Technical Report DIKU-TR-98/23
Department of Computer Science
University of Copenhagen
Universitetsparken 1
2100 Copenhagen
Denmark

submitted for publication
October 1998

Relations Between Regularization and Diffusion
Filtering

OTMAR SCHERZER
Institut fur Industriemathematik
Johannes—Kepler—Universitat
A-4040 Linz, Austria

and

JOACHIM WEICKERT
Department of Computer Science
University of Copenhagen
Universitetsparken 1
DK-2100 Copenhagen, Denmark

CR Subject Classification: 1.4.3, 1.4.4, G.1.8, G.1.6.

Keywords: Regularization, diffusion filtering, image restoration, inverse problems, total
variation denoising.

tThe work of Otmar Scherzer is supported by the Fonds zur Férderung der Wissenschaftlichen For-
schung (Austria) , SFB F1310, as well as the Fonds zur Férderung der Gewerblichen Forschung (FFF),
Project 200354. Joachim Weickert is supported by the EU-TMR, project VIRGO.



Abstract

Regularization may be regarded as diffusion filtering with an implicit time
discretization where one single step is used. Thus, iterated regularization with
small regularization parameters approximates a diffusion process. The goal of this
paper is to analyse relations between noniterated and iterated regularization and
diffusion filtering in image processing. In the linear setting, we show that with iter-
ated Tikhonov regularization noise can be better handled than with noniterated.
In the nonlinear framework, two filtering strategies are considered: total varia-
tion regularization and the diffusion filter of Perona and Malik. It is established
that the Perona-Malik equation decreases the total variation during its evolution.
While noniterated and iterated total variation regularization is well-posed, one
cannot expect to find a minimizing sequence which converges to a minimizer of
the corresponding energy functional for the Perona-Malik filter. To address this
shortcoming, a novel regularization of the Perona-Malik process is presented which
allows to construct a weakly lower semi-continuous energy functional. In analogy
to recently established results for a well-posed class of regularized Perona—Malik
filters, we introduce Lyapunov functionals and convergence results for regulariza-
tion methods. Experiments on real-world images illustrate that iterated linear
regularization performs better than noniterated, while no significant differences
between noniterated and iterated total variation regularization have been observed.

1 Introduction

Image restoration is among other topics such as optic flow, stereo, and shape-from-
shading one of the classical inverse problems in image processing and computer vision
[4]. The inverse problem of image restoration consists in recovering information about
the original image from incomplete or degraded data. Diffusion filtering has become a
popular and well-founded tool for restoration in the image processing community [25, 50,
while mathematicians have unified most techniques to treat inverse problems under the
theory of regularization methods [14, 19, 30, 44]. Therefore it is natural to investigate
relations between both approaches, as this may lead to a deeper understanding and a
synthesis of these techniques. This is the goal of the present paper.

We can base our research on several previous results. In the linear setting, Torre
and Poggio [45] emphasized that differentiation is ill-posed in the sense of Hadamard,
and applying suitable regularization strategies approximates linear diffusion filtering or —
equivalently — Gaussian convolution. Much of the linear scale-space literature is based on
the regularization properties of convolutions with Gaussians. In particular, differential
geometric image analysis is performed by replacing derivatives by Gaussian-smoothed
derivatives; see e.g. [16, 29, 42] and the references therein. In a very nice work, Nielsen
et al. [31] derived linear diffusion filtering axiomatically from Tikhonov regularization,
where the stabilizer consists of a sum of squared derivatives up to infinite order.

In the nonlinear diffusion framework, natural relations between biased diffusion and
regularization theory exist via the Euler equation for the regularization functional. This



Euler equation can be regarded as the steady-state of a suitable nonlinear diffusion
process with a bias term [34, 41, 9]. The regularization parameter and the diffusion
time can be identified if one regards regularization as time-discrete diffusion filtering
with a single implicit time step [43, 39]. A popular specific energy functional arises
from unconstrained total variation denoising [1, 8, 6]. Constrained total variation also
leads to a nonlinear diffusion process with a bias term using a time-dependent Lagrange
multiplier [38].

In spite of these numerous relations, several topics have not been addressed so far in
the literature:

o A comparison of the restoration properties of both approaches: Since regularization
corresponds to time-discrete diffusion filtering with a single time step, it follows
that iterated regularization with a small regularization parameter gives a better
approximation to diffusion filtering. An investigation whether iterated regulariza-
tion is better than noniterated leads therefore to a comparison between regulariza-
tion and diffusion filtering.

e Fnergy formulations for stabilized Perona—Malik processes: The Perona—Malik
filter is the oldest nonlinear diffusion filter [36]. Its ill-posedness has triggered
many researchers to introduce regularizations which have shown their use for image
restoration. However, no regularization has been found which can be linked to the
minimization of an appropriate energy functional.

e Lyapunov functionals for regularization: The smoothing and information-reducing
properties of diffusion filters can be described by Lyapunov functionals such as
decreasing LP norms, decreasing even central moments, or increasing entropy [50].
They constitute important properties for regarding diffusion filters as scale-spaces.
A corresponding scale-space interpretation of regularization methods where the
regularization parameter serves as scale parameter has been missing so far.

These topics will be discussed in the present paper. It is organized as follows. Section
2 explains the relations between variational formulations of diffusion processes and regu-
larization strategies. In Section 3 we first discuss the noise propagation for noniterated
and iterated Tikhonov regularization for linear problems. In the nonlinear framework,
well-posedness results for total variation regularization are reviewed and it is explained
why one cannot expect to establish well-posedness for the Perona—Malik filter. We will
argue that, if the Perona—Malik filter admits a smooth solution, however, then it will
be total variation reducing. A novel regularization will be introduced which allows to
construct a corresponding energy functional. Section 4 establishes Lyapunov functionals
for regularization methods which are in accordance with those for diffusion filtering. This
leads to a scale-space interpretation for linear and nonlinear regularization. In Section
5 we shall present some experiments with noisy real-world images, which compare the
restoration properties of noniterated and iterated regularization in the linear setting and



in the nonlinear total variation framework. Moreover, the novel Perona-Malik regu-
larization is juxtaposed to the regularization by Catté et al. [5]. The paper will be
concluded with a summary in Section 6.

