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Abstract. It is shown that an array of n elements can be sorted using O(1) extra
space, O(nlog n/loglogn) element moves, and n log, n+0O(n loglogn) comparisons.
This is the first in-place sorting algorithm requiring o(nlogn) moves in the worst
case while guaranteeing O(nlogn) comparisons, but due to the constant factors
involved the algorithm is predominantly of theoretical interest.
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1. Introduction

In array sorting we are given an array of n elements, each consisting of
a key and some information associated with that key, and the task is to
reorder these in ascending order according to their keys. To carry out the
sorting we assume that the only operations allowed for the elements are
key comparisons and element moves. Moreover, we want to perform the
sorting in-place, i.e., we assume that besides the input array there is a
constant number of memory locations available for storing elements and
a constant number of machine words, each consisting of O(logn) bits, for
storing counters, pointers, and indices. Normal logical and arithmetical
operations, including the unrestricted shift to both directions, are assumed
to be allowed when manipulating these words.

The performance of the algorithms is measured by counting the num-
ber of element moves, key comparisons, and word-manipulation operations
performed in the worst case. If x and y denote the respective number of
trivial and non-trivial cycles in the permutation required to sort an ar-
ray of n elements, then n — z + y element moves are necessary to sort
the array [8]. In the worst case, z = 0 and y = |n/2], implying that
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|3n/2| moves might be needed. By the standard information-theoretic ar-
gument, any comparison-based sorting algorithm must carry out at least
nlogy n—nlogy e+ (1/2) log, n+0O(1) key comparisons [5, Section 5.3.1]. For
every algorithm discussed in this paper the number of word-manipulation
operations will always be bounded from above by O(M(n) + C(n)) if the
number of moves and comparisons performed is M(n) and C(n), respec-
tively. Therefore, the cost of the word manipulation will be omitted in the
subsequent analysis.

Several in-place sorting algorithms are known that are efficient with re-
spect to the number of moves performed. When stating the performance of
known algorithms, we let € denote a fized positive constant not greater than
1. Munro and Raman [8] showed that the exact optimum number of moves,
n — x + y, is obtainable by an algorithm that performs O(2(1/%)(1/¢)! n?**)
comparisons. Both the selection-sort [5, Section 5.2.3] and permutation-
sort (see, e.g., [8]) algorithms perform O(n) moves and O(n?) compar-
isons. This was improved to O(n/e) moves and O(n'*¢/¢) comparisons
by Munro and Raman [7]. The variants of the mergesort algorithm intro-
duced by Reinhardt [10] and Katajainen et al. [4] require ¢ nlog,n moves
and nlogy n + O(n) comparisons.

If an auxiliary array of n words is available, it is easy to modify any efficient
in-place sorting algorithm to perform O(n) element moves and nlog,n +
O(n) key comparisons (cf., [5, p. 74]). It is even possible to reduce the
amount of extra memory to O(n®/¢) so that the number of moves is O(n/e)
and that of comparisons O(nlogn), as shown by Munro and Raman [7].
Furthermore, they proved that an array of n elements can be sorted in-place
by performing O(n) moves and O(nlogn) comparisons on an average; in the
worst case the number of comparisons is of order n?.

Munro and Raman [7] stated as an open problem whether there exists an
in-place sorting algorithm that performs O(n) moves and O(nlogn) com-
parisons in the worst case. In this paper we describe an algorithm that is
asymptotically superior to the earlier worst-case algorithms but it is still
unable to reach the above-mentioned ultimate goal. Our algorithm sorts an
array of n elements using O(1) extra space, O(nlogn/loglogn) moves, and
nlog, n+ O(nloglogn) comparisons. This result is proved in two stages: in
Section 2 we recall a simplified version of the in-place mergesort algorithm
of Katajainen et al. [4], on which our algorithm is based, and in Section 3
we show how the key subroutine needed, the multiway mergesort algorithm
with a work zone, can be implemented efficiently.

2. In-place mergesort

Assume that the array being sorted is A[0..n—1] and n > 2. We call any
subarray occupying some consecutive positions of A a zone, and a collection
of elements stored in a zone a sequence. Let 2¥ be the largest power of 2
smaller than n, i.e., 28 < n < 26+1. We divide the array A into k+2 zones:
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Ay is the zone A[0..0], i.e., it consists of the single element A[0], A; is the
zone A[2071..20—1] for i € {1,2,...,k}, and Ay, is the zone A[2¥..n—1].
We let s; denote the size of 4;, i.e., s = 1, s; = 201 for i € {1,2,...,k},
and s;,; = n—2%. Now the array A is sorted in two phases.

