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Abstract

The Quadratic Knapsack Problem (QKP) calls for maximizing a quadratic ob-
jective function subject to a knapsack constraint, where all coefficients are assumed
to be nonnegative and all variables are binary. The problem has applications in
location and hydrology, and generalizes the problem of checking whether a graph
contains a clique of a given size.

We propose an exact branch-and-bound algorithm for QKP, where upper bounds
are computed by considering a Lagrangian relaxation which is solvable through a
number of (continuous) knapsack problems. Suboptimal Lagrangian multipliers are
derived by using subgradient optimization and provide a convenient reformulation
of the problem. We also discuss the relationship between our relaxation and other
relaxations presented in the literature. Heuristics, reductions and branching schemes
are finally described. In particular, the processing of each node of the branching
tree is quite fast: We do not update the Lagrangian multipliers, and use suitable
data structures to compute an upper bound in linear expected time in the number
of variables.

We report exact solution of instances with up to 400 binary variables, i.e., sig-
nificantly larger than those solvable by the previous approaches. The key point of
this improvement is that the upper bounds we obtain are typically within 1% of the
optimum, but can still be derived effectively. We also show that our algorithm is
capable of solving reasonable-size Max Clique instances from the literature.
Keywords: 0-1 Quadratic Programming, Knapsack Problem, Lagrangian Relax-
ation, Branch-and-Bound.

Introduction

We are given n items, the j-th having a positive integer weight w;, a positive integer
knapsack capacity ¢ and an n x n nonnegative integer matrix P = (p;;), where p;; is a
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profit achieved if item j is selected, and, for j > %, p;;+p;; is a profit achieved if both items
i and j are selected. The Quadratic Knapsack Problem (QKP) calls for selecting an item
subset whose overall weight does not exceed the knapsack capacity, so as to maximize the
overall profit. For notational convenience, let N := {1,...,n} denote the item set and
g; = pj; denote the diagonal elements of P. By introducing a binary variable z; equal
to 1 if item j is selected and 0 otherwise, the problem has the following mathematical
formulation:

maximize z(QKP) =YY" pijz;z;
iEN jEN
subject to Y wjz; <c (1)
jEN
ij{O,l}, j € N.

We assume without loss of generality that max;cy w; < ¢ < 3 ;cy w; and that the profit
matrix is symmetric, i.e., p;; = pj; for all 4,5 € N, j > 1.

QKP is a generalization of the Knapsack Problem (KP), which arises when p;; = 0
for all 7 # j. Moreover, QKP has the following immediate graph-theoretic interpretation.
Given a complete undirected graph on node set /N, where each node j has a profit g;
and weight w; and each edge (7,7) has a profit p;; + pji, select a node subset S C N
whose overall weight does not exceed ¢ so as to maximize the overall profit, given by the
sum of the profits of the nodes in S and of the edges with both endpoints in S. It is
then easy to see that QKP is also a generalization of the Clique problem. This latter
problem, in its recognition version, calls for checking whether, for a given positive integer
k, a given undirected graph G = (V, E) contains a complete subgraph on k£ nodes. A
possible optimization version of Clique is given by the so-called Dense Subgraph Problem,
in which one wants to select a node subset K C V of cardinality |K| = k such that the
subgraph of G induced by K contains as many edges as possible. This problem can be
modeled as (1) by setting n:= |V|; c:=k; w; :=1for j € N; p;; :=p;i :=11if (4,j) € E
and p;; := p;; := 0 otherwise, for ¢, 7 € N. Note that in this case the knapsack constraint
reduces to a cardinality constraint, and will be satisfied with equality by the optimal
solution. Clearly, the answer to Clique is positive if and only if the optimal solution of
this QKP has value k(k — 1). The most famous optimization version of Clique, called
Mazx Clique, calls for an induced complete subgraph with a maximum number of nodes.
This latter problem can be solved through a QKP algorithm by using binary search.

Max Clique, besides being (strongly) NP-hard, is one of the hardest combinatorial
optimization problems studied in the literature, both from a theoretical approximability
and from a practical solvability point of view. The same properties apply therefore to
QKP as well, which is consequently much more difficult than the classical KP. In particular
finding an approximate QKP solution of value not smaller than the optimum divided by
n® is NP-hard for any € < % [5]. In view of these results, one should expect that any upper
bound which can be computed efficiently will be extremely bad for some instances.

QKP was first studied by Gallo, Hammer and Simeone [13], who proposed exact
algorithms where upper bounds are computed by using upper planes, which are linear



functions of the binary variables which are not smaller than the QKP objective function
over the set of feasible QKP solutions. Apparently, the problem was not widely studied
until a few years ago, but has recently attracted great interest. Billionnet and Calmels
[6] follow a branch-and-cut approach to the problem, using a classical ILP formulation
with O(n?) variables and constraints. Lagrangian relaxation approaches are described by
Chaillou, Hansen and Mahieu [9], Michelon and Veilleux [24], Hammer and Rader [14]
and Billionnet, Faye and Soutif [7]. Helmberg, Rendl and Weismantel [17] consider a
more general version of the problem where P may have negative entries, and propose a
combined approach which uses cutting planes and semidefinite programming, and allows
for the computation of very tight upper bounds. The Integer QKP, where variables may
take any integer value between a lower and an upper bound, is considered by Bretthauer,
Shetty and Syam [8], however restricted to diagonal profit matrices P, such that p;; = 0
for ©+ # j. Note that the general integer QKP can easily be formulated as a QKP by
applying the same transformation as that from the Bounded KP to the KP described by
Martello and Toth [21].

As one might expect, due to its generality, QKP has a wide spectrum of applications.
Witzgall [27] presented a problem which arises in telecommunications when a number of
sites for satellite stations have to be selected, such that the global traffic between these
stations is maximized and a budget constraint is respected. This problem appears to be a
QKP. Similar models arise when considering the location of airports, railway stations or
freight handling terminals [26]. Johnson, Mehrotra and Nemhauser [18] mention a com-
piler design problem which may be formulated as a QKP, as described in [17]. Dijkhuizen
and Faigle [11] and Park, Lee and Park [25] consider the weighted maximum b-clique
problem. If all edge weights are nonnegative this problem is the special case of QKP
arising when w; = 1 for j € NV and b = c. Finally, QKP appears as the column generation
subproblem when solving the graph partitioning problem described in Johnson, Mehrotra
and Nembhauser [18].

In this paper we propose an exact branch-and-bound algorithm for QKP, where upper
bounds are computed by considering a Lagrangian relaxation which is solvable through
a number of (continuous) KPs. Suboptimal Lagrangian multipliers are derived by using
subgradient optimization and provide a convenient reformulation of the problem. We
also discuss the relationship between our relaxation and other relaxations presented in
the literature. Heuristics, reductions and branching schemes are finally described. In
particular, the processing of each node of the branching tree is quite fast: We do not
update the Lagrangian multipliers, and use suitable data structures to compute an upper
bound in linear expected time in the number of variables.

