing users
to download the PeerView client software from a website and then
access a CVS repository using that software (CVS is short for Concur-
rent Versions System — a popular open source version management
system, see [OpenAvenue 2000]).

Web browsing: PeerView can display HT'ML documents in its present
form and can be extended to support hyperlinks in future versions,
and could, after such an extension has been implemented, function as
an inter-/intranet browser.

Presentation: Documents can be displayed and arranged in PeerView’s
panorama and subsequently used in a presentation much like conven-
tional slides but in a more manageable way, for example, by projecting
the panorama onto a canvas and then using a mouse to navigate while

giving the presentation.

Authoring: PeerView could be used as an authoring tool by researchers
who could have separate copies of a shared manuscript placed on the
panorama and then edit and annotate their version while conferring
with others about their copies. This could also be used for commentary
and proof-reading and would scale well since the zoomable PeerView
panorama need not consume more user screen space as the number of
authors increases.

Education: Due to its simple design and graphical interface, PeerView
is accessible to most users, including children and some groups of dis-
abled people, and so could be used both for distance learning in ge-
ographically dispersed communities and as a support tool in conven-
tional education. One obvious example of the latter is letting visually
impaired students study teaching materials at their preferred magni-

fication using the zoomable PeerView panorama.

The above points to some general areas of application, but the number
of specific uses is potentially quite large because of PeerView’s extensible,
open-ended architecture and design.

5 Earlier Work

The extensive directory of computer-supported collaborative work and
groupware resources at [Diamond Bullet Design 1998] lists a large number
of groupware applications for shared editing, conferencing, e-mailing, and
other forms of group collaboration. In theory, such functionality can serve
the same purpose as PeerView, but in practice, many of these products are
designed for different purposes and are thus ill suited for artifact rendering
and group review. Two examples are Cybozu Office [Cybozu 2000] and
Lotus Notes [Lotus Corporate 2000], both of which are large suites of tools
for collaborative work that facilitate resource sharing and communication.
However, their size and complexity makes it impractical to use them for
the narrowly defined and specific purpose that PeerView has.

Several academic initiatives have explored areas related to artifact ren-
dering and group review and have produced software that addresses the
same underlying problems as PeerView. Examples are the TeamRooms
software [Roseman et al. 1996] created for supporting team collaboration
and group awareness, and the WORLDS software [DSTC 2000] used for

distributed access to one or more repositories of information. Both are
similar in architecture to PeerView and are aimed at facilitating col-
laborative work through object sharing and group communication, but
their designs differ from PeerView’s in key areas. Both TeamRooms and
WORLDS are based on spatial metaphors, i.e., the notion of shared elec-
tronic spaces. TeamRooms realizes this idea by letting users define rooms
which are persistent fora where objects can be shared and communication
can take place between the visitors of the room. Each room is equipped
with facilities for collaborative work in the form of applets for exchanging
information and carrying out other tasks. The TeamRooms user interface
is dominated by a panorama onto which the contents of the room (i.e.,
the shared objects) are projected for inspection and manipulation by all
users “present” in the room. An implication of such a design is of course
that the set of shared objects can easily occupy more than the visible
screen space and TeamRooms addresses this problem by offering a room
overview radar that gives an outline, non-scalable bird’s eye view of the
room (the work on radar overview has been continued at the University
of Calgary [GroupLab 2000] where TeamRooms was developed).

On the conceptual level, PeerView differs from TeamRooms by be-
ing a tool for artifact rendering and group review whereas Teamrooms
provides shared electronic spaces for collaborative work. This is the cen-
tral difference since the conceptual nature of a system usually dictates
future design and development efforts. In terms of design, PeerView has
fewer features than TeamRooms and consequently a simpler interface. It
also addresses the issue of artifact overview differently, namely through
its scalable, configurable panorama, but it is similar in its use of object
sharing by projection onto a panorama surface. Technologically, the most
important difference is that PeerView is written in Java while TeamRooms
is a Tcl/Tk application which obviously impacts portability and potential
audience since Java is platform-independent and Tcl/Tk is not, although
it is widely supported. The WORLDS collaboration environment, which
is called Orbit, differs from PeerView in much the same way as Team-
Rooms, but has a more complex architecture and, consequently, more

stringent system requirements than both TeamRooms and PeerView.

6 Future Plans

Given the open design and implementation of PeerView, we expect little
difficulty in integrating new features suggested by future users and our-
selves. A handful of useful extensions have already been brought to our
attention and are listed below:

— New display managers to allow advanced document formats such as
RCS (the format used by CVS [OpenAvenue 2000] for storing the re-
vision history) and streaming video in addition to the existing formats

which include plain text, HTML, RTF, GIF and JPG.

— A selection of layout managers, i.e., user configurable program compo-
nents for automated control of the documents in the client panorama,
in addition to the default manager (the grid layout manager) now

available.

— An editable and extensible property sheet associated with each docu-
ment.

— Discussion fora for groups of documents organized by owner, topic, or
some other shared characteristic.

The above features are for integration into future releases along with any
additional suggestions deemed worthwhile.