In the sorting phase, for each i = k+1,k,...,2, the sequence in A;
is sorted by d-way mergesort which utilizes A[0..s; —1] as a work zone.
The parameter d is to be determined later. Each sorting is carried out
by repeated d-way merges by moving the elements back and forth between
the two zones until A; contains all its original elements in sorted order.
In particular, each time an element is moved from one location to another
some other element is put in the place of the element just moved so that no
elements are lost.

In the merging phase, the sorted sequences created are merged together.
The sequences in Ay and A; are merged first and then, for each i = 2,3, ...,
k+1, the just merged sequence in A[0..2°~1—1] is merged with the sequence
in A;. These 2-way merges are carried out in-place by using any efficient
in-place merging algorithm, e.g., the fast algorithm given in [3].

The in-place mergesort algorithms described in [4, 10] are similar to the
foregoing algorithm; they just required that the parameter d is a constant.
The d-way mergesort algorithm can be implemented such that it sorts a
sequence of size m, when a work zone of size m is available, using O(d) extra
space, 2m log; m+ O(m) moves, and m logy, m + O(mlog d) comparisons [4].
Since 252-21 s; = n—2, the number of moves performed in the sorting phase is
bounded by 2n log,; n+0(n) and that of comparisons by nlogy n+0(n log d).
The cost of a single 2-way merge, even when carried out in-place, is linear in
relation to the sum of the sizes of the sequences being merged (see, e.g., [3]).
Hence, in the worst case the number of moves and comparisons performed in
the merging phase is proportional to 3%, 23,~+Ei§01 8, which is O(n). That
is, the computational costs are dominated by those of the sorting phase.

3. New in-place mergesort

3.1. Algorithm and its analysis

Let A[0..n—1] be the array being sorted, n > 26 and d a power of 2
such that log, n/logylogon < d < 2logy n/logylogyn. Before the actual
sorting, we divide the array A[0..n—1] into two zones: the encoding zone
AJ0..2e—1] and the mergesort zone A[2e..n—1|, where e = d[logy n]. The
encoding zone is used for storing d indices implicitly by means of the original
elements as described, for example, in [6]. These indices are needed for the
implementation of the d-way mergesort algorithm used as a subroutine in
the algorithm described in Section 2.

The overall structure of our in-place sorting algorithm is the following.
First, suitable elements are gathered into the encoding zone; Section 3.2
gives the details. Second, the remaining sequence in the mergesort zone is
sorted by the algorithm of Section 2 but now the d-way mergesort algorithm
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used in its sorting phase is implemented as described in Section 3.3. Third,
the elements in the encoding zone are sorted by using any efficient in-place
sorting algorithm. Fourth, the sorted sequences in the two zones are merged
by using any efficient in-place merging algorithm. This completes the sorting
of the whole array A[0..n—1].

In Section 3.2 we show that the creation of the encoding zone can be
done in-place with O(n) moves and O(n) comparisons. In Section 3.3 we
show that any subsequence of size m can be sorted using O(1) extra space,
4mlog,m + O(m) moves, and mlog, m + O(mlogd) comparisons when a
work zone of size m and an encoding zone of size 2e are available. This
implies that the sorting phase of the algorithm given in Section 2 requires at
most 4nlog,;n + O(n) moves and nlog, n + O(nlogd) comparisons. Recall
that the merging phase of the algorithm of Section 2 requires only O(n)
moves and O(n) comparisons. Since the size of the encoding zone is only
O((logn)?/loglogn), its sorting takes o(n) moves and comparisons. The in-
place merging of the sorted sequences in the two zones requires O(n) moves
and o(n) comparisons [3].

To summarize, the number of moves performed is at most 4n log;n+O(n)
and that of comparisons nlog, n + O(nlogd). For logy n/logslogsn < d <
2logy n/logylogen and n > 216 (1/2)logylogyn < logyd < 2logy logy .
Therefore, the number of moves performed is bounded above by
8nlogy n/logylogan + O(n) and that of comparisons by nlogyn +
O(nloglogn).

3.2. Creation of the encoding zone

In the encoding zone we want to store d indices, each being an integer drawn
from the range {0,...,n—1}. To present such an integer we need [log, n]
bits. Two elements with distinct keys can encode one bit. For example, if
the key of z is smaller than that of y, by storing the elements in the order
xy may denote a 0-bit and the opposite order a 1-bit. Hence, e = d[log, n]
pairs of elements with distinct keys can encode e indices. Observe that to
read the value of such an encoded index requires O(logn) comparisons and
to update the value of an index requires O(logn) moves.

