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Abstract

We consider the problem of determining a short Euclidean tree spanning a number of terminals
in a simple polygon. First of all, linear time (in the number of vertices of the polygon) exact
algorithms for this problem with three and four terminals are given. Next, these algorithms are
used in a fast polynomial heuristic based on the concatenation of trees for appropriately selected
subsets with up to four terminals. Computational results indicate that the solutions obtained are
close to optimal solutions.

1 Introduction

We consider the following variant of the Euclidean Steiner tree problem (ESTP):
e Given: A simple polygon P with k vertices and a set Z of n terminals in P.
e Find: Euclidean Steiner minimal tree (ESMT) spanning the terminals and being completely in P.

This problem is a generalization of the ESTP without obstacles. It is more realistic than the obstacle-
free version, and therefore will hopefully have more real-life applications in network design (Fig. 1).
Furthermore, the techniques described in this paper can be used to solve the rectilinear Steiner tree
problem with obstacles which has many important applications in VLSI-design.

ESMTs in the plane and with no obstructing polygon tend to consist of unions of ESMTs with very
few terminals, each of degree 1. It is unusual to encounter (in randomly generated problem instances)
ESMTs with 6 or more terminals [9]. Consequently, concatenation of small ESMTs (spanning subsets
of up to 4 terminals) proved to yield good quality solutions for the obstacle-free case [6, 1]. Similar
approach seems to be applicable when the terminals are inside a simple polygon without or with
polygonal holes [13].

The problem of determining reasonable subsets of 2, 3 and 4 terminals inside a simple polygon (such
that they are likely to appear in a small ESMT of the overall ESMT) is far from trivial. One approach is
to use the geometric dual of the geodesic Voronoi diagram for all terminals inside P. Papadopoulou and
Lee [3] gave an O(mlogm) algorithm for this problem, where m = k 4+ n. A small subset of terminals
is then considered as a reasonable cluster if the subgraph of the dual induced by these terminals is
connected. Alternatively, the Euclidean minimum spanning tree (EMST) for Z inside P can be used to
select subsets. More specifically, subsets of terminals inducing connected subgraphs of the EMST are
selected. Note that subsets of size 2 are identified by the edges of the EMST (edges represent geodesic
paths between terminals in P).

The ESMT for 3 terminals in a simple polygon can be determined in O(k) time and space [11].
In [12], we gave an O(klogk) time and O(k) space algorithm for the determination of ESMTs for
four terminals inside a simple polygon. In this paper we give a new algorithm for the four terminals
problem requiring O(k) time and space. We also give an overall description of the heuristic, provide
some computational results, and compare them to exact solutions.

Once the ESMTs for subsets with up to 4 terminals have been determined, their concatenation
can be carried out in several ways. The simplest is to place ESMTs on a priority queue ordered by



Figure 1: ESMT for selected places in Europe, Asia and Africa

increasing ratio between their lengths and the lengths of the corresponding EMSTs. Alternatively, the
concatenation problem can be formulated as the NP-hard problem of finding a minimum spanning tree
of an appropriately defined hypergraph. This problem can be cast as an integer programming problem.
A branch-and-cut method suggested by Warme [8] can solve problem instances with several thousands
of ESMTs in a reasonable amount of time.

The paper is organized as follows. Basic definitions are given in Section 2; however, the reader is
referred to [2] for basic definitions and properties of ESMTs. The problems of determining ESMTs of
three and four terminals in arbitrary polygons are reduced in Section 3 to the ESTP for up to four semi-
terminals in smaller polygons of a very particular shape. The semi-terminals of the reduced problems
need not to be identical with the original terminals. The linear time algorithm for the ESMT for three
semi-terminals in the reduced polygon is given in Section 4. The linear time algorithm for ESMT
with four semi-terminals is described in Sections 5 and 6. Our heuristic is described in Section 7.
Computational results are given in Section 8. Conclusions and suggestions for further research are
collected in Section 9.

2 Basic Definitions

A polygon P is defined as a closed polygonal chain. It is simple if it is not self-intersecting and its
interior ¢(P) is not empty and connected. A point p is said to be in P if p € i{(P)U P. A vertex v on
P is convez if its interior angle is less than 180°. Otherwise, it is reflez. A reflex vertex is said to be
wide if its interior angle is at least 240° (as will be explained below, three edges of an ESMT can meet
on the boundary only if the angle is 240° or more). Clockwise successor and predecessor vertices of a
vertex v are denoted by vt and v, respectively. In order to simplify some proofs, it is assumed that
v~ v and vvt are not colinear for any v € P.