2 Variational formulations of diffusion processes and
the connection to regularization methods

We consider a general diffusion process of the form
owu(z,t) = V.(g(|Vu|*>)Vu) (z,t) on  x (0, 00]
(2.1) oou = 0 on I' x (0, 00]
u(z,0) = fs(z) on Q.

Here g is a smooth function satisfying certain properties which will be explained in the
course of the paper; 2 C R? is a bounded domain with piecewise Lipschitzian boundary
[’ with unit normal vector n, and fs is a degraded version of the original image f := f; :
Q—R.

For the numerical solution of (2.1) one can use explicit or implicit or semi-implicit differ-
ence schemes with respect to ¢.

The implicit scheme reads as follows
Hetel) =V (g(|Vul) V) (2, + h)
u(z,0) = fs(x).

Here h > 0 denotes the step-size in ¢-direction of the implicit difference scheme.

(2.2)

In the following we assume that ¢ is measurable on [0, co[ and there exists a differentiable
function § on [0, 00) which satisfies ¢’ = g. Then the minimizer of the functional (for
given u(x,t))

(2:3) T(u) = flu = u(z, )2 +h [ §(1Vu?),
satisfies (2.2) at time ¢ + h. If the functional 7" is convex, then a minimizer of 7T is

uniquely characterized by the solution of the equation (2.2) with homogeneous Neumann
boundary conditions.

T'(u) is a typical regularization functional consisting of the approximation functional
||lu — u(z,t)||* and the stabilizing functional [, §(|Vu|?). The weight h is called regular-
ization parameter. The case §(x) = z is called Tikhonov reqularization.

In the next section we summarize some results on regularization and diffusion filtering
and compare the theoretical results developed in both theories.
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3 A survey on diffusion filtering and regularization

We have seen that each time step for the solution of the diffusion process (2.1) with
an implicit, t-discrete scheme is equivalent to the calculation of the minimizer of the
regularization functional (2.3). The numerical solution of the diffusion process with
an implicit, ¢-discrete iteration scheme is therefore equivalent to iterated regularization
where on has to minimize iteratively the set of functionals

(3.1) T, (u) := ||u—un_1||2+hn/ng(\Vu\2).

Here u, is a minimizer of the functional 7;,,n = 1,2, ..., and ug := f5. If the functionals
T, are convex, then the minimizer of (3.1) denoted by u, is the approximation of the
solution of the diffusion process with an implicit, ¢-discrete method at time ti,...,%,

where tp = E?:l hj.

In the following we refer to iterated regularization if A, = h for all n. That corresponds
to the solution of the diffusion process with an implicit, ¢-discrete method using a fixed
time step size h = h,,.

If the regularization parameters h,, are adaptively chosen (this corresponds to the situa-
tion that the time discretization in the diffusion process is changed adaptively), then the
method is called nonstationary regularization. For some recent results on nonstationary
Tikhonov regularization we refer to Hanke and Groetsch [24]; however, their results do
not fit directly into the framework of this paper. They deal with regularization methods
for the stable solution of operator equations

(3.2) Iu=y,

where [ is a linear bounded operator from a Hilbert space X into a Hilbert space Y, and
they use nonstationary Tikhonov regularization

min([|7u — y[|* + hnllu — un—1]1*)

for the stable solution of the operator equation (3.2).

3.1 Error propagation of Tikhonov regularization with linear
unbounded operators

In this subsection we consider the problem of computing values of an unbounded operator

L. We will always denote by L : D(L) C H; — H, a closed, densely defined unbounded

linear operator between two Hilbert spaces H; and H,. A typical example is Lu = Vu.

The problem of computing values y = L fy, for fo € D(L) is then ill-posed in the sense
that small perturbations in f, may lead to data fs satisfying

(3.3) | fo = fsll <0,
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but fs ¢ D(L), or even if f; € D(L), it may happen that Lfs / Lfy as § — 0, since
the operator L is unbounded. Morozov has studied a stable method for approximating
the value Lf, when only approximate data f; is available [30]. This method takes as an

approximation to y = Lf the vector ) = Lu¢ , where u? minimizes the functional

(34) Trig (u) = llu = foll” + Bl Lul*  (h>0)
over D(L).

The functional is strictly convex and therefore if D(L) is nonempty and convex there
exists a unique minimizer of the functional Trpr (u). Thus the method is well-defined.
For more background on the stable evaluation of unbounded operators we refer to [20].

Let up := f5. If L = V, then the sequence {u,}n>1 of minimizers of the family of
optimization problems

(3.5) Tk = llu — Un_1|> + A Vul? n>1

are identical to the semi-discrete approximations of the differential equation (2.1) at time
nh (n > 1) where g(z) = .

This shows

Methods for evaluating unbounded operators can be used for diffusion filtering
and vice versa. However the motivations differ: For evaluating unbounded
operators we solve the optimization and evaluate in a further step the unbounded
operator. In diffusion filtering we “only” have to solve the optimization
problem.

In the following we compare the error propagation in Tikhonov regularization with regu-
larization parameter h and the error propagation in iterated Tikhonov regularization of
order N with regularization parameter A/N. This corresponds to making an implicit,
t-discrete ansatz for a diffusion process with one step h and an implicit, t-discrete ansatz
with N steps of step h/N, respectively.

Tikhonov regularization with regularization parameter h reads as follows
4= (I+hL*L)""f;

where L* is the adjoint operator to L (see e.g. [47] for more details). Tikhonov regular-
ization of order N with regularization parameter h/N reads as follows

h —-N



Let L*L be an unbounded operator with spectral values

such that A\, — oo as n — o0o. Then
-N
uy = (I+LL°L)  f
—N —N
= (T+{L°L) " (fs—fo) + (T+{I°L) " fo.

