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Chapter 1

Introduction

There are no such things as applied sciences,
only applications of science.

— LOUIS PASTEUR, 1822–1895

Program transformation techniques like partial evaluation and fold-unfold systems
have been studied extensively for a number of years. Surprisingly, the question
of what partial evaluation really is has been somewhat neglected; usually only
the external view is considered, i.e., a partial evaluator is a program that realises
Kleene’s Sm

n -theorem [Kle52]:����� is a partial evaluator  "! #�$�%'&�%)( : * *+$-, ,/./&�%0(�1-23* *4* * �5�6� , ,7.+$	%'&�1�, ,7.8(�1
This description is for many purposes not satisfying because most programming
languages allow a trivial implementation, i.e., one that given $ and & just modifies$ to take just one argument and to assign & to a variable of the same name as the
eliminated parameter.

Furthermore the correctness of these methods has not been subject to much
attention, or — when it has — it has been for partial evaluators lacking important
aspects of what we believe partial evaluation is, like memorisation.

Claims of correctness ought to be proven but proofs vary significantly in de-
gree of formalisation, from mere hand-waving to fully expansive decomposition
into uses of axioms. The choice of degree of formalisation is a balance between
work-efficiency and ease on the one hand and thoroughness and safety on the
other: a fully expansive proof can easily run into millions of basic inferences,
which obviously is a major undertaking, while an informal proof can leave the
reader still in doubt.
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6 Introduction

Constructing a proof consisting of millions of inferences is beyond human
capabilities, and even if it were within the possible such a proof would not fulfil
its purpose: the chance of mistakes increases with the size of the job and the
size of the proof would have an intimidating effect on readers wanting to check
the theorem for themselves. But checking a proof expressed in terms of basic
inferences is a trivial undertaking except for the size of the job. Therefore it is
a straightforward idea to have a computer program check the proof; then it is no
longer a problem that a proof might be large and the need to trust the proof has
been reduced to the need to trust the program checking the proof — hopefully
easier to do.

Having a program check a proof is good but still leaves the gigantic problem
of creating the fully expanded proofs in the first place. Proving or disproving a
theorem is an undecidable problem so we cannot hope to create the proofs auto-
matically in general, and while constructing a proof for a theorem known to hold
(known by the human using the computer, that is) is a decidable problem it is not
necessarily practical. But this does not mean that we cannot write a program that
proves routine problems.

In this dissertation, when the term proof of a theorem is used it implies that
that every node in the fully expanded inference tree has been constructed for the
theorem and that the proof has been verified by a program.

1.1 Thesis

This dissertation is a study into correctness of partial evaluation, an attempt at iso-
lating an intensive description of the nature of partial evaluation, and a study into
the feasibility of working with completely formalised and mechanically verified
proofs of the correctness of partial evaluation. More formally, the following three
points form the thesis behind the present work:

1. Partial evaluation can be described as the use of a relatively small set of
program transformations.

2. The correctness of partial evaluation is susceptible to proofs.

3. The use of mechanical verification in programming language research is an
asset, not a hindrance.

1.2 Reader’s Prerequisites

The reader of this thesis is expected to have some understanding of (classical)
logic, for example corresponding to [Men79], and some knowledge of partial
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evaluation, for example corresponding to [JGS93]. Being an expert in the field
of partial evaluation or program transformations is not necessary: This disserta-
tion being a first attempt at connecting formal proofs and partial evaluation we
will concentrate on the basics.

Having some experience with automated theorem proving and theorem ver-
ification is beneficial. Theorem provers, however, vary and in Section 1.5 we
therefore give a short introduction to the theorem prover actually used.

Moreover, the reader should understand the idea of decomposing a proof into
its basic particles (i.e., uses of axioms) and should probably be able to think of
this as useful, at least in principle.

1.3 Organisation of this Dissertation

This dissertation is organised in the following way:
In the present chapter, following this description, a brief introduction (Sec-

tion 1.4) to partial evaluation will be given. It is followed by a — likewise brief
— introduction to the HOL theorem prover in Section 1.5.

The thesis which was introduced in Section 1.1 will be elaborated in Chapter 2
which covers the goals of this dissertation and the work behind it.

We will be concerned mostly with partial evaluation of a small language which
we develop and describe in Chapter 3. Also in this chapter is the formalisation of
the language and its semantics in the HOL theorem prover.

Chapter 4 contains a rather large number of definitions, lemmas and theorems
needed to support the chapters following it. The chapter is placed in this position
because it logically belongs there. In a first reading the reader might want to skip
it and refer to it later when referenced.

In Chapter 5 we introduce an interpreter for the language we work with. This
interpreter is written in the language it itself interprets and we can therefore com-
pare the interpreter with the language semantics to see if it implements the lan-
guage faithfully. We discuss what this means for an interpreter that uses encoding
of syntax and values and we prove that the interpreter does implement the seman-
tics faithfully by formally proving three theorems stating its correctness.

In Chapter 6 we explore program transformations that preserve the meaning of
the transformed programs. These transformations range from ����9 -unfolding and
alpha conversion to folding of function calls.

Then in Chapter 7 we show that these program transformations form a system
which is strong enough to perform the same program transformations normally
attributed to partial evaluation.

We discuss the possibilities of further work in Chapter 8, both in the direc-
tion of program transformations and in the direction of machine verified theorem
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proving. We go on to discuss related work in Chapter 9 and draw our conclusions
in Chapter 10.

Appendix A contains additional information on the difference between tradi-
tional mathematical notation and the (linear, ASCII-based) notation used by HOL.
Appendix B contains an example showing how the program transformations can
be used to partially evaluate Ackermann’s function with respect to a known static
first argument. Appendix C contains the self-interpreter discussed in Chapter 5
but with all syntactic sugar removed.

1.4 Partial Evaluation

As briefly mentioned above, a partial evaluator is a program that turns a (one-
stage) program into an equivalent two-stage program:����� is a partial evaluator  "! #�$�%'&�%)( : * *+$-, ,7.:&�%0(�1;2<* *4* * ����� , ,7.+$=%'&�1�, ,7.8(�1?> (1.1)

Running ����� on the program $ and one part of its data — the so-called static data,& — produces a new program, $ & , called the residual program. The program $ &
when run on the remaining part of the input — the so-called dynamic data, ( —
produces the same result as running $ directly on both & and ( . We say that $ has
been specialised with respect to & .

In Equation (1.1) we restrict ourselves to programs having exactly two pa-
rameters. This is convenient for notational reasons but too restrictive in practice,
where & and ( should be relaxed to be arbitrary disjoint parts of the input. For
example, in the following program, which calculates the scalar product of two
three-dimensional vectors,@BA �	C�D)E�C�D7F=C5D7��G-D0E�G-D)F�G�HJIK�=C�L6��GNMOE	C�L6E�GPMQF	C�L�F�GSR
we might want to specialise

@
with respect to . �	C % E	C % F=C 1;23. 2 % 4 % 6 1 and expect to

get the program@�T G�U�V A ��G-D0E�GSD7F�G�HWIKG�L���GPMQU�L6E�GPMXV�L�F�G-R
An important goal for a partial evaluator is to produce residual programs that

are more efficient than their source programs. Consider the following program
computing Ackermann’s function1

1This function (which in the form shown really should be attributed to Rósza Péter [Pét51]
and not to Wilhelm Ackermann) grows so rapidly that is has no practical use. Nevertheless it is
traditionally used as an example for partial evaluation with the claim that the residual program
“runs faster” than the original. “Runs faster” should be taken to mean “requires fewer evaluation
steps” and not as a claim involving a clock.
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��Y[Z A �\D8]�H^I� @ ��I�_ 9�`�� ]]�M	C����&�� � @ ]�I�_ 9�`�� ]��Y[Z A �=a�C�DbC�H����&����Y[Z A �=a�C�D ��Y?Z A �cD8]�a�C�H�H�R
This program can be specialised with respect to � 2 2 resulting in (for example)
the program��Y[Z T G A ]�H^Id� @ ]�I�_ 9�`�� ]de ����&��Q��Y[Z T C A ��Y[Z T G A ]�a�C�H�H5R��Y[Z T C A ]�H^Id� @ ]�I�_ 9�`�� ]fG ����&��Q��Y[Z T _ A ��Y[Z T C A ]�a�C�H�H5R��Y[Z T _ A ]�H^IN]�M=C5R
with ��Y[Z T G as the main function. (At this point it is not important how the shown
residual program might be constructed, but the main principle is to reduce the
application ��Y[Z A GSD8]5H .) Evaluating ��Y?Z A G-D8]�H for some ] performs a superset of
the steps that evaluating ��Y[Z T G A ]5H does, so clearly the residual program is faster
than the original.

1.4.1 The Trivial Partial Evaluator

Most languages allow us to construct a trivial partial evaluator which does noth-
ing but wrap a binding around the program in such a way that the static parts of
the input are bound.2 Using the Ackermann example from above a trivial partial
evaluator might produce��Y[Z T G A ]�H^I ��Y?Z A G-Dg]5H5R��Y[Z A �\D8]�H^Iih�h�h A L ��& �j] &�k�l�m�Y�� L�H
when applied to the program and the constant 2 for � .

This is analogous to Kleene’s Sm
n -theorem (Theorem XXIII in [Kle52]) which

states, in effect, that a partial evaluator exists within the system of primitive re-
cursive functions. The trivial partial evaluator for some programming language
proves the corresponding theorem for the (usually larger, see for example [Jon97])
system of programs in that language — provided, of course that the partial evalu-
ator can be proven correct. We shall give such a proof in Section 7.1.

Obviously trivial partial evaluators are not very interesting, but their existence
shows that the external view of partial evaluation — Equation (1.1) — is not
sufficient.

2In fact one has to impose quite uncommon restrictions on a language to prevent this from
being possible. One way to do it is to require that all functions have exactly two integer parameters:
with such a language no program can produce a one-argument function and a partial evaluator as
defined by Equation 1.1 is thus not possible.
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1.4.2 Partial Evaluation of Interpreters

A special case of partial evaluation is when the program that is being partially
evaluated is an interpreter. Assume that �j] 9 is an interpreter for the language L
itself written in the language M and that ����� is a partial evaluator for the lan-
guage M. Then, for an arbitrary program $ written in L and its input ( we have:* *+$-, , L .8(�1;23* * �j] 9�, , M .+$5%)(�1;2<* *4* * �5�6� , ,7. �?] 9�%n$�1�, , M .8(�1?> (1.2)

(The implementation language of �5�6� is irrelevant for the purpose of this equa-
tion.) The equation in particular means that the residual program, * * ����� , ,7. �?] 9�%g$�1 ,
is an M-program with the same operational behaviour as the L-program $ . In
other words, $ has been compiled from L to M. This insight dates back 25 years,
see [Fut71].

Keeping the existence of trivial partial evaluators in mind this method will
not in itself produce efficient compiled programs. However, with a good partial
evaluator we might actually achieve a significant improvement over interpretation.
This hope has been repeatedly confirmed by experiments, see for example [GJ91a,
JGS93, And94, BW93, WCRS91].

A self-interpreter, & �?] 9 , is an interpreter for a language L written itself in L.
For such an interpreter we see from the above that $porq3* * �5�6� , ,/./& �?] 9�%g$�1 is $ com-
piled from L into L. In other words, this means that $ and $po have the same
functionality. But one may still be more efficient than the other.

To most, if not all, programming languages it is possible to add some reason-
able measure time .+$�%)(�1 describing how long evaluation of $ with input ( takes.
For a language with a small-step semantics — such as, for example, most Turing
machine presentations [Jon97, Section 7.6] — the number of steps is a reason-
able measure. For an inference-rule based semantics the number of nodes in the
evaluation derivation tree is a good measure. And for language defined by a recur-
sive “eval” function the number of calls to this function is a reasonable measure.
For non-terminating evaluations we will assign s as the time measure. We shall
explore more concrete timed semantics — albeit for a different purpose — in Sec-
tion 3.4 , but for now we shall just assume that we have one.

For any input data we can now compare the time spent on evaluation by $
and $to . We might hope that the partial evaluator was good enough to remove
all the overhead of interpretation. Based on this hope and following [JGS93] we
define

Definition 1 (Optimality.) A partial evaluator �5�6� is said to be optimal with re-
spect to & �j] 9 if #�$�%)( : time .4* * ����� , ,/.:& �?] 9�%g$�1?%)(�1tu time .+$	%)(�1j>
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From a theoretical point of view this is a bad definition: “optimal” should mean
“good,” but it does not. The following partial evaluator derived from the self-
interpreter & �?] 9 and the trivial partial evaluator 9�m � � T $�� is optimal:$�� A $ D ( HvId� @ $ I & �?] 9O9�`�� ] (K����&��N9�m � � T $�� A $ D ( H�R
But obviously this is just as bad a partial evaluator as the trivial partial evaluator
itself.

From a practical point of view, however, Definition 1 is a good definition. If
we do obtain optimality for a partial evaluation without “cheating” then the partial
evaluator must have eliminated all the overhead in interpretation.

1.4.3 Termination

Equation (1.1) is evasive on the subject of termination of programs, or equivalently
on the domains of the partial functions * *:w0, , . We would like the situation to be such
that * * �5��� , , is a total function and such that the sides of the equality in (1.1) are
either both defined or both undefined.

Unfortunately, this goal has proven difficult to obtain at the same time as get-
ting good specialisation: the more aggressively a partial evaluator tries to reduce,
the larger the danger of non-termination becomes. For this reason practical eval-
uators today — for example Similix [BD90, BD91, Bon91, Bon92, Bon93], C-
mix [And92, And93, And94], and SML-Mix [BW93, BW94, BW95] — do not
guarantee that * * ����� , , is total. Since practice shows that this is more a theoretical
problem than a practical one, the problem has had a relatively low priority with
researchers, see [AH96].

In this dissertation no actual non-trivial partial evaluator is exhibited, only
the transformation components that such a program might use. This means that
the only termination problem that will occur is that of showing that the original
program $ and the residual program $ & have identical termination properties. This
will be rigorously proven.

1.5 The HOL Theorem Prover

All proofs in this thesis have been formalised in and proven with the use of the
HOL (“Higher Order Logic”) theorem prover [GM93], more precisely with the
HOL 90.7 revision [Sli94] of the system. Henceforth HOL will be used to denote
this particular version although the differences in versions are primarily syntac-
tic. The choice of HOL over other theorem provers is somewhat arbitrary and
largely guided by availability and existing knowledge. There is no reason to be-
lieve that other theorem provers, for example Nuprl [CAB x 86], Isabelle [Pau90],
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or Coq [DFH x 93], could not have been used instead. A system like Elf, on the
other hand, would not provide the same proof security.

This section briefly introduces HOL, what it means to prove things in HOL,
and the logic that HOL proofs are based on. This is not a substitute for [GM93],
but rather an “innocent bystander’s introduction.” This section will not get into
how to prove with HOL.

Some details of HOL will be elaborated on in Section 3.6.

1.5.1 HOL Objects

HOL is written in Standard ML [MTH90] (with certain convenience features, to
be discussed shortly, added) and uses this language as meta-language for the logic.
HOL inherits Standard ML’s read-eval loop and is therefore interactive.

The following table shows how various mathematical entities are represented
in the HOL/Standard ML world:

Math World HOL World

Term Value of SML-type 9���m � .
Theorem Value of SML-type 9�` � .
Type Value of SML-type `�k�� T 9 E $�� .
Formula Boolean term, i.e., a math-world term with math-world typey k�k�� .
Proof Evaluation leading to a value of SML-type 9�` � .
Axiom As theorem.
Primitive
inference rule

Function (or constant) with SML-type τ1 z w4w4w z τn z 9�` �
for some τi’s.

Derived rule As primitive inference rule.

Note that both the mathematical world and the implementation world have a con-
cept of types. These are, however, very different objects and the table therefore
uses “SML-type” to denote a type in the implementation world. The mathematical
world’s type is, in fact, a value in the implementation world.

The Standard ML types 9���m � and 9�` � are defined inside Standard ML modules
constrained by signatures that let the types be visible outside the module while not
letting the constructors of the types be visible outside the module. This technique
has the consequence that it is not possible for the HOL user to introduce arbitrary
objects of these types. Terms can be constructed only when they are well-formed
and well-typed and theorems can only be obtained by proofs, i.e., ultimately by
applications of axioms3. Thus the Standard ML type system provides the proof

3Actually there is a way to “cheat” and convert arbitrary sequents into objects of type 9�` � .
Cheating can be useful for quick what-if reasoning, but obviously threatens proof security. There-
fore the system can be set up as to always leave a trace of such cheating.
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security of HOL.
In order to ease input and output of terms, types, and theorems, HOL makes

use of quotation and anti-quotation extensions of otherwise standard ML. Con-
sider for example the following applicationa�a-{)�K|�}NE~{/a�a
(which is an application of the function a�a to a quotation and itself). This applica-
tion parses and type checks the quotation and evaluates to a value of Standard ML
type 9���m � representing a conjunction.

Furthermore, as certain mathematical symbols (like � , # , and ! ) are not easy
to input and output on most terminals HOL uses a transcription with regular char-
acters. Appendix A gives more information in this regard and also — more im-
portantly — gives the correspondence between notation used in this thesis and the
notation used by HOL.

Types

HOL is based on typed lambda-calculus with constants. Types in the calculus can
be described as those generated by the grammar:

σ :: 2 α ��. σ1 %4>4>4>�% σn 1 op (1.3)

where α ranges over type variables and op ranges over a set of type operators,
each with its own arity, possibly zero. The set of type operators in particular
contains z of arity 2 and bool of arity 0. Some type operators have special support
from the parser and the pretty-printer, allowing a more traditional notation like
bool z bool.

HOL requires that all types be inhabited, i.e., that for any type there is a value
of that type. For example, the type bool has the two elements T and F . This
requirement is enforced when defining new types, where a proof of inhabitation is
a prerequisite.

Types do not play an important rôle in this thesis, except for their presence in
the background securing consistency. Since types are so relatively unimportant
to the understanding of this thesis we shall as a notational convenience leave out
types from terms. A consequence of this abbreviation is that a reader wishing to
enter terms written here into HOL must occasionally re-create the polymorphic
type annotations. (All other type information HOL will infer itself.) We stress
that the actual proof scripts do not include any such sloppiness.
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Terms

There are four kinds of terms that HOL knows about. They form a subset of the
objects generated by the following grammar:

t :: 2 x � c � t1 t2 � λx > t (1.4)

where x ranges over variables and c ranges over constants. The terms are the well-
typed ones and there are no surprises in the type rules. Non-well-typed objects
generated by the grammar in 1.4 are not terms and will not be considered further.

Since HOL’s logic is a higher-order logic it is possible to define, for exam-
ple, the universal and the existential quantifier within the logic. In fact, # x > t
and � x > t are just (parser and pretty-printer supported) shorthands for . $ #S16. λx > t 1
and . $ ��16. λx > t 1 respectively, where ‘$ # ’ and ‘$ � ’ are regular higher-order con-
stants (both of type . τ z y k�k���1 z y k�k�� , i.e., taking a predicate and giving a truth
value) defined by

$# def2 λP>+. P 23. λx > T 1'1
$ � def2 λP> P . εP 1

using the Hilbert choice operator, ε, which given a predicate choses an element in
the domain for which the predicate holds, or an unspecified element of the domain
if the predicate is everywhere false.

For example, the familiar term “# b : . b 2 T 1=�J. b 2 F 1 ” is a shorthand for. $#S16. λb >�. b 2 T 1=�J. b 2 F 1'1
which when expanded by $# ’s definition and beta-reduced becomes. λb >+. b 2 T 1=�J. b 2 F 141-23. λx > T 1?>

The HOL system’s parser and pretty-printer allow several other kinds of spe-
cial syntax aimed at supporting traditional mathematical notation. This includes,
for instance, infix function applications, pairs, and let-expressions. These nota-
tional conversions are not expected to cause problems for the reader and therefore
will not be introduced formally here.

Sequents, Theorems, and Lemmas

A sequent (or “goal”) is the pair of a set of boolean terms, � t1 %4>4>4>�% tn � , called the
assumptions and a boolean term, t, called the conclusion. Sequents are written� t1 %4>'>4>'% tn ��� ? t.
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Theorems are proven sequents and will be written � t1 %4>'>4>�% tn ��� t. For proven
or un-proven sequents the assumption set will be omitted if it is empty; most
of the theorems presented in this thesis will indeed have empty assumption sets.
“Lemma” is an alternative term used for theorem. “Lemmas” are generally con-
sidered less important than “theorems.” Certain theorems are called “definitional
theorems”; such a theorem holds because a new constant (typically having func-
tion type) has just been defined to have that property. We shall see later that before
constants can be defined we must prove their existence in some way. Thus we
cannot, for example, introduce a constant m with the self-contradictory property.'. m 2 T 1=�J. m 2 F 141 .

As explained previously, HOL enforces proof security by giving theorems a
distinct abstract type. Therefore theorems and un-proven sequents have incom-
patible types.

1.5.2 The HOL Logic

HOL’s logical deduction system can be described as a higher-order and classical
logical system. For instance the theorem� # t > t ��� t

known as the law of the excluded middle holds and the following derived rule

Γ %/� t � F
Γ � t

known as the classical contradiction rule are valid.
A description at any significant detail level of the logic is outside the scope of

this thesis. The reader is advised to consult [GM93] for more information.

1.5.3 Order of Definitions

HOL requires — quite sensibly — that constants (including functions) be defined
before they are used. While this makes consistence checks simpler and thus easier
to trust, it can also make a presentation convoluted and hard to follow. We will
occasionally take the liberty of presenting utility functions after the functions that
use them.

1.6 Proof Script

In order to give people without experience with theorem provers some feeling
about the size of the proof script used for the proofs in this dissertation we supply
these figures:



16 Introduction� The total size of the files making up the proof script is about 20000 lines or
600 KB.� The running time for the script is about 4 CPU-hours on an otherwise un-
used Sun4c Sparcstation with 64 MB memory. An additional hour must be
added for checking the transformations in Appendix B and more than an
hour must be added for proving the typing of the self-interpreter (Theo-
rem 5.12).� Running the proof script proves just below two million intermediate theo-
rems.



Chapter 2

Goals

Sed quis custodiet ipsos Custodes?
— JUVENAL, approximately 100 A.D.

The goals of this work could be described simply as “investigating the thesis found
in Section 1.1” but deserve to be spelled out in greater detail. The goals are� to develop and explore an internal view of partial evaluation in a formal

way.� to demonstrate that program transformations, including the elusive folding
transformation, are susceptible to proofs, even formal proofs.� to demonstrate that the state-of-the-art in mechanical theorem proving and
verification is at a level where substantial programming language semantics
can be handled.� to demonstrate that mixing the fields of programming language semantics
and mechanical verification is not simply extra work on top of the semanti-
cal work but that the theorem proving can be done directly in the formalisa-
tion with the benefits of assured correctness at any point in the process.

In the following we discuss these points in greater detail.

2.1 Internal View of Partial Evaluation

Research that only a small group of researchers know about is research that is not
used at its full potential. Therefore, from time to time we give lectures to outside

17
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audiences. When giving introductory lectures on partial evaluation to audiences
from other fields of computer science it is common to be given questions along
the line

What does partial evaluation give us that we could not have gotten
from a mix of traditional optimisations like constant folding and func-
tion unfolding (or loop unrolling)?

The traditional answer to such a question will point out at least three important
differences:� Traditional optimisers do not try to unfold recursive calls. In fact, the op-

timiser part of traditional C compilers like the GNU C Compiler [S x 85]
primarily unfolds non-recursive calls to functions that the user has explic-
itly marked for unfolding.� The program transformations and the analyses behind them are of a global
nature whereas conventional optimisations almost always are of a local na-
ture.� If partial evaluation must be broken up into basic optimisations, then the list
should at least include folding and introduction of new functions.

Note that the idea of decomposing the concept of partial evaluation into more
basic program transformations is present already in the question posed by people
from other fields. Nevertheless this subject has not been investigated thoroughly.

One goal of this thesis is to determine which basic transformations are needed
in order to make up partial evaluation as we usually understand it.

As Chapter 3 will show, we are going to use a toy language and not a full-scale
language like Scheme or Standard ML for our work. For example, our language
is first-order and does not contain user-defined types. This is pragmatics at work:
we would have liked to prove correctness of partial evaluation on a language like
Standard ML, see [BW93], but we do not believe this is feasible at present because
the burden of proof increases sharply with the language’s size.

It is a separate goal of this thesis to work towards the construction of a prov-
ably correct and optimal partial evaluator [JGS93, Chapter 6] for a typed language
and we conjecture that the methods presented here together with an added layer
of retyping are strong enough to perform optimal partial evaluation1.

1“Perform” is here used to mean that the methods presented will guarantee the correctness of
a number of basic steps. There are no tools to select which transformations to apply, i.e., the
controlling parts of a would-be partial evaluator are not presented.
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2.2 Mechanically Verified Proofs

The use of a proof verifier for all proofs in this thesis should be seen in part as a
reaction to the current state of the art of proofs in programming language theory as
it appears in print. There are a number of subjects that are almost always silently
ignored or presented incompletely. For instance (in no particular order):

“Fresh variables”: often, in a program transformation, there is a need for a vari-
able with a name which is in some sense not yet used. The usual way to
solve this need is to have an oracle function producing these variable names,
but it is not clear exactly which properties this oracle should have and how
it should influence proofs.

In order to handle this problem in the way it is usually described (namely as
global uniqueness) it would often be necessary to add extra parameters to
the semantics-defining functions. This is clearly not desirable, so this thesis
will use a local uniqueness condition which will turn out to be sufficient.
(See also the recent article [NN96] by Nazareth and Nipkow which also
pays attention to this problems.)

Scoping: when programs contain variables it is usually necessary, or at least de-
sirable, to check that variables are used only within the scope of their defi-
nitions. This is usually done implicitly (but rigorously) as part of a typing
discipline. The lack of precision is usually in the use of the scoping infor-
mation.

It appears that there is no easy way out of this problem: Whenever a theorem
depends on scoping conditions it seems that scoping conditions must be
made part of the induction hypotheses in suitable ways.

Fixed points of inference rules: One way to define a language’s semantics is to
give a set of inference rules, see [Win93], and define an evaluation predicate
as the least (or occasionally greatest) fixed point satisfying these rules. Such
least fixed points do not always exist, nor are they necessarily unique, so
that ought to be proven. Such proofs are rarely given. Often a reference to
Knaster [Kna27] or Tarski [Tar55] is given but the preconditions for using
Knaster/Tarski’s fixed point theorem are usually not checked.

