The Pickup and Delivery Problem with Time
Windows and Precedences™

Mikkel Sigurd, David Pisinger, Michael Sig

Dept. of Computer Science, University of Copenhagen,
Universitetsparken 1, DK-2100 Copenhagen, Denmark

Abstract

In the classical Vehicle Routing Problem (VRP) we wish to service some geograph-
ically scattered customers with a given number of vehicles at the minimal cost. In the
present paper we consider a variant of the VRP where the vehicles should deliver some
goods between groups of customers. The customers have an associated time window,
a precedence number and a quantity. Each vehicle should visit the customers within
their time windows, in nonincreasing order of precedence and such that the capacity
of the vehicle is respected. The problem will be denoted the Pickup and Delivery
Problem with Time Windows and Precedency Constraints (PDPTWP). PDPTWP
has applications in the transportation of live animals where veterinary rules demand
that the livestocks are visited in a given sequence in order not to spread specific
diseases.

A tight formulation based on Dantzig-Wolfe decomposition is proposed. The for-
mulation splits the problem into a master problem, which is a kind of set-covering
problem, and a subproblem which generates legal routes for a single vehicle. The LP-
relaxation of the decomposed problem is solved through delayed column generation,
and computational experiments show that the obtained bounds are less than 0.7%
from optimum for practical problems.

Exact and heuristic algorithms for the subproblem are presented and their com-
plexity is discussed. Moreover several branching strategies for reaching an integer
solution are presented. The paper is concluded with a comprehensive computational
study involving real-life instances from the transportation of live pigs.

1 Introduction

The SPF Association in Vejen, Denmark is responsible for planning transportation of live
pigs in Denmark according to a number of veterinary restrictions. In order to avoid the

*Technical Report 00/08, DIKU, University of Copenhagen, DK-2100 Copenhagen

1 INTRODUCTION 2

spread of diseases, the transportations must be carried out such that each vehicle visits the
livestocks according to a nonincreasing health code. At the end of each day, the vehicle is
cleaned and thus it is disease-free the following day. The SPF company schedules around
300 transportations every day, using around 90 vehicles.

The problem may be seen as a Vehicle Routing Problem with Time Windows (VRPTW)
since we have m vehicles to service n geographically scattered customers. The vehicles are
located in a number of depots, and each vehicle has an associated capacity which may not
be exceeded during the transportation. It is assumed that the vehicles leave the depot with
no cargo, and arrive at the same depot wihout any cargo. Each customer has an associated
time window in which he should be visited. If a vehicle arrives before the time window of
a customer, it is assumed that the vehicle waits until the window opens.

The objective of the problem is to satisfy a number of deliveries at the lowest possi-
ble transportation cost. Each delivery consists of a seller (of live animals) and a buyer.
Immediately after having picked up the animals at a seller, the vehicle should proceed to
the corresponding buyer. Situations may however occur where a delivery consists of more
than one seller to the same buyer, or more than one buyer to the same seller. In such a
case it is allowed to first pick up the cargo from all the sellers before proceeding to the
buyer (or vice versa). A compund delivery may however also be treated as a number of
individual deliveries. Thus the problem may be seen as a kind of a Pickup and Delivery
Problem with Time Windows (PDPTW).

The last restriction relates to the health-code of each livestock. In order not to spread
diseases a vehicle should visit the customers according to a nonincreasing order of the
health-code. This restriction imposes a precedency constraint to the problem which then
becomes a Pickup and Delivery Problem with Time Windows and Precedency Constraints
(PDPTWP).

To our knowledge PDPTWP has not previously been considered in the literature, but
due to its similarity to VRPTW and PDPTW, several techniques from the latter problems
may be used for its solution.

Kohl [Koh95] gives an overview of of exact solution methods for the VRPTW. As
the problem is NP-hard, all solution methods are based on branch-and-bound techniques
using some kind of relaxation for deriving the lower bounds. A number of decomposi-
tion techniques have been proposed including Lagrange relazation, variable splitting and
Dantzig- Wolfe decomposition. Also cutting plane techniques are frequently used to tighten
the formulation. Dumas, Desrosiers and Soumis [DDS91| solve a PDPTW through branch-
and-bound and column generation. The authors describe how the associated graph can be
reduced by some simple rules based on the time windows and capacity constraints. More-
over, a dynamic algorithm for generating routes is presented. Other algorithms for the
route generation are presented in Sol and Savelsbergh [SS94| where two heuristic methods
are described. The first heuristic is a kind of insertion algorithm which repeatedly inserts
a customer in the route as long as the associated reduced costs are decreased. The second
heuristic aims at improving existing columns. Sol and Savelsbergh propose two branching

1 INTRODUCTION 3

strategies for obtaining an integer solution. Ideally the branching strategy should keep
the search tree balanced such that there is an equal progression in the solution effort at
both subproblems. The first strategy divides the solution space according to whether or
not a customer is serviced by a vehicle. The second strategy considers whether or not two
customers are serviced by the same vehicle. In [SS95] Savelsbergh and Sol give an overview
of the Pickup and Delivery Problem (PDP) in a general formulation. Several variants of
PDP are discussed, and a number of exact and heuristic solution methods are presented.
Bernhard et al. [BJNT96] discuss several aspects of using column generation with a branch-
and-bound algorithm, including the solution of the pricing problem, branching strategies
and derivation of additional constraints.