We report the exact solution of instances with profit matrices up to 400 x 400 whereas
the largest instances solved in the literature have size 100 x 100. The key point of this
improvement is that the upper bounds we obtain are typically within 1% of the optimum,
but can still be derived effectively. We also show that our algorithm is capable of solving
reasonable-size Max Clique instances from the literature.

We stress that some parts of our algorithm rely on the (usual) assumption that the
profit matrix has nonnegative entries, which is not made without loss of generality. In



particular, the well-studied Max Cut Problem and the related 0-1 Quadratic Programming
Problem are not trivial special cases of QKP.

The paper is organized as follows. In the following section we show how tight upper
bounds can be derived through Lagrangian relaxation. The relaxed problem calls for
the solution of a number of continuous KPs. The overall branch-and-bound algorithm
is presented in Section 2, where we describe heuristics, reduction procedures, branching
schemes and parametric computation of upper bounds in linear expected time. Finally,
extensive computational experiments are reported in Section 3.

1 Effective Computation of a Tight Upper Bound

The choice of upper bounding procedures to be used in a branch-and-bound scheme for the
solution of a maximization problem is usually based on a tradeoff between the tightness
of the bound obtained and the time required for its computation. Depending on the
particular problem at hand, different policies may be worth using. For the QKP instances
in the literature, we found that a sufficiently tight upper bound can be computed in a
relatively short time by effective combinatorial algorithms which avoid the use of general-
purpose linear programming solvers as in [6], or, even more cumbersome, semidefinite
programming solvers as in [17]. Our upper bound is based on a fast (dual heuristic)
solution of a linear programming relaxation which is similar to others presented in the
literature. A main contribution is a convenient reformulation of the problem obtained
from the upper bound computation. This reformulation is effectively used within the
branch-and-bound algorithm presented in the next section.

In our upper bounding procedure, we first add to formulation (1) some constraints
which are redundant as long as the integer restriction on the variables is imposed, but
tighten the continuous relaxation obtained by replacing, for j € N, the constraint z; €
{0,1} with 0 < z; < 1. These new constraints are explicitly used in [17] and [6] and
implicitly considered (as we will show) in [13]. For j € N, we multiply the knapsack
constraint by z; and replace x? by z;, getting the valid inequalities

z wiriz; < (¢ —wj)zj, j€ N.
ieN\{j}

These constraints are part of the constraints which can be obtained by applying a general
procedure proposed by Adams and Sherali [1] and further studied by Lovdsz and Schrijver
[20] and Balas, Ceria and Cornuéjols [2].

Then, in order to linearize the formulation, we introduce a binary variable y;; for
t,j € N, j # 1 which replaces the product z;z; in the formulation. These new variables are
linked to the old ones by suitable inequalities, obtaining the Integer Linear Programming
(ILP) reformulation:

maximize 2z(QKP) =Y > pjui;+ > ¢z (2)

JEN ieN\{j} JEN



subject to Y w;z; <c (3)

JEN

Y wiyiy < (c—wj)zj, jEN (4)
i€ N\{s}
O<yiy<a;<L, 4,jENj#i (5)
Yij = Yji» 4,J EN,j>1 (6)
iy € {0,1}, i,j € N,j#i. (7)

Constraints (5) and (6) allow a variable y;; to be 1 only if x; is 1. The reason for an
explicit use of two distinct variables y;; and y;;, linked by equality constraints (6), will be
clear in the following. Note that constraints

yzggxm 7’7.7€N7.]7él

need not be imposed explicitly, as they are implied by (5) and (6). Also, note that
constraints

forcing y;; to be 1 when both z; and z; are 1, are unnecessary in the above ILP formulation,
as all terms in the objective function are nonnegative. Even if these constraints could be
used to tighten the Linear Programming (LP) relaxation obtained by removing (7), we do
not consider them as they cannot be handled by our combinatorial algorithm for solving
this LP relaxation.

Our main point is that, if equations (6) are removed, the resulting LP relaxation (2)—
(5) can be solved in a very effective way. A Continuous KP (CKP) is a KP in which, for
each item j, the constraint z; € {0,1} is replaced by 0 < z; < 1. Let p’ and w' denote the
profit and weight vectors of a CKP on n items, and ¢ the knapsack capacity. An optimal
solution to the problem is easily obtained through a greedy algorithm due to Dantzig.
Assume the items are sorted according to nonincreasing profit-over-weight ratios pj/wj,
and let the break item be b = min{h : E;-’ZI wj > c'}. Then an optimal solution of CKP
is given by z; = 1for j=1,...,b—1and z; =0 for j = b+ 1,...,n, while the break
variable takes the value z, = (¢ — ¥5_j w})/wj. A straightforward implementation of
this algorithm runs in O(nlogn) time, the bottleneck being item sorting. CKP was in
fact shown to be solvable in O(n) time through a median finding technique by Balas and
Zemel [4].

Proposition 1 An optimal solution (Z,7) of (2)—(5) can be computed in O(n?) time by
(1) solving the n CKPs associated with constraints (4), namely for j € N:

mazimize P; = Z DijTij
ieN\{j}
subject to > wim; < (¢ — w;) (8)
ieN\{j}
OSﬂ'ijS]-a ZEN\{]}a

with optimal solution 7;j, i € N\ {j};
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max Z Py | H Z Pi2Yi2 [H Z Pis¥is3|t+---tq1zT1 +q222 +q3z3 +...
ieN\{1} ieN\{2} ieN\{3}
s.t. Z w;Yi1 —(c—w1)z1 <0
ieN\{1}
Z W;iYi2 —(c — w2)z2 <0
iEN\{2}
z w;Yi3 —(c— w3)z3 <0
ieN\{3}
wW1T1 +wax2 +w3x3 +... <c¢

0<yy<a; <1 ijEN, i#]
Figure 1: The relaxed problem (2)—(5) written in matrix form.

(i4) solving the CKP associated with constraint (3) and profits p; + q;, j € N, namely:

mazimize Y (D; + ¢;);
JEN

subject to > wjz; <c 9)
JEN
0<az;<1, jeN,

with optimal solution T;, j € N;

(iii) defining y;; == T;;T; fori,j € N,i # j.

Proof. As illustrated in Figure 1, the relaxed problem has a special diagonal form.
Namely, for each j € N, variables y;; (¢ € N \ {j}), besides having a lower bound of 0
and a variable upper bound of z;, appear only in constraint (4) associated with j, and in
the objective function. Hence, if variable z; is fixed to value Z; for all j € IV, the relaxed
problem decomposes into n independent subproblems, one for each j € N, of the form

maximize Z Dij¥ij
ieN\{j}

subject to Y wy; < (¢ — w;)T;
i€N\{j}
0<y; <7, i€ N\{j},

which is clearly equivalent to the CKP (8), through the variable substitution m;; = v;;/T;
for i € N\{j}. (In fact, if Z; = 0, then one has g;; = 0 for i € N\ {j}.) Each subproblem
yields the optimal value 7;; of variable y;;, 1 € N \ {j}.