-N
(I + %L*L) (fs— fo) denotes the propagated error of the initial data fs, which remains
in uy — this corresponds to the error propagation in diffusion filtering with an implicit,
t-discrete method.

Let E\ be the spectral family according to the operator L*L. Then it follows that [47]

(I-l—%L*L)_N(f(;—fO) =/0°° <1+%)\>_NEA(f5—f0).

Using N , N
h\Y . h N\ [ h AR
<1+N)‘> _1+NA+<2)<N> /\2+""+(N> A
we get that
I T AR T
e (0FHEL) " U=

= T () (Bt (B) ) B ol

In noniterated Tikhonov regularization the error propagation is

2

(3.7) [+ (55— fo) = [0+ N 2ERI s — foll

For large values of A (i.e., for highly oscillating noise) the term (1 + kX)"2 in (3.7) is

. . N 2 N -2 .
significantly larger than the term (1 + )+ (2) (%) A+ + (%) ,\N> in (3.6).

This shows that noise propagation is handled more efficiently by iterated Tikhonov regu-
larization than by Tikhonov regularization.

Above we analyzed the error of the (iterated) Tikhonov regularized solutions and not the
error in evaluating L at the Tikhonov regularized solutions. We emphasize that the less
noise is contained in a data set the better the operator L can be evaluated. Therefore
we conclude that the operator L can be evaluated more accurately with the method of
iterated Tikhonov regularization than with noniterated Tikhonov regularization. This
will be confirmed by the experiments in Section 5.



3.2 Well-posedness of regularization with nonlinear unbounded
operators

In this subsection we discuss some theoretical results on regularization with nonlinear
unbounded operators.

3.2.1 Well-posedness and convergence for total variation regularization

Total variation regularization goes back to Rudin, Osher and Fatemi [38] and has been
further analysed by many others, e.g. [1, 7, 6, 8, 12, 13, 27, 28, 43, 40, 46]. In the
unconstrained formulation of this method the data fj is approximated by the minimizer
of the functional over TV(f2), the space of all functions with finite total variation norm

(3.8) Ty (u) = llu = fslI* + ATV (u),
where TV (u) := [, |Vu| and

— _ . 1 d <
/Q|Vu\ sup{ /qu.p.pECO(Q,R),\p\_l}.

This expression extends the usual definition of the total variation for smooth functions
to functions with jumps [22].

It is easy to see that a smooth minimizer of the functional Ty satisfies
h 1

3.9 —fs==V.| =—Vu]| .

(39) u—fi= 1 (lw u)

Acar and Vogel [1] proved the following results concerning existence of a minimizer of
(3.8) and concerning stability and convergence of the minimizers:

Theorem 3.1 (Existence of a minimizer) Let f; € L*(Q), then for fited h > 0 a
minimizer up, € TV(Q) of (8.8) exists and is unique.

Theorem 3.2 (Stability) Let f5 € L*(Q) and fo € TV(Q). Then for § — 0
un(fs) = un(fo)

with respect to the LP-norm (1 < p < 2% ). Here uy(f5) is the minimizer of (3.8) and

un(fo) is the minimizer of (3.8) where f° is replaced by f;.
Theorem 3.3 (Convergence) Let f; € L*(Q) and fy € TV(Q) satisfy
lfs — folle2) < 6.
Then for h := h(d) satisfying % —0asd—0
up = fo

with respect to the LP-norm (1 < p < ﬁ).



It is evident that analogous results to Theorem 3.1, Theorem 3.2 and 3.3 also hold for
the minimizers of the iterated total variation reqularization which consists of minimizing
a sequence of functionals

(3.10) T (u) == ||u—un_1||2+h/Q\Vu|,

where uy_1 denotes the minimizer of the functional Trjr\’\_/1 and uy = f;.

This regularization technique corresponds to the implicit, ¢-discrete approximation of
the diffusion process (2.1) with §(z) = /x.

3.2.2 The Perona-Malik filter

In the Perona-Malik filter [36] we have g(s) = 1%5 and g(s) = In(1 + s). Tterated

Perona-Malik regularization minimizes the family of functionals
(3.11) T () = || — 1 (2)]2 + h,/an(l + [ Vul?) .

The functionals T,  are not convex and therefore we cannot conclude that the minimizer
of (3.11) (it it exists) satisfies the first order optimality condition

1

(3.12) (= ) (2) = V. (%) |

with homogeneous Neumann boundary data.

In the following we comment on some aspects of the Perona-Malik regularization tech-
nique. For the definitions of the Sobolev spaces WP and the notion of weak lower
semi-continuity we refer to [2].

1. Neumann boundary conditions: Let €2 be a domain with smooth boundary 0f2.
Using trace theorems (see e.g. [2]) it follows that the Neumann boundary data are
well-defined in L2(99) for any function in W3:2(Q2). Suppose we could prove that
there exists a minimizer of the functional RUNE then this minimizer must satisfy

(3.13) /an(1 +[Vul?) ds < oo .

Elementary calculations show that any function v € WY(Q) (p > 1) satisfies
(3.13). Therefore we cannot deduce from (3.13) that the minimizer is in any
Sobolev space W'P(Q)(p > 1). Consequently, there exists no theoretical result
that the Neumann boundary conditions are well-defined.



2. Emistence of a minimizer of the functional Tpar The function In(1 + s?) is not
convex, and therefore the functional T(5y;(u) is not weakly lower semi-continuous

on WHP(Q) for any 1 < p < oo (see [11, p. 66] and also [10])).