The pairs of elements needed can be found as follows. First, the element
with the median key in the input array A[0..n—1] is searched for by using
any efficient in-place selection algorithm (see, e.g., [6]). Second, a 3-way par-
titioning of the array around the element with the median key is performed
(see, e.g., [2]). Let A<, A_, and A- denote the three sequences created. If
the size of both A. and A is less than e, we sort both of them by using
any efficient in-place sorting algorithm and we are done. Hence, assume that
either the size of A. or the size of A< is larger than or equal to e. Since
A_ contains the elements whose key is equal to the median key and n is so
large compared to e, the keys of the first e elements and those of the last
e elements in A[0..n—1] must be pairwise distinct. The elements in the
zones A[0..e—1] and A[n—e..n—1] are moved interleaved into the zone
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AJ0..2e—1], starting from the rear, after which the creation of the encoding
zone is finished.

The computational costs of this procedure are dominated by those of the
median finding and partitioning. Both of these routines require O(n) moves
and O(n) comparisons, which means that the creation of the encoding zone
is done within the same resource bounds.

3.3. Multiway mergesort with a work zone and an encoding zone

In this section we show how a sequence of size m can be sorted efficiently by
the d-way mergesort algorithm when a work zone of size m and an encoding
zone of size 2d[log, n] are available. Here n is an integer such that n >
2m, and d = ©(logn/loglogn). For the sake of clarity, we assume that
B[0..m —1] is the array to be sorted, W[0..m —1] the work zone, and
AJ0..2d[logy n]—1] the encoding zone. In reality, all these zones are parts
of the original array A[0..n—1] which is being sorted by the algorithm of
Section 3.1. The sorting of the array B is now carried out as follows.

Initially, each element in B[0..m—1] is considered to form a sorted se-
quence of length one. In one pass, the collection of sorted sequences is
divided into the groups of d consecutive sequences, except the last group
that can contain fewer than d sequences; the sequences of each group are
merged by moving the elements in sorted order from the original zone to
the work zone. The roles of the two zones are interchanged and the process
is repeated until only one sorted sequence remains. In the last pass, the
elements are moved to the original zone if they are not there already. As
pointed out in the previous section, the work zone contains also some ele-
ments but it is trivial to organize the moves so that these elements are not
lost, even though their order may change (i.e., the sorting algorithm is not
stable).

We make one substantial change to this fairly standard procedure. When
the size of the sorted sequences becomes larger than ¢ = [(logy n)?], these
are divided into blocks of size £, except the last block that can be smaller
than the others. If the size of a sorted sequence is not larger than /4, it is seen
as a single block. We call the elements that are still to be merged active.
In each sequence the first block that still contains active elements is called
the leading block. In the algorithm we maintain an invariant that the
location of the leading block is fixed; the leading block is kept in the zone
originally occupied by the first block of the sequence. Hence, the position
of the leading block of the ith sequence can be calculated by using d, e, 7,
the pass number, and the index of the group being merged.

To carry out a merge of d sequences, the active element with the smallest
key from each of the d sequences under consideration is kept in a selection
tree as proposed in [5, Sections 5.2.3 and 5.4.1]. This tree is used when
seeking for the element with the minimum key among the active elements.
After finding this element, it is moved to the work zone. The tree must also
be updated by removing a reference to the element just moved and adding
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a new reference to the next element, if any, in the same sequence since this
element becomes a candidate as the new overall minimum.

We number the nodes of the selection tree from 1 to 2d — 1. Like in a
heap, node 1 is the root of the tree, node |i/2] is the parent of node
i, if 4 > 1, and nodes 27 and 2i+1 are the children of node i, if those
exists. Nodes from d to 2d — 1 will be called leaves and the other nodes
branches. For i € {d,...,2d — 1}, node ¢ is said to be the jth leaf if
j =1i—d+ 1. Each node of the tree stores an O(loglogn)-bit integer. Since
d is O(log n/ loglogn), the whole selection tree can be stored in a few words
of O(log n) bits each. Observe that the position of the parent or the children
of a node can be calculated by using a constant number of shifts and other
arithmetical operations.

In our data structure, illustrated in Fig. 1, we maintain three kinds of
indices: implicit indices, small indices, and large indices. Every index
indicates a position in the array B (A) or a node in the selection tree.
Therefore, the indices are visualized as pointers in Fig. 1. The parent and
children of a node in the selection tree are indicated by implicit indices.
The ith leaf of the selection tree has an implicit index to the beginning of
the leading block of the ith sequence being merged. Moreover, the ith leaf
stores explicitly an offset to the first active element inside the leading block;
an offset is a small index whose presentation uses O(loglogn) bits. Each
branch of the selection tree stores a small index to the leaf containing the
active element with the smallest key in the leaves of the subtree rooted by
this particular branch. Finally, the encoding zone stores d large indices, i.e.,
indices whose representation requires O(logn) bits; the ith of these indices
indicates the next full block inside the ith sequence that still contains active
elements. If no such full block exists, the index has the value zero.