Therefore, the contribution to the objective function by setting z; = Z; is given by
(P;+4;)T;, where p; is the optimal solution value of (8), independent of the values assigned

6



to the other variables z;, i € N \ {j}. The determination of an optimal vector Z then
reduces to the CKP (9). O

By using the same arguments, it is easy to show that any optimal solution of the ILP (2)-
(5) and (7) can be computed by solving n KPs analogous to (8), and then a KP analogous
to (9). Of course, this approach yields better upper bounds, but our computational
experience suggested working with the LP relaxation (2)—(5) as its solution is considerably
faster (see the computational results of Section 3).

A relaxation very similar to that discussed above was also implicitly considered by
Gallo, Hammer and Simeone [13]. These authors introduced the concept of upper plane,
which is a linear function g satisfying g(T) > 3 ;cn Sien PijTiT; for any feasible solution
Z of (1). Clearly, an upper bound for QKP can be computed by optimizing g over the
set of feasible solutions of (1), i.e., by solving a KP. As an alternative, one can solve the
CKP associated with this KP. The actual upper planes proposed in [13] are of the form
> jen VjZj, where, for j € N, the following possible values of 7; are considered:

(i) Vi = dieN Dij;

(i) 75 := max{Y;en PijTi : Yien T < d,m; € {0,1} for i € N}, where d is the maximum
cardinality of a feasible QKP solution, i.e., assuming w; < wy < ... < wy, d :=
max{l € N : Eézle < ¢} — in this case +; is the sum of the d biggest profits

among {plj: s )pn]}u
(i) v, = max{Yien PijTi : Yien wimi < ¢,0 < m; <1forie N};

(iv) v5 == max{>ien PijTi : Lien wim; < ¢, m; € {0,1} for i € N}.
Gallo, Hammer and Simeone experimentally showed that the upper plane corresponding
to (iii) gives the best trade-off between tightness and computational effort.
It is immediate to see that coefficients (ii) to (iv) can be improved by forcing 7; = 1 in
the computation of «;. In this case, the upper bounds computed by the Gallo-Hammer-
Simeone approach coincide, respectively, with the optimal solution values of:

(1) (2),(3),(5), and (7) (or (2),(3),(5), if the continuous relaxation of the final KP is
solved);

(i1) (2),(3),(5), and (7) (or (2),(3),(5), if the continuous relaxation of the final KP is
solved) with the additional constraints Y ;¢ M} Yis S d—1for j € N;

(iii) (2)—(5), if the continuous relaxation of the final KP is solved;
(iv) (2)-(5) and (7).

Therefore, an upper bound computed by solving (2)—(5) is very similar to the one used
by the most effective algorithm presented in [13]. While it is not clear how to improve
this upper bound if it is presented within the upper plane framework, it is immediate to
see how to tighten it by looking at the ILP formulation (2)—(7). Indeed, constraints (6),
which are removed in the computation of this bound, can be relaxed in a Lagrangian way,
as described below.



Lagrangian Relaxation

We introduce a matrix A = (A;;), where, for4, j € N, j > i, \;; is the Lagrangian multiplier
associated with the corresponding equation in (6) and, for notational convenience, \j; :=
—Aij. Accordingly, the Lagrangian modified objective function reads:

maximize z(L(QKP,A))=>" > by + > ¢z, (10)

JEN ieN\{j} JEN

where, for ¢, 7 € N, j # 4, pij := pij + A\ij is the Lagrangian profit associated with variable
Yij-

The corresponding Lagrangian relaxed problem is given by (10) subject to (3)—(5)
and (7). For a given A, the continuous relaxation of this problem (i.e., (10) subject to
(3)—(5)) can be solved by the algorithm in Proposition 1. To this end, just observe that,
in the solution of the n CKPs (8), if a modified profit happens to be nonpositve, the
corresponding variable can be fixed at 0.

As our aim is determining a matrix A* such that z(L(QKP, A*)) = mins z(L(QKP, A)),
we prove below that, without loss of generality, p;; > 0 for all 7,j € N, j # ¢. Indeed, for
i,j7 € N,j # 1 one has p;; + Dji = pij + Pji = 2pij, i-e., the determination of an optimal
A corresponds to splitting each profit 2p;; between the two objective function coefficients
Pi; and pj;, so that the optimal solution of the relaxed problem is minimized. Hence,

Remark 1 An optimal multiplier matriz A* exists such that p;; > 0 for alli,j € N,j # i.

Proof. For a given A, suppose a pair i, j € N, j > i exists such that p;; < 0 (the case
Pji < 0 is analogous). In this case, redefining \;; := A;; — p;;, and hence \j; := \j; + Pij,
one gets p;; = 0, pj; = 2p;;. Noting that we have y;; = 0 in both the initial and the new
solution, and that p;; has been decreased by the above transformation, we conclude that
the solution value of the Lagrangian problem associated with the new A is not greater
than that of the initial one. |

For each A such that p; > 0 for 4,5 € N,j # ¢, the corresponding Lagrangian profit
matrix P defines a QKP instance which is equivalent to the initial one, i.e., we have
a reformulation of the original problem. The reformulation associated with the best
upper bound obtained at the root node is the one used throughout our branch-and-bound
algorithm, in which we do not apply subgradient optimization for the bound computation
at the branching nodes other than the root, but just solve the Lagrangian subproblem (10)
subject to (3)—(5) and to the branching constraints, corresponding to this reformulation.
The use of problem reformulations for the Quadratic Assignment Problem was proposed
by a few authors, see the paper by Carraresi and Malucelli [10] for a unified analysis of
the various approaches.

A well-known result in Lagrangian relaxation (see, e.g., Fisher [12]) states that the
upper bound z(L(QKP,A*)), where A* is an optimal multiplier matrix, coincides with
the optimal value of the LP relaxation (2)—(6). Anyway, exact solution of this LP relax-
ation would be computationally very expensive due to the large number of variables and



constraints involved (see also [6]). Our approach determines a near-optimal multiplier
matrix A by a standard subgradient optimization procedure; see Held and Karp [15] and
Held, Wolfe and Crowder [16]. The procedure generates a series A%, A', A2 ... of matri-
ces, where A° := 0 and, for £ > 0, A¥™! is defined from A* as follows. Let (,%) denote
an optimal solution of the Lagrangian relaxation associated with A*¥. The corresponding
subgradient vector is given by