A simple polygon is called a c-kite iff precisely c of its vertices are convex. Boundaries of a c-kite P
between two consecutive convex vertices are referred to as sides of P. A polygon P is weakly-simple if it
is not self-intersecting. In particular, a weakly-simple polygon can have empty or disconnected interior.

The shortest path between two points v and v in a polygon P will be denoted by P(u,v). P(u,v)
is a unique polygonal chain and its interior vertices are reflex vertices of P.



A line L is said to be an interior tangent of a c-kite P at a touch vertex v € P iff one of the following
cases occurs.

e v is a reflex vertex, and the edges v~v and vvt are on the same side of L.
e v is a convex vertex, and the edges v~v and vvT are on the opposite sides of L.
e v v overlaps with L.

An interior tangent L with a touch-point v is oriented in such a way that the edge vv™ is on its left.
Two interior tangents of a c-kite P are distinct if they have different slopes or different touch vertices.
We use the notation L;||L; if interior tangents L; and L; are parallel. Similar notation is used for edges.

Lemma 1 Every c-kite P, ¢ > 3, has exactly ¢ — 2 interior tangents for any fixed slope.

Proof. Every triangulation of a simple polygon has k — 2 triangles. Each triangle contributes to the
total sum of interior angles by 7. The sum of interior angles of any simple polygon with k vertices
is therefore (k — 2)m. Let a;, 1 < i < ¢, denote interior angles of convex vertices. Let v; = 7 + 3;,
1 < j <k — ¢, denote interior angles of reflex vertices. Then

c k—c
Zai—}—z,ﬁj=(k—2)7r—(k:—c)7r=(c—2)7r

Angles a; and ; denote maximal rotation of interior tangents at convex and reflex vertices, respectively.
Furthermore, the slope interval at a particular vertex does not overlap but has a common boundary
with the slope interval of next vertex on the polygon (Fig. 2). ]
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Figure 2: Interior angles of a 4-kite

Lemma 2 A c-kite has at most 3c — 7 wide reflex vertices.

Proof. A wide reflex vertex is a touch vertex of interior tangents whose slopes span over at least 60°.
The upper bound follows immediately from Lemma 1 where the sum over all rotation angles is shown
to be (¢ — 2)w. A 3-kite with 2 wide reflex vertices is shown in Fig. 3a. A 4-kite with 5 wide reflex
vertices is shown in Fig. 3b. ]
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Figure 3: 3- and 4-kites with maximum number of wide reflex vertices

Consider a reflex vertex v of a c-kite P. Let ¢, and ¢} denote the convex end-vertices of the side
containing v. Let sv denote an edge in P overlapping with an interior tangent of v. Only one of the
vertices v~ and v is visible from s. Let g° denote the convex vertex that can be reached from v by
moving counterclockwise on P if v~ is invisible from s, and by moving clockwise if v* is invisible from
s. If v is convex, let g5 = v.

An ESMT inside a simple polygon cannot have vertices of degree greater than three. Vertices of
degree 3 are called Steiner points if they are located in the interior of P. The edges incident to Steiner
points make 120° with each other. They are called degenerate Steiner points if they are located on the
boundary of P. Degenerate Steiner points can only occur at wide reflex vertices of P.

3 Polygon Reductions

Consider the unique polygon P’ inside P containing the terminals Z such that its perimeter is as short as
possible. Provan [5] proved that there always exists an ESMT for Z in P completely in P'. Toussaint [7]
gave an O(n(logn + logk) + k) algorithm to determine P’. The complexity of this algorithm reduces
to O(k) if n is fixed. P’ is sometimes referred to as the geodesic convex hull for its polygon P and its
terminals Z. It is denoted by GCH (P, Z).

3.1 Three Terminals

Consider the set T of three terminals t1,t2,t3 inside the simple polygon P. We show that the problem
can be reduced to the ESTP in a 3-kite for its convex vertices (Fig. 4a).

Let P = GCH(P,Z). All terminals are on the boundary of P'. If i(P') = 0, then the ESMT for T
in P! is trivially given. We assume therefore in the following that i(P') # 0.