In the following we will present a graph formulation of PDPTWP. The problem is
defined on an oriented graph § = (N,), where the node set N consists of customers
C and depots D. To each customer is associated a quantity ¢;. A positive value of g;
means that the vehicle should pick up a load of the given size, and thus we will denote the
corresponding customer a seller. A customer with a negative value of ¢; is denoted a buyer.
To each customer ¢ € € is assigned a time window [a;, b;] and a precedency code p;. A
vehicle should visit the customers within their time window and according to nonincreasing
precedency numbers.

The customers should be serviced by a set of vehicles V. Each vehicle £ € V has an
associated capacity @y, a start depot D, and an end depot D, . In the following we will
denote the set of start depots DT = Ugey D} and the set of end depots D~ = Ugey D, .
Every depot d € D = DT UD™ has an associated time window [ag, by] within which it may
be visited.

The cost of traveling from node 7 to node j is denoted c¢;; and the corresponding travel
time is assumed to be ¢;; > 0. A typical choice of the cost function is the actual expenses
(time and distance) for driving from 7 to j. If no edge exists between two nodes i and j,
we may set the corresponding cost c¢;; to infinity. If the number of vehicles used should be
minimized one may add a large number to the cost of every edge leading from the start
depot DT to a customer.

The set of edges € form a complete graph on € U D. To ensure that the constraints
corresponding to the deliveries are satisfied we remove all edges from a seller which do not
lead to the corresponding buyer. In a similar way we remove all edges from a buyer which
do not come from the corresponding buyer. In the case where two or more sellers deliver
to the same buyer we maintain edges between the sellers. The same applies for the case
where a seller delivers to a number of buyers.

The graph may be further pruned by removing all edges entering a start depot Dt and
leaving an end depot D~. Edges between a start depot D% leading to a buyer may also
be removed, and a similar observation holds for edges going from a seller to an end depot
D~. Edges between sellers and buyers which violate the precedency constraint may also
be removed.

1 INTRODUCTION 4

Finally, we may remove all edges that can not be part of any legal path because of time
and capacity constraints. This is checked by generating a minimal path for each edge e
containing e and checking if this path is legal. For an edge e between a start depot D, and
a seller s with corresponding buyer b, the path [D, — s — b — D_] is considered.
If this path is illegal, e can not be part of any legal path and can thus be removed from
the graph. Edges between buyers and end depots are checked in a similar fashion. For
edges that does not start or end in a depot, i.e. [seller — buyer], [seller —> seller], and
[buyer — seller] a minimal path for each depot has to be checked. Only if all paths are
illegal the edge can be removed from the graph.

To define PDPTWP as an ILP-problem we introduce three types of variables. Let z;;
for 4,7 € N,k € V be 1 iff vehicle k is driving from node 7 to node j. For a given vehicle k
let sy, for i € N, k € 'V denote the time of arrival at node 7 (which can be a customer or a
depot). Moreover let y;, for © € N,k € V be the used capacity of vehicle k¥ when arriving
at node 7. If vehicle k£ does not visit node ¢ we set s;; = 0 and y;; = 0. This leads to the
following formulation

minimize Z Z Z Cijxijk (1&)

kEV ieN jEN
subject to szijk =1, Viel (1b)
kEV jEN
D =1, VkeV (1c)
JEN
D Ty =1, VkeV (1d)
iEeN
inhk — thjk = 0, Vh € G, Vk eV (16)
iEN JEN
Ypir = 0, Vk €V (1f)
> Qurige > Yk, Vi €N,VE €V (1g)
€N
Yik T Tijkqi — K(l — xijk) < Yk Vi € N, VJ € N, Vk eV (1h)
Sik + tij — K(l — xijk) < Sjks Vi € :N, V_] € N, VkeV (11)
pi_K(l_xijk) < Pj, Vie CVjelC,VkeV (1_])
a; < sy < b,’, Vi € N,Vk‘ ev (1k)
Yie > 0, yir € RVi e N,VE €V (11)
Sip > 0, s € RVi e N,Vk eV (1m)
Ty € {0,1}, Vi e N,Vj € N,Vk €V (1n)

Constraint (1b) ensures that each customer is visited exactly once. The constraints (1c)
— (1d) ensures that each vehicle departs from its start depot and arrives at its end depot.
The constraints (le) ensures that if a vehicle arrives at a node then it must also depart

2 DANTZIG-WOLFE DECOMPOSITION 5

from the node. As the arrival times s;; of a vehicle will be strictly increasing, we are sure
that no subtours will occur in the solution, and thus constraints (1c) — (1e) guarantee that
each vehicle follows a consecutive path from its start depot to its end depot. The capacity
constraints are ensured by the constraints (1f) — (1h), while the constraints on the time
windows are ensured by constraints (1i) and (1k). Finally constraints (1j) ensures that
the nodes are visited according to the precedency. The constant K is a sufficiently large
number used to model conditional constraints. The model is an edge formulation of the
problem since the decision variables z;;, are connected to the use of a single edge.