Using the technique proposed by Held and Karp, we compute the new multipliers by

i if |6 < e
AR Ny —pi) i G 12
i max( i — Vij, pij) if & > € (12)
mln()\f] — ’}/51']',]),']') if (51']' < —€

for 7,5 € N,j7 > i. Here, the step size v is defined by

u— 2"
e ui
Eij 512]'

where p is a suitable parameter, while v and z* are the values of the best upper bound
and feasible QKP solution value found so far, respectively. In our implementation, the
step size parameter y is initially set to 1, and halved if the upper bound does not decrease
within 20 consecutive iterations. The tolerance e is set to 107%. The number of iterations
is in each case limited by 200 + n, since we experimentally observed that afterwards no
substantial improvement occurs. The overall complexity of the upper bound computation
is therefore O(n?).

v (13)

2 The Branch-and-Bound Algorithm

Our branch-and-bound algorithm is based on the upper bounding procedure described
in the previous section. At the root node of the branching tree, we apply subgradient
optimization with an embedded heuristic procedure so as to define tight upper and lower
bounds, as well as a convenient problem reformulation. Subgradient is followed by a
reduction procedure in which we try to fix the value of some variables. If the reduction
procedure fixes at least one variable, we apply subgradient optimization to the reduced
problem, followed by a new reduction. The process is iterated until no variable is fixed in
the reduction.

The nodes of the branching tree other than the root are processed quite fastly, without
any heuristic, reduction, or updating of the Lagrangian multipliers. We simply solve one
Lagrangian relaxed subproblem (associated with the best multipliers found at the root
node), in linear expected time, possibly updating the incumbent solution and applying
branching.

We also considered a version of the branch-and-bound algorithm in which the La-
grangian multipliers are updated at each node, by applying subgradient optimization,



starting from the best multipliers found at the father node. Although the upper bounds
are slightly better, the overall computing time is much worse, at least for the instances in
our test bed.

We next describe in detail each part of the branch-and-bound algorithm outlined
above.

Heuristics

In order to derive a good initial solution, we implemented the heuristic devised by Billion-
net and Calmels [6]. This algorithm first generates a greedy solution by initially setting
xz; = 1 for j € N, and then iteratively setting the value of a variable from 1 to 0, so as
to achieve the smallest loss in the objective value, until a feasible solution is obtained. In
the second step a sequence of iterations is performed in order to improve the solution by
local exchanges. Let S = {j € N : z; = 1} be the set of the items selected in the current
solution. For each j € N\ S, if w; + > ycgwe < ¢ set I; = () and let the quantity d; be
the objective function increase when z; is set to 1. Otherwise, let J; be the largest profit
increase when setting z; = 1 and z; = 0 for some ¢ € S such that w; — w; + > 5w, < ¢,
and let I; = {i}. Choosing k such that 6, = max;cn\g6;, the heuristic algorithm termi-
nates if ; < 0, otherwise the current solution is set to S\ I U {k} and another iteration
is performed.

The above heuristic is applied as the first step of our algorithm, while at each sec-
ond iteration of the subgradient optimization procedure we derive a heuristic solution as
follows. The LP solution of (10) subject to (3)—(5) is rounded down, yielding an integer
solution z. Starting from x the improvement part of the above algorithm is performed.
The solutions obtained this way are typically substantially different from each other, even
for slightly different Lagrangian profits, showing that the heuristic algorithm is worth
applying often during the subgradient procedure. Overall, at the end of the subgradient
procedure, we typically have a near-optimal incumbent solution z* (in fact, optimal in
most cases).

Reduction

The size of a QKP instance may be considerably reduced by using some reduction rules
from the classical KP. Assume that we have an incumbent solution z* of value z*. Let u}
be an upper bound on the QKP obtained by imposing the additional constraint z; = 1. If
u; < z* then we can fix z; at 0. Similarly, if u{ is an upper bound on the QKP obtained
by imposing the additional constraint z; = 0 and u) < 2* we can fix z; at 1.

We apply the reduction procedure at the end of the subgradient phase, deriving upper
bounds u; and u§ in O(n?) time for each j by solving the Lagrangian relaxed problem (10)
subject to (3)—(5) associated with the best A, further constrained by imposing x; = 1 and
x; = 0, respectively. If variable z; is fixed at any value we remove the corresponding row
and column. Moreover, if it is fixed at 1, we also increase diagonal entry g; by pi; + pjs,
for i € N\ {j}, and decrease ¢ by w;,.
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Computational experiments showed that after at most 10 combined applications of
the subgradient and reduction procedures no variable was fixed in the reduction.

Branching Scheme

In the following, N denotes the set of variables that were not fixed by the reduction
procedure. Moreover, P = (pi;) is the Lagrangian profit matrix associated with the best
upper bound found by the subgradient procedure, ¢ = (g;) is the diagonal profit vector
modified according to the variables fixed at 1 by the reduction, and p = (p;) contains the
optimal objective function values of CKP’s (8) associated with matrix P rather than P.

Our branch-and-bound algorithm is based on a depth-first search, where the order in
which variables are fixed by branching is determined in advance at the root node, allowing
for a considerable speed-up of the computation at each node, as described in the following.
We branch first on the variables which have a high probability of taking the value 1 in
the optimal solution. To this aim, for each item ¢, i € N, we compute the quantity

’yi:q,-—}-max{ S bz Y wjl“jSC—wi,OSIEjSl,jEN\{i}} (14)

JEN\{i} JEN\{i}

which represents an upper bound on the profit obtained by setting variable x; to 1.
Quantity ~; is analogous to the profit p; + ¢; in the objective function of (9). Nevertheless,
while this latter profit is associated with the i-th column of P, ~; is associated with its
i-th row. The use of the quantities v; is motivated by the fact that we need a criterion
to distinguish between more and less “promising” items, and (near-)optimal Lagrangian
profits P, + ¢; are not suited for this purpose since, as computational experience has
shown, they tend to be similar to each other. (In practice, the initial profits p;, + ¢;
are “flattened” by the subgradient optimization procedure.) We reorder the variables
according to nonincreasing values of v;, and systematically branch on the variable with
the smallest index among the unfixed ones.

In order to speed up the search, we store the vector w of the minimum weights defined
by

w; = minw; for i € N. (15)
Jj=i
Obviously, whenever the branching mechanism has fixed variables z; atz;, 7 =1,...,i—1,

so that E;;ll w;T; +w; > ¢, we can backtrack, since no other variable z;, j > 7, can be
set to one.
The branching scheme can easily be described in a recursive way. Assuming that

variables z;, j =1,...,7— 1, have been fixed at Z;, we have the profit and weight sums
i—1i—1 i—1
1= Z ijkfjjk Q= Z wjfj. (16)
j=1k=1 7j=1
The next variable x; can either be set to 1 or to 0. In the first case we update the diagonal
elements for j > ¢ by setting g; < ¢; + pji + pij- In the second case, no updating must
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be performed. In both cases, we recompute the break items associated with CKPs (8) as
described in the next section.