In this thesis all proofs have been machine verified. More precisely, the proofs
in this thesis are transcriptions, cf. Appendix A, of verified proofs. Should there
be any problems with proofs in this thesis it is thus most likely that they are of a
typographical nature. If they are not, then the scope of the problems will not be
limited to this thesis.
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* * *

Getting back to the opening quote of this chapter: if — for whatever reason —
doubt should be cast on the correctness of the HOL theorem prover computer
system, still not all is lost. Wong in [Won95] describes a system designed to
capture and independently verify all basic inferences that are part of a proof. Thus
it would, at least in principle, be possible to get a second opinion on the validity
of the proofs; but this check has not been done yet nor is it planned. [Won95] is
based in part on von Wright’s HOL-in-HOL package [vW94], which taken to its
extreme might lead to formally checking HOL.

2.3 Formalisation as Part of the Process

The rôle of formalisation and formal proofs in connection with programming lan-
guage semantics has so far been to formalise and verify theories and results that
were known in advance. Thus work with the theorem prover will mainly consist
of redoing proofs. (See Chapter 9 for examples.)

We submit that this is inheritly the wrong time for formal methods to enter the
scene and that they should more properly enter early so that proofs can be done —
not re-done — with the theorem prover and such that there is no redundant work.

Therefore, the proofs that have been done in connection with this work were
done directly using the theorem prover and they are not formalisations of any
previously formulated existing theorems, except that there are related theorems in
related work.



Chapter 3

Language

You taught me language; and my profit on’t
Is, I know how to curse; the red plague rid you,

For learning me your language!
— WILLIAM SHAKESPEARE, 1564–1616

This chapter analyses the consequences that various language features have on
partial evaluation, in particular on self-application of a partial evaluator. We then
turn to the language that will actually be used throughout the remaining chapters.
We describe its abstract and its concrete syntax, define its semantics in both a stan-
dard and a “timed” way, and then introduce some correctness issues for programs
written in our language.

3.1 Consequences of Language Features

3.1.1 Higher-Order versus First-Order

The decision of whether to include higher-order constructs or not has a number
of consequences. Assume that we have a first-order language and want to add a
lambda construct. Then� it gets significantly more complicated to estimate control and data flow with

any precision, because it for each higher-order application becomes nec-
essary to known which lambdas could possibly be applied at that point.
Knowing control and data flow is important for, e.g., precise binding-time
analysis, see [JGS93, Chapters 10 and 15].

21



22 Language� the reduction transformation of . λx > e1 1 e2 will have to be considered. With
explicit names (“x” above) this is just as complicated with respect to renam-
ing and variable capture as we shall later see that unfolding of ����9 -bindings
is. Without explicit names — for example using some de Bruijn [dB72]
inspired notation — the transformation will instead be complicated by the
renumbering necessary.� value identity, to which expression equivalence is linked, becomes much
more involved. In the first-order case, assuming ground terms, it is sufficient
to use structural identity but this would not work in the higher-order setting
because then, for example, the values λx > 2 and λx > 1 � 1 would be different
which is decidedly not what we want. Instead some notion of bi-similarity,
see [Pit95], would be needed in order to compare expressions and values.

The first two items are mostly a complication for anyone wanting to write a par-
tial evaluator. Although this is not a direct goal of this thesis, it should still be
considered since any practical use of this work would have to go in that direc-
tion. The last item, however, would cause a severe and unwelcome complication
to all proof work, as seen in [San96]. We believe that the mixing of partial evalu-
ation and formally verified proofs should be done in the simpler first-order setting
before inviting these complications in.

3.1.2 Presence of Types

For the purposes of this discussion we will distinguish the following classes of
language typedness.

Statically typed languages, like Standard ML [MTH90]. Valid programs from
these languages do not commit type errors. It is not possible, nor is it useful,
to inspect a value’s type.

Dynamically typed languages with inspection, like Scheme [CR91]. Each op-
eration checks the type of its arguments, but no programs are ruled out in
advance. It is possible for the program to inspect the type of values.

Dynamically typed languages without inspection. Same as above, but without
the primitives to inspect a value’s type, in effect giving the language many
properties of the statically typed language. For example, it is generally not
possible to write a pretty-printer for values since we are unable to determine
whether a value (say) is an integer, a string, or something else.

Untyped languages, like the untyped λ-calculus. “Type error” is not a recog-
nised concept. (But reduction cannot continue for an expression like the
application . 1 2 1 .)
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Untyped languages have so far turned out to be simpler to handle in the context
of partial evaluation than typed languages. The reason for this is the need for ex-
plicit universal encoding when programming interpreter-like programs in a typed
language. So far the majority of work in partial evaluation has concentrated on
languages from the bottom two groups above.

It would probably thus be simplest to chose a Scheme-like language or even a
completely untyped language. Doing that, however, would conflict with the goal
of working toward optimal typed partial evaluation. On the other hand choos-
ing a statically typed language would require us to formalise a typing system and
formally prove the relevant safety theorems. This, while an important task, is
a major undertaking in itself and not directly relevant to this thesis. Moreover,
it turns out that the correctness of our program transformations do not rely on
well-typedness but mostly on correct use of scoping. Therefore, we will chose a
dynamically typed language without inspection and write programs (like the in-
terpreter needed in the following chapter) as if the language were statically typed,
i.e., with full universal encoding of values. This way our result will apply also to
the smaller set of statically well-typed programs.

We are now left with choosing the types with which the language operates.
The main guiding line here is simplicity both in terms of the types and in terms
of the size of a potential self-interpreter. We chose integers as the sole base type
and add pairs and a two-constructor anonymous data type on top, i.e., values are
described by the domain Val satisfying

Val 2 Num �X. Val � Val 1=�X. Val � Val 1?>
Another option considered was having a unit base type with only one element;
integers could then be simulated using unary encoding, but this would be at the
expense of inflating programs.

3.1.3 Parameters of Functions

Some programming languages dictate that all functions have exactly one formal
parameter while others allow functions to have any number of parameters for func-
tions. (But usually each function takes the same number of parameters every time
it is called.) Standard ML, for example, dictates one and only one parameter
which means that the expression @�A C�D:G�H
is evaluated by constructing a pair and calling

@
with that pair as its only argument,

whereas the Scheme expression A:@ C�G�H
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is a call to
@

with two arguments. Note that the Standard ML expression
A:@ C�G�H

is valid but consists of two function calls with one parameter, not one call with
two.

This might appear as a technical distinction with little practical importance.
But, for the purpose of optimal partial evaluation there is a significant difference
between the two. Partial evaluators work by specialisation, meaning that an argu-
ment can be made to disappear because all applications use the same constant for
the argument in question. Thus if specialisation was the only thing that the partial
evaluator did and we used a language with multiple parameters, then the resid-
ual program could not contain a call with more parameters than the maximum
observed in the original program.

If we use this observation on the application of the partial evaluator to a self-
interpreter and its program input* * ����� , ,7.:& �j] 9�%g$�1;2X$to
we see that $po will inherit & �j] 9 ’s limit on the number parameters. Therefore, if$ contains an occurrence of a call with a larger number of parameters than seen
in & �j] 9 then $po will use some data structure — typically a list structure inherited
from the interpreter — to pass the parameters. This means that we cannot expect
the partial evaluator to be optimal. See also [Mog96].

There are solutions to this problem, for example by using a technique called
arity raising [Rom88, Rom90] or the related subject of handling partially static
data structures, see [Mog88] and [Rom88]. However, we believe that introducing
this kind of complication at the present time is not wise because it will inflate the
problem without given more insight, and we will therefore use the Standard ML
model of calling functions.

3.2 Partial Evaluation Language

For the rest of this thesis we shall concentrate on the following rather simple
language chosen, on the one hand as not to require sophisticated methods in the
partial evaluation process, and on the other hand in a way that does not cause a
self-interpreter to become overly inflated with encoding.

3.2.1 Abstract Syntax

The of the language PEL1 is found in Figure 1. The fragment � p � means an op-
tional occurrence of p.

1Partial Evaluation Language, not to be confused with the language of the same name described
in [Lau89].
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p :: 2 f x I e R � p � Program

e :: 2 i Integer constant� A
e1 o e2

H Integer operation� A
e1
D e2
H Pair construction� @ &[9 e Pair destruction� & ] ( e Pair destruction� �j] � e Sum construction� �j] m e Sum construction� Y���&6� e k @ �j] � h x � a�� e �d� �?] m h xr

a�� er � ] ( Sum destruction� x Variable reference� ��m�m�k�m Error indication� f e Function application� ����9 x I e1
�j] e2 � ] ( Let-binding

o :: 2 M � a � L � I Integer operators

f � Func Function names
x � Var Variable names
i � � 0 % 1 % 2 %4>'>4> � The integers

Figure 1: PEL syntax

Note that the syntax is chosen such that the grammar is not ambiguous: infix
operations are parenthesised and both Y���&6� - and ����9 -expressions are explicitly
terminated. (Although this can be painful for practical programming it is useful
because it eliminates a level of imprecision.)

The concrete syntax will be relaxed slightly in examples by using � for �j] �
and � for �j] m as well as sometimes swapping the cases in a Y���&6� -expression and
omitting parentheses from integer operations where the intention is clear.

The particular set of integer operators is not important. In fact, subtraction,
which is computationally redundant, was added quite late in the formalisation,
resulting in surprisingly few proofs that needed minor modifications.

3.3 Semantics

The semantics of the partial evaluation language is straightforward. A program
defines a collection of mutually recursive functions, the first of which defines the
meaning of the program. The language is strict.

The semantics to be presented will assign a meaning to any syntactically cor-
rect program. In other words, there are no requirements that, e.g., function calls
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only go to defined functions, that functions be defined only once, that variables be
used only in scope, and that the program be well-typed in some sense. However,
we shall later rule out some of this “nastiness” as it will influence the correctness
of program transformations. Consider the expressions@ &[9 A�A G�M�G�H�D7��H and U >
We would like these two expressions to be interchangeable anywhere in any pro-
gram, but given (in this case) that the semantics is strict this is not so. If � is not in
scope at the point where the change takes place then the left-hand expression will
never evaluate to anything while the right-hand expression will always evaluate to
the value U .

The reason for spelling this out in detail is two-fold: (1) it has been some-
what neglected in previous work, and (2) a theorem prover like HOL will not
accept hand-waving arguments as to the correctness of program transformations.
It should in fact be noted that a lot of effort has been put into proving seemingly
obvious theorems, especially about scoping.

3.3.1 Semantic Objects

The semantics of the language utilises two kinds of semantic objects in addition
to the syntactic objects defined above. These are values, denoted by v, and envi-
ronments denoted by E.

The value domain is defined by the equation

Val 2 Num �X. Val � Val 1=�X. Val � Val 1?%
i.e., values are either numbers, pairs of values, or an element tagged with one of
two tags, �j] � and �?] m . Just as for expression we will usually abbreviate these as� and � ; the double use of these names does not appear in the formalisation and
should cause no confusion.

The set of numbers used is chosen to be the set of natural numbers starting
with zero. This allows for slightly simpler formalisation into HOL as it happens
to coı̈ncide with HOL’s own idea of natural numbers.

The semantics of programs is built on top of the semantics of expressions
which in turn operates with environments. Instead of adopting the traditional
description where environments are partial finitary functions from variables into
values we shall use an abstract version. The benefit of this is that there will be
no need for arguing (i.e., proving) any correspondence between partial functions
used in the formal semantics and lists more commonly used in implementations.
The abstract description requires an abstract type, Env, and three operations on
it. (1) building a one-point environment from a variable and a value, denoted



Semantics 27

� x �z v � . (2) updating an environment, denoted E �K� x �z v � . (3) looking up a
variable in an environment, denoted ��k�k�Z�l�$ T � ] � E x (a partial function). These
operations should satisfy.)��k�k�Z�l�$ T � ] �;� x �z v � x ��2 v ��1� "! . x 2 x ��1=�J. v 2 v ��1 (3.1)

and .)��k�k�Z�l�$ T � ] ��. E �P� x �z v � 1 x ��2 v ��1" �! (3.2).4. x 2 x ��1 z . v 2 v ��1 ��.0��k�k�Z�l�$ T � ] � E x ��2 v ��1'1?>
Note the “ � ” in E �P� x �z v � should be regarded as purely syntactic and has very
little to do with regular notions of addition. For example it is not commutative.

3.3.2 Semantic Rules

The semantics of a program is given in Figure 2 which defines a predicate (or
a “ternary relation”) P � vin �z vout which is true if program P given input vin

produces output vout. It is based on a corresponding predicate, E � P e ! v, for
expressions. The predicate will be defined shortly.� x �z vin �¡� P e ! vout . f x I e R 1-2 first P

P � vin �z vout
(3.3)

Figure 2: PEL program semantics.

The semantic function “first” used in Figure 2 is defined to extract the first
PEL-function definition in the program.

������� T k�$���m o i1 i2 2 ¢££¤ ££¥ i1 � i2 % if o 2 M
i1

.¦ i2 % if o 2 a� _ % if . o 2 I 1��J. i1 §2 i2 1� _ % if . o 2 I 1��J. i1 2 i2 1 (3.4)

Figure 3: PEL operator semantics.

The evaluation of operators is handled by the function ������� T k�$���m found in
Figure 3. Since the number field was chosen not to include the negative numbers
the semantics of subtraction is based on the truncating subtraction operator de-
noted .¦ and sometimes called “monus.” It can be defined in terms of the usual
subtraction operator for example by

i1
.¦ i2 2B¨ i1

¦ i2 % if i1 © i2

0 % otherwise
(3.5)
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Note that Figure 3 defines truth as � _ and falsity as � _ . This encoding is one
of many that allows � @ -expressions to be encoded as Y���&�� -expressions.

The interesting part of the semantics of the language is the semantics given
to expressions. Figure 4 shows inductive rules defining the predicate (four-way
relation) E � P e ! v which is true if expression e evaluates to v in the context of
program P (for function calls) and environment E (for free variables).

The “inductive” above means that the relation defined is the smallest relation
which satisfies the rules of Figure 4. This method of defining relations is covered
in, e.g., [Win93]. The formalisation will prove that this is well-defined and that
the predicate has properties allowing us to think of it as a partial function from
expressions, programs, and environments to values.

The definition of ������� T � � $�m uses the partial semantic function “ ��k�k�Z�l�$ T�@ l ] Y ”
which given a program and a function name returns the definition of the first func-
tion in the program having that name.

3.3.3 Errors and Non-Termination

It is a consequence of the way that the semantics was defined that there will be no
way to distinguish between an error situation — either explicit evaluation of ��m�m�k�m
or implicitly such as attempting to take the first component of an integer — and a
non-terminating evaluation. For given P and vin, these errors and non-termination
will both be indicated by non-existence of a vout satisfying the evaluation predicate
P � vin �z vout.

It should be noted that the collapsing of errors and non-termination is not
something inherently present with the methods used. In fact it would be quite
easy, if rather work-intensive in the formalisation, to sort things out, for instance
by tagging values as either exceptional or regular as for the definition of Stan-
dard ML documented in [MTH90]. As readers familiar with this book, more pre-
cisely its Section 6.7, will know the authors do not actually state most of the rules
dealing with exceptional values. Instead they present an “exception convention”
that for most of the approximately 60 rules shown implicitly adds one or more
exception rules. This should not be ascribed to laziness on behalf of the authors:
a spelled-out version would be huge and readability would suffer significantly. A
conservative estimate of the number of rules for Standard ML if the various no-
tational conventions were not used is 200 rules for the dynamic semantics of the
core alone. See also Section 9.4.

Our language is a lot smaller than Standard ML and Standard ML takes care
to distinguish different kinds of errors which we might not need to; but even
so, adding exceptions would significantly increase the number of inference rules.
Moreover, formalisation with HOL does not allow informality even at the level of
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E � P i ! i
(3.6)

E � P e1 ! i1 E � P e2 ! i2 ������� T k6$���m o i1 i2 2 v
E � P A e1 o e2

H ! v
(3.7)

E � P e1 ! v1 E � P e2 ! v2

E � P A e1
D e2
H ! . v1 % v2 1 (3.8)

E � P e ! . v1 % v2 1
E � P @ &[9 e ! v1

(3.9)

E � P e ! . v1 % v2 1
E � P & ] ( e ! v2

(3.10)

E � P e ! v
E � P �?] � e !ª� v

(3.11)

E � P e ! v
E � P �?] m e !«� v

(3.12)

E � P e !¬� v � E �P� x � �z v � �­� P e � ! v
E � P Y���&6� e k @ �?] � h x � a�� e � � �j] m h xr

a�� er � ] (­! v
(3.13)

E � P e !«� vr E �P� xr �z vr �­� P er ! v
E � P Y���&6� e k @ �?] � h x � a�� e � � �j] m h xr

a�� er � ] (­! v
(3.14)��k�k�Z�l�$ T � ] � E x 2 v

E � P x ! v
(3.15)

(there is no rule for ��m�m�k�m ) (3.16)

E � P e ! v ��k�k�Z�l�$ T�@ l ] Y P f 23. f x I e � R 1 � x �z v �®� P e � ! v �
E � P f e ! v � (3.17)

E � P e1 ! v1 E �P� x �z v1 �­� P e2 ! v2

E � P ����9 x I e1
�j] e2 � ] (¯! v2

(3.18)

Figure 4: PEL expression semantics.
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the well-described exception convention. Finally, we do not appear to need the
distinction in order to make transformations work.

3.4 Timed Semantics

In the previous section we defined the semantics of our language as predicates
describing the input-output behaviour of programs and expressions. In this sec-
tion we shall define a refinement of the core of the semantics, i.e., the expression
evaluation predicate E � P e ! v.

The evaluation predicate E � P e ! v and the syntactic types give us several
induction proof methods suitable for proving an evaluation assertion:

Structural case analysis: Any expression has one of the twelve forms shown in
Figure 1. We can use this observation to split the assertion into twelve cases.

Induction on expression: structural induction based on the expression type. As
the language has explicit recursion, this method is usually not strong enough
when both expressions and evaluation are involved. This is because the
function body in the recursive call is not automatically “smaller” than the
call expression itself.

Rule induction: (also known as induction on the structure of derivations) using
the least fixed-point property used to define the evaluation predicate.

For assertions which have the right form for attempting either proof method, rule
induction is stronger than structural induction which in turn is stronger than struc-
tural case analysis. Therefore it is no doubt the case that several of the proofs
conducted in the formalisation part of the present work use rule induction where
structural induction would have sufficed or even use structural induction instead of
structural case analysis. The “penalty” for doing this when using HOL is virtually
non-existent.

Strong as they may be, the techniques above do not always suffice. For this
reason we introduce the notion of a timed semantics, which formally is a sequence
of predicates E � P° n e ! v where n ranges over non-negative numbers. A timed
semantics is required to satisfy the conditions. E � P e ! v 1 if and only if � n : ± E � P° n e ! v ² (3.19)

and ± E � P° n e ! v ² implies ± E � P° n x 1 e ! v ²;> (3.20)

which state that E � P° n e ! v is an n-indexed sequence of increasingly better ap-
proximations to E � P e ! v and with it as a limit. Furthermore the approximation
is monotonic in n.
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Not all timed semantics are interesting. For instance, any sequence which
coı̈ncides with E � P e ! v at some point (and therefore as a consequence of the
conditions from that point) does not bring us anything new.

The way to think of the n parameter to the timed semantics predicate is as
a restriction on the size (loosely speaking) of the evaluation. In this light Equa-
tion 3.19 becomes “evaluations which can be done at all are exactly those which
can be done with some finite restriction on the size of the evaluation” and Equa-
tion 3.20 becomes “with a larger limit on evaluation size we can evaluate at least
the same.”

We shall now turn to two interesting timed semantics of different nature. They
will both concentrate on function calls, which as explained previously is where
proofs are difficult. The first one, based on nested call depth, operates with “re-
usable resources” in which, e.g., the available resources for the right-hand compo-
nent of a pairing operation depend only on the available resources for the pairing
operation as a whole and not on how resource-demanding the left-hand compo-
nent is. One can think of this kind of restriction as a chain holding a dog; the dog
can run for as long as it wants but never more than a certain distance from the
chain’s fixed point.

The second is based on total number of function calls; thus the resource limit
for the right-hand component of a pairing operation depends on what the left-hand
component did not use.2 This kind of restriction is like fuel added to a car in the
desert: you use it and it is gone forever.3

3.4.1 Nested Call Depth

Figure 5 shows the most important timed semantics, the nested call timed expres-
sion semantics. In this semantics, which is so important that it will simply use
the general notation introduced above, the n parameter is a limit on the number of
nested function calls allowed during evaluation.

Strictly speaking this description would require us to use n � 1 instead of n in
Equation 3.32’s left-most hypothesis, i.e., use E � P° n x 1 e ! v and not E � P° n e ! v.
We do use n in this place because� It makes a kind of call unfolding, namely replacing a function call

A
f e H by

a call to an identity function ³ A ����9 x f
I e �?] e f � ] ( H , neutral with respect

to this variant of call depth.

2This description is not meant to imply any particular evaluation order as far as the semantics
is concerned.

3A description using “time” as we normally understand it would also be possible, but would
not provide the option of arguing the eventual choice of call depth as the right limit based on being
environmentally responsible.
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E � P° n i ! i
(3.21)

E � P° n e1 ! i1 E � P° n e2 ! i2 ������� T k6$���m o i1 i2 2 v

E � P° n A e1 o e2
H ! v

(3.22)

E � P° n e1 ! v1 E � P° n e2 ! v2

E � P° n A e1
D e2
H ! . v1 % v2 1 (3.23)

E � P° n e ! . v1 % v2 1
E � P° n @ &[9 e ! v1

(3.24)

E � P° n e ! . v1 % v2 1
E � P° n & ] ( e ! v2

(3.25)

E � P° n e ! v

E � P° n �?] � e !ª� v
(3.26)

E � P° n e ! v

E � P° n �?] m e !«� v
(3.27)

E � P° n e !¬� v � E �O� x � �z v � �®� P° n e � ! v

E � P° n Y���&6� e k @ �?] � h x � a�� e � � �j] m h xr
a�� er � ] (­! v

(3.28)

E � P° n e !«� vr E �O� xr �z vr �®� P° n er ! v

E � P° n Y���&6� e k @ �?] � h x � a�� e � � �j] m h xr
a�� er � ] (­! v

(3.29)��k�k�Z�l�$ T � ] � E x 2 v
E � P° n x ! v

(3.30)

(there is no rule for ��m�m�k�m ) (3.31)

E � P° n e ! v ��k�k�Z�l�$ T�@ l ] Y P f 2<. f x I e � R 1 � x �z v �®� P° n e � ! v �
E � P° n x 1 f e ! v � (3.32)

E � P° n e1 ! v1 E �P� x �z v1 �­� P° n e2 ! v2

E � P° n ����9 x I e1
�j] e2 � ] (¯! v2

(3.33)

Figure 5: Nested Call Timed Expression Semantics.� It does not appear to complicate proofs which would not need the decrease
in n, for example the proof of one of the lemmas used to prove an interpreter
correct later, Lemma 5.5.� Having multiple timed semantics in the formalisation is not attractive be-
cause many uninteresting support theorems would need to be proven.
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3.4.2 Total Number of Function Calls

The second important timed semantics is shown in Figure 6. In this semantics the
n parameter is a limit on the total number of calls allowed during evaluation.

E � � P° n i ! i
(3.34)

E � � P° n1
e1 ! i1 E � � P° n2

e2 ! i2 ������� T k�$���m o i1 i2 2 v

E � � P° n1 x n2

A
e1 o e2

H ! v
(3.35)

E � � P° n1
e1 ! v1 E � � P° n2

e2 ! v2

E � � P° n1 x n2

A
e1
D e2
H ! . v1 % v2 1 (3.36)

E � � P° n e ! . v1 % v2 1
E � � P° n @ &[9 e ! v1

(3.37)

E � � P° n e ! . v1 % v2 1
E � � P° n & ] ( e ! v2

(3.38)

E � � P° n e ! v

E � � P° n �j] � e !ª� v
(3.39)

E � � P° n e ! v

E � � P° n �j] m e !«� v
(3.40)

E � � P° n e !ª� v � E �P� x � �z v � �®� � P° n´ e � ! v

E � � P° n x ń Y���&6� e k @ �?] � h x � a�� e � � �j] m h xr
a�� er � ] (¯! v

(3.41)

E � � P° n e !µ� vr E �P� xr �z vr �®� � P° nr
er ! v

E � � P° n x nr
Y���&6� e k @ �?] � h x � a�� e � � �j] m h xr

a�� er � ] (¯! v
(3.42)��k�k�Z�l�$ T � ] � E x 2 v

E � � P° n x ! v
(3.43)

(there is no rule for ��m�m�k�m ) (3.44)

E � � P° n e ! v ��k�k�Z�l�$ T�@ l ] Y P f 2<. f x I e � R 1 � x �z v �®� � P° n ¶ e � ! v �
E � � P° n x n ¶ x 1 f e ! v � (3.45)

E � � P° n1
e1 ! v1 E �P� x �z v1 �­� � P° n2

e2 ! v2

E � � P° n1 x n2
����9 x I e1

�?] e2 � ] (¯! v2
(3.46)

Figure 6: #Calls Timed Expression Semantics.

As it can be seen from, e.g., Equation 3.36 the resource for the conclusion is
split into two parts for the two subterms that must be evaluated. This is in contrast
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to the call depth timed semantics where the entire resource was available to the
subterms.

Disregarding otherwise important things — such as the language used — this
timed semantics corresponds to e ·¹¸ n as used by Sands in [San96]. We will return
to this in Sections 8.1.1 and 9.3.

3.5 Static Correctness

Section 3.2.1 defined the abstract syntax of the language we are considering by
giving a context-free grammar. One purpose of the grammar is to separate the
universe into things we are interested in, “programs,” and things we are not inter-
ested in, “non-programs.” It does not completely succeed in this regard, however,
as the set of programs ends up containing more than we are really interested in.
Consider for example the program@ �QI @ &[9 A/º EXM ` ��H�Rº FQI»GSR
This is a program by the definition in Section 3.2.1. Several things are wrong with
this program:� Function

@
’s body refers to variable E , which is not “in scope.”� Function
@

contains a call to function ` , which is not defined anywhere.� Since the result of an addition is always an integer, the argument to
@ &[9 will

be an integer.
@ &[9 does not make sense on integers.