The edge formulation of the problem has O(n?m) constraints and O(n?m) variables,
where n is the number of nodes |N| and m is the number of vehicles |V|. Due to the
use of large constants K in the constraints (1h) — (1j) an optimal solution to the LP-
relaxation may contain several fractional variables, and thus being far from an integer
optimal solution. This also means that the lower bound obtained from LP-relaxation in
general will be quite weak, and thus cannot be used to efficiently prune the search-tree of
a branch-and-bound algorithm.

In the following section we will introduce a different formulation based on Dantzig-Wolfe
decomposition where the corresponding LP-relaxation provides a tighter bound than by
use of the edge formulation. This formulation will be denoted the path formulation. As the
model may become exponentially large, we use delayed column generation to solve its LP-
relaxation. Section 3 presents several algorithms for solving the pricing problem associated
with the column generation. An exact branch-and-bound algorithm is finally developed
in Section 4 which applies bounds from the LP-relaxation of the path formulation. The
paper is concluded by numerous computational experiments with real-life data instances
in Section 5. The largest instance solved to optimality within one hour has more than 400
nodes and 12000 edges.

2 Dantzig-Wolfe decomposition

The idea in Dantzig-Wolfe decomposition is to express the solution space as a convex
combination of subsolutions to some of the constraints. Thus let P be the set of legal
paths in the problem. A path is legal if it begins in the depot associated to a given vehicle,
visits a number of customers within their time windows, respecting the precedence and
capacity rules, and returns back to the depot of the vehicle.

For a single path p € P let ¢, be the associated cost, and let 5;, = 1 iff customer i is
contained in the path. Moreover let ag = 1 iff vehicle k£ is used for the path p. Using
the binary variable z, to indicate whether path p is selected, we get the following path-
formulation

minimize Z CpTyp (2a)
peP

2 DANTZIG-WOLFE DECOMPOSITION 6

subject to prdf, > 1, Viel (2b)
pe?P

pra;; <1, VkeV (2¢)
peP

z, € {0,1}, Vpe P. (2d)

The model will be denoted the master problem or just MP(P) for short. Constraint (2b)
demands that each customer is visited, and constraint (2c) ensures that a vehicle is used
no more than once.

Apart from being much simpler than the formulation (1) the new formulation has
the advantage that it is very easy to controle the additional constraints as part of the
generation of legal paths. Moreover, the new formulation leads to tighter lower bounds by
LP-relaxation since every LP-solution to (2) corresponds to an LP-solution to (1) while
the opposite is not the case in general. The path-formulation may however become very
large, as the number of legal paths may be exponential in the input size. In order to get
around this problem we will use delayed column generation for solving the LP-relaxation

of (2).

Thus in each iteration we consider a restricted master problem defined on a subset P’
of the paths P. Let m; be the dual variables associated with constraints (2b) and py the
dual variables associated with (2¢) when solving MP(P') to LP-optimality. The reduced
cost of a path p € P corresponding to vehicle £ is given by

Cp = Cp— Z o — pu (3)

1€C

where 51’; = 1 iff customer 7 is contained in the path. In order to extend the current set P of
paths according to the Dantzig rule of the Simplex algorithm, the path p € P with largest
negative reduced cost ¢ should be found. This problem may be recognised as finding a
shortest path between the start depot D, and the end depot D, of a vehicle k. The
cost cj; associated to a given edge (i,7) equals the original edge cost c;; minus the dual
variable 7; associated with node j. The found path must be legal, i.e. it must satisfy the
constraints on the capacity, time windows and precedency. These additional constraints
make the shortest path problem become NP-hard.

Initially we may choose the subset P’ as a set of paths with very large associated
costs, each path visiting a single customer. In each of the following iterations we solve the
restricted master problem MP(P’) to LP-optimality obtaining the dual variables. These
are then used to find a new legal path p € P with largest negative reduced cost (3). We
add this path p to ' and repeat the process until a legal path with negative reduced
costs cannot be found. In this case we get from weak duality [Chv83] that an optimal
LP-solution to MP(?P) has been found.