Therefore, there exists a sequence uy € WH(Q) with uy — u in W'?(Q), but

lim inf Tpy p (ur) < Tppp(u) -

Consequently, we cannot expect that a minimizing sequence converges (in W'?(Q))
to a minimizer of the functional Tf)M. Thus the solution of the Perona-Malik

regularization technique is ill-posed on WP (Q)!

The diffusion process associated with the Perona-Malik regularization technique is

Vu

The Perona-Malik diffusion filtering technique can be split up in a natural way into a
forward and a backward diffusion process:

O = V. (mwar

(1=|Vu|?)Au
(1+|Vul?)?

(@(IVul) = b(|Vul) Au

Vu)

Here
1 |Vul|?

At vape V)= g e

Both functions a and b are non-negative. In general the solution of a backward diffusion
equation is severely ill-posed (see e.g. [14]). We argue below that this nonlinear backward
diffusion is well-posed with respect to appropriate norms. In fact we argue that the
backward diffusion equation

a(|Vul) :=

(3.15) v = —b(|Vv|)Av
satisfies
(3.16) TV (v(.,t)) =TV (v(.,0)) =TV (vg(.)) -

The intuitive reason for the validity of this is the following: Let v € C?*(Q2 x [0, T]) then

(3.17) 0| Vv| a2 Oyy/| V]2 + 2 = \/%
+
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Using (3.17), (3.15), and integration by parts it follows that

fQ at|VU| ~ fQ \/ﬁvaﬂ)

= Vo | ‘
= kv (\/VU|2+ﬁ2) (1+]V[2)2 Av

_ ﬂ2f [Vo|? |Av]?
- Q |Vv|2+62 (1+]|Vv|?)2

If v € C*(Q2 x [0,T]) then the right hand side tends to zero as 8 — 0. These arguments
indicate that

3t/Q|Vv|:O.

Consequently the total variation of v(.,t) does not change in the course of the evolu-
tionary process (3.17). Indeed, (3.15) may be regarded as a total variation preserving
shock filter in the sense of Osher and Rudin [35].

The diffusion process
O = a(|Vul|)Au

is a forward diffusion process which decreases the total variation during the evolution.
In summary we have argued that the Perona-Malik diffusion equation decreases the total
variation during the evolutionary process.

3.2.3 A regularized Perona-Malik filter

Although the ill-posedness of the Perona-Malik filter can be handled by applying regu-
larizing finite difference discretizations [51], it would be desirable to have a regularization
which does not depend on discretization effects. In this subsection we study a regularized
Perona-Malik filter

(3.18) T8 pap(®) == [l — un 1 ()| + h/ﬂln(l + VL),

where L., is linear and compact from L?*(Q2) into C*(£2). The applications which we have
in mind include the case that L, is a convolution operator with a smooth kernel.

In the following we prove that the functional Tf{—PM attains a minimium:
Theorem 3.4 The functional Th ppy s weakly lower semi continuous on L?(Q).
Proof: Let {u, : s € N} be a sequence in L?({2) which satisfies

Tﬁ_PM(us) — min{Tﬁ_PM(u) cu € L*(Q)} .

Then {us} has a weakly convergent subsequence (which is again denoted by {us}) with
weak limit u. Since L. is compact from L?(Q) into C*(Q) the sequence In (1 + |V L, ug4|?)
converges uniformly to In (1 + |VL,u|?). In particular, we have

/an (1+1VLu,?) —>/an (1+ VL) .
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Using the weak lower semi-continuity of the norm ||.|[z2(q) it follows that the functional
TR _pyp is weakly lower semi-continuous. g.e.d.

The minimizer of the regularized Perona-Malik functional satisfies
VL.,u

3.19 — Up— =hL:V. | —=1——| .

1) =) = b5

The corresponding nonlinear diffusion process associated with this regularization tech-
nique is

o VL,u
(3.20) duu(z) = LV. (—1 " \VLﬂLP) i

Regularized Perona-Malik filters have been considered in the literature before [3, 5, 32,
48, 50]. Catté et al. [5] for instance investigated the nonlinear diffusion process

(3.21) dulz) = V. (%) |

This technique (as well as other previous regularizations) does not have a corresponding
formulation as an optimization problem. The differences between (3.20) and (3.21) will
be explained in Section 5.

4 Lyapunov functionals for regularization methods

Lyapunov functionals play an important role in continuous diffusion filtering (see [49,
50]). In order to introduce Lyapunov functionals of regularization methods, we first give
a survey on Lyapunov functionals in diffusion filtering. We consider the diffusion process
(here and in the following € will be a domain with piecewise smooth boundary)

ou(z,t) = V.(9(Ly(Vu))Vu) on Qx(0,T)
(4.1) u(z,0) = f(2) on Q
Ou = 0 on I'x(0,7)
We assume that the following assumptions hold:
1. f e L*(Q), with a :=ess infcqf and b := ess sup,cq f.
2. L, is a compact operator from L?(Q) into C?(Q) for any p € N.
3. T >0.

4. For all w € L*(Q,R?) with |w(z)| < K on , there exists a positive lower bound
v(K) for g.
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The regularizing operator L, may be skipped in (4.1), if one assumes that §(|.|?) is
convex from R? to R. Moreover, it is also possible to generalize (4.1) to the anisotropic
case where the diffusivity g is replaced by a diffusion tensor [50].

Under the preceding assumptions it can be shown that (4.1) is well-posed (see [5, 50]):

Theorem 4.1 The equation (4.1) has a unique solution u(x,t) which satisfies

(4.2) u € C([0, T L2(9)) N L*([0, T}; H'(2)
(4.3) o € L*([0,T]; H(Q)).
Moreover,

ue C®(Q x[0,7T]) .
The solution fulfills the extremum principle
(4.4) a<u(z,t) <bonQx(0,7T].
For fized t the solution depends continuously on f with respect to ||.||r2(q)-

This diffusion process leads to the following class of Lyapunov functionals [50]:

Theorem 4.2 Suppose that u is a solution of (4.1) and that assumptions 1 — 4 are
satisfied. Then the following properties hold

(a) (Lyapunov functionals) For all r € C?[a,b] with r" > 0 on [a, b], the function

(4.5) V(t) = pu(t)) = /Q r(u(z, 1)) de
1s a Lyapunov functional:

1. ¢(u(t)) > ¢(Mf) for allt > 0; here
1

2. Ve C[0,00)NCY0,00) and V'(t) <0 for all t > 0.
Moreover, if " > 0 on [a,b], then V (t) = ¢(u(t)) is a strict Lyapunov functional:

3. d(u(t)) = ¢(Mf) if and only if u(t) = Mf on Q fort > 0 and u(t) = Mf
a.e. on§) fort=0.