The first two of these are scope problems. Even if we had been smarter when writ-
ing the grammar there would have been no way to syntactically prohibit this kind
of behaviour while still using a context-free grammar, see [ASU86, Section 4.2].

For similar reasons we cannot expect to prevent type errors by means of a
grammar. Even worse, we cannot prevent type errors in a decidable way at all
without at the same time preventing many perfectly fine programs also. This is
the halting problem in disguise, see [Jon97].

Since some of the program transformations we are going to describe later will
depend on some scoping-condition we now define a correctness criterion on pro-
grams. As all our program transformations preserve this criterion it follows that
we only need to prove correctness of the initial program in order to ensure cor-
rectness in every step of a series of program transformations.

Definition 2 (Static Correctness) A program P is statically correct if it has the
following three properties:
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defines f .� Every variable within the body of one of P’s functions is used only in scope,
i.e., a variable either refers to the function’s parameter or it occurs within
the right subexpression of a ����9 - or Y���&�� -construct binding the variable in
question.

3.6 Formalisation into HOL

In this section we discuss the formalisation of the syntax and semantics of PEL
into the HOL theorem prover.

3.6.1 Formalisation of Types and Syntax

This section discusses the formalisation of the syntax of expressions, values, oper-
ators, et cetera into HOL together with the definitions of the related types. Some
of this will discuss aspects of HOL closer to the core than users regularly need
to go. The basic principles will be discussed using the value type which is the
smallest type that shows all the relevant aspects.

Definition of, for example, the value type involves two acts as far as HOL is
concerned:� Definition (in the logic) of such a type.� Definition of “tags” or “constructors” to separate and identify the sum-

mands.

As far as the HOL kernel is concerned these are two different tasks.
Definition of a new type in HOL consists of four things: (1) choosing a new

type name, (2) specifying a subset of an existing type by a characteristic predicate,
(3) proving that the subset is non-empty, and (4) introducing an axiom stating that
the new type is isomorphic to the given subset. This is described in more detail
in [GM93, Sections 16 and 18].

Values

At first the definition of “tags” or “constructors” in HOL might seem impossible
as the HOL logic is based on typed λ-calculus with constants, i.e., the objects
are constants, variables, abstractions, and applications. In particular there are no
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constructors. But as we shall see, constructors can be emulated by constants with
the right properties. For the value type, for example, we want four constants which
we will call constructors:¼ T ³ ] 9 : ] l � z �����[l�� ¼ T�½ � � m : �����6l�� z �����6l�� z �����6l��¼ T ³ ] � : �����[l�� z �����6l�� ¼ T ³ ] m : �����6l�� z �����6l��
The use of currying over pairing in the type for ¼ T�½ � � m is not essential, but reflects
the way HOL’s standard tools will do it. We require the following properties:

Theorem 3.1 (Value Constructors are Injective.)� # i1 % i2 : . ¼ T ³ ] 9 i1 2 ¼ T ³ ] 9 i2 1;! . i1 2 i2 1� # v11 % v12 % v21 % v22 : . ¼ T�½ � � m v11v12 2 ¼ T�½ � � m v21v22 1;! . v11 2 v21 1=�J. v12 2 v22 1� # v1 % v2 : . ¼ T ³ ] � v1 2 ¼ T ³ ] � v2 1;! . v1 2 v2 1� # v1 % v2 : . ¼ T ³ ] m v1 2 ¼ T ³ ] m v2 1;! . v1 2 v2 1
(If the value type had had a constructor without any argument there would not
have been a corresponding injectivity theorem for that constructor.)

Theorem 3.2 (Value Constructors Have Disjoint Images.)� # v1 % v2 % i : ¼ T ³ ] 9 i §2 ¼ T�½ � � m v1v2� # v % i :
¼ T ³ ] 9 i §2 ¼ T ³ ] � v� # v % i :
¼ T ³ ] 9 i §2 ¼ T ³ ] m v� # v1 % v2 % i :

¼ T�½ � � m v1v2 §2 ¼ T ³ ] 9 i� # v1 % v2 % v :
¼ T�½ � � m v1v2 §2 ¼ T ³ ] � v� # v1 % v2 % v :
¼ T�½ � � m v1v2 §2 ¼ T ³ ] m v� # v % i :

¼ T ³ ] � v §2 ¼ T ³ ] 9 i� # v % v1 % v2 :
¼ T ³ ] � v §2 ¼ T�½ � � m v1v2� # v % v � : ¼ T ³ ] � v §2 ¼ T ³ ] m v �� # v % i : ¼ T ³ ] m v §2 ¼ T ³ ] 9 i� # v % v1 % v2 : ¼ T ³ ] m v §2 ¼ T�½ � � m v1v2� # v % v � : ¼ T ³ ] m v §2 ¼ T ³ ] � v �

(Half of these 12 theorems follow from the other half by the symmetry of equality.)
The following theorem states that the construtors’ images exhaust the value

type, i.e., that the value type contains nothing but values.

Theorem 3.3 (Value Case Analysis Theorem.)

� # v : ¾¿¿À .)� i : v 2 ¼ T ³ ] 9 i 1��.)� v1 % v2 : v 2 ¼ T�½ � � m v1v2 1��.)� v � : v 2 ¼ T ³ ] � v � 1��.)� v � : v 2 ¼ T ³ ] m v � 1
Á[ÂÂÃ
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The following theorem allows us to prove properties of values by structural
induction.

Theorem 3.4 (Value Structural Induction Theorem.)

� # P : ¾¿¿À .+# i : P . ¼ T ³ ] 9 i 141=�.+# v1 % v2 : Pv1 � Pv2 ! P . ¼ T�½ � � m v1v2 141��.+# v : Pv ! P . ¼ T ³ ] � v 141=�.+# v : Pv ! P . ¼ T ³ ] m v 141
Á ÂÂÃ ! .�# v : Pv 1

The following theorem gives us a way to define primitive recursive functions
on the value type. ‘ � !’ is the unique-existence qualifier.

Theorem 3.5 (Value Initiality Theorem.)

� # f0 % f1 % f2 % f3 : � ! f : ¾¿¿À .+# i : f . ¼ T ³ ] 9 i 1�2 f0i 1��.+# v1 % v2 : f . ¼ T�½ � � m v1v2 1;2 f1 . f v1 16. f v2 1 v1v2 1��.+# v : f . ¼ T ³ ] � v 1;2 f2 . f v 1 v 1=�.+# v : f . ¼ T ³ ] m v 1;2 f3 . f v 1 v 1
Á[ÂÂÃ

Incidentally, Theorem 3.5 implies Theorems 3.1 through 3.4. The question of
how to show the implication is left as an interesting exercise for the reader.

From the above list of theorems it would appear as if the introduction of a
simple structural type into HOL was major undertaking. In practice this is not
the case because the process can be (and has been) automated, i.e., HOL provides
a convenient function4 which given a suitable grammar performs the type defini-
tion and proves the relevant theorems about the constructors. In fact, the actual
code introducing the type, proving existence of and defining the constructors, and
proving 3.5 is just�����N�����6l�� I(�� @ �j] � T 9 E $���Ä ] � � � I�Å �����[l�� Å�D9 E $�� T &j$���Y IB{ �����[l�� I ¼ T ³ ] 9Xk @ ] l �� ¼ T�½ � � mXk @ �����6l�� I�� �����6l��� ¼ T ³ ] �Pk @ �����[l��� ¼ T ³ ] mXk @ �����[l�� {�D@ ����� 9 � ��& IÇÆ ½ m�� @ ����D ½ m�� @ �6��D ½ m�� @ ���;D ½ m�� @ ����È�É-R
(where the “fixities” argument controls HOL’s pretty-printer and parser for future
uses of the constructors). Further functions are available for proving the remaining
theorems mentioned above.

It is important to realise that (�� @ �?] � T 9 E $�� as used in the code above is not
primitive to the HOL logic. It should be considered no more than a shorthand

4Recall that HOL is implemented in Standard ML and that the language is available to the
HOL user as a Meta-Language.
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dealing with messy details. In particular the proof security of the HOL system is
not affected by programming or logic errors in (�� @ �?] � T 9 E $�� should there be any.
Moreover the user could introduce a replacement if the need should arise.

Functions and Variables

Function and variable names need to come from infinite sets, Func and Var, but
otherwise there are no restriction on them. For simplicity we simply chose to use
the natural numbers for them. The obvious thing to do would be to use a type ab-
breviation, for example “type var = int;” in Standard ML, but unfortunately HOL
does not allow type abbreviations.5 Instead the ML-concept of anti-quotation can
be used. When “ Ê �=��Ë ” or “ Ê 
�����
 ” appears below (and as types are generally not
shown when they are not essential these fragments will not appear often) they both
stand for “

����Ì
” but with the added clue that they represent variable (respectively

function) names.

Operators

The operator type is simpler than the value type in that it is not a recursive type.
Nevertheless it is defined using the same HOL-provided tools:�����Ok6$���m I(�� @ �?] � T 9 E $���Ä ] � � � I�Å k�$���m Å�D9 E $�� T &j$���Y IB{ k�$���m IXÍ (�(Ç�ÏÎ�l��i�ÑÐ[l y �ÓÒ�Ô�l���� {�D@ �6��� 9 � ��& IÕÆ ½ m�� @ ���;D ½ m�� @ ����D ½ m�� @ �6��D ½ m�� @ ����È�É-R
A series of theorems similar to the series that were deduced for the value type
can be deduced for the operators type, except that injectivity does not apply be-
cause the constructors have no arguments. For example, we have the case analysis
theorem and the induction theorem:

Theorem 3.6 (Operator Case Analysis Theorem.)� # o : .'. o 2 Í (�(�1��J. o 2QÎ�l���1=�J. o 2dÐ6l y 1=�J. o 2XÒ�Ô�l�����141
Theorem 3.7 (Operator Structural Induction Theorem.)� # P : P . Í (�(�1=� P .nÎ�l���1=� P .)Ð[l y 1=� P .gÒ�Ô�l�����1;! .�# o : Po 1?>
The latter is no more useful than the case analysis theorem because the type is not
recursive. Theorem 3.6 and Theorem 3.7 imply each other.

5Recall that the term “HOL” is used for the HOL 90.7 version of the system. The HOL 88
versions do have such a mechanism for defining type abbreviations.
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Expressions

The expression type is built on top of another non-primitive type, namely the
operator type, but apart from that it is not more complicated than the value type.
The expression type is defined by�����O� � $�m I(�� @ �j] � T 9 E $��Ä ] � � � I5Å � � $�m Å=D9 E $�� T &j$���Y IÖ{ � � $�m I Ò T ³ ] 9Xk @ ] l ��×Ò T�Ø $»k @ k6$���m I�� � � $�m I�� � � $�m�×Ò T�½ � � mXk @ � � $�m I�� � � $�m�×Ò T�Ù &[9Xk @ � � $�m�×Ò T Ð ] (Qk @ � � $�m�×Ò T ³ ] �Pk @ � � $�m�×Ò T ³ ] mXk @ � � $�m�×Ò T�Ú ��&6�Ok @ � � $�m I��fÛ ����m I�� � � $�mI��fÛ ����m I�� � � $�m�×Ò T ¼ ��mXk @ Û ����m�×Ò T Ò�m�m�k�m�×Ò T�Ú �����Pk @ Û @ l ] Y I�� � � $�m�×Ò T ����9Xk @ Û ����m I�� � � $�m I�� � � $�m {�D@ ����� 9 � ��& IÕÆ ½ m�� @ ����D ½ m�� @ �6��D ½ m�� @ ���;D ½ m�� @ ����D½ m�� @ ����D ½ m�� @ �6��D ½ m�� @ ���;D ½ m�� @ ����D½ m�� @ ����D ½ m�� @ �6��D ½ m�� @ ���;D ½ m�� @ ����È�É-R
There are no surprises with the related theorems. For instance, the structural in-
duction theorem states:

Theorem 3.8 (Expression Structural Induction Theorem.)

� # P :

¾¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿À

.+# i : P .gÒ T ³ ] 9 i 141=�.+# e1 % e2 : Pe1 � Pe2 !µ# o : P .nÒ T�Ø $ oe1 e2 141=�.+# e1 % e2 : Pe1 � Pe2 ! P .gÒ T�½ � � m e1 e2 141��.+# e : Pe ! P .gÒ T�Ù &?9 e 141��.+# e : Pe ! P .gÒ T Ð ] ( e 141��.+# e : Pe ! P .gÒ T ³ ] � e 141��.+# e : Pe ! P .gÒ T ³ ] m e 141��.+# e % e � % er : Pe � Pe � � Per !# x � % xr : P .gÒ T�Ú ��&�� ex � e � xr er 141��.+# v : P .gÒ T ¼ ��m v 141��
P .gÒ T Ò�m�m�k�m�1=�.+# e : Pe !Ü# f : P .gÒ T�Ú ����� f e 1'1=�.+# e1 % e2 : Pe1 � Pe2 !µ# x : P .nÒ T ����9 xe1 e2 141

Á[ÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÃ
! .+# e : Pe 1

Since there are 12 different constructors in the expression type there are no less
than 132 ( 2 12 . 12 ¦ 1 1 ) theorems stating that the constructors have different
images. This does not pose a problem for the logic but it might be a performance
problem. This will be discussed further in Section 8.2.1.
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Programs

Programs are modelled by lists of tuples . f % x % e 1 each representing a function
definition. As with functions and variables we really need a type abbreviation but
can make do with using anti-quotation instead.

A side effect of this modelling is that the empty list becomes a valid value
of type Ê ��Ë	��Ý�Ë���Ì corresponding to the empty “program.” This quirk could have
been avoided by defining a new list type without the empty list but the difference
turns out to be unimportant. It is much easier just to exclude the empty program
from the set of statically correct programs.

Being a list type the program type inherits a number of theorems from the list
type. For instance, the induction theorem holds:

Theorem 3.9 (List Induction.)� # P : . P .4*g,+1=�J.+# T : PT ! .+# H : P . Ú�Ø�Þ Ð H T 1414141-! .+# L : PL 1
Note however that the quantification over H and T is not restricted to statically
correct programs. Therefore this theorem cannot immediately be used to argue
about properties of statically correct programs unless those properties are shared
by all programs. This observation reflects the fact that due to mutual recursion we
cannot build a large statically correct program by adding functions to a small one.

The Option Type

In order to be able to deal with partial functions in the formalisation it is useful to
introduce the following parameterised type:�����Ok6$�9 � k ]XI(�� @ �?] � T 9 E $���Ä ] � � � I�Å k�$�9 � k ]SÅ�D9 E $�� T &j$���Y IB{ k�$�9 � k ]KI Ø�ß k @ o/�Õ� Ù Í ³[� {�D@ �6��� 9 � ��& IÕÆ ½ m�� @ ���;D ½ m�� @ ����È�É-R
The use of this type shall be to make partiality explicit, i.e., if f . x 1-2 y is a partial
function then the function we will formalise is the total function given byà

f . x 1;2 ¨ Ù Í ³?�=% if f . x 1;2fáØ6ß
f . x 1?% otherwise.

This method of encoding partiality will be used for the formalisation of the seman-
tic functions ��k�k�Z�l�$ T � ] � and ��k�k�Z�l�$ T�@ l ] Y and will provide us with the option of
discussing situations where looking up variables or functions fail.
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Environments

In the tradition of simple interpreters, environments are represented as lists of
pairs where the first component of each pair is a variable name and the second
component is the corresponding value.

If we now define the function ��k�k�Z�l�$ T � ] � , � ��Z�� T � ] � , and l�$�(���9�� T � ] � in the
following way then these operation will have the properties 3.1 and 3.2 with the
lifting described in the previous section.

Definitional Theorem 3.10.+# x : ��k�k�Z�l�$ T � ] �c*n, x 2 Ù Í ³[��1.+# w % E % x : ��k�k�Z�l�$ T � ] �p. Ú�Ø�Þ Ð wE 1 x 2.'. x 2 Ù Ð�â w 1 z Ø�ß .)Ð Þ�ã w 1®�?��k�k�Z�l�$ T � ] � E x 141
Definitional Theorem 3.11# x % v : � ��Z�� T � ] � xv 2<*ä. x % v 1:,
Definitional Theorem 3.12# x % v % E : l�$�(���9�� T � ] � xvE 2 Ú�Ø�Þ Ðp. x % v 1 E
The function ��k�k�Z�l�$ T�@ l ] Y is very similar to ��k�k�Z�l�$ T � ] � .

Definitional Theorem 3.13.+# f : ��k�k�Z�l�$ T�@ l ] YS*g, f 2 Ù Í ³?��1.+# b % P% f : ��k�k�Z�l�$ T�@ l ] YS. Ú�Ø�Þ Ð bP 1 f 2.4. f 2 Ù Ð�â b 1 z Ø�ß .)Ð Þ�ã b 1¡�?��k�k�Z�l�$ T�@ l ] Y P f 141
3.6.2 Formalisation of Semantics

The semantic predicates, for example E � P e ! v, are functions or, more precisely,
constants with a function type. HOL provides two ways of introducing such con-
stants into the logic:� specifying a closed term for the function.� proving the existence of a function with the required properties.

Since HOL terms as defined herein are well-typed per definition the first method is
only suited for definition of non-recursive functions. The second method involves
a proof in order to guard the soundness of the logic, see [GM93, Section 16.5.2].
In practical terms it disallows the definition of, say, f n 2 1 �K. f n 1 , which would
immediately lead to inconsistencies.

Suppose, for example, that we want to define a recursive function �����[l�� G � � $�m
with type �����[l�� z � � $�m converting a value to its corresponding constant expres-
sion, i.e., we want a function satisfying
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Definitional Theorem 3.14

� ¾¿¿¿¿À
.+# i : �����[l�� G � � $�mp. ¼ T ³ ] 9 i 1-2»Ò T ³ ] 9 i 1=�.+# v1 % v2 : �����6l�� G � � $�mp. ¼ T�½ � � m v1 v2 1�2Ò T�½ � � mc.g�����6l�� G � � $�m v1 1�.g�����6l�� G � � $�m v2 141��.+# v : �����[l�� G � � $�mt. ¼ T ³ ] � v 1;2»Ò T ³ ] �~.g�����[l�� G � � $�m v 141=�.+# v : �����[l�� G � � $�mt. ¼ T ³ ] m v 1;2»Ò T ³ ] mc.g�����[l�� G � � $�m v 141

Á[ÂÂÂÂÃ
This function is recursive so we will have to prove its existence. To prove this, we
use Theorem 3.5 and specialise it to the functions

f0 : λi >0Ò T ³ ] 9 i
f2 : λr% v >0Ò T ³ ] � r

f1 : λr1 % r2 % v1 % v2 >0Ò T�½ � � m r1 r2

f3 : λr% v >0Ò T ³ ] m r

After beta-reduction we obtain the theorem

� � ! f : ¾¿¿À .+# i : f . ¼ T ³ ] 9 i 1�2XÒ T ³ ] 9 i 1=�.+# v1 % v2 : f . ¼ T�½ � � m v1 v2 1�2»Ò T�½ � � mt. f v1 1�. f v2 141��.+# v : f . ¼ T ³ ] � v 1;2KÒ T ³ ] �p. f v 1'1=�.+# v : f . ¼ T ³ ] m v 1;2KÒ T ³ ] m\. f v 1'1
Á[ÂÂÃ

Except for the fact that this theorem states unique existence and not just existence
(and as unique existence implies existence that complication is small) this theo-
rem states that a function with the recursive behaviour claimed for �����6l�� G � � $�m
in 3.14 really does exist. It can therefore be used to define �����6l�� G � � $�m yielding
the (axiomatic) Theorem 3.14.

HOL provides convenient tools to define primitive recursive functions. The
function �����6l�� G � � $�m which plays a minor rôle later is defined by�����N�����[l�� G � � $�m T6ã Ò Ù I] ��å T m���Y?l�m=& � ��� T (�� @ �j]	� 9 � k ]Ä�(�� @ IKa�a-{ A �����6l�� G � � $�m A ¼ T ³ ] 9 ��H^I Ò T ³ ] 9 ��H�|�}A �����6l�� G � � $�m A ¼ T�½ � � mO� C � G�H^IÒ T�½ � � m A �����[l�� G � � $�mP� C�H A �����[l�� G � � $�mN� G�H�H�|�}A �����6l�� G � � $�m A ¼ T ³ ] ��� H^I Ò T ³ ] � A �����[l�� G � � $�mP� H�H�|�}A �����6l�� G � � $�m A ¼ T ³ ] mO� H^I Ò T ³ ] m A �����[l�� G � � $�mP� H�H5{:a�aSD@ �6��� 9 EQI ½ m�� @ ����D] � � � I<Å �����[l�� G � � $�m T6ã Ò Ù Å=Dm���Y T � ��� k �»I �����6l�� ÉSR
where a double dash ( æ�æ ) is HOL’s term parser, which also type checks the term.

Expression Semantics

The semantics of the predicate E � P e ! v was defined as the least fixed point of the
rules in Figure 4. Proving the existence of such a function is covered in [Win93]
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and with more focus on HOL in [Mel91], [AP91], and [Har95]. These tools are
given a suitable transcription of the definition, i.e., as shown in Figure 4, and
perform the definition of the constant and prove the corresponding behavioural
theorems. Note again that these tools are not primitive to the HOL logic and
therefore do not influence proof security. The description of the use of these tools
is outside the scope of this thesis; here we shall just present the theorems arising
from using them in the context of the evaluation predicate.

First of all the rules of Figure 4 are recovered as theorems for the newly defined������� T � � $�m predicate:

Theorem 3.15 (Evaluation Rules.)

�

¢££££££££££££££££££££££££££££££££££££££££££££££¤ ££££££££££££££££££££££££££££££££££££££££££££££¥

# i % P% E : ������� T � � $�mt.gÒ T ³ ] 9 i 1 PE . ¼ T ³ ] 9 i 1# e1 % e2 % P% E % o % v :� i1 % i2 : ¾À ������� T � � $�m e1 PE . ¼ T ³ ] 9 i1 1=�������� T � � $�m e2 PE . ¼ T ³ ] 9 i2 1=�.0������� T k6$���m oi1 i2 2 v 1
ÁÃ !������� T � � $�mt.gÒ T�Ø $ oe1 e2 1 PE v

...
(six more cases omitted)

...# eb % x � % e � % xr % er % P% E % v :� vr : ç ������� T � � $�m eb PE . ¼ T ³ ] m vr 1��������� T � � $�m er P .+l�$�(���9�� T � ] � xr vr E 1 v è !������� T � � $�mt.gÒ T�Ú ��&�� eb x � e � xr er 1 PE v# P% E % x % v : ç .)��k�k�Z�l�$ T � ] � E x 2 Ø6ß v 1;!������� T � � $�mp.gÒ T ¼ ��m x 1 PE v è# x % e1 % e2 % P% E % v :� v � : ç ������� T � � $�m e1 PE v � �������� T � � $�m e2 P .+l�$�(���9�� T � ] � xv � E 1 v è !������� T � � $�mt.gÒ T ����9 xe1 e2 1 PE v# e % P% E % v % f :� v � % e � % x � : ¾À ������� T � � $�m ePE v � �������� T � � $�m e � P . � ��Z�� T � ] � x � v � 1 v �. Ø�ß . x � % e � 1;2é��k�k�Z�l�$ T�@ l ] Y P f 1
ÁÃ !������� T � � $�mt.gÒ T�Ú ����� f e 1 PE v

êë££££££££££££££££££££££££££££££££££££££££££££££ì££££££££££££££££££££££££££££££££££££££££££££££í
(For space reasons some of the cases are not shown above. There are no surprises
in the ones left out this way.) The evaluation rules above allow us to deduce that
the evaluation predicate holds when certain preconditions are satisfied, i.e., they
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represent a kind of forward inference. The following theorem, known wither as
the structural cases theorem or as the cases theorem, is used for reasoning the
opposite way, namely to deduce why the predicate is true for certain parameters:

Theorem 3.16 (Evaluation Cases.)

�

# e % P% E % v : ������� T � � $�m ePE v î¾¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿À

.)� i : . e 2XÒ T ³ ] 9 i 1=�J. v 2 ¼ T ³ ] 9 i 141��
� e1 % e2 % o % i1 % i2 : ¾¿¿À . e 2KÒ T�Ø $ oe1 e2 1��������� T � � $�m e1 PE . ¼ T ³ ] 9 i1 1=�������� T � � $�m e2 PE . ¼ T ³ ] 9 i2 1=�.0������� T k6$���m oi1 i2 2 v 1

Á ÂÂÃ �
� e1 % e2 % v1 % v2 : ¾À . e 2KÒ T�½ � � m e1 e2 1=�J. v 2 ¼ T�½ � � m v1 v2 1=�������� T � � $�m e1 PE v1 �������� T � � $�m e2 PE v2

ÁÃ �� e � % v2 : . e 2»Ò T�Ù &?9 e � 1��ï������� T � � $�m e � PE . ¼ T�½ � � m vv2 1=�� e � % v1 : . e 2»Ò T Ð ] ( e � 1��ï������� T � � $�m e � PE . ¼ T�½ � � m v1 v 1=�� e � % v � : . e 2»Ò T ³ ] � e � 1=�J. v 2 ¼ T ³ ] � v � 1=�ï������� T � � $�m e � PE v � �� e � % v � : . e 2»Ò T ³ ] m e � 1=�J. v 2 ¼ T ³ ] m v � 1=�ï������� T � � $�m e � PE v � �� eb % x � % e � % xr % er % v � : ¾À . e 2KÒ T�Ú ��&�� eb x � e � xr er 1��������� T � � $�m eb PE . ¼ T ³ ] � v � 1��������� T � � $�m e � P .+l�$�(���9�� T � ] � x � v � E 1 v
ÁÃ �

� eb % x � % e � % xr % er % vr : ¾À . e 2»Ò T�Ú ��&�� eb x � e � xr er 1��������� T � � $�m eb PE . ¼ T ³ ] m vr 1=�������� T � � $�m er P .+l�$�(���9�� T � ] � xr vr E 1 v
ÁÃ �� x : . e 2»Ò T ¼ ��m x 1=�J.0��k�k�Z�l�$ T � ] � E x 2 Ø�ß v 1=�� e1 % e2 % x % v � : ¾À . e 2»Ò T ����9 xe1 e2 1��������� T � � $�m e1 PE v � �������� T � � $�m e2 P .+l�$�(���9�� T � ] � xv � E 1 v

ÁÃ �
� e � � % f % v � % e � % x � : ¾¿¿À . e 2KÒ T�Ú ����� f e � � 1=�������� T � � $�m e � � PE v � �������� T � � $�m e � P . � ��Z�� T � ] � x � v � 1 v �. Ø�ß . x � % e � 1;2é��k�k�Z�l�$ T�@ l ] Y P f 1

Á[ÂÂÃ

Á ÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÃ
In words, the evaluation predicate is true exactly when that can be deduced from
one of the rules.