Consider the two shortest paths from a terminal ¢, u = 1,2, 3, to the remaining two terminals. Let
¢ denote the last common vertex on these two paths. Note that ¢, is well-defined; there is at least
one common vertex, namely ¢,. Consider the polygon P” obtained from P’ by cutting off P'(qy,t.) U
P'(ty,qu), v = 1,2,3. P" can be obtained from P’ in O(k) time and space by a straightforward
traversal of P’ (using a stack). Note that i(P") # 0 and that p” is a 3-kite. Let Q = {q1,¢2,q3}- Once
the ESMT for semi-terminals in () is determined, the ESMT for T is obtained by adding the paths
Pl(tuaqu)a u=1,23.
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Figure 4: Problem instances with 3 and 4 terminals

3.2 Four Terminals

In this subsection we consider the set T" of four terminals ¢;,t2, t3,t4 inside the simple polygon P. We
show that the problem can be reduced to the ESTP in a c-kite, ¢ = 3,4, for its convex vertices (Fig. 4b).

Let P' = GCH(P,Z). If i(P') = 0, then the ESMT for T in P’ is trivially given. We assume
therefore in the following that i(P’) # 0. If i(P’) contains one of the terminals, then P" is determined
as described in Section 3.1. In the following, we assume therefore that all terminals are on the boundary
of P'.

If 4(P') is not connected, then the problem breaks down into two smaller subproblems, each with
three vertices as terminals. Such subproblems can be solved as described in Section 4 in O(k) time and
space. The connectivity check can also be done in O(k) time. In the following we assume therefore that
i(P') is connected. Note however that P’ can be weakly-simple.

Consider the shortest paths from a terminal t,, v = 1,2,3,4, to the remaining three terminals.
Let ¢, denote their last common vertex. Consider the polygon P” obtained from P’ by cutting off
P'(qu, tu) UP' (ty,qu), u=1,2,3,4. Let Q = {q1, 92,93, 494} Once the ESMT for semi-terminals in Q is
determined, the ESMT for the terminals in T is obtained by adding the paths P'(t4,qu), u = 1,2,3,4.
P" is either a 3-kite or a 4-kite. If P" is a 3-kite, then its fourth semi-terminal is a terminal in P".

4 ESMTs for Three Semi-Terminals

The ESMT for @ = {q1,¢2,q3} in P" is the shortest of the following trees spanning ) (classified by the
number of Steiner points).

e No Steiner points. Take the EMST for @) consisting of two shortest paths in P" spanning ). This
can be done in O(1) time if the shortest paths are given.

e One degenerate Steiner point. There are at most 2 wide reflex vertices in a 3-kite. For each of
these, consider the EMST of ) and the wide reflex vertex. Retain the shortest of these 2 trees.

e One Steiner point. This case is covered in the remaining part of this section.

There is an obvious O(k®) time and O(k) space algorithm for finding the unique ESMT for Q.
Consider all O(k3) subsets of 3 vertices one by one until a Steiner tree with its edges overlapping
with interior tangents is obtained. We give an O(k) time and space algorithm which exploits circular
rotations of three interior tangents.



e Initialization: Let L, denote the interior tangent overlapping with an arbitrary edge v vi of
P". Traverse the vertices of P" clockwise, beginning at vq, until reaching a vertex vy with an
interior tangent Lo making 120° with L;. Continue until reaching a vertex vz with an interior
tangent L3 making 240° with L;.

e Tteration: Let a denote the minimum angle so that the counterclockwise rotation of at least
one of the three interior tangents by « causes it to overlap with an edge of P”. Determine a
Steiner tree with one Steiner point s such that the three edges svi, sva and svz make 120° with
each other (or decide that it does not exist). If svy,svs,svsz overlap with interior tangents at
respectively vy, v2,vs, at most angle a from respectively L1, Lo, L3, then connect touch-points to
semi-terminals gy , q;,, ¢y,- If all three semi-terminals of () are thereby spanned, save the tree,
provided that its length is less than the length of the best solution found so far.

e Sweep: Rotate the interior tangents (counterclockwise) around their touch vertices by a. This
rotation causes L, and v,v} to overlap for some u = 1,2,3. Replace v, by v;}.

e Termination: Stop if the interior tangents have been rotated by at least 120°; otherwise perform
next Iteration.

5 ESMT for Four Semi-Terminals in a 4-Kite

When determining the ESMT for @ = {¢1,¢2,93,¢94} in P", assuming that i(P") # 0 and i(P") is
connected, we need to distinguish between two cases depending on whether P is a 3-kite or a 4-kite.