4. Ift >0, then V'(t) = 0 if and only if u(t) = M f on Q.

5. V(0)=V(T) for T >0 if and only if f = Mf a.e. onQ and u(t) = Mf a.e.
on Q x (0,7].

(b) (Convergence)

13



1. limy o0 ||u(t) = M f||Lr@y = 0 for p € [1,00).
2. If Q C R, then the convergence limy_, o u(x,t) = M f is uniform.

In the sequel we introduce Lyapunov functionals of regularization methods.

In the beginning of this section we discuss existence and uniqueness of the minimizer of
the regularization functional in H*(£2)

(4:6) 1) = |[u = fsllEa@y + 1 [ 9(Vul).
Lemma 4.3 Let Q C R%, d > 1. Moreover, let § satisfy:

§(.) s in C°(K) for any compact K C [0, oo[

(4.7)
9(0) = min{g(z) : = € [0, 00}

(4.8) §(|.1) is convex from R* to R .

Moreover, we assume that there exists a constant ¢ > 0 such that
(4.9) g(s) > cs
Then the minimizer of (4.6) exists and is unique in H'().

Proof: By virtue of (4.9) it follows that

@10)  fu=follawy + [ 90V 2 = follay +h [l Vul

Suppose now that u, is a sequence such that I(u,) converges to the minimum of the
functional I(.) in H'(Q2). From (4.10) it follows that u, has a weakly convergent subse-
quence in H'(€), which we also denote by u,; the weak limit will be denoted by u,. Since
4(]-|?) is convex, the functional [, §(|Vul|?) is weakly lower semi continuous in H'(f2) (see
[11, 10]), and thus

i(1V?) < i 'f/Av,LQ.
) (9u.?) <timint | 5(%u,f?)

Thanks to the the Sobolev embedding theorem (see [2]) it follows that the functional
[u = f5|72(qy is weakly lower semi continuous on H'(§2). Consequently

I(u,) < liminf I (u,)

neN

and thus u, is a minimizer of I in H'(2). Suppose now that u; and uy are two minimizers
of the functional I. Then, from the optimality condition it follows that

(4.11) (uy — fs,uo — u1) + h{(g(|Vur|> ) Vui, V(ug—u;)) = 0
(4.12) (ug — fs,ua — u1) + h{(g(|Vua|*) Vg, V(ug—u1)) = 0.

14



Consequently

[ug — s |” + B (g(|Vusa|*) Vug — g(| Vs [*) Vy, V (ug —u1)) = 0.
And thus the minimizer of I is unique. g.e.d
The minimizer of (4.6) will be denoted by uy, in the remaining of this paper.

In the following we establish the average grey level invariance of regularization methods.

Theorem 4.4 Let (4.7), (4.8), (4.9) hold. Then for different values of h the minimizers
of (4.6) are grey-level invariant, i.e., for h >0

/Quh=/9f5-

Proof: Elementary calculations show that the minimizer of (4.6) satisfies for all v €
H'(2)
(4.13) (up, — fs,v)y +h <g(|Vuh|2)Vuh, Vv> =0.

Taking v = 1 the second term vanishes and the assertion follows. q.e.d.

In the following we establish some basic results on regularization techniques. As we will
show the proofs of the following results can be carried out following the ideas of the
corresponding results in the book of Morozov [30]. However Morozov’s results can not
be applied directly since they are only applicable in the case that §(|z|?) = |z|?, which is
not sufficient for the presentation of this paper. Later these results are used to establish
a family of Lyapunov functionals for regularization methods.

Lemma 4.5 Let (4.7), (4.8), (4.9) hold. Then for any h > 0
|untt — unllL2@) — 0 fort—0

and for h =10
lut — fsllL2@) — 0 fort — 0t .

Proof: If §(].|?) is convex, then g(|s|?)s is monotone (see e.g. [11]), i.e., for all s, € R?
(9([s]*)s — g([t|*)t, s — thga > 0.
1. First we consider the case h > 0: from (4.13) it follows by using the notation
hi:=h, hy:=h+t, u:=up, U = Upss
that

(U — fo,ug —ur) + My <9(|“1|2)Vu1a V(uz—uy)) = 0.
(ug — f5,u2 — u1) + ha (g(Jual?) Vg, V(ug—u1)) = 0
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Consequently
(4.14) l[uz — w729y + 1 (9(|ua|*) Vz — g(|ua*) Vur, V(uz—u1))
= (k1 = hs) (g(|ua|?) Vg, V (ug—w1)).
Thus using the Cauchy—Schwarz inequality and the identity (4.14) it follows that

||U2 - f6||L2(Q) ||U2 - U1||L2(Q)
hy

lug — w72y < |ha — ha

which shows the continuity of uy,.

2. If h = 0: There exists a sequence f, € H'(Q) with f, — f5in L?>(Q). Consequently
for any h > 0 it follows from the definition of a minimum of the Tikhonov-like
functional it follows that

ln = SollEecay < N = Slliocay + b [ G0V Sal?)
Consequently by taking the limit A — 0 it follows that for any n € N
lim lun = fsll720y < 1 = foll 72y
which shows the assertion.

q.e.d.
In the following we present some monotonicity results for the regularized solutions.