The evaluation predicate was defined at the least fixed point satisfying the
evaluation rules. This “least” property leads to the following induction principle,
which in HOL is not an axiom but a theorem.
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Theorem 3.17 (Expression Rule Induction.)

� # Q :

¾¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿À

.+# i % P% E : Q .gÒ T ³ ] 9 i 1 PE . ¼ T ³ ] 9 i 141��
¾¿¿¿¿À
# e1 % e2 % P% E % o % v :� i1 % i2 : ¾À Qe1 PE . ¼ T ³ ] 9 i1 1��

Qe2 PE . ¼ T ³ ] 9 i2 1��.0������� T k�$���m oi1 i2 2 v 1
ÁÃ !

Q .gÒ T�Ø $ oe1 e2 1 PE v

Á ÂÂÂÂÃ �
¾¿¿À # e1 % e2 % P% E % v1 % v2 :ç Qe1 PE v1 �

Qe2 PE v2 è !
Q .gÒ T�½ � � m e1 e2 1 PE . ¼ T�½ � � m v1 v2 1

Á[ÂÂÃ �
...

(four more cases omitted)
...

¾¿¿À # eb % x � % e � % xr % er % P% E % v :� v � : ç Qeb PE . ¼ T ³ ] � v � 1=�
Qe � P .+l�$�(���9�� T � ] � x � v � E 1 v è !

Q .gÒ T�Ú ��&�� eb x � e � xr er 1 PE v

Á ÂÂÃ �
¾¿¿À # eb % x � % e � % xr % er % P% E % v :� vr : ç Qeb PE . ¼ T ³ ] m vr 1=�

Qer P .+l�$�(���9�� T � ] � xr vr E 1 v è !
Q .gÒ T�Ú ��&�� eb x � e � xr er 1 PE v

Á[ÂÂÃ �.+# P% E % x % v : .)��k�k�Z�l�$ T � ] � E x 2 Ø�ß v 1;! Q .gÒ T ¼ ��m x 1 PE v 1=�
¾¿¿À # e1 % e2 % P% E % x % v :� v � : ç Qe1 PE v � �

Qe2 P .�l�$�(���9�� T � ] � xv � E 1 v è !
Q .gÒ T ����9 xe1 e2 1 PE v

Á ÂÂÃ �
¾¿¿¿¿À
# e % P% E % v % f :� v � % e � % x � : ¾À QePE v � �

Qe � PE . � ��Z�� T � ] � x � v � 1 v �. Ø�ß . x � % e � 1;2f��k�k�Z�l�$ T�@ l ] Y P f 1
ÁÃ !

Q .gÒ T�Ú ����� f e 1 PE v

Á ÂÂÂÂÃ! .+# e % P% E % v : ������� T � � $�m ePE v ! QePE v 1

Á[ÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÃ
If the Q predicate satisfies the three base cases and the nine induction steps then
it is true whenever the evaluation predicate is, and possibly more often than that.
This induction principle was termed rule induction by Winskel [Win93]. It may
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not be immediately apparent, but this corresponds to “proof by induction on the
structure of derivations.”

A logically equivalent, but often more useful in practice, version is the follow-
ing variant

Theorem 3.18 (Strong Expression Rule Induction.)

� # Q :

¾¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿À

.�# i % P% E : Q .gÒ T ³ ] 9 i 1 PE . ¼ T ³ ] 9 i 1'1=�
¾¿¿¿¿¿¿¿¿À
# e1 % e2 % P% E % o % v :

� i1 % i2 :
¾¿¿¿¿À
������� T � � $�m e1 PE . ¼ T ³ ] 9 i1 1=�
Qe1 PE . ¼ T ³ ] 9 i1 1=�������� T � � $�m e2 PE . ¼ T ³ ] 9 i2 1=�
Qe2 PE . ¼ T ³ ] 9 i2 1=�.0������� T k�$���m oi1 i2 2 v 1

Á[ÂÂÂÂÃ !
Q .gÒ T�Ø $ oe1 e2 1 PE v

Á ÂÂÂÂÂÂÂÂÃ �
¾¿¿¿¿¿¿À
# e1 % e2 % P% E % v1 % v2 :¾¿¿À ������� T � � $�m e1 PE v1 �

Qe1 PE v1 �������� T � � $�m e2 PE v2 �
Qe2 PE v2

Á[ÂÂÃ !
Q .gÒ T�½ � � m e1 e2 1 PE . ¼ T�½ � � m v1 v2 1

Á ÂÂÂÂÂÂÃ �
...

(seven more cases omitted)
...

¾¿¿¿¿¿¿À
# e1 % e2 % P% E % x % v :� v � : ¾¿¿À ������� T � � $�m e1 PE v � �

Qe1 PE v � �������� T � � $�m e2 P .+l�$�(���9�� T � ] � xv � E 1 v �
Qe2 P .+l�$�(���9�� T � ] � xv � E 1 v

Á ÂÂÃ !
Q .gÒ T ����9 xe1 e2 1 PE v

Á[ÂÂÂÂÂÂÃ �
¾¿¿¿¿¿¿¿¿À
# e % P% E % v % f :

� v � % e � % x � : ¾¿¿¿¿À
������� T � � $�m ePE v � �
QePE v � �������� T � � $�m e � P . � ��Z�� T � ] � x � v � 1 v �
Qe � PE . � ��Z�� T � ] � x � v � 1 v �. Ø�ß . x � % e � 1;2é��k�k�Z�l�$ T�@ l ] Y P f 1

Á[ÂÂÂÂÃ !
Q .gÒ T�Ú ����� f e 1 PE v

Á ÂÂÂÂÂÂÂÂÃ! .�# e % P% E % v : ������� T � � $�m ePE v ! QePE v 1

Á[ÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÃ
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which makes more assumptions available in the induction cases, namely assump-
tions stating that ������� T � � $�m holds for subterms. It is proved by the use of Theo-
rem 3.17. The proof technique will be called strong rule induction.

The timed semantics and in particular the nested-call timed semantics have
equivalents of Theorems 3.15, 3.16, 3.17, and 3.18. Here we shall just show the
rule induction theorem:

Theorem 3.19 (Timed Expression Rule Induction.)

� # Q :

¾¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿À

.+# N % i % P% E : QN .gÒ T ³ ] 9 i 1 PE . ¼ T ³ ] 9 i 141=�
¾¿¿¿¿À
# N % e1 % e2 % P% E % o % v :� i1 % i2 : ¾À QN e1 PE . ¼ T ³ ] 9 i1 1=�

QN e2 PE . ¼ T ³ ] 9 i2 1=�.0������� T k6$���m oi1 i2 2 v 1
ÁÃ !

QN .gÒ T�Ø $ oe1 e2 1 PE v

Á ÂÂÂÂÃ �
¾¿¿À # N % e1 % e2 % P% E % v1 % v2 :ç QN e1 PE v1 �

QN e2 PE v2 è !
QN .gÒ T�½ � � m e1 e2 1 PE . ¼ T�½ � � m v1 v2 1

Á[ÂÂÃ �
...

(seven more cases omitted)
...

¾¿¿À # N % e1 % e2 % P% E % x % v :� v � : ç QN e1 PE v � �
QN e2 P .+l�$�(���9�� T � ] � xv � E 1 v è !

QN .gÒ T ����9 xe1 e2 1 PE v

Á[ÂÂÃ �
¾¿¿¿¿¿¿À
# N % e % P% E % v % f :� v � % e � % x � : ¾¿¿À Q . ½ ��Ò N 1 ePE v � �

Q . ½ ��Ò N 1 e � PE . � ��Z�� T � ] � x � v � 1 v �. N §2 0 1��. Ø�ß . x � % e � 1;2é��k�k�Z�l�$ T�@ l ] Y P f 1
Á[ÂÂÃ !

QN .gÒ T�Ú ����� f e 1 PE v

Á ÂÂÂÂÂÂÃ! .+# N % e % P% E % v : ������� T � � $�m T ] N ePE v ! QN ePE v 1

Á ÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÃ
Program Semantics

The formalisation of the program semantics is straightforward given the expres-
sion semantics. One slightly complicating point is that Figure 2 uses a pattern
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matching equality to name the components — name, name of formal parameter,
and body expression — of the first function in the program.

Definitional Theorem 3.20 (Semantics of Programs.)

� # P% vin vout : ¾¿¿À ������� T $�m º Pvin vout î¾À . P §2<*g,+1=�������� T � � $�mt.)Ð Þ�ã .0Ð Þ�ã .nð ã P 14141 P. � ��Z�� T � ] �t. Ù Ð�â\.0Ð Þ�ã .nð ã P 14141 vin 1 vout

ÁÃ Á ÂÂÃ
3.6.3 Static Correctness

The formalisation of the definition of static correctness, i.e., that variables and
functions are used only when defined, is straightforward. Since the formalisation
of the program type made the empty program valid we also have to exclude this
program from being statically correct.

Definitional Theorem 3.21 (Static Correctness)

� # P : &?9���9 T k�Z P î ¾À . P §23*g,+1=�] k T m�� y �?] (�& P �Ò ¼ Ò���ñ\./Yj`���Y[Z T ] � � ��&ò. @ l ] Y69 � k ] & P 141 P
ÁÃ

This definition uses some utility functions to be defined below. The function@ l ] Y69 � k ] & calculates the list of function names in a program.

Definitional Theorem 3.22 (Bound Functions)� ç . @ l ] Y69 � k ] &ò*g,�2<*g,+1=�.�# x % P :
@ l ] Y69 � k ] &S. Ú�Ø�Þ Ð xP 1;2 Ú�Ø�Þ Ð~. Ù Ð�â x 1�. @ l ] Y69 � k ] & P 141�è

The function ] k T m�� y �j] (�& checks that no function name is bound twice in a pro-
gram.

Definitional Theorem 3.23

� ¾À . ] k T m�� y �j] (�&S*n,�2 T 1��# x % P : ] k T m�� y �j] (�&-. Ú�Ø�Þ Ð xP 1�2 ] k T m�� y �j] (�& P ��¯.nÎ�Ò�Î¹. Ù Ð�â x 1�. @ l ] Y[9 � k ] & P 1'1
ÁÃ

The function Y?`���Y[Z T ] � � ��& takes a set F and a triple . f % x % e 1 as arguments and
checks that all functions called in e belong to F and that all variables in e are used
correctly. (Note, that in this and the following definitions we use F for a variable
of list type, not for a constant of type bool. HOL allows this.)
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Definitional Theorem 3.24� # F % f % x % e : Yj`���Y?Z T ] � � ��& F . f % x % e 1;2óY?`���Y?Z T ����m�&-* x , e �ÑY?`���Y[Z T�@ l ] Y�& F e

The function Y?`���Y[Z T ����m=& checks that the list V contains all free variables of an
expression, i.e., that variables not in that set are used in scope only.

Definitional Theorem 3.25

�
¢££££££££££££££££££¤ ££££££££££££££££££¥

# V % i : Yj`���Y[Z T ����m=& V .gÒ T ³ ] 9 i 1;2 T# V % o % e1 % e2 : Y?`���Y[Z T ����m=& V .gÒ T�Ø $ oe1 e2 1-2Y?`���Y?Z T ����m�& V e1 �ÑYj`���Y?Z T ����m�& V e2
...# V % e % x � % e � % xr % er : Yj`���Y[Z T ����m=& V .gÒ T�Ú ��&6� ex � e � xr er 1�2Y?`���Y?Z T ����m�& V e �Y?`���Y?Z T ����m�&S. Ú�Ø�Þ Ð x � V 1 e � �ÑY?`���Y?Z T ����m�&-. Ú�Ø�Þ Ð xr V 1 er# V % x : Y?`���Y?Z T ����m�& V .gÒ T ¼ ��m x 1~2QÎ�Ò�Î xV
...# V % x % e1 % e2 : Y?`���Y[Z T ����m=& V .gÒ T ����9 xe1 e2 1-2Y?`���Y?Z T ����m�& V e1 �ÑYj`���Y?Z T ����m�&-. Ú�Ø�Þ Ð xV 1 e2

êë££££££££££££££££££ì££££££££££££££££££í
The function Y?`���Y?Z T�@ l ] Y�& checks that all functions called in an expression be-
longs to a certain set.

Definitional Theorem 3.26

�
¢££££££££££££££££¤ ££££££££££££££££¥

# F % i : Yj`���Y?Z T�@ l ] Y�& F .gÒ T ³ ] 9 i 1-2 T# F % o % e1 % e2 : Yj`���Y[Z T�@ l ] Y�& F .gÒ T�Ø $ oe1 e2 1;2Y?`���Y[Z T�@ l ] Y�& F e1 �ÑYj`���Y?Z T�@ l ] Y�& F e2
...# F % x : Y?`���Y[Z T�@ l ] Y�& F .nÒ T ¼ ��m x 1;2 T
...# F % f % e : Y?`���Y?Z T�@ l ] Y�& F .gÒ T�Ú ����� f e 1;2Y?`���Y[Z T�@ l ] Y�& F e �J.nÎ�Ò�Î f F 1# F % x % e1 % e2 : Y?`���Y[Z T�@ l ] Y�& F .gÒ T ����9 xe1 e2 1;2Y?`���Y[Z T�@ l ] Y�& F e1 �ÑYj`���Y?Z T ����m�& F e2

ê ££££££££££££££££ì££££££££££££££££í
3.7 Types: An Aside

Even though our language is not strongly typed as we have presented it, it is still
possible to add types on top of it. We have not pursued this approach very far but
in the following we present the basic foundation needed.
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We will use the following grammar to define types, and we will not consider
polymorphism.

τ :: 2 �?] 9�� τ1 � τ2 � τ1 � τ2 � t � µ t > τ (3.47)

where t ranges over some set of type variables, TVar. We need the explicit recur-
sion because circular objects are not allowed in HOL. (For example, HOL does
not allow the first component of a pair to be the pair itself.) Our intended meaning
with this is to have the atomic type �?] 9 , a pair type, a sum type, and recursive
types. We have formalised this type in HOL using constructors â T ³ ] 9 , â T�½ � � m ,â T Ð[l � , â T ¼ ��m , and â T ����Y .

For a list of integers, for example, we will use the type

µt > �?] 9-�Ñ. �j] 9­� t 1 (3.48)

(A richer type language might have used some kind of unit type instead of the
left-hand �?] 9 . The right-hand �?] 9 carries the data.) This type describes values
like � _ , � A C5D � _�H , and � A C5D � A GSD � A e-D � _�H�H�H , i.e., the empty list, the list
containing just 1, and the list containing 1, 2, and 3.

TE � i : �?] 9 (3.49)

TE � v1 : τ1 TE � v2 : τ2

TE � A v1
D v2
H : τ1 � τ2

(3.50)

TE � v : τ1

TE � � v : τ1 � τ2
(3.51)

TE � v : τ2

TE � � v : τ1 � τ2
(3.52)��k�k�Z�l�$ T � ] � TEt 2 τ TE � v : τ

TE � v : t
(3.53)

TE �P� t �z µ t > τ � � v : τ
TE � v : µ t > τ (3.54)

Figure 7: Value typing.

Since our values do not contain cycles, i.e., traversal of a value is a finite pro-
cess, it is straightforward to define what it means for a given value to have a given
type. This is done with the inference rules6 in Figure 7, and the relation TE � v : τ
is defined to be the unique least fixed-point of those rules. A judgement of the
form TE � v : τ means that the value v has type τ given that the free type variables

6We overload the definition of the environment operations to handle type environments also.
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of τ interpreted as specified by the type environment TE. We have formalised this
relation in HOL as the predicate �����6l�� T `���& T 9 E $�� . As a result of the formalisa-
tion we obtain rule, cases, and induction theorems similar to those obtained for
the evaluation predicates.

One might naı̈vely think that something similar would work for expressions
but that is not so. For the Y���&6� construct, for example, we would need a sum type
for the controlling component. But this sum type might be hidden in a µ-type so
we need an equality concept for type that would allow us to conclude, for example,

µ t > �?] 9-�Ñ. �j] 9­� t 1-q �?] 9-��. �?] 9®�ô. µ t > �j] 9S��. �?] 9®� t 14141 (3.55)

i.e., that we can unfold a recursive type when we need to.

. TE1 % �?] 9�1;q<. TE2 % �?] 9�1 ¦ (3.56). TE1 % τ11 1;q<. TE2 % τ21 1 . TE1 % τ12 1;q<. TE2 % τ22 1. TE1 % τ11 � τ12 1;q<. TE2 % τ21 � τ22 1 ¦ (3.57). TE1 % τ11 1;q<. TE2 % τ21 1 . TE1 % τ12 1;q<. TE2 % τ22 1. TE1 % τ11 � τ12 1;q<. TE2 % τ21 � τ22 1 ¦ (3.58). TE1 % τ1 1;q3. TE2 % τ2 1 ��k�k�Z�l�$ T � ] � TE1 t 2 τ1. TE1 % t 1Sq3. TE2 % τ2 1 ¦ (3.59). TE1 % τ1 1;q3. TE2 % τ2 1 ��k�k�Z�l�$ T � ] � TE2 t 2 τ2. TE1 % τ1 1;q3. TE2 % t 1 ¦ (3.60). TE1 �P� t �z µ t > τ1 � % τ1 1�qõ. TE2 % τ2 1. TE1 % µ t > τ1 1;q<. TE2 % τ2 1 ¦ (3.61). TE1 % τ1 1;q<. TE2 �P� t �z µ t > τ2 � % τ2 1. TE1 % τ1 1�qõ. TE2 % µ t > τ2 1 ¦ (3.62)

Figure 8: Type equivalence.

In Figure 8 we define such an equivalence for types and type environments by
giving inference rules for it. Note however, that we need to make a co-inductive
definition [Win93] in order to make the relation large enough. loosely speaking,
with a co-inductive definition we compare the infinitely unfolded types. If we
had used an inductive definition it would not even become reflexive: the type
µ t >+. �?] 9ò� t 1 would not be equivalent to itself, for example.

HOL does not come with tools for defining co-inductive definitions but it is
not too difficult to construct such a tool from the fixed-point theory. Such tools
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work by constructing a functional from a textual representation of the rules. This
functional is then proven to be monotonic. The general greatest fixed-point theo-
rem is then derived and used to prove the existence of a predicate, 9 E $�� T ��Ô in our
case, that has the greatest fixed-point property. This existence theorem is used to
define the constant in the HOL logic.

We have constructed such a general co-inductive definition tool, and although
it is a bit weak with respect to automation of the monotonicity of the rules7 it is
clear that Harrison’s [Har95] monotonicity prover could be used almost without
changes.

When defining a co-inductive relation we obtain the rule and cases theorem
as for an inductive relation. We will not show these here. Furthermore, we get
the greatest fixed-point theorem. For 9 E $�� T ��Ô which is the HOL-formalisation of
type equivalence we get the following theorem.

Theorem 3.27 (Type Equivalence Co-Induction Theorem.)

� # P :

¾¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿À

# TE1 % t1 % TE2 % t2 : P TE1 t1 TE2 t2 !¾¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿À

. t1 2Kâ T ³ ] 9-1=�J. t2 2»â T ³ ] 9-1=�� t11 % t12 % t21 % t22 : ¾¿¿À . t1 2»â T�½ � � m t11 t12 1��. t2 2»â T�½ � � m t21 t22 1��
P TE1 t11 TE2 t21 �
P TE1 t12 TE2 t22

Á[ÂÂÃ �
� t11 % t12 % t21 % t22 : ¾¿¿À . t1 2»â T Ð[l � t11 t12 1=�. t2 2»â T Ð[l � t21 t22 1=�

P TE1 t11 TE2 t21 �
P TE1 t12 TE2 t22

Á ÂÂÃ �
� x % t �1 : ¾À . t1 2Kâ T ¼ ��m x 1=�

P TE1 t �1 TE2 t2 �.)��k�k�Z�l�$ T � ] � TE1 x 2 Ø6ß t �1 1
ÁÃ �

� x % t �2 : ¾À . t2 2Kâ T ¼ ��m x 1=�
P TE1 t1 TE2 t �2 �.)��k�k�Z�l�$ T � ] � TE2 x 2 Ø6ß t �2 1

ÁÃ �
� x % t �1 : ç . t1 2Kâ T ����Y xt �1 1��

P . Ú�Ø�Þ Ð~. x % t1 1 T E1 1 t �1 TE2 t2 è �� x % t �2 : ç . t2 2Kâ T ����Y xt �2 1��
P TE1 t1 . Ú�Ø�Þ Ð~. x % t2 1 T E2 1 t �2 è

Á[ÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÃ!# TE1 % t1 % TE2 % t2 : P TE1 t1 TE2 t2 !¬9 E $�� T ��Ô TE1 t1 TE2 t2

Á[ÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÃ
7Full automation is not possible since it is not computable. Nevertheless, some approximations

are better than others. Harrison in [Har95] describes a monotonicity prover which handles a very
large syntactic class of rules.
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From the shape of this theorem, we see that it can be used to deduce that a certain
class of . TE1 % t1 % TE2 % t2 1 are type equivalent, i.e., that a certain relation is a subset
of the one we have defined. This is fundamentally different from an inductive rule
induction theorem which can be used for proving that all members of our newly
defined relation have certain properties.

The result type of a binary integer operation depends on the operator being
used. We therefore define the operator environment, OE, to be used when we
define expression typing.

OE 23*ö. M % �j] 9�1?%b. a % �j] 9�1?%b. L % �j] 9�1?%b. I % �j] 9;� �?] 9�1:, (3.63)

We are now ready to define the typing relation for expressions. This is done
by the inductive inference rules in Figure 9.

A judgement of the form VE % FE � e : τ means that expression e has type τ
under the assumption that variables are typed as specified in the variable type
environment VE and functions have the argument-type/result-type specified in FE
environment.8 FE is never modified by the rules, just passed around.

There are few surprises in the type rules, perhaps excepting Rule 3.76 which
is the rule that allow us to unfold µ’s in a type. The expression type relation is
formalised by the HOL function � � $�m T `���& T 9 E $�� .

For example, if e is known to have type µ t > �j] 9S��. �j] 9®� t 1 , then Rule 3.76
together with the equivalence from 3.55 would allow us to deduce that e also has
type �?] 9��Ñ. �?] 9­�÷. µ t > �?] 9-�Ñ. �?] 9­� t 141'1 , i.e., the sum type that corresponds to a
one-level unfolding of the µt binding. If e is the control expression in a Y���&�� -
expression, Y���&6� e k @ h�h�h , we can now continue with Rule 3.71 which requires a
sum type for the controlling expression.

At top level, we are not interested in types with free type variables. We there-
fore define the concept of closed types. To get a simple definition we define
closedness with respect to a set of type variables. This is the HOL formalisation.

Definitional Theorem 3.28

�
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# V : Y���k�&6��( T 9 E $�� V â T ³ ] 9�2 T# V % t1 % t2 : Y���k�&6��( T 9 E $�� V .gâ T�½ � � m t1 t2 1;2Y���k�&6��( T 9 E $�� V t1 �ÑY���k�&���( T 9 E $�� V t2# V % t1 % t2 : Y���k�&6��( T 9 E $�� V .gâ T Ð6l � t1 t2 1;2Y���k�&6��( T 9 E $�� V t1 �ÑY���k�&���( T 9 E $�� V t2# V % v : Y���k�&6��( T 9 E $�� V .gâ T ¼ ��m v 1;2KÎ�Ò�Î vV# V % v % t : Y���k�&���( T 9 E $�� V .nâ T ����Y vt 1-2óY���k�&6��( T 9 E $���. Ú�Ø�Þ Ð vV 1 t

êë££££££££ì££££££££í
A type t is closed if .7Y���k�&���( T 9 E $��~*n, t 1 holds.

8We again overload the environment operations.
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VE % FE � i : �j] 9 (3.64)

VE % FE � e1 : �j] 9 VE % FE � e2 : �?] 9 ��k�k�Z�l�$ T � ] � OEo 2 τ
VE % FE � A e1 o e2

H : τ
(3.65)

VE % FE � e1 : τ1 VE % FE � e2 : τ2

VE % FE � A e1
D e2
H : τ1 � τ2

(3.66)

VE % FE � e : τ1 � τ2

VE % FE � @ &?9 e : τ1
(3.67)

VE % FE � e : τ1 � τ2

VE % FE � & ] ( e : τ2
(3.68)

VE % FE � e : τ1

VE % FE � �j] � e : τ1 � τ2
(3.69)

VE % FE � e : τ2

VE % FE � �j] m e : τ1 � τ2
(3.70)

VE % FE � eb : τ � � τr

VE �P� x � �z τ � � % FE � e � : τ VE �P� xr �z τr � % FE � er : τ
VE % FE � Y���&6� e k @ �?] � h x � a�� e �d� �j] m h xr

a�� er � ] ( : τ
(3.71)��k�k�Z�l�$ T � ] � VEx 2 τ

VE % FE � x : τ
(3.72)

VE % FE � ��m�m�k�m : τ
(3.73)

VE % FE � e1 : τ1 VE �P� x �z τ1 � % FE � e2 : τ2

VE % FE � ����9 x I e1
�?] e2 � ] ( : τ2

(3.74)��k�k�Z�l�$ T � ] � FE f 2<. τa % τr 1 VE % FE � e : τa

VE % FE � f e : τr
(3.75).4*n,)% τ1 1-q3.4*n,)% τ2 1 VE % FE � e : τ1

VE % FE � e : τ2
(3.76)

Figure 9: Expression typing.
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We can now define what it means for a program to have a given type. We
require that all functions in the program be given a closed type for its argument
and a closed type for its body.

Definitional Theorem 3.29

� # P% FE :

¾¿¿¿¿¿¿¿¿¿¿¿¿À

$�m º�T `���& T 9 E $�� PFE î¾¿¿¿¿¿¿¿¿¿¿À
&?9���9 T k�Z P �.nÎ Í ½®Ù Ð�â P 2XÎ Í ½­Ù Ð�â FE 1��Ò ¼ Ò���ñ

λ . f % ta % tr 1?>-¾¿¿À Y���k�&���( T 9 E $���*g, ta �Y���k�&���( T 9 E $���*g, tr �� x % e : .)��k�k�Z�l�$ T�@ l ] Y P f 2 Ø�ß . x % e 141;!� � $�m T `���& T 9 E $�� eFE *ö. x % ta 1:, tr

Á[ÂÂÃ
FE

Á[ÂÂÂÂÂÂÂÂÂÂÃ

Á[ÂÂÂÂÂÂÂÂÂÂÂÂÃ
The formalisation of programs and function type environment together with theÎ Í ½ -conjunct imply that P and FE bind the same functions and in the same order.