3 SOLVING THE PRICING PROBLEM 7

3 Solving the pricing problem

The pricing problem is the problem of finding the legal path p € P\ P with largest
negative reduced cost ¢ corresponding to the current restricted master problem MP(P).
This problem must be solved each time a column is added during the column generation.
Because of the constraints on the legal paths, the problem is NP-hard, which means that
solving the pricing problem for every column added during column generation is very time
consuming. Thus we used the following strategy:

e Instead of finding the path with largest negative reduced cost, we just find some path
with negative reduced cost. In many cases this can be done using a fast heuristic
algorithm. Only if we are not able to find any paths with negative reduced cost using
the heuristic, we solve the pricing problem using an exact algorithm.

e Often our heuristic and exact algorithms find several paths with negative reduced
cost. Instead of adding just one path, we add [paths. This greatly reduces the
number of times we need to solve the pricing problem, but also makes the restricted
master problem MP(P') larger than necessary.

We have implemented a heuristic and two exact pricing algorithms. We have also im-
plemented several relaxations of the exact algorithms to obtain more heuristic algorithms.

3.1 Construction algorithm

The construction algorithm has been proposed by Sol and Savelsbergh in [SS94|. The
algorithm starts out with an empty path and performs a number of greedy iterations. In
each iteration the customer that decreases the reduced cost the most is added to the path
in the best place on the path. The construction algorithm is a non-optimal since the greedy
choices made in each iteration do not necessarily result in an optimal path. The running
time of the construction algorithm is O(nh?), where n is the number of customers, and
h is an upper bound (independent of n) on the number of customers visited in a single
path. An upper limit A on the number of customers visited is reasonable for the considered
problem, since loading and unloading of live animals is so time-consuming, that a vehicle
only will be able to visit a few customers every day.

3.2 Depth-first search algorithm

The depth-first search algorithm develops all legal paths for the problem at hand during
a depth-first search of the graph. Illegal paths are cut off during the search of the graph
by checking time, precendence, and capacity constraints whenever a node is added to a
path. Since the depth-first search algorithm finds all legal paths it is possible to add more

3 SOLVING THE PRICING PROBLEM 8

than one path with negative reduced cost to the master problem. The depth-first search
algorithm has complexity O(n!) in worst case, but if we assume that the length of every
legal path is less than k, the complexity becomes O(nF).

3.3 State algorithm

The state algorithm was proposed by Dumas, Desrosiers and Soumis in [DDS91] for the
PDPTW. We have adapted the algorithm for solving the pricing problem for the PDPTWP.

The state algorithms is based on the idea of Dijkstra’s shortest path algorithm, only
another dominance criteria is used since the constraints on the legal paths makes Dijkstra’s
dominance criteria invalid. The state algorithm maintains a set of states S(j, M, T, R) each
corresponding to a path in the graph, where j is a node, M is the set of nodes previously
visited on the path, T is the arrival time of the path to node j, and R is the reduced cost
of the path. Like the depth-first search algorithm the set of states is initially just one state
corresponding to the empty path starting in a start depot. In each iteration of the state
algorithm a state S(j, M, T, R) is picked out and the corresponding route is extended to
each of the neighbours of j thus creating a number of new states which are added to the set
of states. Only states corresponding to legal paths are added. If the end depot is visited
a complete legal path has been constructed and if its reduced cost ¢j is negative it can be
added to the restricted master problem MP ().

If we have two states Si(j, M1, 11, R1) and Sy(j, My, Ty, Ry) corresponding to the same
node j and if T} < T, Ry < Ry, My, = M, we say that state S; dominates So. This is
the case if the paths corresponding to the two states have visited the same customers in
different order and if the path corresponding to S; have visited the customers in a way
that results in a faster path with lower reduced cost than the path corresponding to Ss.
If this is the case all paths that are extended from state S; will not be better than the
similar paths extended from S;, which means that we can delete S;. This way we cut off
bad paths at an early time and only spend time extending good paths. In proposition 1
we have proved that this dominance criteria is valid.

Proposition 1 (Dominance) For two states Si(j, M1, T1, R1) and S(j, Ma, To, Rs) cor-
responding to the same node j, the dominance criteria T) < Ty, Ry < Ry, My = M, 1is
valid for PDPTWP.

Proof: Assume we have two states Si(j, M1, T, Ry) and Sa(j, My, T, Ry) in a node j and
that 77 <715, Ry < Ry, My = M. Let r; be the path corresponding to state S; and ry be
the path corresponding to state S;. Let ¢ be a neighbour of j so that r, can be extended
to 7 legally, i.e. ¢ can be visited within its time window, ¢ has lower precedence than j,
and the capacity constraints are not violated. By extending 75 to ¢ we obtain a new state
Si(i, My U {i}, Ty + t;;, Ro + 1j;) for the route % obtained by extending ry to i.

4 EXACT SOLUTION THROUGH BRANCH-AND-BOUND 9

Obviously r; can also be extended to 7 and we thereby obtain another route r! and a
new state St(z, My U {i}, T + t;i, R1 + 1) corresponding to ri. Since 71 + t;; < T + t;;,
Ry +rji < Ry+rj and M, U {i} = My U {i} state S} dominates S3. This means that any
extension of S, will always be dominated by the similar extension of S;, and thus we can
avoid to further extend S;. O

In worst case the state algorithm will not be able to make any dominations which means
that all possible states will have to be considered. The state algorithm will then be similar
to the label algorithm which has complexity O(n") if we assume that the length of any
legal paths is less than a constant h.