As anticipated, subgradient optimization is applied only at the root node, whereas
for the rest of the branch-and-bound algorithm we work on the QKP instance defined by
the Lagrangian profit matrix P. In particular, at each node, an upper bound is derived
by solving problem (10) subject to (3)—(5), with ¢ replaced by ¢ — 2, on the unfixed
items, and by adding II to the optimal solution obtained. By using parametric techniques
described in the next section, this upper bound can be computed in linear expected time.
We backtrack if the upper bound u does not exceed the incumbent solution value z*. This
leads to the following recursive algorithm, which is initially called quadbranch(0,0,1), after
the processing of the root node:

algorithm quadbranch(II, €, 7)
if (IT > z*) then z* < II; z* « z;
if (i <n) and (2 + w; < ¢) then
derive upper bound wu;
if (u > z*) then
dequeue item i from each CKP given by (8), for j =i+ 1,...,n;
comment: branch on z; = 1;
find the new break item b in each problem (8), for j =i+1,...,m;
set gj < q;j +pji+piforj=i4+1,...,m;
set x; < 1;
call quadbranch(IT + ¢;, Q + w;, 7 + 1);
set q; < qj — Dji — Pij forj=14+1,...,m;
comment: branch on z; = 0;
find the new break item b in each problem (8), for j =i+ 1,...,n;
set x; < 0;
call quadbranch(IT, Q.4 + 1);
enqueue item i in each problem (8) for j=i+1,...,n
fi
fi.

Deriving Upper Bounds in Linear Expected Time

The upper bound computation is the most time-consuming operation at any node of the
branching tree (corresponding to a recursive step of procedure quadbranch). It is therefore
extremely important to have a very efficient implementation of this part in order to limit
the overall computing time.

A solution from scratch of the Lagrangian relaxed problem (10) subject to (3)—(5)
(defined on the items not fixed by branching and on the profit matrix ﬁ) would take
O(n?) time, as described in Section 1, the bottleneck being the derivation of the profits
p; to be used in the objective function of the final CKP (9). Our approach solves the
Lagrangian problem by using appropriate data structures to ensure an linear expected
time complexity. The key observation is that all the n — 1 items of each CKP (8) problem
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Figure 2: For each problem (8) we maintain a double-linked list of the active items ordered
by nonincreasing profit/weight ratio, and an array of pointers to each element in the list.

are present at the root node, while some of them are removed during the branching. This
means that it is only necessary to order the items at the root node according to decreasing
profit /weight ratios, and then use a double linked list to store the items which are still
active, i.e., those whose variable has not been fixed by branching. Figure 2 shows the
double linked list which is implemented by storing, for each item 7, the sequence number
s;, the predecessor m; and the successor o;, according to the sorting. The pointers to the
list elements corresponding to each item are stored in an array, so that we can directly
access each item in the list.

Let K :={k € N : k unfixed}, L := {k € N : k fixed at 1} and ¢ := c—w; — Y e Wi,
and consider problem (8) associated with an unfixed item j, where N and ¢ — w; are
replaced by K and ¢, respectively. For this problem we maintain the current break item
position b, the sums w' = Y e, <p Wi and p' = Ypck.s, < Prj- During the branching
process we must ensure that the break item position b is defined by > yc s, <p Wi < ¢ <
Y kek:s,<b Wk, Since then the objective value of (8) is found as p = p' + (¢ — w')py; /wy
where ¢ is such that s; = b. Each iteration of the branch-and-bound algorithm may fix a
variable x; at 0 or 1, meaning that we must update b, p’ and w' as follows:

1. z; =1, s; <b: Both ¢ and w' are decreased by w; while p’ is decreased by p;;. The
break item position b is unchanged.

2. x; =1, 8; > b: The capacity ¢ is decreased by w; and we use linear search from b to
the left in order to find the new value of . Thus while w' > ¢ repeatedly decrease
p',w' by pij, wy, where ¢ is such that s; = b — 1, and decrease b by 1.

3. ; =0, s; > b : All variables ¢/, w', p’ and b are unchanged.

4. 2; =0, s; <b: If s; < b then the sums p’, w' are decreased by p;; and w;, otherwise
b is incremented by 1. Linear search from b to the right is used to find the new value
of b. While w' 4+ w, < ¢ increase p',w’ by pj, wi, where t is such that s, = b, and
increment b by 1.

Since the item i may be accessed and dequeued/enqueued in constant time, both Steps 1
and 3 may be performed in constant time. Steps 2 and 4 involve a linear search which in
the worst case may demand O(n) time, but on average only demands a constant number
of operations as shown below.
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Assume that the weights are uniformly random distributed in an interval [1, R] and
that weight w; of item i is independent of the corresponding profit/weight ratio p;;/w;, so
that the n weights in the ordered list may be seen as n independent random numbers in the
interval [1, R]. Also assume that at each iteration of the branch-and-bound algorithm a
randomly chosen variable 7 is fixed to x; = 0 or x; = 1. These assumptions are reasonable
since every column knapsack problem of the form (8) basically leads to a different ordering
of the items (and thus of the weights) and the branching process considers all different
fixations of the variables.

Lemma 1 A given random number a in [1, R] is selected. On average, no more than 4
random numbers by, by, ... should be drawn from the same interval [1, R] before their sum
exceeds a.

Proof. Let X; € {0,1} be a stochastic variable whose value is 1 if the ith selected
random number b; is not smaller than R/2. Obviously p(X;=1) = ;. If we draw two
numbers not smaller than R/2 then their weight sum is R > a. The expected number of

coin flips X; needed before X; + Xy + ... =2 is
© 1 oo ;2 Sl
E=Y i :27’ Y S =6-2=14 (17)
=1 2Z z:l ' i=1 2

since the probability of getting X; = 1 with exactly one previous X; =1, j < iis (1—1)/2"
O

Tighter bounds than the above may be derived by a more thorough analysis, but the
above is sufficient to prove the following.

Lemma 2 The expected number of iterations in the forward/backward search of Steps 2
and 4 are bounded by a constant.

Proof. For every item ¢ fixed at z; = 1 or x; = 0 we must search backwards or forwards
from the break item until the weight sum of the items passed is not smaller than w;.
With the assumption that each weight w; is an independent random number in [1, R] the
statement follows from Lemma 1. O

The following proposition, derived from Lemma 2, expresses the main feature of our
branch-and-bound algorithm.

Proposition 2 Every node of the branching tree is processed in linear (in n) expected
time.

Proof. In a forward step of the branch-and-bound algorithm, from Lemma 2, each
problem (8) is solved in constant expected time, and thus relaxation (10) subject to
(3)—(5) is solved in linear expected time. Backtracking is performed in a similar way as
forward steps, by enqueing an item. Finally, if the variables b, p’, w’, ¢’ are stored as part
of each branching node, no additional computation is needed. O
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3 Computational Experiments

Our algorithm was implemented in ANSI C and run on a HP9000/735 workstation. We
considered several classes of QKP instances which were presented in the literature. Gallo,
Hammer and Simeone [13] solved some randomly generated instances, which form also the
benchmark for the algorithms by Billionnet and Calmels [6] and Michelon and Veilleux
[24]. Recently, Helmberg, Rendl and Weismantel [17] presented a compiler design problem
which may be formulated as a QKP, and reported computational results only for some
instances of this problem. We report computational results on both classes. Finally,
we investigate whether our QKP code may be used effectively for solving Max Clique
problems.