Lemma 4.5 implies that we can set ug = f; without causing any confusion.

Lemma 4.6 Let (4.7), (4.8), (4.9) hold. Then [q §(|Vun|*) is monotonically decreasing
in h and ||up, — fs||* is monotonically increasing in h.

Proof: Using the definition of the regularized solution it follows
llun — foll o) + h/ﬂ@(Wuh\Q)
< lNunss = Jollioy + (b +1) | 5(Vunl?) =t [ 3(Vunssl?)
< llun = Salltay + b [ 909un) + £ ([ 30V = [ 3(Vunsel?))
and therefore, for ¢ > 0,
[ 3(Vuni®) = [ a(Vu?) <o.

This shows the monotonicity of the functional [, §(|Vuy|?). Using very similar arguments
it can be shown that ||u, — fJH%Q(Q) is monotonically increasing in h. q.e.d.

In the following we analyze the behaviour of the functionals [o g(|Vup|?) and |jup —
f&”%g(n) for h/ _> .
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Lemma 4.7 Let (4.7), (4.8), (4.9) hold. Then, for h — oo the regularized solution
converges (with respect to the L*-norm) to the solution of the optimization problem

|lu — fé”%z(m = min

under the constraint

| v =o.

Proof: The proof is similar to the proof in the book of Morozov [30] (p.35) and thus
omitted. q.e.d.

In the following lemma we establish the boundedness of the regularized solution. For
the proof of this result we utilize Stampacchia’s Lemma (see [23]).

Lemma 4.8 Let B be an open domain, u a function in H'(B) and a a real number.
Then u® = max{a,u} € H'(B) and

/B\Vu“|2§/B|Vu|2.

We are using this result to prove that each regularized solution lies between the minimal
and maximal value of the data f.

Lemma 4.9 Let (4.7), (4.8), (4-9) hold. Moreover, let

(4.15) G be monotone in [0, c0].

If f € L*(Q), then for any h > 0 the regularized solution satisfies

(4.16) a:=ess nf{f(x):x € Q} <up < esssup{f(x):2€Q}=0b.

Proof: We verify that the maximum of w is less than b. The corresponding assertion
for the minimum values can be proven analogously. Let u} = min{b,u;}, then from
Lemma 4.8 and the assumption (4.15) it follows that

| a0vu®) = [ a(vup?).
Since
lun — £l 720y = lup — £l 20
it follows from the definition of a regularized solution that up(z) < b. q.e.d.

Next we establish the announced family of Lyapunov functionals.

Theorem 4.10 Let Q C RY, d =1,2,3 and let a,b be as in (4.16). Morover, let (4.7),
(4.8), (4.9), and (4.15) be satisfied. Suppose that uy is a solution of (4.6). Then the
following properties hold
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(a) (Lyapunov functionals for reqularization methods) For all r € C?[a,b] with " > 0,
the function

(4.17) V(h) := ¢(up) == / (un(2)) dz

r
Q
1s a Lyapunov functional for a reqularization method: Let

1
Mf; = @/Qfgdac.

Then

1. ¢(up) > ¢(Mfs) for all h > 0.

2.V € C[0,00), DV(h) := [or'(up)(up —up) <0, V(h)—=V(0) <0 for all
h > 0.

Moreover, if ' > 0 on [a,b], then V(h) = ¢(uy) is a strict Lyapunov functional:

3. d(up) = (M f5) if and only if up, = M f5 on Q for h >0 and uo = M f5 a.e.
on Q.

4. if h >0, then DV (k) = 0 if and only if u, = M f5 on Q.

5. V(H)=V(0) for H> 0 if and only if f = M f a.e. on Q andu, = Mf on
Q x (0, H].

(b) (Convergence)

d=1: uy, converges uniformly to M f for h — oo
d=2: hlim |un — M fs]|zr(2) = 0 for any 1 < p < o0
—00

d=35: hlim |un — M fs|| () =0 for any 1 <p <6
— 00

Proof:

(a) 1. Since r € C?[a,b] with " > 0 on [a,b], we know that r is convex on [a, b].
Using the gray level invariance and Jensen’s inequality it follows

¢(M f5)

Jor (g Jo un(x) dz) dy
Jo 17 (r Jo un(w) dz) dy
Jor(un(2)) dz

¢(Uh) .

IA

(4.18)
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2. From Lemma 4.5 it follows that V' € C[0, c0[. Setting v = r/(uy) it follows
from (4.13) and (4.8) that

(4.19) (un — uo, ' (up)) = —h <g(|Vuh|2)Vuh,r"(uh)Vuh> .

The right hand side is negative since r is convex.
We represent V(h) — V(0) in the following way

V(h) =V (0)
= ¢(un) — o(uo)
Jar(un(z)) = r(uo(w)) dz
= JoJo ' (uo(@) + t(un(z) — uo(2))) dt(un(z) — uo(x)) dz
= Jor'(un(2))(un(z) — uo()) dz
+ Jo o (' (uo(2) + t(un(z) = uo(@))) — ' (un(x))) dt
(un (@) — uo(w)) dz
= Jor'(ua(2))(un(z) — uo(z)) dz
— JoJo Jo " (un(z) = T(1 = 1) (un(z) — uo(x)) dr
(1 — ) (up(x) — uo(z))? dt dx .

From (4.19) and the convexity of r it follows that the last two terms in the
above chain of inequalities are negative. Thus the assertion is proved.

3. Let ¢(up) = ¢(M f°). Let us now show that the estimate (4.18) implies that
up, = const on . Suppose that u, # ¢ Since u, € H'(Q), there exists a
partition Q = Qq U Qy with [Qq], |Qs] € (0 1©2]) and

up dr # —— updx =: (3.