3.4 Heuristics

The depth-first search algorithm will consider all legal paths, which makes the algorithm
very time consuming. If we can cut off some paths that look unpromising at an early stage
we can improve the execution time of the algorithm at the expense of the algorithm no
longer being exact. We have experimented with the following rules:

e Customers located far apart: We cut off paths that visit customers far from each
other since good paths will probably visit customers located close to each other in
order to service most possible deliveries.

e High reduced cost: We cut off paths that have a high reduced cost during the ex-
ecution of the depth-first search algorithm, assuming that these paths cannot be
extended to paths with negative reduced cost.

These rules of thomb can also be used for the state algorithm thus making the state
algorithm a heuristic. If we relax the dominance criteria in the state algorithm we will be
able make more dominations which will improve the execution time of the state algorithm.
The state algorithm will then be a heuristic since we may cut off some paths that can be
extended into good paths. We have experimented with the two heuristic rules above and
several relaxed dominance criterias.

4 Exact solution through branch-and-bound

The LP-solutions to MP(P) found by column generation is not necessarily integral. In
order to obtain integral solutions we apply a branching rule which excludes the fractional
solutions. When designing the branching scheme we have made the following design goals:

4 EXACT SOLUTION THROUGH BRANCH-AND-BOUND 10

e The branching scheme should divide the solution space evenly since this will exclude
a large amount of solutions in each of the subproblems, which means that we have
good chance of decreasing the gap between the best fractional solution and the best
integral solution in each node of the branching tree.

e The branching scheme should help the pricing problem, i.e. the pricing algorithms
should be able to make use of the fact that they are working on a smaller solu-
tion space to run faster. This design goal is as much a desing goal for the pricing
algorithms as it is for the branching rule.

We have implemented two branching schemes; branching on routes and branching on
assignment of customers to vehicles.

4.1 Branching on routes

Branching on routes divides the solution space into two subspaces. In one subspace a route
po € P is required to be part of the solution and in the other space p, is excluded from
the solution. Since every route p € P is represented in the path formulation by a decision
variable z, this branching scheme divides the solution space by adding the constraints
Tp, = 1 and xp, = 0 respectively.

Unfortunately this branching scheme does not divide the solution space evenly since
requiring that z,, = 1 is much stronger than requiring that z,, = 0. In the case of setting
Tp, = 1 the vehicle and the customers on the route have been assigned to a route which
means that all solutions where either the assigned vehicle or the assigned customers are
assigned to other routes can be excluded from the solution space. In the case of z,, = 0
we can only exclude solutions which pq is part of.

We can compensate for the uneven division by branching on the highest fractional
variable z,, < 1. This way we branch on a variable that is most likely to be set to 1 in an
integral solution. This strengthens the branching on z,, = 0 since the fractional solution is
changed most possible. Our experiments have shown that branching on routes along with
this rule for selecting the branching variable results in a fairly even division of the solution
space.

When branching on routes we must be able to find all paths with negative reduced cost
when solving the pricing problem since the path with lowest reduced cost may be forbidden
by a branching constraint. This means that we must use the depth-first search algorithm
as the exact algorithm when using this branching strategy since the state algorithm is only
guaranteed to find the path with lowest reduced cost. Of course we can still use the state
algorithm as a heuristic.

The state and depth-first search algorithms can only make use of the case of z,, =1 in
which case we omit route generation for the vehicle belonging to py and cut off all routes
visiting the customers visited on py. In the case of p = 0 we can not utilize the constraint

5 COMPUTATIONAL EXPERIMENTS 11

during route generation, in fact we have to make sure that py is not added to the path
formulation again if it is generated during the route generation.

4.2 Branching on assignment of customers to vehicles

In this branching scheme the solution space is divided into two subspaces by requiring in
one subspace that a customer i € € must be visited by a vehicle ky € V and in the other
subspace requiring that ¢y must not be visited by vy. The branching is applied by adding
the constraints Y ., 2,0005° = 1 and) 42,0,00,° = 0 respectively to the path
formulation.

As was the case of branching on routes, assigning a customer to a vehicle is a stronger
constraint than forbidding a customer from being visited by a vehicle. Again this unevenly
division of the solution space can be repaired by branching on the vehicle and a customer
belonging to the highest fractional variable. Our experiments show that branching on
assignment of customers to vehicles together with this selection strategy results in a evenly
division of the solution space.

The pricing algorithms can make use of both constraints when generating routes. In
the case of customer i, being assigned to vehicle k3 we can cut off all routes for vehicle kg
that do not visit 79. This can be done for routes belonging to kg in the state and depth-first
search algorithms during the route generation by checking in each step if it is still possible
to add 7 to the route. If not, the route generation can cut off the further extension of this
route.