If P" is a 4-kite, then the ESMT for () in P" is the shortest of the following trees spanning
(classified by the number of Steiner points):

e No Steiner points. Take the EMST for () with shortest paths in P as edges. This can be done
in O(1) time if the shortest paths are given.

e One Steiner point. Given the ESMT for @, = Q\{g.}, v = 1,2, 3,4, a tree spanning @ is obtained
by connecting g, to the closest semi-terminal in @,. Retain the shortest of these four trees.

e One degenerate Steiner point v. There are at most five wide reflex vertices in a 4-kite which can
act as v. Consider the EMST of @ U {v}. Retain the shortest of these five trees.

e One Steiner point and one degenerate Steiner point v. Connect v to the semi-terminals ¢~ and
g, - Determine the ESMT for QU {v}\ {¢},q, }. Retain the shortest of these five trees.

e Two degenerate Steiner points. Determine the EMSTs of Q and every pair of two wide reflex
vertices. Retain the shortest of these ten trees.

e Two Steiner points. The case when Steiner points are visible to each other in i(P") is covered in
Subsection 5.1. The case when they are invisible to each other is covered in Subsection 5.2.

5.1 Visible Steiner Points

In this subsection we discuss the problem of determining the shortest tree spanning four semi-terminals
of a 4-kite P" with two Steiner points s23 and s41 visible to each other (Fig. 5).

There is an obvious O(k*) time and O(k) space algorithm. In the preliminary version of this
paper [12], we gave an O(klogk) time and O(k) space algorithm based on circular rotations of four
interior tangents. Here we give an O(k) time and space algorithm which also exploits circular rotations.
However, six interior tangents are used. The additional two tangents make it possible to avoid an
explicit intersection test between the edge connecting two Steiner points and P". In fact, the algorithm
becomes much simpler than its four-tangent predecessor.



Figure 5: A tree with 2 visible Steiner points sa3 and s4;

¢ Initialization: Let L; denote the interior tangent overlapping with an arbitrary edge v, v; of
P". Traverse the vertices of P" clockwise, beginning at v;, until reaching a vertex v12 admitting
an interior tangent L;» making 60° with L, and a vertex v, with an interior tangent L, making
120° with L,. Continue until reaching vertices vs, v34 and v, with interior tangents L3, L34 and
L, distinct but parallel with Ly, Li5 and Lo, respectively.

e Iteration: Let a denote the minimum angle so that the counterclockwise rotation of at least
one interior tangent by « causes it to overlap with an edge of P"”. Determine a Steiner tree
for v1,va,vs3,v4, with vy, v3 and vg,v1 having common Steiner points se3 and s41, respectively
(or decide that it does not exist). If s41v1, 823v2, S23v3, 84104 Overlap with interior tangents at
respectively vy, v2,v3,v4, at most a from respectively Ly, Lo, L3, Ly, then connect touch vertices
to semi-terminals ¢;**, ¢;2%, ¢;2, g,4'. Check if all four semi-terminals of () are thereby spanned,
and if the edge s235841 is to the right of interior tangents for v1» and wvs4. These interior tangents
must be at most a away from L5 and L34. The tree is saved if its length is less than the length
of the best solution found so far.

e Sweep: Rotate the interior tangents (counterclockwise) around their touch vertices by a. Suppose
that this rotation causes L, and v,v} to overlap for some u = 1,2,3,4,12, 34. Replace v, by v .

e Termination: Stop if the interior tangents have been rotated by at least 180°; otherwise perform
next Iteration.

Lemma 3 Shortest tree spanning four semi-terminals of the 4-kite P" with two Steiner points visible
to each other can be determined in O(k) time and space.

Proof. The determination of touch vertices vy, v1s, v2,v3, U34,v4 requires one scan of the vertices of P”.
Semi-terminals ¢, , g] and their distances from v for all v € P" can be determined using two scans of
P". Hence, the preprocessing and initialization can be done in O(k) time and space.

The existence of the Steiner tree with v and vs adjacent to s23, and v4 and v; adjacent to s4; can
be verified in O(1) time. If the Steiner tree exists, the locations of s4; and ss23 are determined in O(1)
time.

The edges v 841, V2823, V3823, V4841 must overlap with interior tangents of P" (with the same touch
vertices) at most o away from Lj, Lo, L3, L4, respectively. The edge s23541 must be to the right of two
interior tangents of v12 and v34. They must have the same touch vertices and be at most a away from
Ly and L34. The semi-terminals of ) must be covered by {¢5*',¢52*, g5, ¢4 }. These facts can be
verified in O(1) time. Furthermore, they ensure that the Steiner tree is completely in P”. In order
to verify this, consider first the edge v1s4;. It cannot intersect the two sides of P” with gyt as their
common end-vertex. These two sides are concave, turn away from each other and v;s4; overlaps with
an interior tangent at v; (which is a vertex of at least one of these two sides). The same can be shown
for the other three edges vasas, v3s23,v4841 of the Steiner tree. This in particular implies that the side