_m h ‘QQ| Q2

This assertion follows from the Poincare inequality for functions in Sobolev
spaces [15]. From the strict convexity of r it follows that

(i) = 1 (o 09

< [r(a)+ 2r(8)
< & fo, m(up) dz + ﬁfmr(uh) dz

Il
3|
?
3
—~
I
>
N—
QU
)

If we utilize this result in (4.18) we observe that for A > 0 ¢(up) = ¢(M fs)
implies that u, = const on Q. Thanks to the average grey value invariance
we finally obtain u, = M f5 on €.
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We turn to the case h = 0. From (1.) and (2.) it follows that
O(M f5) < ¢(un) < d(uo) -
If ¢(ug) = ¢(M f5), then for all § > 0
O(M f5) = ¢(us) -

Thus we have that for all # > 0 uy = M f. Using the continuity of ug with
respect to 6 € [0, 00| (cf. Lemma 4.5) the assertion follows.

. The proof is analogous to the proof of the (iv)-assertion in Theorem 3 in [50].

5. Suppose that V(H) = V(0), then from (2.) it follows that

V' (h) = const on [0, H] .

Let € > 0. Then for any h € [e, H] it follows from (4.) that u, = M fs5. Using
the continuity of up, with respect to h € [0, co[ (cf. Lemma 4.5) the assertion
follows. The converse direction is obvious.

(b) From Lemma 4.7 and assumption 4.9 it follows that

[ 1902 =5 0 and 1wy — M fsley — 0.

This shows that

||U,h — Mf5||H1(Q) — 0.

From the Sobolev embedding theorem it follows in particular that for A — oo

d=1: uy converges uniformly to M f

d=2: ||up — Mf,5||%p(9) — 0 for any 1 < p < 0o (note that we assumed that Q is

bounded domain)

d=3: [lup — M fs]|30(qy — O for any 1 < p < 6 (note that we assumed that Q is

bounded domain).

q.e.d.

In Theorem 4.10 we obtained similar results as for Lyapunov functional of diffusion
operators (see [50]). In (2.) of Theorem 4.10 the difference of Lyapunov functionals for
diffusion processes and regularization methods becomes evident. For Lyapunov func-
tionals in diffusion processes we have V'(t) < 0 and in regularization processes we have
DV (h) < 0. DV (h) is obtained from V'(¢) by making a time discrete ansatz at time 0.
We note that this is exactly the way we compared diffusion filtering and regularization
techniques in the whole paper. It is therefore natural that the role of the time derivative
in diffusion filtering is replaced by the time discrete approximation around 0.
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Example 4.11 In this ezample we study different reqularization techniques which have
been used for denoising of images:

1. Tikhonov regularization: Here we have §(|u|?) = |u|?>. In this case the assumptions

(4.7), (4.8), (4-9) and (4.15) are satisfied.

2. total variation Regularization: Here we have §(|ul?) = y/|ul?). In this case the
assumption (4.9) is not satisfied.

However, for the modified versions, proposed by Ito and Kunisch [27], where the
functional is replaced by

9(|ul®) = /|u2 + alul®, with a >0
(4.7), (4-8), (4-9), and (4.15) are satisfied.

[uf?) = /Iul? + 52

the assumption (4.9) is not satisfied. For the modified version

(|ul*) = /Iul* + 8% + oful*

studied in [33], the assumptions (4.7), (4.8), (4.9), and (4.15) are satisfied.

For the functional [1, 9]

For the functional
a(lsP) = s]—5 e<ls|<:

the assumptions (4.7), (4.8), (4.9), and (4.15) are satisfied. This method has been
proposed by Geman and Yang [17] and was studied extensively by Chambolle and
Lions [8] (see also [33]).

3. Convex Nonguadratic Regularizations: The functional used by Schnérr [41]
. Auls? sl < e
ilsP) = " '
Atlsl? + (N =AD)eo(2ls| = ¢,) s> ¢,
satisfies (4.7), (4.8), (4.9), and (4.15), whereas the Green functional [18]
9(Is|*) = In(cosh(|s])?)

violates the assumption (4.9).
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5 Experiments

In this section we illustrate some of the previous regularization strategies by applying
them to noisy real-world images.

Regularization was implemented by using central finite differences. In the linear case
this leads to a linear system of equations with a positive definite system matrix. It
was solved iteratively by a Gauf3—Seidel algorithm. It is not difficult to establish error
bounds for its solution, since the residue can be calculated and the condition number of
the matrix may be estimated using Gerschgorin’s theorem. The Gauf-Seidel iterations
were stopped when the relative error in the Euclidean norm was smaller than 0.0001.

Discretizing stabilized total variation regularization with

g(x) =/B* 4z

leads to a nonlinear system of equations. It was numerically solved for # = 0.1 by
combining convergent fixed point iterations as outer iterations [13] with inner iterations
using the GauBl-Seidel algorithm for solving the linear system of equations. The fixed
point iteration turned out to converge quite rapidly, such that not more than 20 iterations
were necessary.

Figure 5.1 shows three common test images and a noisy variant of each of them:
an outdoor scene with a camera, a magnetic resonance (MR) image of a human head,
and an indoor scene. Gaussian noise with zero mean has been added. Its variance was
chosen to be a quarter, equal and four times the image variance, respectively, leading to
signal-to-noise (SNR) ratios of 4, 1, and 0.25.