In the case of forbidding the assignment of customer iy to vehicle £y we can make use
of this in the route generation algorithms by cutting of routes belonging to kg if they visit
19- This can be done during the route generation, which means that further extension of
such routes is avoided.

5 Computational experiments

We have implemented a branch and price algorithm to solve PDPTWP including the three
route generation algorithms and the two branching schemes. To help our implementation
we have used ABACUS (“A Branch-And-CUt System”) [Thi95] which is a collection of
C-++ classes, that significantly reduceds the work of implementing branch and bound like
algorithms. Our experience with ABACUS have been very positive and it has helped us
to test several strategies with limited programming effort. ABACUS provides an interface
to CPLEX |Cpl95| and SoPlex [Wun97|, which we have used to solve the linear programs
resulting from the column generation. All test has been carried out on an AMD K6 200
MHz.

We have tested several different configurations of the branch and price algorithms in
order to find the best exact algorithm and some good heuristic algorithms as well. In all

5 COMPUTATIONAL EXPERIMENTS 12

Figure 1: The figure shows the geographical location of all sellers and buyers serviced by the SPF
Association in week 50, 1999

cases we started the column generation by using the construction algorithm, since this
algorithm is very fast and generates paths of high quality. Whether the branch and price
algorithm is exact or heuristic depends on whether we use an exact algorithm to solve
the pricing problem. If anly heuristic algorithms are applied for the pricing problem, the
delayed column generation may terminate premature and thus not provide a legal lower
bound. This may imply that some parts of the branch-and-bound tree are pruned although
they contain the the optimal solution.

To test our algorithm we have constructed a series of subproblems from the data set
supplied by the SPF Association, which is a real life data set of about 1300 transportation
request to be handled by 90 vehicles in five days. The complete data set is illustrated in
Figure 1. In table 1 we have shown the characteristics of the 17 smaller test problems we
have used.

Unfortunately the data set provided by the SPF Association only has very few time
windows (less than 10% of the customers) and the present time windows are often very

problem| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
nodes | 68 68 64 62 56 66 60 70 62 60 58 62 54 54 64 62 66
edges |740 765 583 554 484 632 494 749 561 518 494 644 481 423 596 608 704

Table 1: The table show the size of the representing graph of the 17 test problems.

5 COMPUTATIONAL EXPERIMENTS 13

wide. In order to test the performance of the algorithm on problems with more tight time
windows we have created 130 other problems with time windows. Our experiments on
problems with time windows will be described in section 5.3.

5.1 Exact algorithms

By using either the state algorithm with branching on customers and vehicles or the depth-
first search algorithm together with either branching strategy to solve the pricing problem
we obtain an exact algorithm. In table 2 we have shown the computation time for the
4 configuration obtained by varying the pricing algorithm, the heap order in the state
algorithm, and the branching strategy for the depth-first search algorithm. Since the
CPU time varies considerably from problem to problem it is not a correct measure of
the algorithms performance. In the column Performance we have calculated the average
deviation from the mean CPU time for each configuration. The column Variance shows
the variance on the performance.

Algorithm | Branching | Heap order | CPU | Performance | Variance
State C.and v. | Red. cost 1:34 | -2,30% 6,71%
State C. and v. | Travel time | 1:17 | 0,34% 7,86%
Depth-first | C. and v. | - 1:20 | 1,35% 14,56%
Depth-first | Routes - 1:41 | 0,61% 3,07%

Table 2: The table shows the average performance of the exact configurations on the 17 test
problems.

In table 3 each of the parameters are compared separately. We see that there is hardly
any difference whether we use the state algorithm together with branching on customers and
vehicles or we use the depth-first search algorithm together with either branching strategy.
We would expect branching on customers and vehicles to perform better since this strategy
should divide the solution space more evenly, but an examination of the branching trees
of the two branching strategies shows that both strategies divide the solution space quite
evenly.

Comparison Performance | Variance
Branching on customer and vehicles -0,45% 5,88%
Branching on routes 1,35% 14,56%
Heap ordered by reduced cost -2,30% 6,71%
Heap ordered by travel time 0,34% 7,86%
State algorithm -0,98% 7,28%
Depth-first search algorithm 0,98% 8,82%

Table 3: The table shows a comparison of three parameters of the exact algorithms.

5 COMPUTATIONAL EXPERIMENTS 14

Solved
Branching | Heap order | Dom. | Dev. | prob. | Perform. | Variance
. 0g V. Red. cost | RT 0,00% 17 -34,12% | 11,26%
. 0g V. Red. cost 1,68% 15 -50,29% | 27,67%
. 0g V. Red. cost 5,92% 10 -64,26% | 16,23%

oNoNoNONONO!