of P" joining ¢;2° with ¢;2° cannot be intersected by v1s41. Finally, the side of P" joining ¢;2* and ¢;4
cannot be intersected by vy s41. If it did, the same side would have to be intersected by w441 -
It remains to show that s41523 is in P”. It cannot intersect the side connecting g with g, as this
would force vys41 or v4841 to intersect P”. Similarly, it cannot intersect the side connecting g2 with
23, Assume that it intersects the side connecting q;2 with g;2. Since s41823 is between 2 parallel
tangents, the intersection with P implies yet another parallel interior tangent. This contradicts the
assumption that P" is a 4-kite.
During each iteration, one touch vertex is replaced. Hence, O(k) time and space is used in total.

5.2 Invisible Steiner Points

In this subsection, we discuss the problem of determining the ESMT for @ under the assumption that
it has two Steiner points so3 and s41 invisible to each other (Fig. 6).

(a) (b)

Figure 6: A tree with 2 invisible Steiner points so3 and s4;

Assume first that the polygonal chain connecting s23 and s4; in the ESMT for @ touches P"(q¢1,g2)
in at least one reflex vertex, and does not touch P"(qs, q4), as shown in Fig. 6a. Let v41 and va3 denote
the first and the last vertex of P"” on the path from s4; to sa3 in the ESMT for Q.

Consider the half-line from v; through s4;. Its first intersection with P is denoted by z. The
line-segment vz divides P" such that g4 is separated from both ¢» and ¢3. Let P{’ denote the part
containing g1, and let Pj' denote the other part of P”. The ESMT for Q4 = @\ {¢4} cannot go through
the interior of P;’. Furthermore, it cannot have a Steiner point in the region Ry bounded by wv41, 841,
v1 and P"(v1,v41). Hence the leg of the ESMT for Q4 from ¢ to its Steiner point touches the segment
V41541 Behind this segment, the ESMT for Q)4 must overlap with the ESMT for Q. If not, the latter
would not be optimal. Furthermore, the optimality of the ESMT for ()4 implies that the segment v41 541
is touched at vy4;.

It follows that in order to determine ESMT for ) with the polygonal chain connecting sa3 and s41
touching P"(q1,g2), one needs to determine the ESMT for )4 and the ESMT for Q3 = @ \ {g3}-

If the polygonal chain connecting s23 and s41 touches P"(gs,q4) in at least one reflex vertex, and
does not touch P"(q1,g2), analogous arguments apply.

Assume next that the polygonal chain connecting s23 and s4; touches both P"(gs3,q4) and P"(q1,g2)
in at least one reflex vertex as shown in Fig 6b. Let Lis and L34 be interior tangents as defined in
Subsection 5.1. In particular, their touch vertices are v12 and wsy, respectively. If v1o and v34 are on
opposite sides of P" and the line overlapping with vi1ovs4 is an interior tangent at both v12 and v34 at
most o away from both L2 and L34, determine an ESMT for {q1,¢4,v12} and an ESMT for {g2, g3, v34}.



Join these two ESMTs by the edge vi2v34. Rotate the interior tangents Lis and L34 by a and repeat.
Stop after 180° rotation.

O(k) time is needed to determine a pair of ESMTs for 3 vertices. Li2 and L34 can overlap at most
twice while their touch vertices are reflex vertices of P"(gs3,q4) and P"(q1,q2), respectively. Conse-
quently, during the 180° rotation, the need for the determination of ESMTs for 3 vertices can occur at
most 4 times.

Lemma 4 Shortest tree spanning four vertices of a 4-kite with its two Steiner points connected by a
chain touching the 4-kite can be determined in O(k) time and space.

6 ESMT for Four Semi-Terminals in a 3-Kite

If P" is a 3-kite with one of the semi-terminals in its interior, the following lemma excludes the most
complicated case of Section 5 with two non-degenerate Steiner points. The other cases are as described
in Section 5 (with fewer number of trees generated since the number of wide vertices is at most 2).

Lemma 5 If P" is a 3-kite with connected and non-empty i(P"), then the ESMT for Q has at most
one non-degenerate Steiner point.

Proof. Suppose that the ESMT for ) has two non-degenerate Steiner points wvisible to each other
(Fig. 7a). Edges incident with Steiner points make 120°. Therefore vssas||v1s41 as well as vy sag||vasas.
At least one pair of these parallel edges touches P". These two edges overlap with distinct interior
tangents, contradicting the assumption that P" is a 3-kite.