In the beginning of each d-way merge, the implicit indices from the se-
lection tree to the sequences under consideration are initialized simply by
updating the group index. The offsets at the leaves of the selection tree are
initialized to zero indicating that the first element in each leading block is
the active element with the smallest key in the corresponding sequence. The
large indices for each sequence are initialized to point to the beginning of
the second block, if there is any. Since the location of the leading block is
fixed, the implicit indices from the selection tree to the sequences are valid
all the time.

The initialization of the small indices in the branches of the selection
tree is done in a bottom-up manner. For each branch at every level, the
elements with the smallest key within the subtrees rooted by the children
of that particular branch are accessed and the small index is assigned to
point to the leaf that contained an element with the smaller key. Clearly,
at most d comparisons are necessary during this initialization. In all passes
this initialization is done O(m/d) times so the overall cost caused by these
is linear.

After the construction of the selection tree, it is used to find the active
element with the smallest key. By using the small index stored at the root,
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FIGURE 1. The overall data structure when d = 4 and each sequence consists of 4 blocks.
The implicit indices are visualized with dashed arrows, small indices with sold arrows, and
large indices with bold arrows. The darkened zones in the array contain still elements to
be merged.

the implicit index of the leaf pointed to by the root, and the offset stored at
the leaf, the active element to be moved to the work zone is easily located.
After the element is moved to the work zone (and an element from there to
the location occupied by the element just moved), the offset at the leaf is
incremented by one and the small indices in each branch on the path to the
root are updated if necessary. This updating requires logy d comparisons.
The number of comparisons performed in one pass is at most mlog, d and
that over all log;m + O(1) passes mlog,dlog;m + O(mlogd), which is
mlog, m + O(mlogd).

Let us now calculate the number of moves performed. In one pass there
may be two reasons why an element in the array B is moved: 1) a leading
block becomes empty and the next block containing active elements, if there
is any, should be moved to the zone occupied by the previous leading block;
2) an element from a leading block is moved to the work zone. Since the order
of the elements in the work zone can be changed, by using the hole technique
as described in [3], the elements in two blocks of size £ can be swapped with
20 4+ O(1) moves. There are at most [m/f] blocks so the number of moves
caused by these block swaps is 2m + O(m/f) per a pass. By maintaining a
hole at the current output position in the work zone, the active element with
the minimum key can be moved into this hole and the element next to this
hole into the location occupied by the element just moved, which creates a
new hole at the next output position. This organization guarantees that the
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number of moves caused by outputting is 2m + O(1) per a pass. Therefore,
at most 4m + O(m/£) moves are carried out in each pass, the total number
of moves over all log; m + O(1) passes being at most 4m log; m + O(m).

Some moves are also necessary in the encoding zone due to the updates of
the large indices. When the block size is not larger than ¢, the large indices
are not needed at all. When the block size is larger than ¢, the large indices
are in use. However, in one pass each of the at most [m/£] blocks is moved
only once. Hence, the number of updates of the large indices is bounded
by O(m/(logn)?). The cost of each update is O(logn) which means that
the overall cost caused by these index updates over all passes is sublinear
because n > 2m.

This completes the description and the analysis of the d-way mergesort
algorithm used as a subroutine in our in-place sorting algorithm. To sum
up, the number of moves performed is bounded by 4m log;m + O(m) and
that of comparisons by mlog, m + O(mlogd).

4. Final remarks

We have showed that an array of n elements can be sorted using O(1) extra
space, O(nlogn/loglogn) element moves, and nlogy n + O(nloglogn) key
comparisons. This performance is guaranteed in the worst case. The main
idea in our algorithm was to utilize the word parallelism and store the se-
lection tree in a few machine words. It seems difficult to develop this idea
any further since a larger merging factor will automatically mean a larger
selection tree, which cannot be stored in a constant number of words any
more. On the other hand, the encoding technique could be used to store the
selection tree implicitly, but the updates of the indices would force us to use
more moves as well.

For two reasons our algorithm is primarily of theoretical interest: 1) the
index manipulation needed is complicated and 2) in practice, log, logy n is
seldom larger than 5 or 6 so the constant factor in the leading term in the
number of moves makes the algorithm impractical. This suggests that in-
place algorithms should not only be designed with asymptotic analysis in
mind. The earlier papers [4, 10] and the present paper all give a different
implementation for the merging phase of the algorithm described in Sec-
tion 2. It would be interesting to know which of the proposals leads to the
fastest practical implementation.

Recently, some interesting non-comparison-based algorithms for sorting
integers have been developed (for a survey, see [1]). All these algorithms
require linear, or even more, extra space. The classical time-space trade-
off results (see, e.g., [9]) assume a read-only memory whereas we allowed
reordering of the input through element moves. It is natural to ask what is
the fastest in-place algorithm for sorting (small) integers under our model
of computation.
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