R

T
ogv. | Time RT | 000% | 17 |-24,34% | 12,97%
ogv. | Time R | 020% | 15 |-56,49% | 15,00%
. 0g V. Time T 5,92% 10 -64,26% | 16,23%
Routes Red. cost | RT 0,00% 17 -41,94% 4,69%
Routes Red. cost | R 1,11% 14 -65,27% | 19,15%
Routes Red. cost | T 5,79% 10 -78.72% 3.62%
Routes | Time RT | 000% | 17 |-44,.82% | 6,00%
Routes | Time R | 024% | 15 |-63.84% | 7,49%

T

Routes Time 579% | 10 |-78,98% | 3,66%

Table 4: The table shows the performance and the quality of solutions of the heuristic algorithms
based on relaxed dominance criteria state algorithm.

5.2 Heuristics

By relaxing the state algorithm’s dominance criteria we can obtain a heuristic pricing
algorithm. We have experimented with three relaxed dominance criterias:

e RT: State S, is dominated by Sy if 77 <715, R; < Rs.
e R: State S5 is dominated by 57 if Ry < R,.

e T: State Sy is dominated by Sy if T3 < Ts.

In table 4 the performance of the branch and price algorithm using heuristic state
algorithms obtained by relaxing the dominance criteria is shown. The performance is
calculated relatively to the performance of the best exact algorithm. In some cases the
solution found by the heuristic algorithms contain dummy variables, which means that the
heuristic has not been able to find a valid integral solution. In these cases we consider the
problem as unsolved. In table 4 we have shown the number of solved problems and the
average deviation from the optimal value for the solved problems.

In table 5 each parameter of table 4 is compared. We see that branching on routes
performs slightly better than branching on assignment of customers to vehicles and that
the deviation and the number of solved problems are about the same for the two branching
strategies. The most interesting is the comparison of the three dominance criterias. We see
that by using dominance criteria RT we are able to reach optimal solutions 36% faster than
by the exact algorithm. The two other dominance criteria solve the problems somewhat
faster but do not find an optimal solution for all the considered problems.

5 COMPUTATIONAL EXPERIMENTS 15

Solved
Comparison Deviation | problems | Perform. | Variance
Branching on c¢. and v. 2,29% 14,0 -48,96% | 16,56%
Branching on routes 2.15% 13,8 -62,26% 7,43%
Heap ordered by red. cost 2,42% 13,8 -55,77% | 13,77%
Heap ordered by time 2,02% 14,0 -55,46% | 10,22%
Dominance criteria RT 0,00% 17,0 -36,31% 8,73%
Dominance criteria R 0,81% 14,8 -58,97% | 17,33%
Dominance criteria T 5,85% 10,0 -71,56% 9,93%

Table 5: The table shows a comparison of three parameters for the branch and price algorithm
using an heuristic state algorithm as pricing algorithm.

5.3 Time window problems

As previously mentioned the data set supplied by the SPF Association contained very few
time windows. In order to test the performance of the branch and price algorithm on
problems with time windows we have added time windows to 10 subproblems of the data
set from the SPF Association. The characteristics of the 10 problems are shown in table 6.

We have varied the number of time windows and the size of the time windows which in
all gives os 130 new problems for our testing. The performance of the best exact algorithm
and the algorithm using the state heristic with dominance criteria RT as pricing algorithm
on the problems with time windows are shown in table 7 and 8.

As seen from the CPU times in table 7 the performance of both algorithms improve
dramatically when the test problems contain time windows. The average CPU time used
by the exact algorithm to solve the test problems drops from a little under 17 minutes to
just 5 seconds when we add 1 hour time windows to all customers. The performance of
the heuristic algorithm is about 50% better than the exact algorithm and all problems but
one have been solved to optimality.

5.4 Summary fo the computational experiments

When introducing the path formulation of PDPTWP we claimed that the LP relaxation
would provide tight bounds on the optimal integral solutions. Our experiments showed
that the LP-solution to MP(P) on average was 0.70% from the optimal solution at the root
node of the branch and bound tree.

Problem 1 2 3 4 5 6 7 8 9 10
Nodes 74 94 80 76 74 88 114 104 106 98
Edges 839 1451 979 986 775 1215 1925 1713 1645 1308

Table 6: The table shows the 10 problems we have used to create the time window problems.

5 COMPUTATIONAL EXPERIMENTS 16

State algorithm with dominance criteria RTM
Time windows

Percentage Size Deviation CPU

0% - 0,00% 16:44

25% 4 hours 0,00% 12:41

25% | 2 hours 0,00% | 13:42

25% 1 hour 0,00% 5:31

50% 4 hours 0,00% 4:51

50% | 2 hours 0,00% 4:25

50% 1 hour 0,00% 1:09

5% 4 hours 0,00% 2:23

75% 2 hours 0,00% 1:22

5% 1 hour 0,00% 0:10

100% 4 hours 0,00% 2:34

100% 2 hours 0,00% 0:23

100% 1 hour 0,00% 0:05

Table 7: The table shows performance of the branch and price algorithm using the exact state
algorithm as pricing algorithm on the test problems with time windows.