* * *

At this point it would make sense to start proving theorems on the relationship
between typing and evaluation, for example that evaluation of an expression with
a given type produces a result with that type if it the context, i.e., the program and
environment, that it is evaluated in is suitably typed. We have not pursued this,
in part because our program transformations in Chapter 6 are not dependent on
typing and in part because of lack of resources.





Chapter 4

Supporting Lemmas and Theorems

It has been said that man is a rational animal.
All my life I have been searching for evidence

which could support this.
— BERTRAND RUSSELL, 1872–1970

This chapter contains support structure, i.e., function definitions, lemmas, and
theorems used in the upcoming chapters for proving correctness of an interpreter
(Chapter 5) and a range of program transformations in Chapter 6.

In a first reading of the dissertation the reader may want to skip this chap-
ter and to return to it when a lemma or function is referenced later. As lemmas
may reference other lemmas, this makes for a depth first reading of the proofs,
reflecting by-and-large how they were created in the first place. Another possible
approach is to read the important Section 4.5 on replacement and Section 4.12 on
improvement now and use the rest for reference.

In the following the lemmas and theorems are collected in groups such as
“Substitution” for theorems having to do with substitution and the definitions that
go with it. Some lemmas fall within one group only and are easy to place but
others link several groups and are therefore placed where convenient. As a conse-
quence of this grouping the order in which the lemmas and theorems occur here
does not bear any resemblance to the order in which they were originally proven.
(Using the original order is ill-suited for a linear medium.)

The timed semantics and the regular semantics are closely related. There-
fore, many of the theorems which we shall present for ������� T � � $�m T ] have obvious������� T � � $�m -counterparts where the Ns are simply removed. In such cases — see
for example Lemma 4.39 — we shall neither state nor prove the non-N theorem-
sin this presentation. When, on the other hand, the ������� T � � $�m -theorem differs by

57
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more than just the Ns we do state it in full, see Lemmas 4.80 and 4.81.

4.1 Overview of Definitions

The following table shows a list of HOL functions defined in this dissertation
together with a brief description of their purpose.

Function Definition Meaning���6$�`�� 6.5 Alpha equivalenceY?`���Y[Z T�@ l ] Y�& 3.26 Check that only defined functions are usedY?`���Y[Z T ] � � ��& 3.24 Check that names are used in scope onlyY?`���Y[Z T ����m=& 3.25 Check that variable names are used in scope
onlyY�&[9 T�@ k���( 6.1 Constant fold expression������� T � � $�m 3.15–3.17 Expression semantics predicate������� T � � $�m T ] 3.19 Timed expression semantics predicate������� T $�m º 3.20 Program semantics� � $�m G��?] 9 4.50 Convert integer expression to integer value@ l ] Y T Y���������( 4.83 Test if a function is called in an expression@ l ] Y69 � k ] & 3.22 Function names in programº � ] @ l ] Y 4.88 Generate fresh function nameº � ] ����m 4.29 Generate fresh variable name`���m � ����&�& 4.36 Syntactic check for an expression being error-
and loop-free� ( T�@ l ] Y 4.79 Test for syntactic identity function�b� $�m�k���� � � ] 9 4.56 Compare efficiency of programs�b� $�m�k���� � � ] 9�� 4.73 Variant of �ø� $�m�k���� � � ] 9��k�Y���� T �b� $�m�k���� � � ] 9 4.54 Local improvement of expressions��k�k�Z�l�$ T � ] � 3.10 Look up variable in environment��k�k�Z�l�$ T�@ l ] Y 3.13 Look up function in program� ��Z�� T � ] � 3.11 Create one-point environmentÎ Í�ù 4.1 Maximum of two numbersÎ�Ò�Î 4.2 List membership test] k T m�� y �?] (�& 3.23 Tests that no function occurs twice in a programm���å=&jl y &[9 4.33 Substitution without regard to scopem�� ] � � � T y k�l ] ( 4.32 Rename all bound variables in expressionm�� ] � � � T�@ m���� 4.31 Rename free variable in expressionm���$�� T � � $�m 4.18 Test replacement in expressionsm���$�� T $�m º 4.19 Test replacement in programs&�� � ��Ô 4.53 Semantically equivalenceÐ�Ò�â�Î	³ Þ�ú Ð 4.4 List differenceÐ�Ò�â���Ò�Î Ø ¼ Ò 4.3 List difference of single element&[9���9 T k�Z 3.21 Test static correctness
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&?9�m � Y69 4.9 Identity function for forcing evaluation&bl y &[9 4.34 Substitution9�m � � T $�� 7.1 The trivial partial evaluatorl�$�(���9�� T � ] � 3.12 Add binding to environmentl	&���( T &?9�m � Y69�� E 4.38 Syntactic check for strict usage of variable�����[l�� G � � $�m 4.48 Convert value to constant expression����m T y k6l ] ( 4.26 Test whether variable is bound in expression����m T�@ m���� 4.25 Test whether variable is used free in expression����m T l�&6��( 4.27 Test whether variable used at all in expression����m�& T �j] T � ] � 4.35 Test whether a set of variables are bound

4.2 Basic List and Numeric Functions

In this section we define some simple list and numeric functions used, for exam-
ple, for manipulating environments and variable names. A number of algebraı̈c
theorems go with these definitions but we shall leave them out for space reasons.

The function Î Í�ù calculates the maximum of two numbers.

Definitional Theorem 4.1� # x % y : Î Í�ù xy 2<.4. x û y 1 z y � x 1
The function Î�Ò�Î tests whether a value occurs in a list. We use this mostly for lists
which we treat as sets so we could have used one of HOL’s set libraries, but none
seemed adequate for our purposes.

Definitional Theorem 4.2� .�# x : Î�Ò�Î x *g,�2 F 1��J.+# x % H % T : Î�Ò�Î x . Ú�Ø�Þ Ð H T 1-23. x 2 H 1��ÏÎ�Ò�Î xT 1
The function Ð�Ò�â���Ò�Î Ø ¼ Ò removes all occurrences of a value in a list.

Definitional Theorem 4.3

� ¢¤ ¥ # x : Ð�Ò�â���Ò�Î Ø ¼ Òt*g, x 23*g,# x % H % T : Ð�Ò�â���Ò�Î Ø ¼ Òp. Ú�Ø�Þ Ð H T 1 x 2.4. x 2 H 1 z Ð�Ò�â���Ò�Î Ø ¼ Ò T x � Ú�Ø�Þ Ð H .0Ð�Ò�â���Ò�Î Ø ¼ Ò T x 141
ê ìí

The function Ð�Ò�â�Î=³ Þ�ú Ð iterates Ð�Ò�â���Ò�Î Ø ¼ Ò over a list.

Definitional Theorem 4.4� ¨ # X : Ð�Ò�â�Î	³ Þ�ú Ð X *g,�2 X# X % H % T : Ð�Ò�â�Î=³ Þ�ú Ð X . Ú�Ø�Þ Ð H T 1;2fÐ�Ò�â�Î	³ Þ�ú Ð�.)Ð�Ò�â���Ò�Î Ø ¼ Ò X H 1 T ü
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4.3 Reduction

4.3.1 Evaluation As a Partial Function

The following theorem states that two evaluations of the same expression relative
to the same program and environment will give the same result. This theorem
allows us to think of the evaluation predicate as a partial function.

Theorem 4.5 (Evaluation is deterministic.)� # e % P% E % v1 : ç ������� T � � $�m ePE v1 !# v2 : ������� T � � $�m ePE v2 ! . v1 2 v2 1ïè
Proof: By rule induction, reduction, and implication resolution. ý
The timed evaluation predicate has the same property as the regular predicate,
even disregarding the resource limit:

Theorem 4.6 (Timed evaluation is deterministic.)� # N % e % P% E % v1 : ç ������� T � � $�m T ] N ePE v1 !# v2 % N � : ������� T � � $�m T ] N � ePE v2 ! . v1 2 v2 1ïè
Proof: By rule induction, reduction, and implication resolution. ý
A variant of the determinism theorem is the following, which is better suited for
HOL’s automation because it is an equality.

Theorem 4.7 (Timed evaluation is deterministic.)� # N % e % P% E % v1 : ç ������� T � � $�m T ] N ePE v1 !# v2 : ������� T � � $�m T ] N ePE v2 î . v1 2 v2 1ïè
Proof: By Lemma 4.6. ý
In other words when we observe one evaluation, then we can replace any other
such evaluation by an equality on values.

4.3.2 Evaluation Reduction

Suppose we have an expression ������� T � � $�m ePE v where all but the last of the
parameters are fully instantiated. In principle we can use Theorem 3.16 to perform
the evaluation of e, but in practice this does not work at all.
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HOL’s automation consists primarily of rewriting, i.e., replacing an instance of
the left-hand side of an equational theorem with the corresponding instance of the
right-hand side. Doing this with Theorem 3.16 would always loop since the right-
hand side contains numerous subterms that themselves match the left-hand side.
The first step to solving this is to note that evaluation is syntax-directed (when
collapsing the two cases for Y���&6� ) and to prove a theorem like the following.

Theorem 4.8

�
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# i % N % P% E % v : ������� T � � $�m T ] N .gÒ T ³ ] 9 i 1 PE v î . v 2 ¼ T ³ ] 9 i 1# o % e1 % e2 % N % P% E % v : ������� T � � $�m T ] N .nÒ T�Ø $ oe1 e2 1 PE v î� i1 % i2 : ¾À ������� T � � $�m T ] N e1 PE . ¼ T ³ ] 9 i1 1��������� T � � $�m T ] N e2 PE . ¼ T ³ ] 9 i2 1��.0������� T k6$���m oi1 i2 2 v 1
ÁÃ# e1 % e2 % N % P% E % v : ������� T � � $�m T ] N .gÒ T�½ � � m e1 e2 1 PE v î� v1 % v2 : ¾À . v 2 ¼ T�½ � � m v1 v2 1=�������� T � � $�m T ] N e1 PE v1 �������� T � � $�m T ] N e2 PE v2

ÁÃ# e % N % P% E % v : ������� T � � $�m T ] N .gÒ T�Ù &?9 e 1 PE v î� v2 : ������� T � � $�m T ] N ePE . ¼ T�½ � � m vv2 1# e % N % P% E % v : ������� T � � $�m T ] N .gÒ T Ð ] ( e 1 PE v î� v1 : ������� T � � $�m T ] N ePE . ¼ T�½ � � m v1 v 1
...

(three more cases omitted)
...# N % P% E % v : �¯.0������� T � � $�m T ] N Ò T Ò�m�m�k�m PE v 1# e % x � % e � % xr % er % N % P% E % v : ������� T � � $�m T ] N .gÒ T�Ú ��&�� ex � e � xe er 1 PE v î� v � : ç ������� T � � $�m T ] N ePE . ¼ T ³ ] � v � 1��������� T � � $�m T ] N e � P .�l�$�(���9�� T � ] � x � v � E 1 v è �� v � : ç ������� T � � $�m T ] N ePE . ¼ T ³ ] m v � 1��������� T � � $�m T ] N er P .+l�$�(���9�� T � ] � xr v � E 1 v è# x % e1 % e2 % N % P% E % v : ������� T � � $�m T ] N .nÒ T ����9 xe1 e2 1 PE v î� v1 : ç ������� T � � $�m T ] N e1 PE v1 �������� T � � $�m T ] N e2 P .+l�$�(���9�� T � ] � xv1 E 1 v è# f % e % N % P% E % v : ������� T � � $�m T ] N .gÒ T�Ú ����� f e 1 PE v î� v � % x % e � : ¾¿¿À ������� T � � $�m T ] . ½ ��Ò N 1 ePE v � �������� T � � $�m T ] . ½ ��Ò N 1 e � P . � ��Z�� T � ] � xv � 1 v. Ø�ß . x % e � 1�2d��k�k�Z�l�$ T�@ l ] Y P f 1=�. N §2 0 1

Á[ÂÂÃ
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Proof: By the ������� T � � $�m T ] counterpart of Theorem 3.16. ý
None of Theorem 4.8’s right-hand sides match any of the left-hand sides1 so con-
tinued rewriting with respect to Theorem 4.8 will now in principle expand an
expression to its meaning. But it still does not work in practice.

The problem this time has to do with limited resources. When the Y���&�� -
equation, for example, is used then the corresponding right-hand side has three
instances of ������� T � � $�m T ] instead of the one they replaced. Further rewriting of
each of these might produce a number of branches which is exponential in the
number of passes of rewriting. Provided that the controlling expression termi-
nates, it will sooner or later produce a value which allows us to eliminate one of
the disjuncts.

For the proofs in Chapter 5 this “sooner or later” is much too late: the body
of the ������� function contains eleven nested Y���&�� expressions plus several ����9 -
bindings. The estimated memory consumption of brute-force expansion by The-
orem 4.8 is easily in the GB-range. Since rewriting time is proportional to term
size this might be considered another problem.

To solve these practical problems with proofs we define the following function
which is an identity function with an extra, but unused, parameter.

Definitional Theorem 4.9

� ¢££¤ ££¥ # x % i : &?9�m � Y69t. ¼ T ³ ] 9 i 1 x 2 x# x % v1 % v2 : &?9�m � Y69t. ¼ T�½ � � m v1 v2 1 x 2 x# x % v : &?9�m � Y69t. ¼ T ³ ] � v 1 x 2 x# x % v : &?9�m � Y69t. ¼ T ³ ] m v 1 x 2 x

êë££ì££í
If we do rewriting with respect to Theorem 4.9 in a term where ./&[9�m � Y[9 vx 1 occurs
then rewriting will take place only if v’s outermost constructor is known. Other-
wise .:&?9�m � Y69 vx 1 does not match any of Theorem 4.9’s left-hand sides. We are
going to use this to create a practically useful version of Theorem 4.8 but first we
will prove that we can always get rid of &?9�m � Y69 at will.

Lemma 4.10 (Strict Elimination Lemma.)� # v % x : &[9�m � Y[9 vx 2 x

Proof: By structural case analysis on v. ý
Experience shows that the problematic constructs are ����9 and Y���&�� and not bi-
nary operations and pairing, even though they also contain several subexpressions.

1Note the wording. An instance of a right-hand side might very well match a left-hand side but
this is not a problem because the expression parameter will have gotten smaller.
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Since applications of &?9�m � Y69 have a tendency of getting in the way for automation
— that is after all the purpose of inventing them in the first place — we will use
our experience and only put blocks on evaluation of ����9 and Y���&�� . For ����9 we
require that the bound expression is evaluated in advance before we go on, and forY���&6� we require that the controlling expression be evaluated.

Theorem 4.11 (Evaluation Reduction Theorem.)

�
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# i % N % P% E % v : ������� T � � $�m T ] N .gÒ T ³ ] 9 i 1 PE v î . v 2 ¼ T ³ ] 9 i 1# o % e1 % e2 % N % P% E % v : ������� T � � $�m T ] N .nÒ T�Ø $ oe1 e2 1 PE v î� i1 % i2 : ¾À ������� T � � $�m T ] N e1 PE . ¼ T ³ ] 9 i1 1��������� T � � $�m T ] N e2 PE . ¼ T ³ ] 9 i2 1��.0������� T k6$���m oi1 i2 2 v 1
ÁÃ# e1 % e2 % N % P% E % v : ������� T � � $�m T ] N .gÒ T�½ � � m e1 e2 1 PE v î� v1 % v2 : ¾À . v 2 ¼ T�½ � � m v1 v2 1��������� T � � $�m T ] N e1 PE v1 �������� T � � $�m T ] N e2 PE v2

ÁÃ# e % N % P% E % v : ������� T � � $�m T ] N .gÒ T�Ù &?9 e 1 PE v î� v2 : ������� T � � $�m T ] N ePE . ¼ T�½ � � m vv2 1
...

(four more cases omitted)
...# N % P% E % v : �¯.0������� T � � $�m T ] N Ò T Ò�m�m�k�m PE v 1# e % x � % e � % xr % er % N % P% E % v : ������� T � � $�m T ] N .gÒ T�Ú ��&�� ex � e � xe er 1 PE v î� v � : ç ������� T � � $�m T ] N ePE . ¼ T ³ ] � v � 1��������� T � � $�m T ] N .:&?9�m � Y69 v � e � 1 P .+l�$�(���9�� T � ] � x � v � E 1 v è �� v � : ç ������� T � � $�m T ] N ePE . ¼ T ³ ] m v � 1��������� T � � $�m T ] N .:&?9�m � Y69 v � er 1 P .+l�$�(���9�� T � ] � xr v � E 1 v è# x % e1 % e2 % N % P% E % v : ������� T � � $�m T ] N .gÒ T ����9 xe1 e2 1 PE v î� v1 : ç ������� T � � $�m T ] N e1 PE v1 �������� T � � $�m T ] N ./&[9�m � Y[9 v1 e2 1 P .+l�$�(���9�� T � ] � xv1 E 1 v è# f % e % N % P% E % v : ������� T � � $�m T ] N .gÒ T�Ú ����� f e 1 PE v î� v � % x % e � : ¾¿¿À ������� T � � $�m T ] . ½ ��Ò N 1 ePE v � �������� T � � $�m T ] . ½ ��Ò N 1 e � P . � ��Z�� T � ] � xv � 1 v. Ø�ß . x % e � 1;2é��k�k�Z�l�$ T�@ l ] Y P f 1=�. N §2 0 1

Á[ÂÂÃ
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Proof: By Lemma 4.10 and Theorem 4.8. ý
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4.4 Timed Evaluation Approximates Evaluation

The following lemmas show that timed evaluation approximates regular evalua-
tion in the monotonic way required by equations 3.20 and 3.19.

Lemma 4.12� # N % e % P% E % v : ������� T � � $�m T ] N ePE v !¬������� T � � $�m ePE v

Proof: By rule induction. ý
Lemma 4.13� # N % e % P% E % v : ������� T � � $�m T ] N ePE v !þ������� T � � $�m T ] .)Ð ú�Ú N 1 ePE v

Proof: By rule induction. ý
Lemma 4.14� # N % N � % e % P% E % v : ������� T � � $�m T ] N ePE v !þ������� T � � $�m T ] . N � N � 1 ePE v

Proof: By induction on N and Lemma 4.13. ý
Lemma 4.15� # e % P% E % v : ������� T � � $�m ePE v !ÿ� N : ������� T � � $�m T ] N ePE v

Proof: By rule induction. This leaves cases for expression constructs with two or
more subexpressions. For these cases we use the sum of the N’s provided by the
induction hypotheses, and follow up by using Lemma 4.14. ý
Lemma 4.16� # e % P% E % v : ������� T � � $�m ePE v î � N : ������� T � � $�m T ] N ePE v

Proof: By Lemmas 4.12 and 4.15. ý
Lemma 4.17� # N % e % P% E % v : ������� T � � $�m T ] . ½ ��Ò N 1 ePE v ! ������� T � � $�m T ] N ePE v

Proof: By splitting into cases N 2 0 and N 2éÐ ú�Ú M. The first case follows from½ ��Ò 0 2 0 and the second case follows from Lemma 4.13. ý
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4.5 Replacement

Many of the program transformations we shall discuss have the informal form “re-
place X by Y .” However, we do not necessarily want to replace every occurrence
of X , so instead of presenting replacement as a function we shall present it as
a predicate that checks whether two given programs or expressions are identical
except that some occurrences of X have been replaced by Y . This allows us to
discuss situations like where we locally replace

A G�M�G�H by U without considering
that

A G�M�G�H might occur elsewhere in the program.
Moreover, we will want to restrict the context in which replacement can take

place in such a way that we can guarantee that certain variables are bound in
that context. We want this in order to be able to replace

@ &?9 A GSD7�=H by G safely,
i.e., only where � is bound. We therefore define m���$�� T � � $�m V e1 e2 ea eb to be true
exactly when e2 can be obtained from e1 by replacing some occurrences of ea by eb

but only at places where all variables in the list V have been bound:

Definitional Theorem 4.18 (Replacement for Expressions.)

�
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# V % i % e � % ea % eb : m���$�� T � � $�m V .gÒ T ³ ] 9 i 1 e � ea eb 2.gÒ T ³ ] 9 i 2 ea 1��J. e � 2 eb 1=�J. V 23*g,n1��J.gÒ T ³ ] 9 i 2 e � 1# V % o % e1 % e2 % e � % ea % eb : m���$�� T � � $�m V .nÒ T�Ø $ oe1 e2 1 e � ea eb 2.gÒ T�Ø $ oe1 e2 2 ea 1��J. e � 2 eb 1=�J. V 23*g,n1��� e �1 % e �2 : . e � 2»Ò T�Ø $ oe �1 e �2 1��m���$�� T � � $�m V e1 e �1 ea eb �Óm���$�� T � � $�m V e2 e �2 ea eb
...# V % x % e1 % e2 % e � % ea % eb : m���$�� T � � $�m V .nÒ T ����9 xe1 e2 1 e � ea eb 2.gÒ T ����9 xe1 e2 2 ea 1=�J. e � 2 eb 1��J. V 23*g,+1=�� e �1 % e �2 : . e � 2»Ò T ����9 xe �1 e �2 1=�m���$�� T � � $�m V e1 e �1 ea eb �m���$�� T � � $�mt.0Ð�Ò�â���Ò�Î Ø ¼ Ò V x 1 e2 e �2 ea eb
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This looks quite complicated, partly because it is written in a primitively recursive
way and partly because of the details with variables. The key to understanding is
to notice that the left disjunct always means that replacement took place at the
given level, while the right disjunct means that replacement might have taken
place in a subexpression. Alternatively the definition could have been done using
an inference system, proving the above theorem as a lemma instead.

The disjunctions of the right-hand side of the equalities have a way of produc-
ing a large number of sub-cases in proofs that have replacement as a pre-condition.
Many of the proofs have that as we shall see.

We need the same infrastructure for programs. Since the parameter of a func-
tion should be counted as binding a slight amount of care is needed:
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Definitional Theorem 4.19 (Replacement for Programs.)

�
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# V % P � % ea % eb : m���$�� T $�m º V *g, P � ea eb 2<. P � 23*g,n1# V % P% b % P � % ea % eb : m���$�� T $�m º V . Ú�Ø�Þ Ð bP 1 P � ea eb 2� f % x % e % e � % P � � : .'. f % x % e 1-2 b 1=�.4. Ú�Ø�Þ Ð~. f % x % e � 1 P � � 1;2 P � 1=�m��6$�� T � � $�mt.)Ð�Ò�â���Ò�Î Ø ¼ Ò V x 1 ee � ea eb �m��6$�� T $�m º V PP � � ea eb
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Not surprisingly, replacement is reflexive and symmetric or reversible in a certain
sense. The symmetry is especially useful as it allows us to reduce applications
of m���$�� T � � $�m / m���$�� T $�m º which have their second expression/program argument
instantiated but not the first: First we rewrite once with respect to the symmetry
equations, then we rewrite with respect to the definition above, and finally we
might rewrite once again with respect to the symmetry equation.

Theorem 4.20 (Replacement for Expressions is Reflexive.)� # V % e % ea % eb : m��6$�� T � � $�m V eeea eb

Proof: By structural induction on e and a lemma stating that m��6$�� T � � $�m is closed
under removal of elements from the variable set. ý
Theorem 4.21 (Replacement for Expressions is Symmetric.)� # e1 % e2 % ea % eb % V : m���$�� T � � $�m V e1 e2 ea eb î m���$�� T � � $�m V e2 e1 eb ea

Proof: By reduction to bi-implication and structural induction. ý
Theorem 4.22 (Replacement for Programs is Reflexive.)� # V % P% ea % eb : m��6$�� T $�m º V PPea eb

Proof: By list induction and Theorem 4.20. ý
Theorem 4.23 (Replacement for Programs is Symmetric.)� # P1 % P2 % ea % eb % V : m���$�� T $�m º V P1 P2 ea eb î m���$�� T $�m º V P2 P1 eb ea

Proof: By reduction to bi-implication, list induction, and Theorem 4.21. ý
The following important lemma characterises what happens to functions defined
in a program when the program undergoes replacement:
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Lemma 4.24

� # P1 % P2 % f % V % x % e : ¾¿¿À . Ø�ß . x % e 1;2é��k�k�Z�l�$ T�@ l ] Y P1 f 1;!m��6$�� T $�m º V P1 P2 ea eb !� e � : . Ø6ß . x % e � 1-2é��k�k�Z�l�$ T�@ l ] Y P2 f 1;!m��6$�� T � � $�mp.)Ð�Ò�â���Ò�Î Ø ¼ Ò V x 1 ee � ea eb

Á[ÂÂÃ
Proof: By list induction. ý
In words, if two programs are identical except for replacing one expression with
another, then any function body that we find in one program has a twin in the other
except for the same replacement.

4.6 Variables

This section defines predicates to test whether a given variable name (number)
is used in an expression and in what ways. Then a function,

º � ] ����m , producing
locally unique variable names is introduced.

Definitional Theorem 4.25 (Variable Free in Expression.)

�
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# x % i : ����m T�@ m���� x .nÒ T ³ ] 9 i 1;2 F# x % o % e1 % e2 : ����m T�@ m���� x .gÒ T�Ø $ oe1 e2 1;2����m T�@ m���� xe1 �Ó����m T�@ m���� xe2
...# x % x � : ����m T�@ m���� x .gÒ T ¼ ��m x � 1;2<. x � 2 x 1
...# x % x � % e1 % e2 : ����m T�@ m���� x .gÒ T ����9 x � e1 e2 1;2����m T�@ m���� xe1 �J. x � §2 x 1��Ó����m T�@ m���� xe2
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Definitional Theorem 4.26 (Variable Bound in Expression.)

�
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# x % i : ����m T y k�l ] ( x .nÒ T ³ ] 9 i 1;2 F# x % o % e1 % e2 : ����m T y k�l ] ( x .gÒ T�Ø $ oe1 e2 1;2����m T y k6l ] ( xe1 �Ó����m T y k�l ] ( xe2
...# x % x � : ����m T y k6l ] ( x .gÒ T ¼ ��m x � 1;2 F
...# x % x � % e1 % e2 : ����m T y k6l ] ( x .gÒ T ����9 x � e1 e2 1;2. x � 2 x 1=�Ó����m T y k6l ] ( xe1 �Ó����m T y k6l ] ( xe2

ê ££££££££££££ì££££££££££££í
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Definitional Theorem 4.27 (Variable Used in Expression.)