The goal of our evaluation was to find out which regularization leads to restorations
which are closest to the original images. We applied linear and total variation regular-
ization to the three noisy test images, used 1, 4, and 16 regularization steps and varied
the regularization parameter until the optimal restoration was found. The distance to
the original image was computed using the Euclidean norm. The results are shown in
Table 1, as well as in Figs. 5.2 and 5.3. This gives rise to the following conclusions:

e In all cases, total variation regularization performed better than Tikhonov regular-
ization. As expected, total variation regularization leads to visually sharper edges.
The TV-restored images consist of piecewise almost constant patches.

e In the linear case, iterated Tikhonov regularization produced better restorations
than noniterated. Visually, noniterated regularization resulted in images with more
high-frequent fluctuations. This is in complete agreement with the theoretical
considerations in our paper. Improvements caused by iterating the regularization
were mainly seen between 1 and 4 iterations. Increasing the iteration number to 16
did hardly lead to further improvements, in one case the results were even slightly
worse.
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e It appears that the theoretical and experimental results in the linear setting do
not carry over to the nonlinear case with total variation regularization: TV regu-
larization was extremely robust: different iteration numbers gave similar results,
and the optimal total regularization parameter did not depend much on the iter-
ation number. Thus, in practice one should give the preference to the faster
method. In our case iterated regularization was slightly more efficient, since it
led to matrices with smaller condition numbers and the Gaufi-Seidel algorithm
converged faster. Using for instance multigrid methods, which solve the linear
systems with a constant effort for all condition numbers, would make noniterated
total variation regularization favourable.

In a final experiment we juxtapose the regularizations (3.20) and (3.21) of the Perona—
Malik filter. Both processes have been implemented using an explicit finite difference
scheme. The results using the MR image from Figure 5.1(c) are shown in Figure 5.4,
where different values for vy, the standard deviation of the Gaussian, have been used. For
small values of v, both filters produce rather similar results, while larger values lead to
a completely different behaviour. For (3.20), the regularization smoothes the diffusive
flux, so that it becomes close to 0 everywhere, and the image remains unaltered. The
regularization in (3.21), however, creates a diffusivity which gets closer to 1 for all image
locations, so that the filter creates blurry results resembling linear diffusion filtering.

6 Summary

The goal of this paper was to investigate connections between regularization theory
and the framework of diffusion filtering. The regularization methods we considered were
Tikhonov regularization, total variation regularization, and we focused on linear diffusion
filters as well as regularizations of the nonlinear diffusion filter of Perona and Malik. We
have established the following results:

e We analyzed the restoration properties of iterated and noniterated regularization
both theoretically and experimentally. While linear regularization can be improved
by iteration, there is no clear evidence that this is also the case in the nonlinear
setting.

e We introduced an alternative regularization of the Perona—Malik filter. In contrast
to previous regularization, it allows a formulation as a minimizer of a suitable
energy functional.

e We have established Lyapunov functionals and convergence results for regulariza-
tion methods using a similar theory as for nonlinear diffusion filtering.

These results can be regarded as contributions towards a deeper understanding as well
as a better justification of both paradigms. It appears interesting to investigate the
following topics in the future:
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Table 1: Best restoration results for the different
methods and images. The total regularization
parameter for N iterations with parameter h is
denoted ¢t = Nh, and the distance describes the
average Euclidean distance per pixel between the
restored and the original image without noise.

image | regularization t distance

camera | linear, 1 iteration 0.82 | 15.41
camera | linear, 4 iterations | 0.54 | 15.06
camera | linear, 16 iterations | 0.48 | 15.02
MR linear, 1 iteration 2.05 | 23.09
MR linear, 4 iterations | 1.16 | 22.62

MR linear, 16 iterations | 1.02 | 22.64

office linear, 1 iteration 5.7 31.76
office linear, 4 iterations | 3.3 30.47
office linear, 16 iterations | 2.9 30.45

camera | TV, 1 iteration 13.2 | 11.92
camera | TV, 4 iterations 12.8 | 12.10
camera | TV, 16 iterations 12.4 | 12.19
MR TV, 1 iteration 33.75 | 20.39
MR TV, 4 iterations 33.5 | 20.52
MR TV, 16 iterations 33 20.65
office TV, 1 iteration 102 28.66
office TV, 4 iterations 104 27.99
office TV, 16 iterations 106 28.05
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Figure 5.1: Test images, Q = (0,256)2. (A) Top LEFT: Camera
scene. (B) Top RIGHT: Gaussian noise added, SNR=4. (¢) MIDDLE
LEFT: Magnetic resonance image. (D) MIDDLE RIGHT: Gaus-
sian noise added, SNR=1. (E) Bortom LEFT: Office scene. (F)
BorTOoM RIGHT: Gaussian noise added, SNR=0.25.
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Figure 5.2: Optimal restoration results for Tikhonov regularization.
(A) Top LEFT: Camera, 1 iteration. (B) ToP RIGHT: Camera, 16
iterations. (¢) MIDDLE LEFT: MR image, 1 iteration. (D) MIDDLE
RicaT: MR image, 16 iterations. (E) BorToMm LEFT: Office, 1
iteration. (r) BorTOM RIGHT: Office, 16 iterations.
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Figure 5.3: Optimal restoration results for total variation regular-
ization. (A) Top LEFT: Camera, 1 iteration. (B) Top RIGHT:
Camera, 16 iterations. (c) MIDDLE LEFT: MR image, 1 iteration.
(D) MIDDLE RIGHT: MR image, 16 iterations. (E) BoTTOM LEFT:
Office, 1 iteration. (F) BorTOM RIGHT: Office, 16 iterations.
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Figure 5.4: Comparison of two regularizations of the Perona—Malik
filter (¢ = 250). (A) Top LEFT: Filter (3.20), v = 0.5. (B) Topr
RigHT: Filter (3.21), v = 0.5. (c) MIDDLE LEFT: Filter (3.20),
v = 2. (D) MIDDLE RiGHT: Filter (3.21), v = 2. (E) BorTOM
LErT: Filter (3.20), v = 8. (F) BorroM RiGHT: Filter (3.21),
v = 8.
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e Regularization scale-spaces. So far, scale-space theory was mainly expressed in
terms of parabolic and hyperbolic partial differential equations. Since scale-space
methods have contributed to various interesting computer vision applications, it
seems promising to investigate similar applications for regularization methods.

e Fully implicit methods for nonlinear diffusion filters using a single time step. This is
equivalent to regularization and may be highly useful, if fast numerical techniques
for solving the arising nonlinear systems of equations are applied.
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