Randomly Generated Instances

The randomly generated instances by Gallo, Hammer and Simeone are constructed as
follows. Let A be the density of the instance, i.e., the percentage of non-zero elements
in the profit matrix P. Each weight w, is randomly distributed in [1, 50] while the prof-
its p;; = pj;i are nonzero with probability A, and in this case randomly distributed in
[1,100]. Finally, the capacity c is randomly distributed in [50,37_, w;]. (Notice that
Gallo, Hammer and Simeone actually chose the capacities in [1, X1 wj;] but later papers
have increased the lower limit.)

In Tables 1 and 2 we consider instances with densities A = 25%, 50%, 75% and 100%
and with n up to 200. For each size n, the entries are average values out of 10 instances.
For each density, we report the results up to the highest value of n (multiple of 20) such
that all 10 instances were solved to optimality within a time limit of 50000 seconds for
each instance.

Table 1 compares the performance of the proposed algorithm when three different
upper bounds are applied. First, U; is the bound obtained by solving (2)-(5). This is
the bound for which Gallo, Hammer and Simeone obtained their best solution times. In
practice this bound is obtained by skipping subgradient optimization in our algorithm.
The next bound U, is the bound proposed here. Finally, Us is a tighter version of Us
obtained by solving the KPs (8) and (9) to integer optimality using the Lagrangian profits
obtained at the end of subgradient optimization. In each case the bounds were used for
the reduction phase as well as during the branch-and-bound enumeration.

During the branching process, bounds U; and U, were derived in linear expected time
by using the algorithm presented in Section 2. Bound U; was derived using the combo
algorithm by Martello, Pisinger and Toth [22] for solving the corresponding KPs. In the
table we report the percentage gap between the given bound U; and the optimal solution
value z* at the root node, and state how many variables were fixed at their optimal value
during the reduction. Finally, the total average solution time, expressed in seconds, is
given for the instances that could be solved within the time limit.

Only instances up to n = 200 have been considered, but this is sufficient to show that
our algorithm based on bound U, gives the best overall performance. Using the bound
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Table 1: Comparison of different bounds on randomly-generated instances with different
densities A. Tests run on a HP9000/735.

U Us Us
A n | gap (%) reduced total time | gap (%) reduced total time | gap (%) reduced total time
20 15.23 9 0.02 3.19 14 0.16 1.35 18 0.20
40 26.69 7 9.26 2.64 20 0.92 2.43 22 1.30
25% 60 17.32 12 2.16 0.45 46 1.90 0.26 50 2.39
80 14.80 6 916.81 1.02 46 4.66 0.58 55 37.54
100 57.53 0 — 2.54 21 217.21 2.24 29 —
120 26.63 18 — 0.44 70 20.08 0.40 72 —
20 19.04 8 0.02 4.09 14 0.15 1.68 17 0.21
40 25.74 3 0.31 3.08 20 0.77 2.27 24 2.00
60 27.38 2 5.91 1.98 27 1.72 1.61 31 9.76
50% 80 14.77 8 93.25 0.64 49 4.32 0.34 56 13.90
100 34.96 0 — 2.22 36 29.29 2.19 38 1798.88
120 22.74 0 — 1.17 44 17.08 1.07 53 427.46
140 38.06 0 — 1.23 70 285.43 1.19 72 —
160 16.83 0 — 0.70 82 91.42 0.60 89 —
20 8.14 11 0.01 4.21 13 0.14 2.83 17 0.18
40 18.75 4 0.12 2.08 25 0.77 1.49 30 1.12
60 16.51 12 0.92 1.04 44 1.92 0.48 54 2.42
80 15.39 0 13.63 0.80 47 3.61 0.70 50 12.65
75% 100 13.80 6 282.95 1.94 52 6.93 0.87 60 19.90
120 11.48 27 1114.49 0.65 85 8.01 0.54 96 18.44
140 16.89 0 — 0.82 73 20.36 0.77 78 669.20
160 16.19 0 — 0.73 73 29.58 0.66 T 302.05
180 20.78 20 — 0.50 105 62.18 0.49 109 205.98
200 13.32 7 — 0.49 130 41.10 0.46 135 284.97
20 9.16 10 0.02 4.91 12 0.14 1.05 18 0.20
40 10.35 0 0.11 1.68 24 0.65 1.02 29 1.08
60 5.82 12 0.43 1.04 43 1.40 0.64 50 1.81
80 10.80 6 1.50 0.57 64 2.85 0.29 71 4.10
100% 100 10.60 0 16.95 0.30 78 6.24 0.25 82 8.25
120 11.52 0 211.16 0.56 79 11.36 0.51 82 24.47
140 10.48 0 4023.33 0.32 103 24.47 0.24 122 31.62
160 9.65 20 3869.69 0.33 128 19.35 0.30 134 28.97
180 9.83 6 — 0.27 133 39.55 0.24 137 68.06
200 10.31 10 — 0.54 115 248.37 0.52 117 373.70

by Gallo, Hammer and Simeone, one is only able to solve dense instances up to n = 160,
despite the fast bounding procedure. Using the original technique from [13], where bounds
are derived in O(n?) time at each node of the branching tree, one should not expect to
solve instances with n much larger than 100. The exact knapsack bound U; leads to the
tightest bounds at the root node, and it is able to reduce slightly more items. But the
extra effort for obtaining the tighter bounds does not pay off when it comes to the overall
solution times.

In Table 2 we consider instances with up to 400 items solved by our algorithm, which
uses bound U,. Again, for each size n, the entries are average values of 10 instances. For
each density, we report the results up to the highest value of n (multiple of 20) such that
all 10 instances were solved to optimality within a time limit of 50000 seconds for each
instance. The first entry gives the time, in seconds, used at the root node for deriving
upper and lower bounds as well as reducing variables, while the next two columns give
the percentage gap between the upper/lower bound and the optimal solution value at the
root node. The average optimal solution value is given in the next column, followed by
the number of reduced variables. Finally, we give the number of branch-and-bound nodes

16



Table 2: Performances of the algorithm on randomly-generated instances with different
densities A. Tests run on a HP9000/735.