�
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# x % i : ����m T l�&6��( x .gÒ T ³ ] 9 i 1-2 F# x % o % e1 % e2 : ����m T l	&���( x .gÒ T�Ø $ oe1 e2 1;2����m T l	&���( xe1 �Ó����m T l	&���( xe2
...# x % x � : ����m T l�&6��( x .nÒ T ¼ ��m x � 1�2õ. x � 2 x 1
...# x % x � % e1 % e2 : ����m T l�&6��( x .nÒ T ����9 x � e1 e2 1-2. x � 2 x 1=�Ó����m T l�&���( xe1 �Ó����m T l	&���( xe2

ê ££££££££££££ì££££££££££££í
The following theorem could have been used as an alternative definition:

Lemma 4.28 � # e % x : ����m T l�&6��( xe îþ����m T�@ m���� xe �Ó����m T y k�l ] ( xe

Proof: By structural induction. ý
There is a slight amount of textual redundancy by defining all three predicates
by primitive recursion but it pays to have them on that form when they are to
be used. (To be precise: they often occur in induction hypotheses. Using the
primitive recursive form for rewriting makes it trivial to satisfy the relevant part
of the induction steps’ hypotheses. Using Lemma 4.28, on the other hand, will
require more than just left-to-right rewriting.)
Now for the more interesting generation of fresh variables. We are unable to
define a global oracle to create fresh variables without dragging along a list of
variable names already used. This is so because HOL is a logical system and
not a programming language that allows us to have a hidden counter somewhere.
Instead we define this local oracle which given an expression creates a variable
name that is not used in the expression:

Definitional Theorem 4.29

�
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# i :

º � ] ����mt.gÒ T ³ ] 9 i 1-2 0# o % e1 % e2 :
º � ] ����mt.gÒ T�Ø $ oe1 e2 1;2XÎ Í�ù . º � ] ����m e1 1�. º � ] ����m e2 1

...# x :
º � ] ����mc.gÒ T ¼ ��m x 1�2éÐ ú�Ú x

...# x % e1 % e2 :
º � ] ����m\.gÒ T ����9 xe1 e2 1;2Î Í�ù .)Ð ú�Ú x 1�.nÎ Í�ù . º � ] ����m e1 1�. º � ] ����m e2 1'1
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Since the specific variable names should not matter the definition of
º � ] ����m will

only be used to prove the following theorem and in examples where some actual
(non-symbolic) value is called for.

Theorem 4.30 (genvar Property.)� # e : ��.n����m T l	&���(p. º � ] ����m e 1 e 1
Proof: By first proving the slightly stronger lemma� # e % x : . x © º � ] ����m e 1;!ÿ�¯.g����m T l�&6��( xe 1
by structural induction and then specialising x to

º � ] ����m e. ý
4.7 Substitution

One of the program transformations that we shall be concerned with is unfolding
of ����9 -expressions. For example we might want to unfold the ����9 in@ �QI ����9 EXI A eOMQ�=HP�j] A EfL�U=H � ] ( R
yielding@ �QI A�A eOMQ�=HPLNU=H5R
What happens here is that the expression

A eOMQ��H gets substituted for every oc-
currence of the bound variable E in the main expression EfLNU .

It might at first look like a simple thing to define this substitution formally but
it turns out to be far from simple. First of all the above description of what we
want substitution to do is at best incomplete. We really ought to have taken care of
the situation where the bound expression might mean something else in the places
where it is put. For example, we should not try to unfold the outer-most ����9 in the
following program, by the above principles:@ �QI ����9EKI A eOMX�=H�?] ����9 �XIóCO�j] A EXMQ��H� ] ( R
This is obviously because the free variable � in the expression

A eOMQ�=H would be
captured by the inner-most ����9 -expression:



70 Supporting Lemmas and Theorems@ �QI ����9 �XIóCP�?] A�A eOMQ�=H�MQ��H � ] ( R A L � m�k ] º L�H
In order to prevent variable capture we must rename all bound variables that might
cause capture. But it is simpler just to rename all bound variables to something
safe, e.g., fresh variable names generated suitably by the

º � ] ����m function intro-
duced previously.

Unfortunately, solving the variable-capturing problem creates another prob-
lem: it is no longer trivial to define substitution formally. More precisely, the
usual way of defining substitution is no longer primitive recursive: the branch for
substituting e � for x � into a ����9 -expression might look like&bl y &?9 e � x � .nÒ T ����9 xe1 e2 1�2

let x � � 2 º � ] ����m e inÒ T ����9 x � � .:&jl y &[9 e � x � e1 1�.:&jl y &?9 e � x � .nm�� ] � � � T�@ m���� xx � � e2 141 (4.1)

where
º � ] ����m is as described above and m�� ] � � � T�@ m���� is a function that renames

all occurrences of a free variable in an expression.
Since this way of defining substitution is not primitive recursive (because the

second recursive call does not recur directly on e2 but on e2 after renaming of free
variables) the initiality theorem for expressions is not applicable. This means that
we would have to prove the existence of &bl y &[9 somehow else, very likely using
the property that m�� ] � � � T�@ m���� does not change the size of the term in which
renaming takes place. Instead of going that way we shall continue using primitive
recursion and split substitution and renaming into two separate phases. For this
we shall need functions to rename free and bound variables.

The function m�� ] � � � T�@ m���� as used in the above discussion takes three param-
eters: x1, x2, and e. It returns e with all free occurrences of x1 renamed to x2,
even if the renaming causes variable capture. (The circumstances under which the
function will be used will prevent this from happening.)

Definitional Theorem 4.31

�
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# x1 % x2 % i : m�� ] � � � T�@ m���� x1 x2 .gÒ T ³ ] 9 i 1-23.gÒ T ³ ] 9 i 1# x1 % x2 % o % e1 % e2 : m�� ] � � � T�@ m���� x1 x2 .gÒ T�Ø $ oe1 e2 1;2Ò T�Ø $ o .nm�� ] � � � T�@ m���� x1 x2 e1 1�.gm�� ] � � � T�@ m���� x1 x2 e2 1
...# x1 % x2 % x : m�� ] � � � T�@ m���� x1 x2 .gÒ T ¼ ��m x 1;2»Ò T ¼ ��mc.'. x 2 x1 1 z x2 � x 1
...# x1 % x2 % x % e1 % e2 : m�� ] � � � T�@ m���� x1 x2 .gÒ T ����9 xe1 e2 1;2Ò T ����9 x .gm�� ] � � � T�@ m���� x1 x2 e1 1.4. x 2 x1 1 z e2 ��.gm�� ] � � � T�@ m���� x1 x2 e2 1'1

êë££££££££££££££ì££££££££££££££í



Substitution 71

The function m�� ] � � � T y k�l ] ( takes two arguments: e � and e. It returns e with all
bound variables renamed in such a way that the new bound variables do not occur
at all in e � .
Definitional Theorem 4.32

�
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# e � % i : m�� ] � � � T y k�l ] ( e � .gÒ T ³ ] 9 i 1;2<.nÒ T ³ ] 9 i 1# e � % o % e1 % e2 : m�� ] � � � T y k6l ] ( e � .gÒ T�Ø $ oe1 e2 1;2Ò T�Ø $ o .gm�� ] � � � T y k�l ] ( e � e1 1�.gm�� ] � � � T y k�l ] ( e � e2 1
...# e � % x : m�� ] � � � T y k6l ] ( e � .gÒ T ¼ ��m x 1;23.gÒ T ¼ ��m x 1
...# e � % x % e1 % e2 : m�� ] � � � T y k6l ] ( e � .gÒ T ����9 xe1 e2 1;2

let e �2 2<.gm�� ] � � � T y k�l ] ( e � e2 1 in
let x � 2<. º � ] ����mt.gÒ T�½ � � m e � e �2 141 inÒ T ����9 x � .gm�� ] � � � T y k6l ] ( e � e1 1�.gm�� ] � � � T�@ m���� xx � e �2 1
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Notice that m�� ] � � � T y k6l ] ( is used in such a way that variable capture cannot oc-
cur: The new variable name does not occur in the object expression. This com-
pletes the renaming part of substitution.

We now define a primitive version of substitution that does not consider cap-
ture or even variable bindings. In other words it substitutes for every occurrence
of some variable:
Definitional Theorem 4.33

�
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# e � % x % i : m���å=&jl y &[9 e � x .gÒ T ³ ] 9 i 1-23.gÒ T ³ ] 9 i 1# e � % x % o % e1 % e2 : m���å	&jl y &?9 e � x .nÒ T�Ø $ oe1 e2 1-2Ò T�Ø $ o .gm���å	&jl y &?9 e � xe1 1�.gm���å	&bl y &?9 e � xe2 1
...# e � % x � % x : m���å=&jl y &[9 e � x � .gÒ T ¼ ��m x 1;23.4. x 2 x � 1 z e � �øÒ T ¼ ��m x 1
...# e � % x � % x % e1 % e2 : m���å	&bl y &[9 e � x � .gÒ T ����9 xe1 e2 1;2Ò T ����9 x .gm���å=&jl y &[9 e � x � e1 1�.gm���å	&jl y &?9 e � x � e2 1
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The only reasonable use of function m���å	&jl y &?9 is in the following definition of
regular substitution. Hence the name.

Definitional Theorem 4.34� # e �+% x �+% e : &bl y &?9 e � x � e 2»m���å	&bl y &[9 e � x �?.gm�� ] � � � T y k6l ] (~.gÒ T�½ � � mt.gÒ T ¼ ��m x ��1 e ��1 e 1
Finally it is occasionally necessary to restrict a theorem involving environments
to those environments which bind at least a certain set of variables. The following
predicate is useful for that.
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Definitional Theorem 4.35 (Variables Bound by Environment.)

� ¢¤ ¥ # E : ����m=& T �?] T � ] �p*g, E 2 T# x % X % E : ����m=& T �?] T � ] �p. Ú�Ø�Þ Ð xX 1 E 2� v >+. Ø6ß v 2é��k�k�Z�l�$ T � ] � E x 1=�Ó����m=& T �?] T � ] � X E

ê ìí
4.8 Harmlessness

Unfolding of ����9 -bindings is one of the program transformations we shall study.
Since our language is strict and since we are very concerned with termination
properties of our object programs we must take care to allow only safe unfoldings.
Consider the program� � �j]»�QI ����9 E�I ��k�k�$ _»�?]»U�G � ] ( R��k�k6$ �QI ��k�k6$ ��R
If we unfold the ����9 in this program we would end up with� � �j]»�QIXU�G-R��k�k6$ �QI ��k�k6$ ��R
which is a radically different program: The first program never terminates, the
second one always does. The problem here is that the variable E is not used in the
body of the ����9 .

Unfolding of ����9 -bindings might also lead to duplication of code as in the
following example� � �j]»�QI ����9 E�I A y � º �=HP�?] A E~D0E	H � ] ( Ry � º �XIih�h�h�R
where the unfolding program contains the call

A y � º ��H twice. However, we shall
ignore this potential complication completely as it does not influence correctness
— our language is free of side-effects. We are only concerned with the question
“are we allowed to unfold a given ����9 ?” and not with the question “do we want
to unfold it?”

Usually in programming language matters discussion about ����9 unfolding
stops here. We cannot do this, as the following program fragment demonstrates:@ �QI ����9 E�I��d�?]éG � ] ( Rº �QI ����9 E�I�Fd�?]éG � ] ( R
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It is important for us to be able to unfold the first ����9 -binding because that elim-
inates it completely. It is even more important that we do not unfold the second����9 -binding because doing so changes evaluation properties from never produc-
ing a result to always doing so. The only difference between

@
and

º
is that

º
uses

a variable, F , that is not in scope where it is used.
The traditional solution to this problem is hand-waving: “We will only con-

sider well- � whatever � programs.” The solution as such is correct but it only makes
sense at top level. Proofs involving expressions have no way of using that infor-
mation. We solve the problem by defining a syntactic property, harmlessness,
telling when evaluation of an expression is guaranteed to succeed. The property
is relative to a set of variables guaranteed to be bound where the expression oc-
curs. Being a syntactic property it can, of course, only be an approximation of the
semantic property that an expression always evaluates without erring.

Definitional Theorem 4.36 (Harmless.)

�
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# V % i : `���m � ����&�& V .gÒ T ³ ] 9 i 1;2 T# V % o % e1 % e2 : `���m � ����&�& V .gÒ T�Ø $ oe1 e2 1;2 F# V % e1 % e2 : `���m � ����&�& V .gÒ T�½ � � m e1 e2 1;2`���m � ����&�& V e1 � `���m � ����&�& V e2# V % e : `���m � ����&�& V .gÒ T�Ù &?9 e 1;2 F# V % e : `���m � ����&�& V .gÒ T Ð ] ( e 1;2 F# V % e : `���m � ����&�& V .gÒ T ³ ] � e 1;2Q`���m � ����&�& V e# V % e : `���m � ����&�& V .gÒ T ³ ] m e 1;2Q`���m � ����&�& V e# V % eb % x � % e � % xr % er : `���m � ����&�& V .gÒ T�Ú ��&6� eb x � e � xr er 1;2 F# V % x : `���m � ����&�& V .gÒ T ¼ ��m x 1;2KÎ�Ò�Î xV# V : `���m � ����&�& V Ò T Ò�m�m�k�m�2 F# V % f % e : `���m � ����&�& V .gÒ T�Ú ����� f e 1;2 F# V % x % e1 % e2 : `���m � ����&�& V .gÒ T ����9 xe1 e2 1�2`���m � ����&�& V e1 � `���m � ����&�&-. Ú�Ø�Þ Ð xV 1 e2
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This definition of harmlessness is a very conservative approximation. In gen-
eral any constructing expression is deemed harmless as its subexpressions, while
any destructing expression is considered potentially harmful since a run-time type
check might fail.

The V parameter is a set of variables guaranteed to be bound. Having this
parameter is important as we would otherwise have to classify every variable as
potential harmful. In particular, both � and F in the motivating example above
would have to be classified as harmful.
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The purpose of the harmlessness concept is that harmless expressions should
never fail to terminate and never err. This lemma proves that this purpose is ful-
filled.

Lemma 4.37

� # e % V % P% E : ¾À ����m=& T �?] T � ] � V E !`���m � ����&�& V e !� v : # N : ������� T � � $�m T ] N ePE v

ÁÃ
Proof: By structural induction on e. ý
4.9 Strict Usage

It is well known that it is not necessary to require that the bound expression in a����9 -binding terminates in order to ensure that the unfolding preserves termination.
An alternative is to make sure that substitution will place the bound expression in
such a position or in such positions of the body expression that it is guaranteed to
be evaluated. For example, it is safe to unfold the ����9 in the following program
even though

A:º ��H might not always terminate or might sometimes produce run-
time errors. It is the fact that E is used strictly in the expression

A E~D0E	H that makes
the unfolding safe.@ �QI ����9 E�I A:º ��HP�?] A E~D)E=H � ] ( Rº FQIÕh�h�h

Detecting strict usage is not computable, so we shall settle for a syntactic ap-
proximation of detecting when a variable is used strictly. Accordingly, we definel�&���( T &[9�m � Y[9�� E this way.
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Definitional Theorem 4.38 (Strict Usage.)

�
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# x % i : l�&6��( T &[9�m � Y69�� E x .nÒ T ³ ] 9 i 1;2 F# x % o % e1 % e2 : l	&���( T &?9�m � Y69�� E x .gÒ T�Ø $ oe1 e2 1;2l	&���( T &?9�m � Y69�� E xe1 � l�&���( T &[9�m � Y[9�� E xe2# x % e1 % e2 : l�&6��( T &[9�m � Y[9�� E x .nÒ T�½ � � m e1 e2 1;2l	&���( T &?9�m � Y69�� E xe1 � l�&���( T &[9�m � Y[9�� E xe2# x % e : l�&���( T &[9�m � Y[9�� E x .gÒ T�Ù &?9 e 1;2Ql	&���( T &?9�m � Y69�� E xe# x % e : l�&���( T &[9�m � Y[9�� E x .gÒ T Ð ] ( e 1;2Ql	&���( T &?9�m � Y69�� E xe# x % e : l�&���( T &[9�m � Y[9�� E x .gÒ T ³ ] � e 1;2Ql	&���( T &?9�m � Y69�� E xe# x % e : l�&���( T &[9�m � Y[9�� E x .gÒ T ³ ] m e 1;2Ql	&���( T &?9�m � Y69�� E xe# x % eb % x � % e � % xr % er : l	&���( T &?9�m � Y69�� E x .gÒ T�Ú ��&�� eb x � e � xr er 1;2l	&���( T &?9�m � Y69�� E xeb �. x §2 x � 1�� l�&���( T &[9�m � Y[9�� E xe � �J. x §2 xr 1=� l	&���( T &?9�m � Y69�� E xer# x % x � : l�&���( T &[9�m � Y[9�� E x .gÒ T ¼ ��m x � 1;2<. x 2 x � 1# x : l�&6��( T &[9�m � Y69�� E x Ò T Ò�m�m�k�m�2 F# x % f % e : l�&���( T &[9�m � Y[9�� E x .nÒ T�Ú ����� f e 1�2Xl	&���( T &?9�m � Y69�� E xe# x % x � % e1 % e2 : l�&���( T &[9�m � Y[9�� E x .gÒ T ����9 x � e1 e2 1;2l	&���( T &?9�m � Y69�� E xe1 �J. x §2 x � 1=� l	&���( T &?9�m � Y69�� E xe2
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Three points are worth noting: (1) the Y���&�� -construct will evaluate exactly one
of its branches. Since we cannot determine which one we must therefore require
both to use x strictly or else have the condition use x strictly before we say that theY���&6� uses x strictly. (2) bound variables are never used strictly so we test variable
names when binding occurs. (3) Many, but not all, of the theorems involving strict
usage would also work if we defined Ò T Ò�m�m�k�m to use all variables strictly.

4.10 Evaluation Properties

The following lemma states that if an evaluation succeeds in an environment E
then it will also succeed and with the same result in any other environment E �
which has all bindings of E (but possibly more).

Lemma 4.39

� # N % e % P% E % v % E � : ¾¿¿À ������� T � � $�m T ] N ePE v !# x : ç .0��k�k�Z�l�$ T � ] � E x §2 Ù Í ³[��1-!.0��k�k�Z�l�$ T � ] � E x 2é��k�k�Z�l�$ T � ] � E � x 1�è !������� T � � $�m T ] N ePE � v
Á[ÂÂÃ
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Proof: By rule induction. ý
The following technical lemma states that if the two front bindings in an environ-
ment bind different variables then the bindings can be swapped. This is quite hard
to prove directly, i.e., without generalising it, because the induction cases for ����9
and Y���&6� add to the environment in front. The lemma is, however, easy to prove
using the above lemma.

Lemma 4.40

� # x1 % x2 : ¾¿¿À . x1 §2 x2 1-!# N % e % P% E % v % v1 % v2 :������� T � � $�m T ] N eP . Ú�Ø�Þ Ð~. x1 % v1 1�. Ú�Ø�Þ Ðp. x2 % v2 1 E 141 v î������� T � � $�m T ] N eP . Ú�Ø�Þ Ð~. x2 % v2 1�. Ú�Ø�Þ Ðp. x1 % v1 1 E 141 v
Á ÂÂÃ

Proof: By applying Lemma 4.39 twice. ý
If the two front bindings do bind the same variable then the following lemma can
be used to remove the second binding. Again, this follows easily from the general
Lemma 4.39 but is hard to prove without generalising the theorem.

Lemma 4.41� # N % e % P% E % v % x % v1 % v2 : ¾À ������� T � � $�m T ] N E P . Ú�Ø�Þ Ð�. x % v1 1�. Ú�Ø�Þ Ð�. x % v2 1 E 141 vî ������� T � � $�m T ] N E P . Ú�Ø�Þ Ð�. x % v1 1 E 1 v
ÁÃ

Proof: By applying Lemma 4.39 twice. ý
The following lemma states that variables that are not free anywhere in an expres-
sion can be removed from the environment without affecting the evaluation of the
expression.

Lemma 4.42

� # e % x : ¾¿¿À �¯.g����m T�@ m���� xe 1;!# N % P% E % v % v � :������� T � � $�m T ] N eP . Ú�Ø�Þ Ð~. x % v � 1 E 1 v î������� T � � $�m T ] N eP E v

Á ÂÂÃ
Proof: By structural induction on e. Reductions with definitions and Lemma 4.41
leaves cases for ����9 and Y���&6� with bindings added to the front of the environment.
These cases are handled by Lemma 4.40. ý
A special case of a variable not being free in an expression is when the variable
does not occur at all in the expression.
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Lemma 4.43

� # e % x : ¾¿¿À �¯.g����m T l�&6��( xe 1~!# N % P% E % v % v � :������� T � � $�m T ] N eP . Ú�Ø�Þ Ð~. x % v � 1 E 1 v î������� T � � $�m T ] N eP E v

Á[ÂÂÃ
Proof: By Lemmas 4.28 and 4.42. ý
One particular case where a variable will not occur in the expression is the case
where it has been constructed for exactly that purpose by the

º � ] ����m function.

Lemma 4.44� # v % e % P% E % v �ä% N : ç ������� T � � $�m T ] N ePE v � î������� T � � $�m T ] N eP . Ú�Ø�Þ Ð~. º � ] ����m e % v 1 E 1 v � è
Proof: By Lemma 4.43 and Theorem 4.30. ý
We now turn to the effect of variable renaming on evaluation. Our first lemma
states that the effect of using m�� ] � � � T�@ m���� on an expression is identical to renam-
ing in the environment. Note that we require that the renamed-to variable does
not occur in the original expression; this is because m�� ] � � � T�@ m���� does not take
variable capture into account.

Lemma 4.45 .

� # e % x � : ¾¿¿À �¯.g����m T l�&6��( x � e 1;!# N % P% E % v % x % v � :������� T � � $�m T ] N .gm�� ] � � � T�@ m���� xx � e 1 P . Ú�Ø�Þ Ð�. x � % v � 1 E 1 v î������� T � � $�m T ] N eP . Ú�Ø�Þ Ð�. x % v � 1 E 1 v
Á[ÂÂÃ

Proof: By structural induction on the expression. The non-trivial cases are the
cases for ����9 and Y���&�� which add to the environment in front. These cases are
easily handled by Lemmas 4.41, 4.40, and 4.43. ý
Changing the names of free variables does influence evaluation, as we just saw.
But changing the names of bound variables does not:

Lemma 4.46� # e % N % e �+% P% E % v : ç ������� T � � $�m T ] N .nm�� ] � � � T y k�l ] ( e � e 1 PE v î������� T � � $�m T ] N ePE v è
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Proof: By structural induction on e. Cases for ����9 and Y���&6� modify the environ-
ment and are handled by Lemma 4.45. ý
Combining the previous two lemmas we get the following lemma, which turns out
to be useful in connection with substitution and alpha conversion.

Lemma 4.47

� # e % x � : ¾¿¿¿¿¿¿À
�¯.g����m T l�&���( x � e 1;!# N % P% E % v % x % v � :������� T � � $�m T ] N.gm�� ] � � � T�@ m���� xx � .gm�� ] � � � T y k�l ] (�.gÒ T ¼ ��m x � 1 e 1

P . Ú�Ø�Þ Ð�. x � % v � 1 E 1 v î������� T � � $�m T ] N eP . Ú�Ø�Þ Ð~. x % v � 1 E 1 v
Á[ÂÂÂÂÂÂÃ

Proof: By Lemmas 4.45 and 4.46. ý
Values and expressions are two different entities even if they have members that
are written the same way like U and � _ . The following function and lemma shows
that the set of values can be embedded within the set of expressions. This is useful
for the constant folding transformation which will need to place its result in the
target program in the form of an expression.

Definitional Theorem 4.48

�
¢££££¤ ££££¥ # i : �����6l�� G � � $�mp. ¼ T ³ ] 9 i 1-2»Ò T ³ ] 9 i# v1 % v2 : �����[l�� G � � $�mp. ¼ T�½ � � m v1 v2 1;2Ò T�½ � � mc.g�����6l�� G � � $�m v1 1�.g�����6l�� G � � $�m v2 1# v : �����6l�� G � � $�mc. ¼ T ³ ] � v 1;2»Ò T ³ ] ��.g�����6l�� G � � $�m v 1# v : �����6l�� G � � $�mc. ¼ T ³ ] m v 1;2»Ò T ³ ] mt.g�����6l�� G � � $�m v 1

ê ££££ì££££í
Lemma 4.49� # v % N % P% E % v � : ������� T � � $�m T ] N .g�����6l�� G � � $�m v 1 PE v ��î . v 2 v ��1
Proof: By structural induction on the value. ý
We shall only need the corresponding projection in the case of integers so we
therefore just define:

Definitional Theorem 4.50� # i : � � $�m G��?] 9c.nÒ T ³ ] 9 i 1-2 i
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The injection of values into expressions has a number of trivial nice properties
such as the following two which we shall need later.

Lemma 4.51 � # v % V : Y?`���Y?Z T ����m�& V .g�����[l�� G � � $�m v 1
Proof: By structural induction on v. ý
Lemma 4.52 � # v % F : Y?`���Y[Z T�@ l ] Y�& F .n�����[l�� G � � $�m v 1
Proof: By structural induction on v. ý
4.11 Semantic Equivalence

We now define the notion of two expressions being equivalent evaluation-wise.
Intuitively this should mean that they when evaluated in identical environments
always produce indentical results. That, however, is to strong a requirement.

Consider the expressions
A C?M�G�H and

@ &[9 A e;D7��H . We would like these two
expressions to be equivalent, but they only share evaluation properties if we can
guarantee that � is bound.

Consider now the expressions
A:@ C�H and

A:º G�H . These two expressions might
be equivalent if the program in which we evaluate them contains the definitionº �XI @ A �KafC�H�R . In another program they might not be equivalent.

These concerns guide us to the following definition of two expressions being
semantically equivalent relative to a program and to a set of variable.

Definitional Theorem 4.53 (Sematical Equivalence.)