Suppose next that the ESMT for @ has 2 Steiner points invisible to each other (Fig. 7b). Three of
the vertices adjacent to Steiner points must be on the boundary of P”. The corresponding edges must
overlap with interior tangents at these vertices. The ESMT for @) partitions the interior of P" into four
regions. Vertices of three of them (bounding shaded regions in Fig. 7b) admit interior tangents with
slopes differing by 180° in total (60° each). Furthermore, vertices on the path from ss3 to s41 admit
additional interior tangents, contradicting again the assumption that P" is a 3-kite. ]

Figure 7: ESMTs with 2 Steiner points so3 and s41 in a 3-kite

7 Heuristic

The heuristic proposed in this paper consists of three major steps. In the first step appropriate terminal
subsets with two, three and four elements are determined. Then ESMTs for these subsets are constructed
by considering a constant number of possible topologies for each subset. At most O(k) time and space
is needed for each topology. Finally, concatenation of ESMTs for subsets is carried out to obtain a
solution to the overall problem.



There are several ways of selecting subsets with two, three and four terminals. In Section 1, we
suggested to use subsets that induce connected subgraphs of the EMSTs for all terminals (shortest paths
between terminals are regarded as edges). Another option, generating more subsets, are geometric duals
of the geodesic Voronoi diagrams for the terminals. A reasonable compromise between EMSTs (easy
to implement, generating rather limited number of subsets) and dual of Voronoi diagrams (complicated
to implement, generating perhaps too many subsets) would be relative neighbor graphs (mentioned in
the next section) or Gabriel graphs. The issue of the best subset generator remains an open problem
which should be addressed in the future. According to our limited experience, using EMSTs generates
on average 3n subsets of size three and four. When using relative neighbourhood graphs, this increases
to 5n.

Construction of ESMTs for subsets with three and four terminals was the main issue of the preceeding
sections. Given the shortest paths between all terminals (needed anyway to determine small subsets),
we argued that ESMTs can be determined in O(k) time and space using simultanous rotational sweep
of several interior tangents.

Concatenation strategies will be briefly discussed in the next section. Also here further research
is needed to uncover the most advantegous strategy. We experimented with three approaches: greedy
(where ESMTs are sorted by the non-decreasing ratio of the length of the ESMT and EMST) and added
to the overall solution provided that feasibility is maintained (no cycles are generated), greedy with a
subsequent polynomial improvement phase, and exponential exact concatenation using branch-and-cut.

8 Computational Results

The heuristic was experimentally evaluated on an HP9000/C200 workstation using the programming
language C++ and class library LEDA (version 3.7.1) [4]. In order to evaluate the quality of the trees
produced, optimal solutions were computed using the exact algorithm of Zachariasen and Winter [13].

The first series of problem instances was generated using a hand-drawn polygon Py with k = 26
vertices. For each n = 10, 20, ..., 100, 150, 200, 250, ..., 500, 600, ..., 900, 1000, we randomly generated ten
sets of terminals (uniformly in the interior of Pag).

10 terminals 20 terminals 50 terminals

Figure 8: Heuristic solutions (using exact concatenation)

In the left part of Table 1, we present reductions in percent over the EMSTs. CPU-times are shown
in the right part of Table 1.

e The ratios in the Fast column are obtained by the fast, straightforward O(slogs) concatenation,
where s is the number of generated small ESMTs. ESMTs are ordered by non-decreasing ratio
between their length and the length of the EMST spanning the same set of terminals. ESMTs
are added to the final solution in greedy fashion provided that no cycle is created.

e The ratios in the Slow column are obtained by the greedy concatenation followed by a polynomial
improvement phase. This O(s?) approach was also used successfully in connection with the
heuristic for the ESTP in the plane (with no bounding polygon). The reader is referred to [14]
for the description of this approach.
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10 terminals 20 terminals 50 terminals

Figure 9: Exact solutions

The ratios obtained by the exact concatenation based on the branch-and-cut algorithm are shown
in the Exact column. The details concerning the exact concatenation can be found in [9] where
it was successfully applied to find exact solutions to very large instances of the Euclidean and
rectilinear Steiner tree problems.

The ratios in the RNG column are obtained by using relative neighbourhood graphs instead of
EMSTs when determining small subsets of terminals. Furthermore, exact concatenation based on
the branch-and-cut approach is used.