root  gap.upper gap.lower optimal  reduced b&b total

A n time bound (%) bound (%) solution variables nodes time
20 0.16 3.19 0.00 2954 14 23 0.16
40 0.91 2.64 0.00 9088 20 350 0.92
25 60 1.86 0.45 0.00 27381 46 119 1.90
80 3.82 1.02 0.03 54726 46 11367 4.66
100 10.20 2.54 0.03 43631 21 1605951 217.21
120 18.29 0.44 0.00 92674 70 9191 20.08
20 0.15 4.09 0.00 4159 14 23 0.15
40 0.74 3.08 0.00 20740 20 787 0.77
60 1.60 1.98 0.06 43993 27 1648 1.72
50 80 4.15 0.64 0.00 108969 49 1391 4.32
100 8.94 2.22 0.01 91888 36 149888 29.29
120 13.55 1.17 0.02 188761 44 28172 17.08
140 27.27 1.23 0.02 235532 70 1354323 285.43
160 40.58 0.70 0.00 378740 82 186119 91.42
20 0.14 4.21 0.00 8380 13 24 0.14
40 0.76 2.08 0.00 30914 25 127 0.77
60 1.88 1.04 0.00 62326 44 194 1.92
80 3.52 0.80 0.08 139790 47 315 3.61
100 6.73 1.94 0.00 192668 52 1312 6.93
120 7.78 0.65 0.00 223658 85 1548 8.01
140 18.53 0.82 0.01 345174 73 13097 20.36
160 32.91 0.73 0.05 557747 73 22770 29.58
75 180 72.72 0.50 0.00 391612 105 1612 62.18
200 48.10 0.49 0.00 448943 130 2769 41.10
220 | 145.72 0.74 0.02 965934 93 312734 161.73
240 | 126.69 0.32 0.03 1265548 146 72534 118.95
260 | 178.40 1.08 0.05 947582 70 192434 246.64
280 | 137.58 0.20 0.00 1209289 217 97351 117.84
300 | 305.17 0.34 0.05 1968164 166 328454 310.94
320 | 303.94 0.47 0.01 1846898 166 130712925 1866.78
340 | 488.76 0.25 0.03 2657714 204 294083 461.85
360 | 683.12 0.92 0.02 2169773 144 8952166 7110.57
20 0.14 4.91 0.00 9010 12 57 0.14
40 0.65 1.68 0.00 51083 24 303 0.65
60 1.39 1.04 0.00 114026 43 425 1.40
80 2.80 0.57 0.00 143464 64 2167 2.85
100 6.21 0.30 0.00 260186 78 656 6.24
120 10.80 0.56 0.00 361040 79 31133 11.36
140 23.59 0.32 0.00 585777 103 44208 24.47
160 18.31 0.33 0.00 548418 128 46425 19.35
180 36.52 0.27 0.17 683870 133 360290 39.55
100 200 49.31 0.54 0.00 887270 115 7882641 248.37
220 55.36 0.19 0.05 1538179 158 17871673 797.40
240 65.99 0.20 0.01 1274079 189 49128 68.39
260 89.39 0.19 0.00 2342355 193 497389133 5366.11
280 | 169.12 0.17 0.00 1739347 207 21608076 2975.73
300 | 145.93 0.12 0.00 2546921 255 3605738 282.81
320 | 228.53 0.23 0.00 2710140 211 240073849 2605.59
340 | 229.88 0.17 0.00 2304562 256 87743885 10142.78
360 | 262.51 0.15 0.00 3451536 298 79584918 1925.04
380 | 365.08 0.17 0.00 2788526 278 500075295 17759.76
400 | 420.92 0.10 0.00 4083908 323 413737707 8808.57
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investigated, and the average solution time in seconds.

One can observe that the upper and lower bounds are generally very tight, making
it possible to reduce a majority of the variables, on average more than 75%. The total
preprocessing takes a couple of minutes for the largest instances. Despite this effective
preprocessing, the final branch-and-bound phase demands some hours and a huge num-
ber of nodes for the largest instances, as many variables have to be fixed by branching
before closing the gap, despite the latter is typically very small already at the root node.
Apparently the algorithm works best for high-density instances since the upper bounds
are generally tighter in these cases. The lower bounds are in all cases nearly optimal.
We sometimes observed quite different behaviors on instances associated with the same
A and n.

The solution times presented show a significant improvement with respect to previously
published algorithms, in particular for instances with high density. The algorithm by
Billionnet and Calmels [6] is only able to solve all the instances up to n = 30, using
about 30 seconds on our machine. The algorithm by Michelon and Veilleux [24] is slightly
better, being able to solve all instances up to n = 40 in about 20 seconds on our machine.
According to Hammer and Rader [14], the largest instances solvable by the algorithm
of Gallo, Hammer and Simeone [13] have size n = 75 and require about 600 seconds on
our machine. Finally, the largest instances with density A = 100% solved in Chaillou,
Hansen and Mahieu [9] and Hammer and Rader [14] have size n = 100 and require about
1400 and 350 seconds on our machine, respectively. These two approaches have a better
behaviour for low-density than for high-density instances. For example, for A = 25%,
they require about 800 and 30 seconds on our machine for n = 100, respectively.

Compiler Design Instances

Table 3: Results on compiler design instances.

root gap.upper gap.lower optimal reduced b&b  total | total final

n ¢ | time bound (%) bound (%) solution variables nodes time | time gap (%)
30 450 | 0.45 11.15 0.00 1580 10 15 045 24 0.00
512 | 0.65 6.04 0.00 1802 25 1 0.65 | 1570 0.00
600 | 0.39 0.00 0.00 2326 30 1 0.39 91 0.00

45 450 | 0.77 3.21 0.00 2840 36 17 0.77 | 823 0.00
512 | 0.93 5.57 0.00 3154 25 83 0.93 | 1800 1.58
600 | 0.78 0.28 0.00 3840 43 1 0.78 182 0.00
47 450 | 0.77 3.64 0.00 1732 41 1 0.77 | 1870 0.00
512 | 1.01 1.73 0.00 1932 45 1 1.01 500 0.00
600 | 1.88 13.91 0.00 2186 16 46  1.88 | 1800 4.09

61 450 | 1.30 0.97 0.00 26996 57 1 130 | 203 0.00
512 | 1.24 1.69 0.00 29492 55 3 1.24 | 1800 0.02
600 | 1.38 1.54 0.00 32552 52 29 1.38 | 1800 0.33

The 12 compiler design instances presented by Helmberg, Rendl and Weismantel [17] are
considered in Table 3. The first seven columns are as in Table 2, while the last two columns
give the solution times, in seconds, and the percentage gap between the upper and lower
bounds of the best algorithm by Helmberg, Rendl and Weismantel [17], which is based on
the combined use of semidefinite programming and (linear) cutting planes, and does not
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guarantee finding an optimal solution. The latter tests were run on a Sun Sparcstation
10 which is about four times slower than our machine. In all cases the Helmberg-Rendl-
Weismantel algorithm found the optimal solution, but for some instances it was not able
to prove optimality within the given time limit of 1800 seconds (for instance 7, the table
in [17] reports that optimality was proved after 1870 seconds).