� # e1 % e2 % P% V : ¾À &6� � ��Ô V Pe1 e2 î# E % v : ����m=& T �j] T � ] � V E !.0������� T � � $�m e1 PE v îÿ������� T � � $�m e2 PE v 1
ÁÃ

This definition plays an important rl̂e in the Section 4.12.
The definition of &�� � ��Ô is ignorant of timing issues; two expressions are

equivalent if they behave identically to ������� T � � $�m even if they behave quite dif-
ferently to ������� T � � $�m T ] . A corresponding definition for the timed case, called
two-way local improvement, will be discussed shortly.
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4.12 Improvement

This section introduces the concept of improvement of expressions, the notion that
two expressions might be equivalent but that one requires less resources than the
other. Improvement will be generalised to programs, where it will be used to mean
that P2 is an improvement over P1 if all P2’s function bodies are improvements over
the corresponding bodies in P1. (As it will be discussed further in Section 9.3,
many of the ideas here originate with [San96].)

Improvement as discussed in this context is not a question of efficiency. More-
over, as the improvement discussed here will be based on the required function-
call nesting to complete an evaluation, there is no direct relation to any stop-watch
type of improvement in efficiency. The real reason that we shall be concerned with
improvement is that the concept plays an important rôle in guaranteeing the cor-
rectness of a folding transformation.

The property that one expression improves another is called local improve-
ment. Just like sematical equivalence we need to make our definition of local
improvement relative to a set of variable and a program: expressions can con-
tain function calls, so the definition should be relative to some program, and the
expressions can contain free variables so there should also be a restriction on the
environments for which improvement is considered. That leads us to the following
definition of e1 being improved by e2:

Definitional Theorem 4.54 (Local Improvement.)

� # e1 % e2 % P% V : ¾¿¿À ��k�Y���� T �ø� $�m�k���� � � ] 9 V Pe1 e2 î# E % v % N : ����m=& T �?] T � ] � V E !.0������� T � � $�m e2 PE v !þ������� T � � $�m e1 PE v 1=�.0������� T � � $�m T ] N e1 PE v !þ������� T � � $�m T ] N e2 PE v 1
Á[ÂÂÃ

The left conjunct tells us that any evaluation of e2 can also be done with e1. The
right conjunct tells us that not only can any evaluation of e1 can also be done with
e2 — doing it with e2 will be faster (in the usual special meaning of “faster”).
The two clauses taken together means in particular that e1 and e2 have the same
semantics.

Local improvement is a stonger condition than equivalence as the following
lemma shows:

Lemma 4.55 (Local Improvement Implies Equivalence.)� # e1 % e2 % V % P : ��k�Y���� T �b� $�m�k���� � � ] 9 V Pe1 e2 ! &�� � ��Ô V Pe1 e2

Proof: By rewriting with the defintions of ��k�Y���� T �b� $�m�k���� � � ] 9 and &�� � ��Ô , then
using Lemmas 4.12 and 4.15. ý
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Assume that we have a series of programs, P1 %4>4>4>�% Pn, obtained by doing a
series of program transformations, and that the function name f occurs in all the
programs and with the same semantics. If we would like to do folding of some
expression e in Pn with a function definition, fk

I e R in P1, we should have some
means of comparing the cost of evaluating e to the cost of evaluating a call to f
with respect to Pn.

For this purpose we introduce the concept of improving a program defined
as improving (in the above reflexive way) all its functions while possibly adding
more functions. We will not consider removal and renaming of functions because
removal and renaming would make the relation non-transitive. Furthermore we
insist that the programs’ main functions have the same name since the main fun-
cions define the meaning of the programs.

Definitional Theorem 4.56 (Improvement.)

� # P1 % P2 :

¾¿¿¿¿¿¿¿¿¿¿¿¿À

�ø� $�m�k���� � � ] 9 P1 P2 î¾¿¿¿¿¿¿¿¿¿¿À
. Ù Ð�ât.nð ã P1 1;2 Ù Ð�â¹.nð ã P2 141��# f % x1 % e1 : .)��k�k�Z�l�$ T�@ l ] Y P1 f 2 Ø�ß . x1 % e1 1'1-!� x2 % e2 : # v % v � % N :.)��k�k�Z�l�$ T�@ l ] Y P2 f 2 Ø6ß . x2 % e2 141=�ç ������� T � � $�m T ] N e1 P1 *ä. x1 % v 1/, v � !������� T � � $�m T ] N e2 P2 *ä. x2 % v 1/, v � è �ç ������� T � � $�m e2 P2 *ö. x2 % v 1:, v � !������� T � � $�m e1 P1 *ö. x1 % v 1:, v � è

Á[ÂÂÂÂÂÂÂÂÂÂÃ

Á[ÂÂÂÂÂÂÂÂÂÂÂÂÃ
Recall that the representation of programs is such that

Ù Ð�âc.nð ã P 1 is P’s name. This
explains the first equality. The rest of the definition says that functions defined
in P1 are also defined in P2 and that P2’s definition is an improvement over P1’s in
top-level environments.

Improvement has the important property that it implies equivalence of pro-
grams. (Due to the way we have defined programs we must also require that the
programs be non-empty.)

Lemma 4.57 (Improvement Meaning Lemma.)

� # P1 % P2 % vin % vout : ¾À . P1 §2<*g,+1-!�b� $�m�k���� � � ] 9 P1 P2 !.0������� T $�m º P1 vin vout îÿ������� T $�m º P2 vin vout 1
ÁÃ

Proof: By the definitions of �b� $�m�k���� � � ] 9 and ������� T $�m º together with Lem-
mas 4.12 and 4.15. ý
Both local and global improvement are reflexive and transitive. This can be useful
in combining program transformations.
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Lemma 4.58 (Local Improvement is Reflexive.)� # e % V % P : ��k�Y���� T �ø� $�m�k���� � � ] 9 V Pee

Proof: Trivial: rewrite with definition of ��k�Y���� T �ø� $�m�k���� � � ] 9 and use reflexivity
of equality. ý
Lemma 4.59 (Improvement is Reflexive.)� # P : �b� $�m�k���� � � ] 9 PP

Proof: By rewriting with the definition of �ø� $�m�k���� � � ] 9 . ý
Lemma 4.60 (Local Improvement is Transitive.)

� # e1 % e2 % e3 % V % P : ¾À ��k�Y���� T �b� $�m�k���� � � ] 9 V Pe1 e2 !��k�Y���� T �b� $�m�k���� � � ] 9 V Pe2 e3 !��k�Y���� T �b� $�m�k���� � � ] 9 V Pe1 e3

ÁÃ
Proof: By rewriting with the definition of ��k�Y���� T �b� $�m�k���� � � ] 9 and repeated use
of modus ponens. ý
Note that we use just one variable set V because this is the situation where we will
use it. The theorem is believed to hold even with different V1, V2, and V3 as long
as the latter is a superset of the two former.

Lemma 4.61 (Improvement is Transitive.)

� # P1 % P2 % P3 : ¾À �ø� $�m�k���� � � ] 9 P1 P2 !�ø� $�m�k���� � � ] 9 P2 P3 !�ø� $�m�k���� � � ] 9 P1 P3

ÁÃ
Proof: By rewriting with the definition of �b� $�m�k���� � � ] 9 and repeated use of
modus ponens. ý
The following important lemma provides us with a simple characterization of what
it means for two expressions to be local improvements of each other.
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Lemma 4.62 (Two-Way Local Improvement Lemma.)

� # P% e1 % e2 % V :
¾¿¿¿¿¿¿À
ç ��k�Y���� T �b� $�m�k���� � � ] 9 V Pe1 e2 ���k�Y���� T �b� $�m�k���� � � ] 9 V Pe2 e1 èî # E % v % N : ����m=& T �?] T � ] � V E !ç ������� T � � $�m T ] N e1 PE v î������� T � � $�m T ] N e2 PE v è

Á[ÂÂÂÂÂÂÃ
Proof: By rewriting with the definition of ��k�Y���� T �ø� $�m�k���� � � ] 9 and Lemmas 4.12
and 4.15. ý
Note, that the lemma shows that two-way local improvement is to ������� T � � $�m T ]
as semantical equivalence is to ������� T � � $�m .

4.12.1 Improvement Globalisation

In the following we shall work through a number of lemmas leading up to two of
the major results, namely that local improvement implies global improvement and
that two-way local improvement implies two-way global improvement.

All these lemmas consider two expressions, ea and eb, where the latter is a
local improvement over the first. The lemmas state what happens with respect
to evaluation when we replace ea by eb in an expression or a program. Under
sufficiently strong side conditions we shall see that little happens. Some of the
theorem depend only on the weaker semantical equivalence condition and will
be stated using that; the corresponding theorem with local improvement follows
immediately from Lemma 4.55.

Our first lemma deals with replacing ea by eb in an expression under the as-
sumption that the resultant expression evaluates. We claim that the original ex-
pression then also evaluates and with the same result and that this only depends of
equivalence, not on improvement:

Lemma 4.63

� # e2 % P% E % v :
¾¿¿¿¿¿¿À
������� T � � $�m e2 PE v !# e1 % ea % eb % V1 % V2 :&�� � ��Ô V1 Pea eb !m��6$�� T � � $�m V2 e1 e2 ea eb !����m=& T �?] T � ] �p.)Ð�Ò�â�Î	³ Þ�ú Ð V1V2 1 E !������� T � � $�m e1 PE v

Á ÂÂÂÂÂÂÃ
Proof: By strong rule induction (as defined by Equation 3.18, which see). ý
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(There is a lot of fiddling with variables required for this and the following lemmas
but no fundamental difficulties are involved here.)

Proving the opposite implication, i.e., that if the original expression evaluates
then so does the result of replacing, is harder since that really does depend on the
improvement. We will prove it using the following technical lemma which looks
the ways it does in order to allow a nested induction.

Lemma 4.64

� # M % N % e1 % P% E % v :

¾¿¿¿¿¿¿¿¿À
������� T � � $�m T ] N e1 PE v !# e2 % ea % eb % V1 % V2 :��k�Y���� T �b� $�m�k���� � � ] 9 V1 Pea eb !. N û M 1�!m���$�� T � � $�m V2 e1 e2 ea eb !����m�& T �j] T � ] �t.)Ð�Ò�â�Î=³ Þ�ú Ð V1V2 1 E !������� T � � $�m T ] N e2 PE v

Á[ÂÂÂÂÂÂÂÂÃ
Proof: Numerical induction on M produces two cases. The base case, 0, is triv-
ial since . N û 0 1 is always false for natural numbers. This leaves us with the
induction step, Ð ú�Ú M � .

We now do strong rule induction. The rule induction hypotheses are strong
enough to handle all but one of the resulting subcases. The left-over case, the
recursive function call, follows immediately from the numerical induction hy-
pothesis. ý
As mentioned we are not really interested in Lemma 4.64 but instead in the fol-
lowing special case.

Lemma 4.65

� # N % e1 % P% E % v :
¾¿¿¿¿¿¿À
������� T � � $�m T ] N e1 PE v !# e2 % ea % eb % V1 % V2 :��k�Y���� T �ø� $�m�k���� � � ] 9 V1 Pea eb !m��6$�� T � � $�m V2 e1 e2 ea eb !����m=& T �?] T � ] �p.)Ð�Ò�â�Î	³ Þ�ú Ð V1 V2 1 E !������� T � � $�m T ] N e2 PE v

Á[ÂÂÂÂÂÂÃ
Proof: Specialise Lemma 4.64 to Ð ú�Ú N and N. ý
If ea and eb are both improvements over each other, then Lemma 4.63 does not
quite fit our needs as information about evaluation depth is lost with the use of������� T � � $�m instead of ������� T � � $�m T ] . Therefore we need the following lemma.
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Lemma 4.66

� # N % e2 % P% E % v :
¾¿¿¿¿¿¿À
������� T � � $�m T ] N e2 PE v !# e1 % ea % eb % V1 % V2 :��k�Y���� T �b� $�m�k���� � � ] 9 V1 Peb ea !m���$�� T � � $�m V2 e1 e2 ea eb !����m�& T �?] T � ] �t.0Ð�Ò�â�Î	³ Þ�ú Ð V1V2 1 E !������� T � � $�m T ] N e1 PE v

Á[ÂÂÂÂÂÂÃ
Proof: By strong rule induction. ý
Note that the order of ea and eb in the improvement condition is reversed. Note
also that we left out Lemma 4.63’s precondition &6� � ��Ô V1 Pea eb as it is redundant.

We now turn to see what happens if we fix the expression and do the replace-
ment in the program instead.

Lemma 4.67

� # e % P2 % E % v :
¾¿¿¿¿À
������� T � � $�m eP2 E v !# P1 % ea % eb % V :&�� � ��Ô V Pea eb !m��6$�� T $�m º V P1 P2 ea eb !������� T � � $�m eP1 E v

Á[ÂÂÂÂÃ
Proof: Strong rule induction, followed by the usual reductions, leaves one un-
solved case, namely the Ò T�Ú ����� f e case. The rule induction hypothesis cannot be
used for the evaluation of f ’s body since two different versions are extracted from
P1 and P2. But by using Lemma 4.24 we see that the body extracted from P2 is
an improvement over the one extracted from P1. This reduces to a special case of
Lemma 4.63. ý
The opposite direction, i.e., assuming that e evaluates in the program before re-
placement produces the same problem with the rule induction hypothesis being
too weak by itself as we saw for replacement in expressions. The solution is again
a technical lemma.
Lemma 4.68

� # M % N % e % P1 % E % v :
¾¿¿¿¿¿¿À
������� T � � $�m T ] N eP1 E v !. N û M 1;!# P2 % ea % eb % V :��k�Y���� T �b� $�m�k���� � � ] 9 V Pea eb !m���$�� T $�m º V P1 P2 ea eb !������� T � � $�m T ] N eP2 E v

Á[ÂÂÂÂÂÂÃ
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Proof: Numerical induction on M produces two cases. The base case, 0, is trivial
since again . N §û 0 1 . This leaves us with the induction step, Ð ú�Ú M � .

We now do strong rule induction. Just like the previous lemma the rule induc-
tion hypothesis is strong enough to handle all cases but the Ò T�Ú ����� f e case which
the rule induction hypothesis cannot handle. This case, however, is caught by the
numerical induction hypothesis together with Lemmas 4.65 and 4.24. ý
Just like it was the case for the expression replacement case we are not really
interested in Lemma 4.68 but instead in the following special case.

Lemma 4.69

� # N % e % P1 % E % v :
¾¿¿¿¿À
������� T � � $�m T ] N eP1 E v !# P2 % ea % eb % V :��k�Y���� T �b� $�m�k���� � � ] 9 V Pea eb !m���$�� T $�m º V P1 P2 ea eb !������� T � � $�m T ] N eP2 E v

Á[ÂÂÂÂÃ
Proof: Specialise Lemma 4.68 to Ð ú�Ú N and N. ý
Lemma 4.67 also has a two-way version. Note that the order of ea and eb in the
improvement condition is reversed.

Lemma 4.70

� # N % e % P2 % E % v :
¾¿¿¿¿À
������� T � � $�m T ] N eP2 E v !# P1 % ea % eb % V :��k�Y���� T �b� $�m�k���� � � ] 9 V Peb ea !m���$�� T $�m º V P1 P2 ea eb !������� T � � $�m T ] N eP1 E v

Á[ÂÂÂÂÃ
Proof: Strong rule induction, followed by the usual reductions, leaves one un-
solved case, namely the Ò T�Ú ����� f e case. The rule induction hypothesis cannot be
used for the evaluation of f ’s body since two different versions are extracted from
P1 and P2. But by using Lemma 4.24 we see that the body extracted from P2 is
an improvement over the one extracted from P1. This reduces to a special case of
Lemma 4.66. ý
We now combine the previous lemmas into two very important theorems. These
tell us that improvement of a subexpression causes improvement of the program
in which replacement is done.
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Theorem 4.71 (Improvement Globalisation Theorem.)

� # P1 % P2 % ea % eb % V : ¾À ��k�Y���� T �b� $�m�k���� � � ] 9 V P1 ea eb !m���$�� T $�m º V P1 P2 ea eb !�ø� $�m�k���� � � ] 9 P1 P2

ÁÃ
Proof: Only the two inner conjuncts in the definition of the improvement predi-
cate pose any problems. The ������� T � � $�m T ] conjunct follows from Lemmas 4.65
and 4.69. The ������� T � � $�m conjunct follows from Lemmas 4.63 and 4.67. ý
Theorem 4.72 (Two-Way Improvement Globalisation Theorem.)

� # P1 % P2 % ea % eb % V : ¾¿¿À ��k�Y���� T �b� $�m�k���� � � ] 9 V P1 ea eb !��k�Y���� T �b� $�m�k���� � � ] 9 V P1 eb ea !m���$�� T $�m º V P1 P2 ea eb !. �b� $�m�k���� � � ] 9 P1 P2 � �b� $�m�k���� � � ] 9 P2 P1 1
Á ÂÂÃ

Proof: The first conjunct follows directly from Theorem 4.71. The second con-
junct follows from Lemmas 4.65, 4.66, 4.69, and 4.70. ý
4.12.2 Improvement with Fewer Functions

The improvement predicate for programs implies that if P2 is an improvement
over P1 then P2 defines at least the same functions as P1. For most of the program
transformations we shall consider this is the case, but not for all. We need a similar
condition for the situation when functions are eliminated and we therefore define
the concept of reverse improvement. This predicate is not supposed to be used
alone and therefore does not contain, for example, a condition on what is the first
function.

Definitional Theorem 4.73 (Reverse Improvement.)

� # P1 % P2 :
¾¿¿¿¿¿¿À
�b� $�m�k���� � � ] 9�� P1 P2 î# f % x1 % e1 % x2 % e2 :¾¿¿À .)��k�k�Z�l�$ T�@ l ] Y P1 f 2 Ø�ß . x1 % e1 141-!.)��k�k�Z�l�$ T�@ l ] Y P2 f 2 Ø�ß . x2 % e2 141-!# v % v � % n : ç ������� T � � $�m T ] N e2 P2 *ö. x2 % v 1:, v � !������� T � � $�m T ] N e1 P1 *ö. x1 % v 1:, v � è

Á ÂÂÃ
Á ÂÂÂÂÂÂÃ

When �b� $�m�k���� � � ] 9�� is to be used it will be in connection with �b� $�m�k���� � � ] 9 .
Under this condition �ø� $�m�k���� � � ] 9�� is transitive.



88 Supporting Lemmas and Theorems

Lemma 4.74 (Reverse Improvement is Transitive.)

� # P1 % P2 % P3 :
¾¿¿¿¿À
�ø� $�m�k���� � � ] 9 P1 P2 !�ø� $�m�k���� � � ] 9 P2 P3 !�ø� $�m�k���� � � ] 9�� P1 P2 !�ø� $�m�k���� � � ] 9�� P2 P3 !�ø� $�m�k���� � � ] 9�� P1 P3

Á ÂÂÂÂÃ
Proof: By rewriting with the definitions of �b� $�m�k���� � � ] 9 and �b� $�m�k���� � � ] 9�� and
repeated use of modus ponens. ý
Two-way improvement implies reverse improvement. This is useful because most
of our program transformation produce two-way improvement. Putting the pieces
together requires improvement and reverse improvement.

Lemma 4.75

� # P1 % P2 : ¾À �ø� $�m�k���� � � ] 9 P1 P2 !�ø� $�m�k���� � � ] 9 P2 P1 !�ø� $�m�k���� � � ] 9�� P1 P2

ÁÃ
Proof: By rewriting with the definitions of �b� $�m�k���� � � ] 9 and �b� $�m�k���� � � ] 9�� and
repeated use of modus ponens. ý
As mentioned above, reverse improvement is to be used in connection with im-
provement. When two programs are in an �b� $�m�k���� � � ] 9 / �ø� $�m�k���� � � ] 9�� relation-
ship expressions are evaluated in the same way as we shall see in Lemma 4.78.
First a few lemmas to help proving that, though.

It is a consequence of improvement that the second program contains defini-
tion for all functions defined in the first program. This makes it fairly easy to prove
that evaluations in the first program work the same way in the second program.

Lemma 4.76� # P1 % e % N % E % v : ç ������� T � � $�m T ] N eP1 E v !# P2 : �ø� $�m�k���� � � ] 9 P1 P2 ! ������� T � � $�m T ] N eP2 E v è
Proof: By strong rule induction. ý
For the other direction we must first make sure that the expression we are consid-
ering does not use functions that are not defined in the first program.
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Lemma 4.77

� # P2 % e % N % E % v :
¾¿¿¿¿À
������� T � � $�m T ] N eP2 E v !# P1 : ¾¿¿À Yj`���Y?Z T�@ l ] Y�&ò. @ l ] Y[9 � k ] & P1 1 e !�ø� $�m�k���� � � ] 9 P1 P2 !�ø� $�m�k���� � � ] 9�� P1 P2 !������� T � � $�m T ] N eP1 E v

Á[ÂÂÃ
Á[ÂÂÂÂÃ

Proof: By strong rule induction. ý
Lemma 4.78

� # P1 % P2 % e % N % E % v : ¾¿¿À Y?`���Y[Z T�@ l ] Y�&S. @ l ] Y69 � k ] & P1 1 e !�b� $�m�k���� � � ] 9 P1 P2 !�b� $�m�k���� � � ] 9�� P1 P2 !.0������� T � � $�m T ] N eP1 E v îÿ������� T � � $�m T ] N eP2 E v 1
Á[ÂÂÃ

Proof: “ ! ” by Lemma 4.76; “  ” by Lemma 4.77. ý
4.13 Identity Functions

Identity functions play an important rôle in the programs transformations in Chap-
ter 6. We therefore present some utility functions and lemmas.

The utility function, � ( T�@ l ] Y , checks whether a given function name in a given
program refers to a syntactic identity function, i.e., a function whose body consists
only of a reference to the formal parameter.

Definitional Theorem 4.79� # P% f : � ( T�@ l ] Y P f îÿ� x : ��k�k�Z�l�$ T�@ l ] Y P f 2 Ø�ß . x %0Ò T ¼ ��m x 1
The purpose of identity functions is to serve as marks for a level of call depth.
This is stated in the following lemma.

Lemma 4.80 (Identity Functions Consume One Time-Step.)

� # N % e % P% E % v % I : ¾À � ( T�@ l ] Y PI !ç ������� T � � $�m T ] N .nÒ T�Ú ����� I e 1 PE v î. N §2 0 1=�ï������� T � � $�m T ] . ½ ��Ò N 1 ePE v è
ÁÃ
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Proof: Trivial. ý
For completeness we also prove that identity functions do not influence untimed
evaluation.

Lemma 4.81 (Identity Functions do not Influence Evaluation.)� # e % P% E % v % I : ç � ( T�@ l ] Y PI !.0������� T � � $�mp.gÒ T�Ú ����� I e 1 PE v îÿ������� T � � $�m ePE v 1 è
Proof: Utterly trivial. ý
Generally, identity functions are still identity functions after some replacement
has taken place in a program.

Lemma 4.82 (Identity Function Replacement Lemma.)

� # P1 % P2 % I % V % ea % eb : ¾¿¿À � ( T�@ l ] Y P1 I !m���$�� T $�m º V P1 P2 ea eb !.+# x : ea §2»Ò T ¼ ��m x 1�!� ( T�@ l ] Y P2 I

Á[ÂÂÃ
Proof: By rewriting with the definition of � ( T�@ l ] Y and using Lemma 4.24. ý
4.14 Functions

In order to describe the preconditions needed to ensure that replacement preserves
static correctness, we first need the following predicate that tests whether a func-
tion is called somewhere in an expression.

Definitional Theorem 4.83 (Test if Function is Used.)

�
¢£££££££££££¤ £££££££££££¥
# f % i :

@ l ] Y T Y���������( f .gÒ T ³ ] 9 i 1-2 F# f % o % e1 % e2 :
@ l ] Y T Y���������( f .nÒ T�Ø $ oe1 e2 1;2@ l ] Y T Y���������( f e1 � @ l ] Y T Y���������( f e2

...# f % f � % e % : @ l ] Y T Y���������( f .gÒ T�Ú ����� f � e 1;2. f � 2 f 1=� @ l ] Y T Y���������( f e# f % x % e1 % e2 :
@ l ] Y T Y���������( f .nÒ T ����9 xe1 e2 1;2@ l ] Y T Y���������( f e1 � @ l ] Y T Y���������( f e2

êë£££££££££££ì£££££££££££í
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We shall need a few lemmas concerning functions in the concatenation of two
programs. Firstly, the definition of

@ l ] Y69 � k ] & satisfies the following lemma about
the set of function names in the concatenation of two programs.

Lemma 4.84� # P1 % P2 :
@ l ] Y[9 � k ] &S. Í ½�½ Ò Þ�ã P1 P2 1;2 Í ½�½ Ò Þ�ã . @ l ] Y69 � k ] & P1 1�. @ l ] Y69 � k ] & P2 1

Proof: By list induction on P1. ý
Secondly, the check for rebindings of functions in a program is indifferent to the
order of bindings.

Lemma 4.85� # P1 % P2 : ] k T m�� y �j] (�&S. Í ½�½ Ò Þ�ã P1 P2 1Sî ] k T m�� y �?] (�&ò. Í ½�½ Ò Þ�ã P2 P1 1
Proof: By list induction on P1. ý
Thirdly, in a program binding more functions it is easier to satisfy the name usage
requirements as the following two simple lemmas show.

Lemma 4.86

� # e % F1 % F2 : ¾À .+# f : Î�Ò�Î f F1 !ªÎ�Ò�Î f F2 1;!Yj`���Y?Z T�@ l ] Y�& F1 e !Yj`���Y?Z T�@ l ] Y�& F2 e

ÁÃ
Proof: By structural induction on e. ý
Lemma 4.87

� # b % F1 % F2 : ¾À .+# f : Î�Ò�Î f F1 !«Î�Ò�Î f F2 1;!Y?`���Y[Z T ] � � ��& F1 b !Y?`���Y[Z T ] � � ��& F2 b

ÁÃ
Proof: By Lemma 4.86. ý
Just as for variables we have a function that generates new function names.

Definitional Theorem 4.88� ¨ . º � ] @ l ] Y;*n,�2 0 1# b % P :
º � ] @ l ] Y�. Ú�Ø�Þ Ð bP 1;2XÎ Í�ù .)Ð ú�Ú . Ù Ð�â b 141�. º � ] @ l ] Y P 1vü
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The following lemma states that
º � ] @ l ] Y works as intended.