The ratios in the 4-ESMT column are obtained by the exact algorithm where the generation of
ESMTs is cut-off for more than four points. Note that ESMTs of terminals and polygonal vertices
are generated.

The ratios between optimal solutions and EMSTs are shown in the ESMT column. Only problem
instances with up to 100 terminals were solved to optimality. The exact algorithm to solve the
Euclidean Steiner tree problem inside a polygon (with or without holes) is described in [13].

The H-CPU column shows CPU-times for the heuristic using the exact concatenation. Compu-
tational times for the heuristics using less elaborate concatenation are not much smaller and
therefore are not shown. It should be noted that the CPU-times for large instances are dominated
by the computation of the EMST for all terminals. The reason is that we use a straightforward
algorithm which constructs the visibility graph of terminals and polygon vertices. For n = 1000
approximately 80% of the CPU-time is spent computing the EMST. By using a more elaborate
algorithm for computing the EMST (e.g. based on the geodesic Voronoi diagram) this part of the
algorithm would not have dominated the running time for large instances.

The R-CPU column shows CPU-times for the heuristic using relative neighborhood graphs and
exact concatenation. The number of subsets for which small ESMTs are generated increases
significantly. For example, for 600 terminals, the number subsets of size 3 increased on average
(over 10 problem instances) from 735 to 1154. The number of subsets of size 4 increased on
average from 983 to 2091. The CPU-time for the generation of these small ESMTs went up from
249.90 to 357.55 on average. However, the real time-consuming part of the heuristic when using
relative neighborhood graphs, is the exact concatenation. It went up from 27.31 (all but 1 exact
concatenation took less than 2 seconds; the difficult one took 258.98) to 579.83 on average. If
respectively slow or fast concatenation were used, CPU-times for the concatenation would drop
to 12.51 and 0.04 respectively. The ratio drop would then be from 3.25 down to 3.18 and 2.92
respectively.

The 4-ESMT column shows CPU-times for the cut-off algorithm for FSTs spanning at most four
points (terminals or polygonal vertices).

The E-CPU column shows computational times needed to solve the same problem instances to
optimality. As it can be seen, there are considerable CPU-savings available by using the heuristic.
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The quality of the solutions obtained by the heuristic is on average not very far from the optimal
solution. Some additional improvements possibilities are discussed in the concluding section.

Table 1: Fixed polygon - Experimental results
n  Fast Slow Exact RNG 4-ESMT ESMT || H-CPU R-CPU 4-CPU E-CPU

10 5.68 5.79 5.81 5.81 5.83 5.83 0.50 0.42 4.68 27.95
20  3.92 4.04 4.06 4.06 4.34 4.35 0.91 0.97 17.74 163.95
30 3.87 3.95 3.95 3.95 4.17 4.17 1.35 1.56 28.28 271.44
40  3.55 3.74 3.76 3.81 4.14 4.15 2.03 2.42 44.96 667.27
50  3.28 3.40 3.41 3.48 3.72 3.73 2.49 3.07 62.81 810.19
60  3.04 3.19 3.21 3.31 3.50 3.51 3.14 4.14 84.50  1215.83
70  2.98 3.08 3.10 3.17 3.35 3.37 3.92 5.20 107.43  1440.90
80  2.78 2.89 2.93 3.03 3.16 3.17 4.61 6.42 132.75 1893.80
90  2.81 2.91 2.92 2.99 3.10 3.11 5.31 7.53 157.02  2359.92
100 2.76 2.86 2.88 3.02 3.20 3.21 6.15 9.35 171.81 2781.75
150 2.75 2.82 2.83 3.00 11.97 19.19
200 2.72 2.79 2.81 2.96 20.71 41.99
250 2.74 2.82 2.84 3.00 32.44 60.13
300 2.74 2.85 2.87 3.07 48.21 98.05
350  2.83 2.94 2.96 3.13 69.43 157.64
400  2.93 3.04 3.06 3.19 93.14 546.37
450  2.91 3.01 3.03 3.16 121.95 518.59
500 2.94 3.04 3.05 3.29 158.30 342.85
600  2.92 3.02 3.04 3.25 245.40 925.78
700 2.84 2.93 2.95 357.42
800  2.84 2.94 2.96 513.67
900  2.87 2.96 2.98 701.26
1000  2.90 2.99 3.01 925.06

Comparing the columns Exact and RNG it is clear that better subset generation methods can improve
solution quality substantially. For the obstacle-free problem Zachariasen and Winter [14] showed that
the so-called Gabriel graph (which contains both a minimum spanning tree and the relative neighbour-
hood graph) produced the best results.