The table shows that our algorithm is considerably faster than the Helmberg-Rendl-
Weismantel approach. Whereas our algorithm terminates within 1 second on average,
their algorithm is not able to prove optimality of four instances within the time limit.
It is however seen that the upper bounds computed through the use of semidefinite pro-
gramming are tighter than our bounds. Observe that, even if we have to apply branching
for optimally solving these instances, the time spent at the root node essentially coincides
with the overall time.

Max Clique Instances

As mentioned in the introduction, the problem of finding a clique of size k£ in a graph
G may be formulated as a QKP, and thus a Maximum Clique problem can easily be
found by either binary or linear search among the possible values of k. We tested both
approaches, in particular our implementation of linear search starts with £ = 1 and at
each iteration increases by one the value of &, continuing if a clique of size k is found by
our algorithm and stopping when the non-existence of such a clique is proved. In practice,
this implementation of linear search turns out to work much better than binary search,
since finding a clique of size k is relatively easy when such a clique exists, while proving
non-existence is relatively difficult. Thus the following tables refer to the linear search
version.

We note that the upper bound obtained by solving (2)—(5) is trivial and weak for these
instances: If the profits are defined as in the introduction, vy, ..., v, denote the k vertices
with largest degree in GG, and d(v) denotes the degree of vertex v, then the upper bound
value is 35, min{k — 1,d(v;)}. Therefore, if there are k or more vertices with degree
at least k — 1, the upper bound value is k(k — 1) and does not exclude the existence
of a clique of size k. Anyway, Lagrangian relaxation yields tighter bounds, which are
sufficient to solve to optimality clique instances of reasonable size. Actually, we assign
profits p;; = pj; = 100 for edges (i,j) € E, so that there is some freedom to modify the
Lagrangian profits, as we work with integer values.

First, we consider Max Clique instances for random graphs in Table 4. These graphs
are generated by specifying the number of nodes n and the edge density A, representing
the probability of each possible edge to be present in the graph. For edge densities
A = 25%, 50%, 75%, 90% and n < 400, we report the average solution times out of 10
instances, up to the highest value of n for which all 10 instances were solved to optimality
within our time limit of 50000 seconds. Only relatively small instances can be solved
for high densities within the time limit, while low density instances can be solved up
to n = 400 in reasonable time. These results may appear surprising in view of Table 2,
which shows that our approach works better for dense QKP instances, but clique instances
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defined on sparse graphs are known to be much easier than those defined on dense graphs.

Table 4: Results on Max Clique instances for randomly generated graphs.

n\A 25% 50% 75% 90%
20 0.15 0.14 0.16 0.17
40 0.59 0.74 1.34 4.04
60 1.63 2.63 14.94 176.73
80 3.37 7.76 156.87  9524.70

100 6.60 22.71 954.80 —
120 13.65 65.57 5627.91 —

140 23.34 154.62 — —
160 34.76 394.43 — —
180 64.20 971.39 — —
200 114.98 1868.11 — —
220 167.72 3312.77 — —
240 244.02 7211.18 — —
260 361.99 11957.87 — —
280 516.76  20528.53 — —

300 654.41 — — —
320 750.37 — —
340 | 1211.63 — —
360 | 1391.10 — —
380 | 1905.89 — —
400 | 2659.21 — — —

Next, Table 5 considers the Max Clique instances from DIMACS implementation
challenge, see [19]. Only small-size instances with n < 300 were run. The entries give the
instance name, the size of the graph (nodes and edges), the solution time, the size of the
clique found by our algorithm, and the optimal solution value when our algorithm did
not terminate within the time limit of 50000 seconds.

Table 5: DIMACS clique benchmarks.

instance nodes edges time Clique size
brock200-1 200 14834 >50000 | 20 (21)
brock200-2 200 9876 | 2209.79 12
brock200-3 200 12048 | 8613.09 15
brock200_4 200 13089 >50000 17 (17)
c-fat200-1 200 1534 28.35 12
c-fat200-2 200 3235 45.28 | 24
c-fat200-5 200 8473 204.77 | 58

gen200_p0.9_44 200 17910 >50000 36 (44)
gen200_p0.9.55 200 17910 >50000 | 40 (55)

hamming6-2 64 1824 84.75 32
hamming6-4 64 704 1.70 4
hamming8-2 256 316 | >50000 | 128 (128)
hamming8-4 256 20864 | >50000 | 16  (16)
johnson16-2-4 120 5460 | 13700.17 8
johnson8-2-4 28 210 0.22 4
johnson8-4-4 70 1855 29.01 14
keller4 171 9435 | 14098.00 | 11
p-hat300-1 300 10933 804.75 8
p-hat300-2 300 21928 >50000 | 21 (25)
p-hat300-3 300 33390 >50000 | 34  (36)
C125.9 125 6963 >50000 | 33  (34)
C250.9 250 27984 | >50000 | 40  (44)
DSJC125.5 125 3891 79.31 10
DSJC250.5 250 15668 | 8605.10 | 13
MANN_a9 45 918 318.96 | 16

Our algorithm was not able to solve any of the instances by Sanchis (San, SanR
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derived from Vertex Cover), since our initial heuristic generally failed to find a tight lower
bound. We can solve 13 out of the remaining 25 small instances. Thus on the DIMACS
benchmark the performances of our QKP algorithm are comparable to that of cutting
plane approaches for Max Clique [3], whereas it is not competitive with the state-of-the
art algorithms for the problem [19].

4 Conclusions

Quadratic optimization problems are considered to be extremely difficult, and thus only
small instances have been solved in the literature. Our work has demonstrated that
it is possible to solve large size QKP instances to proven optimality within reasonable
computing time.

A main contribution of this paper is an efficient procedure for computing a tight
upper bound based on Lagrangian relaxation. Even if the upper bound is in principle
weaker than the one computed by alternative approaches based on linear or semidefinite
programming, the time required for its computation is some orders of magnitude smaller
than that required by these alternative approaches. Furthermore, by applying subgradient
optimization only at the root node, and using appropriate data structures, we compute
upper bounds in linear expected time for each node during the branch-and-bound algo-
rithm. This combination allows for an exact solution of instances about one order of
magnitude larger with respect to previous existing methods.

The main conclusion which can be derived from our work is that, for the exact solution
of the QKP instances in the literature, it is better to avoid computing tight upper bounds
with sophisticated techniques, and to set up a branch-and-bound algorithm based on
a rather fast combinatorial bounding procedure, which takes advantage of a convenient
problem reformulation obtained from Lagrangian relaxation. This is a direction of research
which should be investigated in the future for other combinatorial optimization problems.

It is also worth noting that our algorithm, without modifications, is capable of solving
Max Clique problems of reasonable size. Even if we are not competitive with the state-
of-the-art exact algorithms for Max Clique (see [19]), we still perform almost as well as
the cutting-plane approaches proposed so far for this problem (see [3]).
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