The long term plan is to gather feedback about the use of PeerView and
from that assess the viability of its philosophy and design. Provided this
assessment is favourable, we plan to develop a more ambitious system for
real-time artifact rendering and process rendering. That is, in addition to
an artifact, the organization and history of a project is rendered. The sys-
tem is to assemble global statistics about the state of a project by collating
information and documents gathered from individual clients distributed in
a network. Relevant statistics would be the number of documents worked
on by each user, the number and position of changes made to those doc-
uments and, for code files, profiling and debugging information. That in-
formation should then be organized by the server and transmitted around
the network to an arbitrary number of consumers who would render it,
either visually or by some other medium determined by the preferences of

the user. Moreover, the system could offer the review facilities of PeerView

along with a set of more advanced features. ldeally, the latter would in-
clude “scribbling pads” to communicate in pictures/diagrams in addition
to words, audio and video conferencing to allow real-time communication
among group members, and playback facilities for observing the evolution
of a project over time. Thus, by combining artifact rendering with pro-
cess rendering, a both spatially and temporally accurate representation of
on-going work is given.

7 Conclusion

The problems that PeerView seeks to address are not new, but its ap-
proach and design are relatively untried. Only user feedback and continued
research will tell if such an approach is justified and has enough substance
to bear larger initiatives. If so, the potential benefits from a more ambi-
tious project as outlined seem significant. On a more philosophical level,
the potential merit of the PeerView approach comes from the fact that
it is a response to a real and pervasive problem in software engineering,
namely how to get a cognitive grip of an intrinsically intangible and usu-
ally highly complex subject matter. In that sense, PeerView can be seen
as a small step in the evolution towards CASE tools that can help soft-
ware engineering attain the maturity of other engineering disciplines and
thereby, hopefully, stem the pandemic of failed projects.

Software Availability

The latest PeerView binaries are available online at:
http://www.diku.dk/research-groups/performance-engineering/PeerView/

The source code and accompanying documentation will be made available at the above
address before the end of this year (2000). Future developments and release plans will
also appear there as will related resources. Please feel free to download PeerView and

test its usefulness for yourself.

Acknowledgements

This work was supported by the Danish Natural Science Research Council under con-

tract 9801749 (project Performance Engineering).

References

[Cybozu 2000] Cybozu, Inc.: “Cybozu”; Website accessible at http://www.cybozu.
com/.

[Diamond Bullet Design 1998] Diamond Bullet Design: “Usability First™”; Website
accessible at http://www.usabilityfirst.com/.

[DSTC 2000] Distributed Systems Technology Centre Pty. Ltd.: “The WORLDS
Project”; Website accessible at http://archive.dstc.edu.au/TU/worlds/.

[GroupLab 2000] Groupl.ab, University of Calgary: “Grouplab: Laboratory for Com-
puter Supported Cooperative Work & Human Computer Interaction”; Website
accessible at http://wuw.cpsc.ucalgary.ca/projects/grouplab/.

[HCIL 2000] Human-Computer Interaction Lab, University of Maryland: “Welcome to
Jazz!”; Website accessible at http://www.cs.umd.edu/hcil/jazz/.

[Lotus Corporate 2000] Lotus Development Corporation: “Lotus® Notes”; Website ac-
cessible at http://www.lotus.com/home.nsf/welcome/notes.

[LLPI2 2000] Lehrgebiet Praktische Informatik 1T, FernUniversitit Hagen: “DreamTeam
Homepage”; Website accessible at http://carmen.fernuni-hagen.de/
dreamteam/dreamteam_eng.html.

[Naur and Randell 1969] P. Naur and B. Randell (Editors): “Software Engineering,
Report on a Conference Sponsored by the NATO Science Committee”; Scien-
tific Affairs Division, NATO (1969).

[NCSA 1999] National Center for Supercomputing Applications, University of Tlli-

nois at Urbana-Champaign: “NCSA Habanero®”; Website accessible at http:
//havefun.ncsa.uiuc.edu/habanero/.

[OpenAvenue 2000] OpenAvenue, Inc.: “Concurrent Versions System: The Open Stan-
dard for Version Control”; Website accessible at http://www.cvshome.org/.

[Roseman et al. 1996] M. Roseman and S. Greenberg: “TeamRooms: Network Places
for Collaboration”, Proceedings of the ACM 1996 Conference on Computer Sup-
ported Cooperative Work, ACM (1996), 325-333.

[Sommerville 1996] 1. Sommerville: “Software Engineering”; 5th Edition, Addison-
Wesley Publishing Company, Inc. (1996).

[Stasko et al. 1998] I. Stasko, J. Domingue, M. H. Brown, and B. A. Price (Editors):
“Software Visualization: Programming as a Multimedia Experience”; The MIT
Press (1998).

[Sun Microsystems 2000a] Sun Microsystems, Inc.: “Java™ 2 SDK, Standard Edition”;
Website accessible at http://java.sun.com/products/jdk/1.2/.

[Sun Microsystems 2000b] Sun Microsystems, Inc.: “Java™ Shared Data Toolkit”
Website accessible at http://java.sun.com/products/java-media/jsdt/
index.html.

[Tufte 1990] E.R. Tufte: “Envisioning Information”; Graphics Press (1990).

[WebMagic 2000] WebMagic, Inc.: “USENET.org™"”; Website accessible at http://
wwWw.usenet.org/.

[WebWisdom.com 1999] WebWisdom.com, Inc.: “ITANGO Interactive™”; Website ac-

cessible at http://www.webwisdom.com/tangointeractive/.