State heuristic with dominance criteria RT
Time windows Solved

Percentage Size Deviation | problems | Performance | Variance
0% - 0,00% 10 -54,55% 5,33%
25% 4 hours 0,00% 10 -58,78% 2,68%
25% 2 hours 0,00% 10 -58,02% 2,48%
25% 1 hour 0,00% 10 -55,81% 1,25%
50% 4 hours 0,00% 10 -50,93% 4,84%
50% 2 hours 0,00% 10 -47,45% 4,88%
50% 1 hour 0,01% 10 -37,94% 6,12%
5% 4 hours 0,00% 10 -54,66% 3,25%
5% 2 hours 0,00% 10 -33,91% 6,89%
5% 1 hour 0,00% 10 -26,42% 10,72%
100% 4 hours 0,00% 10 -48,98% 2,44%
100% 2 hours 0,00% 10 -31,95% 9,53%
100% 1 hour 0,00% 10 -24,02% 12,61%

Table 8: The table shows performance of the branch and price algorithm using the state heuristic
with dominance criteria RT as pricing algorithm on the test problems with time windows.

6 CONCLUSION 17

From our experiments we have found that there is only little difference between the
performance of the two branching strategies. Also the performance of the two exact pricing
algorithms are quite even. We have chosen the configuration branching on customers and
vehicles together with the exact state algorithm to solve some larger subproblems of the
data set supplied by the SPF Association with time windows added. The largest problem
we were able to solve in less than an hour contained 410 nodes and 12872 edges and it was
solved in 13 minutes and 39 seconds.

6 Conclusion

We have presented a new variant of the classical VRP, which is motivated by the trans-
portation of live animals according to some veterinary constraints. The VRPTWP deals
with time windows, capacity constraints, and precedency constraints. Since the addi-
tional constraints may be difficult to express in an MIP-model a path-formulation has
been presented. The LP-relaxation of the path-formulation is solved through delayed col-
umn generation, providing relatively tight lower bounds for an exact algorithm based on
branch-and-bound. The computational experiments with real-life problems show that the
smaller problems may be solved to optimality in reasonable time. For the larger prob-
lems the deviation of a lower bound through column generation is computationally too
demanding, and thus a relaxed version of the pricing problem has been applied. Due to
the relaxation of the pricing problem we cannot guarantee that the found solutions are
optimal, but they represent heuristic solutions of high quality.

The contribution of this paper can be summed up as follows: We have presented a new
routing problem with applications in transportation of live animals and adapted existing
techniques from VRP and PDP to develop an exact algorithm based on branch and price.
In particular the algorithms for solving the pricing problem are new, and their application
in a hierarchy according to solution time and quality is promising. A very thorough ex-
perimental work has been presented which made it possible to identify the most promising
configurations of an exact and a heuristic algorithm. The largest problem solved to op-
timality involves more than 400 nodes and 12000 edges which even for problems without
precedency constraints is a very difficult task. For comparison Kallehauge [Kal00] reports
the best solution times for Solomon test instances with up to 200 customers.

References

[BJNT96] Cynthia Barnhart, Ellis L. Johnson, George L. Nemhauser, Martin W. P. Savels-
bergh, and Pamela H. Vance. Branch-and-price: Column generation for solving
huge integer programs. School of Industrial and Systems Engineering, Georgia
Institute of Technology, 1996.

REFERENCES 18

[Chv83]
[Cpl195]
[DDS91]

[Kal0o]

[Koh95|

[SS94]

[S95]

[Thi95|

[Wun97]

Vasek Chvatal. Linear Programming. Freeman, 1983.
Cplex. Using the Cplex Callable Library. Cplex Optimization, Inc., 1995.

Y. Dumas, J. Desrosiers, and F. Soumis. The pickup and delivery problem with
time windows. European Journal of Operational Research, 54:7-22, 1991.

Brian Kallehauge. Lagrange dualitet og ikke-differentiabel optimering anvendt
i rutelaegning (Danish). Technical Report, IMM-EKS-2000-13, DTU, Lyngby,
Denmark, 2000.

Niklas Kohl. Exact Methods for Time Constrained Routing and Related Schedul-
ing Problems. PhD thesis, Department of Mathematical Modelling, Technical
University of Denmark, 1995.

M. Sol and Martin W. P. Savelsbergh. A branch-and-price algorithm for the
pickup and delivery problem with time windows. COSOR Memorandum 94-22,
Eindhoven University of Technology, 1994.

M.W.P. Savelsbergh and M. Sol. The general pickup and delivery problem.
Transportation Science, 29:17-29, 1995.

S. Thienel. ABACUS — A Branch-And-CUt System. PhD thesis, Universitét
zu Koln, 1995.

Roland Wunderling. Soplex, the sequential object-oriented simplex class library.
http://www.zib.de/Optimization /Software/Soplex/, 1997.