Furthermore, the Fast and Slow columns show that improved concatenation methods also play an
important role in the performance of the heuristic. The results obtained by the more time consuming
method are very close to the results obtained by exact concatenation — but further improvements can
be obtained by using a local search algorithm [15].

In the second series of tests, the vertices of the polygon were restricted to be on two concentric
circles, such that they alternated in a regular fashion between the two circles. The radius of the inner
circle is 10 times less than the radius of the outer circle. Consequently, the polygon looks like a fan with
a parametrized number of fans. Exactly one terminal was placed in the tip of each fan, see Fig. 10.

Fan with 6 wings Fan with 7 wings

Figure 10: Fans - heuristic solutions (using exact concatenation)

Our results, shown in Table 2, clearly indicate that the heuristic solutions are not close to the
optimal solutions. Furthermore, it does not really help to use relative neighborhood graphs rather than
EMSTSs when selecting small subsets of terminals. However, these instances are particularly difficult for
the exact algorithm, since a huge number of FSTs has to be generated. On the other hand, ESMTs for
fans with 7 or more wings will consist of FSTs spanning at most 3 terminals and/or polygonal points.
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Fan with 6 wings Fan with 7 wings
Figure 11: Fans - exact solutions

Consequently, the cut-off algorithm will perform extremely well in this case. In fact, entries in the ESMT
column of Table 2 were obtained by the cut-off algorithm generating FSTs with at most 3 terminals
and/or vertices (for fans with more than 6 wings).

ESMTs for fans are FSTs spanning all terminals. Consequently, they are not generated by the
heuristic. One way out of this problem would be to modify the heuristic, so it generates ESMTs
with small number of terminals and/or vertices. This in turn would complicate the concatenation of
generated ESMTs unless using the exact concatenation based on the branch-and-cut algorithm.

Table 2: Fans - Experimental results

n Fast Slow Exact RNG 4-ESMT ESMT || H-CPU R-CPU 4-CPU E-CPU
6 27.51 27.51 27.51 27.51 36.67 36.83 0.27 0.35 51.17 649.36
7 30.96 30.96 30.96 31.71 38.71 38.71 2.46 4.21 58.96 492.70
8 26.79 26.79 26.79 26.79 40.19 40.19 3.49 5.79 114.98 2159.19
9 29.52 29.52 29.52 29.95 41.33 41.33 4.70 6.94 234.43 17825.72

10 26.39 26.39 31.67 31.67 42.23 42.23 6.15 8.44 410.14

11 28.92  28.92 28.92 28.92 42.96 42.96 7.82 10.66 1086.80

12 26.14  26.14 30.49 30.49 43.56 43.56 10.00 12.63

13 28.24  28.24 32.05 32.25 44.07 44.07 12.01 15.40

14  29.67 29.67 29.67 29.67 44.39 44.39 13.58 17.28

15 31.22  31.22 31.22 31.22 44.88 44.88 15.98 19.87

16 25.83  25.83 32.29 32.29 44.95 44.95 18.74 22.76

9 Conclusions

We presented O(k) time and space algorithms for the ESMT for three and four terminals inside a
simple polygon with k vertices. We also indicated how geodesic Voronoi diagrams and EMSTs can be
used to determine reasonable subsets of terminals. Using O(slogs) time, where s is the number of
selected subsets, ESMTs can be arranged in non-decreasing order of the ratio between the lengths of
their ESMTs and EMSTs. Note that when using EMSTSs, s would be of order O(n) in the obstacle-free
case; degrees of vertices in EMSTs are bounded by a constant. This is not necessarily the case inside
a simple polygon for which there exist instances where s is of order @(n®). When concatenated in
greedy fashion (avoiding cycles), a reasonable solution to the Euclidean Steiner tree problem for any
number of terminals inside a polygon is obtained. The time needed to determine ESMTs and EMSTs
for the selected s subsets is O(sk). Therefore, the overall running time complexity of the algorithm is
O(sklogs+ (n+k)log(n+k)), where the second term is the worst-case time complexity of the geodesic
Voronoi diagram algorithm.

There is a number of interesting issues that remain open. Can ESMT’s for 5, 6 or any fixed number
of terminals be determined in O(k) time and space? The determination of ESMTs for small subsets of
terminals in presence of several (convex) obstacles is also of interest. In this context, Steiner visibility
graphs introduced in [10] could prove useful. Finally, we mention the problem of preprocessing a simple
polygon so that three and/or four terminals queries for ESMTs can be answered efficiently.
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