Lemma 4.89 (genfunc property.)� # P : �¯.nÎ�Ò�Î¹. º � ] @ l ] Y P 1�. @ l ] Y69 � k ] & P 141
Proof: By specialising the following lemma to . º � ] @ l ] Y P 1 for f . ý
Lemma 4.90 � # P% f : . f © º � ] @ l ] Y P 1�! �¯.nÎ�Ò�Î f . @ l ] Y69 � k ] & P 1'1
Proof: By list induction on P. ý
4.15 Static Correctness

This section describes a theorem stating under what circumstances replacement
in a statically correct program produces another statically correct program. Fur-
thermore we show two lemmas that tell us that functions looked up in a statically
correct program use at most one binding in the environment, namely that of their
formal parameter.

The theorem states that static correctness is preserved as long as the target
expression is “nicer” than the source expressions, i.e., that it has no extra free
variables and any extra functions that it calls are known to be defined.

Theorem 4.91

� # P1 % P2 % V % ea % eb :
¾¿¿¿¿¿¿À
&[9���9 T k�Z P1 !m��6$�� T $�m º V P1 P2 ea eb !.+# x : ����m T�@ m���� xeb !«����m T�@ m���� xea 1-!# f : ç @ l ] Y T Y���������( f eb !@ l ] Y T Y���������( f ea �ÏÎ�Ò�Î f . @ l ] Y69 � k ] & P1 1�è !&[9���9 T k�Z P2

Á ÂÂÂÂÂÂÃ
Proof: The proof for this theorem is long, quite technical, but does not require
special insight. It is therefore omitted. ý
When we look up a function in a statically correct program that function is well-
behaved, i.e., it uses only the allowed variables and functions.
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Lemma 4.92

� # P% f % x % e : ¾À &?9���9 T k�Z P !.0��k�k�Z�l�$ T�@ l ] Y P f 2 Ø6ß . x % e 141;!Yj`���Y[Z T ] � � ��&ò. @ l ] Y69 � k ] & P 1�. f % x % e 1
ÁÃ

Proof: Simple list induction does not work here, as the set of statically correct
programs is not closed under the â�� function. Instead we rewrite with respect to
the definition of &?9���9 T k�Z and generalise over . @ l ] Y69 � k ] & P 1 . Then list induction
on P solves the problem. ý
We now use the previous lemma to prove what happens when a function looked
up in a statically correct program is evaluated. We find, not surprisingly, that the
only binding that matters in the environment is one binding the formal parameter.

Lemma 4.93

� # P% f % x % e : ¾¿¿À &[9���9 T k�Z P !.)��k�k�Z�l�$ T�@ l ] Y P f 2 Ø�ß . x % e 1'1-!# E % N % v % v � : ç ������� T � � $�m T ] N eP . Ú�Ø�Þ Ð�. x % v � 1 E 1 v î������� T � � $�m T ] N eP *ö. x % v � 1/, v è
Á[ÂÂÃ

Proof: By Lemmas 4.92 and 4.39. ý





Chapter 5

Self-Interpretation

Never express yourself more clearly
than you are able to think.

— NIELS BOHR, 1885–1962

5.1 The Importance of Self-Interpretation

This section exhibits a self-interpreter, i.e., an interpreter that interprets the lan-
guage it itself is written in. The reason for considering such an interpreter were
discussed in Section 1.4.2.

The notion of correctness for an interpreter that works with encoded data is
considered and the concrete self-interpreter is proven correct according to this
notion. The notion of correctness also considers non-termination and run-time
errors.

5.2 The Concrete Self-Interpreter

The concrete self-interpreter for the PEL language introduced in Chapter 3 to be
presented in this section is coded in the same style as a typical interpreter would
be coded in a statically typed language. As the language it interprets (and thus the
language that it is written in) is dynamically typed, the coding style might seem
peculiar, but we have our reasons:

95



96 Self-Interpretation� Although the language is dynamically typed it does not contain a means of
inspecting a value of unknown type. Thus at least the syntax of the program
being interpreted has to be coded in a way that allows this.� Part of the goal of studying the self-interpreter is to say something about
partial evaluation of typed languages. The self-interpreter is coded in a way
that would make it well-typed in a language equipped with a suitable type
discipline.

The following sections discuss the coding issues and the program text of the
interpreter.

5.2.1 Encoding of Syntax

The encoding of a program’s syntax as values can be done in many ways. But be-
cause the program argument to an interpreter is the one we want to be static (i.e.,
completely known), there appears to be no benefit for partial evaluation or for
ease of correctness proofs in using one encoding over another, subject to the con-
straint that the decoding obviously should be computable. (It should not be hard
to deduce computability of the decoding from existence of an interpreter using
that encoding.) Different encodings may have different efficiency characteristics,
but that is not an issue here.

In the following we shall see how the self-interpreter to be presented in Sec-
tion 5.2.5 encodes the syntax of the programs it interprets.

In the formalisation we shall arrange the situation such that all function names
and all variable names are just integers, which conveniently will be represented as
such. This leaves the encoding of program structure, expressions, and operators.

Encoding of Programs

Programs are essentially lists of function definitions and therefore coded as such.
More precisely, for the purpose of this definition extending programs to include
the empty program: �

prg . ε 1 2 � _�
prg . f x I e R p 1ÿ2 � A�A

f D A x D�� exp � e � H�H5D�� prg � p � H
The function

�
prg — defined on PEL expression and producing PEL values —

is realised by the HOL-function Y�k�(�� T $�m º . Note, that � and � as used here are
constructors of PEL’s value type and should not be confused with the contructors
of HOL’s built-in sum type (which is not explicitly used in this thesis).
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Encoding of Expressions

There are twelve different syntactic expression constructs, so the encoding of ex-
pressions is essentially going to be a simulation of twelve constructors in a lan-
guage with only two. The chosen way could be called the left-factorisation. In
this definition let � n be a short-hand for a sequence of n � ’s.�

exp . i 1þ2 � i�
exp . e1 o e2 1 2 �K� A �

oper � o � D A � exp � e1 � D�� exp � e2 � H�H�
exp . A e1

D e2
H 1 2 � 2 � A �

exp � e1 � D�� exp � e2 � H�
exp . @ &?9 e 1ÿ2 � 3 � � � exp � e ����
exp .:& ] ( e 1ÿ2 � 4 � � � exp � e ����
exp . �?] � e 1ÿ2 � 5 � � � exp � e ����
exp . �?] m e 1ÿ2 � 6 � � � exp � e ����

exp .7Y���&6� e k @ >4>4> 1ÿ2 � 7 � A �
exp � e � D A x � D A � exp � e �	� DA

xr
D A �

exp � er � H�H�H�H�H�
exp . x 1ÿ2 � 8 � x�

exp .0��m�m�k�m�1 2 � 9 � _�
exp . f e 1ÿ2 � 10 � A

f D�� exp � e � H�
exp .0����9 x I e1

�j] e2 � ] (�1 2 � 11 A
x D A � exp � e1 � D�� exp � e2 � H�H

The function
�

exp is realised by the HOL-function Y�k�(�� T � � $ .
Note that it is easy for a program to decode values constructed in this way by

using eleven nested Y���&�� -expressions with all the nesting in the � -branch.

Encoding of Operators

Operators are encoded in the same style as expressions, i.e., simulating four con-
structors using only two: �

oper . I 1ÿ2 � _�
oper . M 1ÿ2 �K� _�
oper . a 1ÿ2 �X�X� _�
oper . L 1ÿ2 �X�Q� _

The function
�

oper is realised by the HOL-function Y�k�(�� T k6$���m .

5.2.2 Encoding of Values

The choice of encoding for values is slightly, but only slightly, more sensitive than
encoding of syntax due to the fact that during partial evaluation we expect values
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to be unknown. There are four kinds of values: integers, pairs of values, left-
injected values, and right-injected values. It seems wise to use an encoding such
that the images of (1) the integers, (2) the pairs, and (3) the left- or right-injected
values are (easily) distinguishable. This means that the encoding shows the type
of the encoded value. Left-factorisation achieves this (when the kinds of values
are listed in the order above):�

val . i 1þ2 � i�
val . A v1

D v2
H 1þ2 �X� A �

val � v1 � D�� val � v2 � H�
val .g� v 1þ2 �Q�»� � � val � v ����
val .n� v 1þ2 �Q�K� � � val � v ���

The function
�

val is realised by the HOL-function Y�k�(�� T �����6l�� .

5.2.3 Encoding of Environments

The self-interpreter keeps track of values of bound variables by using an environ-
ment in the same way the inference rules do. An environment is a list and we will
use a simple encoding that encodes *g, as � _ and

Ú�Ø�Þ Ð as � . The variable names
are coded as numbers (they already are) and the values are encoded as above.�

env .4*g,+1 2 � _�
env . Ú�Ø�Þ Ð�. x % v 1 E 1 2 � A�A

x D�� valv
H5D��

envE H
The function

�
env is realised by the HOL-function Y�k�(�� T � ] � .

5.2.4 Example

As an example of how the encoding works, consider the tiny program@ �XIQ�dLN��R
Let

@
be encoded as C and � be encoded as G . Then the program will be coded as

the value� A�A C�D A GSD �Q� A �Q�X� _;D A �Q�Q�X�Q�K�Q�X�X� GSD�X�Q�X�Q�K�Q�X�X� G�H�H�H�H�D� _�H
The presence of a linear blow-up in size is normal for encodings; the factor is
somewhat large here because the target value system is quite limited.
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5.2.5 Self-Interpreter Program Text

Figures 10 through 13 show the actual program text of the self-interpreter. To ease
the presentation, a small amount of ad-hoc syntactic sugar has been added:

General tupling is used with the meaning that
A � C5D � GSD�h�h�h�D � ]5H is a shorthand

for
A � C�D A � G-D A h�h�h�D � ]�Hòh�h�h'H�H , i.e., right-associative pairing.

Multiple function parameters as in
@�A �	C�D�h�h�h�D)��]�HWI � are used as shorthands

for
@ �QI �-o where � is a fresh variable and �;o is � wrapped in a series

of ����9 -bindings picking out components of � . Note that the corresponding
sugaring at the other variable-binding places (i.e., ����9 and Y���&�� ) is not done.

Standard ML-isms like
@ l ] , T , and I�� have been used.

The above is an informal description only; the authoritative word on the desugared
version of the self-interpreter can be found in Appendix C which shows the actual
HOL-term used for the proofs. Note that the functions are shown in a different
order, except for the main function which defines the meaning.

Some notes on the coding are in order. The interpreter uses environments to
keep track of bound variables and the values they are bound to. These environ-
ments are represented as lists of pairs of variable names and values, where the
empty list is � _ and the “cons” operator is just � .

Error handling in the interpreter is very simple: in case of type errors, e.g.,
trying to take the first component of an integer, the interpreter will try to do the
same and thus fail as the object program would. In case of scope violations and
in case of an object program ��m�m�k�m being reached an explicit ��m�m�k�m construct will
be evaluated to signal the condition.

Furthermore, some functions need a little description:

Function pelint is the main function. It extracts the first function of the object
program, builds the initial environment for it, and starts the expression eval-
uator.

Functions int2val, pair2val, and sum2val are the tagging operators injecting
into the universal type. Note that these do not form an implementation
of
�

val as they only encode at top level.

Functions val2int, val2pair, and val2sum are the corresponding projections. If
the projections are used on ill-formed values an error is signalled.

Function eval op implements the binary integer operations. Note that it takes
two integers and returns a (universal) value. This is because the operators
do not return the same types of values.
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@ l ] $���� �?] 9 A $�m º D ����� HvI����9� � �?]»I `�(P$�m º�?] ������� A & ] (f& ] ( � � �?]pD l�$�(���9�� T � ] � A � _-D @ &?9f& ] ( � � �?]tD ����� H�D$�m º H� ] ( R@ l ] ������� A � � $�m D � ] � D $�m º H IY���&��O� � $�mKk @� h/��I��K�?] 9 G ����� ��Ï� h � CvI��Y���&��Q� C k @� h Ø � C � GNI��������� T k�$ A/@ &[9 Ø � C � G-D����� G��j] 9 A ������� A:@ &[9é& ] ( Ø � C � G-D � ] � D $�m º H�H�D����� G��j] 9 A ������� A & ] (f& ] ( Ø � C � G-D � ] � D $�m º H�H�H�Ó� h � GNI��Y���&6�O� G k @� h ��� I�� $�� � m G ����� A ������� A:@ &[9K��� D � ] � D $�m º H5D������� A & ] (X��� D � ] � D $�m º H�H�Ï� h � eOI��Y���&6�Q� e k @� h � I�� @ &[9 A ����� G $�� � m A ������� A � D � ] � D $�m º H�H�H�×� h � UOI��Y���&6�O� U k @� h � I�� & ] ( A ����� G $�� � m A ������� A � D � ] � D $�m º H�H�H�Ï� h ��
 I��Y���&6�Q��
Ok @� h � I�� &bl �=G ������� A ������� A � D � ] � D $�m º H�H�Ó� h � VNI��Y���&��P� V k @� h � I�� &bl �=G ������� A ������� A � D � ] � D $�m º H�H�Ï� h ��
 I��Y���&��Q��
Qk @� h � � � � � I��Y���&��P����� G &jl � A ������� A:@ &?9X� � � � � D � ] � D $�m º H�H k @� h � I�� ������� A/@ &?9é& ] (f& ] (X� � � � � Dl�$�(���9�� T � ] � A � ] � D@ &[9f& ] (X� � � � � D� H�D$�m º H�Ï� h � I�� ������� A & ] (f& ] (f& ] (f& ] (Q� � � � � Dl�$�(���9�� T � ] � A � ] � D@ &[9f& ] (& ] (f& ] (X� � � � � D� H�D$�m º H� ] (�Ï� h ��� I��
(continued)

Figure 10: Self-interpreter, part 1.
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(continued) Y���&��O���Kk @� h � I�� ��k�k�Z�l�$ T � ] � A � D � ] � H�Ï� h ��� I��Y���&��Q���Qk @� h T I�� ��m�m�k�m�Ó� h � C[_PI��Y���&6�O� C?_ k @� h @ � I������9����m y k�( EQI ��k�k�Z�l�$ T�@ l ] Y A/@ &?9 @ � D $�m º H�j] ������� A & ] (P����m y k�( E�Dl�$�(���9�� T � ] �A � _-D@ &[9O����m y k�( E~D������� A & ] ( @ � D � ] � D $�m º H�H5D$�m º H� ] (�Ï� h ����� I������9� CvI ������� A:@ &[9é& ] (O����� D � ] � D $�m º H�j] ������� A & ] (d& ] (O����� Dl�$�(���9�� T � ] � A � ] � D @ &[9O����� D � C�H�D$�m º H� ] (� ] (� ] (� ] (� ] (� ] (� ] (� ] (� ] (� ] (� ] (� ] ( R@ l ] ��k�k�Z�l�$ T � ] � A � D � ] � HWIY���&6�Q� ] �Kk @� h T I�� ��m�m�k�m�×� h ����� I��Y���&6� A � I @ &?9 A:@ &[9Q����� H�H k @� h T I�� ��k�k�Z�l�$ T � ] � A � D & ] (N����� H�Ó� h T I�� & ] ( A/@ &[9P����� H� ] (� ] ( R@ l ] l�$�(���9�� T � ] � A � ] � D ����m D ����� H I� A�A ����m D ����� H�D � ] � H�R
Figure 11: Self-interpreter, part 2.



102 Self-Interpretation@ l ]ó�?] 9 G ����� �NI � �rR@ l ] $�� � m G �����^$ I �X�Q$ R@ l ] &jl �	G �����K& I �Q� & R@ l ] ����� G��j] 9O� IY���&��N�»k @� h/��I��K��Ï� h8�QI�� ��m�m�k�m� ] ( R@ l ] ����� G $�� � mO� IY���&��N�»k @� h/��I�� ��m�m�k�m�Ï� h �~o I��Y���&��P�~o�k @� h $ I�� $�Ó� h0�QI�� ��m�m�k�m� ] (� ] ( R@ l ] ����� G &bl � � IY���&��N�»k @� h/��I�� ��m�m�k�m�Ï� h �~o I��Y���&��P�~o�k @� h $ I�� ��m�m�k�m�Ó� h & I�� &� ] (� ] ( R@ l ] ��k�k�Z�l�$ T�@ l ] Y A/@ D $�m º HvIY���&���$�m º k @� h T I�� ��m�m�k�m�Ï� h @ � � ½ I��Y���&6� A:@ I @ &[9 @ &?9 @ � � ½ H k @� h T I�� ��k�k�Z�l�$ T�@ l ] Y A/@ D & ] ( @ � � ½ H�Ï� h T I�� & ] ( @ &[9 @ � � ½� ] (� ] ( R@ l ] `�(K� IY���&��Q�Qk @� h T I�� ��m�m�k�m�Ï� h ��� I�� @ &[9K���� ] ( R
Figure 12: Self-interpreter, part 3.

Function eval is the expression evaluator — the heart of the self-interpreter. It
takes the complete object program as an extra argument in order to be able
to look up functions that are called. The function decodes the expression
and performs the object program’s operations by similar operations in the



Correctness of the Self-Interpreter 103@ l ] ������� T k6$ A k�$ D���C�D'��G�HWIY���&6�Qk�$dk @� h T I��Y���&6� A ��CvId��G�H k @� h T I�� &bl �=G ����� A � A �?] 9 G ����� _�H�H�Ó� h T I�� &bl �=G ����� A � A �?] 9 G ����� _�H�H� ] (�×� h k6$to I��Y���&6�Ok�$po�k @� h T I��K�?] 9 G ����� A ��CvMd��G�H�Ï� h k6$to�o I��Y���&6�Qk�$to�oÑk @� h T I��d�j] 9 G ����� A ��C�a»��G�H�Ó� h T I��d�j] 9 G ����� A ��CNLX��G�H� ] (� ] (� ] ( R
Figure 13: Self-interpreter, part 4

self-interpreter. Operations are wrapped by suitable tagging and untagging
stemming from the universal encoding.

5.3 Correctness of the Self-Interpreter

Intuitively, an interpreter is correct if evaluation via the interpreter produces the
same result and direct evaluation for any program and for any possible input:�j] 9 is correct (ver. 1)  "! # P% i : * * P , ,7. i 1ò2<* * �?] 9ò, ,/. P% i 1?> (5.1)

There are complications, however.� Equation 5.1 requires that the application of �?] 9 to P and i is valid. In a
language like Scheme, where all values and all programs are S-expressions,
this is not a problem but in a language like Standard ML, it is not possible
since both �?] 9	. P% 4 1 and �?] 9	. P%b. 2 % 3 141 would have to be acceptable. This
means that �?] 9 should have type # τ1 % τ2 >�.+$�m º � τ1 1 z τ2 effectively barring
it from inspecting the input value. Thus, we must encode input values when
working with a typed language.� If we restrict ourselves to constant-valued Ps, i.e., programs that do not in-
spect their input values, then we see that the interpreter must also be able
to produce both 1 and . 2 % 3 1 (if these are values for the language). No rea-
sonable typed language will allow one program, �j] 9 , to produce two such
values from nothing but a (monomorphic) program. Output values must
therefore likewise be encoded in the typed setting.
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same time and when the two sides are defined their values are identical.

To be able to describe typed languages we must take the necessary encoding into
account, i.e., the fact that the interpreter work with encodings of i and not i it-
self. Assume that the function Y6� describes the encoding of both input and output
values and that the function Y?$ encodes programs. Then we have the following
situation:�j] 9 is correct (ver. 2)  "! # P% i : Y6�¹.4* * P , ,/. i 141r23* * �?] 9r, ,/.7Y?$ . P 1?%�Y6�t. i 141?> (5.2)

Assuming, quite reasonably, that the encoding operations are strict and total then
the encoding operation do not add to or subtract from the need to compare the
sides with respect to definedness also. Equation 5.2 corresponds to requiring the
following diagram be commutative:

i
* * P , ,¦�¦�¦�¦5¦�¦�¦5¦�¦�¦5¦�¦�¦�¦�¦�¦5¦�¦�¦5¦�¦�¦5¦�¦ z oY6� �������

������� Y6�
ic ¦�¦�¦�¦5¦�¦�¦5¦�¦�¦5¦�¦�¦�¦�¦�¦5¦�¦�¦5¦�¦�¦5¦�¦ z

λx >�* * �?] 9r, ,/.7Y?$ P% x 1 oc

In the following we will show this correctness theorem for the self-interpreter in
Figures 10 through 13 together with the encoding operations

�
prg and

�
val, i.e.,

we will prove that this diagram is commutative:

i
* * P , ,¦�¦�¦�¦5¦�¦�¦5¦�¦�¦5¦�¦�¦�¦�¦�¦5¦�¦�¦5¦�¦�¦5¦�¦ z o�

val

�������
������� � val

ic ¦�¦�¦�¦5¦�¦�¦5¦�¦�¦5¦�¦�¦�¦�¦�¦5¦�¦�¦5¦�¦�¦5¦�¦ z
λx >+* *:& �?] 9r, ,/. � prgP% x 1 oc

5.3.1 Organisation of the Correctness Proof

Even though the correctness condition is expressed in terms of the semantics for
programs it is no surprise that the key to its proof lies in proving a more general
lemma for the expression semantics. But before doing this it is convenient to state
and prove properties of several of the self-interpreter’s functions.
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We therefore start by proving the correctness of the interpreter’s ��k�k�Z�l�$ T�@ l ] Y
and ��k�k�Z�l�$ T � ] � functions. These two functions are recursive and hence simple
unfolding where they are used is not an option. We then prove the correctness of������� T k6$���m which contains a case split (on the operator) that would be awkward if
simply unfolded. Having done that we are ready to prove correctness as outlined
above.

We conclude by proving the interpreter statically correct. Note that this fact
will not be used in the proof of evaluation correctness.

5.3.2 The Interpreter’s “ �����������������! �" ” Function

The function ��k�k�Z�l�$ T�@ l ] Y searches through an encoded program for a given func-
tion. It returns the formal parameter and the body expression as a pair. In the
HOL-encoding of the self-interpreter, see Appendix C, the function has the num-
ber 11.

The following shows that in a sense the self-interpreter’s ��k�k�Z�l�$ T�@ l ] Y func-
tion works like the semantic function ��k�k�Z�l�$ T�@ l ] Y thereby earning its name:

Lemma 5.1 ( ��k�k�Z�l�$ T�@ l ] Y )

� # P% f % v :
¾¿¿¿¿¿À
� x % e : ç . Ø�ß . x % e 1;2é��k�k�Z�l�$ T�@ l ] Y & �j] 9 11 1��������� T � � $�m e & �j] 9c*ö. x % ¼ T�½ � � mc. ¼ T ³ ] 9 f 1�./Y�k�(�� T $�m º P 1'1:, v èî � x % e : ç . Ø6ß . x % e 1;2é��k�k�Z�l�$ T�@ l ] Y P f 1=�. v 2 ¼ T�½ � � mt. ¼ T ³ ] 9 x 1�./Y�k�(�� T � � $ e 141øè

Á[ÂÂÂÂÂÃ
Proof: List induction on the program. The base case, *n, , is trivial. The induc-
tion step,

Ú�Ø�Þ Ðp. f � % x � % e � 1 T , needs two cases: if f 2 f � then the case follows by
reduction; if f §2 f � then the case follows by the induction hypothesis. ý
5.3.3 The Interpreter’s “ ��������������#$ &% ” Function

The function ��k�k�Z�l�$ T � ] � in the self-interpreter searches through an encoded en-
vironment for a given variable. It returns the corresponding value. In the HOL-
encoding of the self-interpreter, see Appendix C, the function has the number 10.

The following lemma shows that in a sense the self-interpreter’s ��k�k�Z�l�$ T � ] �
function works like the semantic function ��k�k�Z�l�$ T � ] � .
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Lemma 5.2 ( ��k�k�Z�l�$ T � ] � )

� # E % x % v :

¾¿¿¿¿¿¿¿À
� x � % e � : ¾À . Ø�ß . x � % e � 1;2f��k�k�Z�l�$ T�@ l ] Y & �?] 9 10 1��������� T � � $�m e � & �?] 9*ö. x � % ¼ T�½ � � mt. ¼ T ³ ] 9 x 1�.7Y�k�(�� T � ] � E 141/, v

ÁÃî � v � : ç . Ø�ß v � 2d��k�k�Z�l�$ T � ] � E x 1��. v 2óY�k�(�� T �����6l�� v � 1 è
Á ÂÂÂÂÂÂÂÃ

Proof: List induction on the environment. The base case, *g, , is trivial. The in-
duction step,

Ú�Ø�Þ Ð~. x � % v � 1 E � , needs two cases: if x 2 x � then the case follows by
reduction; if x §2 x � then the case follows by the induction hypothesis. ý
5.3.4 The Interpreter’s “ #�%('!�����$� ” Function

The function ������� T k�$ in the self-interpreter is a function that given two integers
and an encoded operator performs the corresponding binary operation and returns
the result as an encoded value. In the HOL-encoding of the self-interpreter, see
Appendix C, the function has the number 12.

The following lemma shows that in a sense the self-interpreter’s ������� T k�$���m
function works like the semantic function ������� T k�$���m thereby earning its name:

Lemma 5.3 ( ������� T k�$���m )

� # o % i1 % i2 % v :
¾¿¿¿¿¿À � x % e : ¾À . Ø6ß . x % e 1-2é��k�k�Z�l�$ T�@ l ] Y¡& �?] 9 12 1=�������� T � � $�m e & �?] 9\*ä. x % ¼ T�½ � � mt./Y�k�(�� T k�$���m o 1. ¼ T�½ � � mt. ¼ T ³ ] 9 i2 1�. ¼ T ³ ] 9 i2 141'1:, v

ÁÃî . v 2 Y�k�(�� T �����6l���.0������� T k6$���m oi1 i2 141
Á[ÂÂÂÂÂÃ

Proof: By structural case analysis on the operator. ý
5.3.5 The Interpreter’s “ ������� ” Function

Not surprisingly the ������� function of the self-interpreter is harder to prove correct
than any of the other functions. It turns out that it is necessary to invoke the
nested-call timed semantics in order to prove a crucial lemma for the correctness.

The following lemma shows that if the ������� T � � $�m predicate holds for certain
arguments then evaluation of the interpreter’s ������� function could have been used
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to deduce this fact. Since the interpreter does evaluation using more steps than
direct evaluation this is the relatively easy part. In the HOL-encoding of the self-
interpreter, see Appendix C, the function has the number 8.

Lemma 5.4 (First
���	���

Lemma.)

� # e % P% E % v :
¾¿¿¿¿¿¿À
������� T � � $�m ePE v !
� x � % e � : ¾¿¿¿¿À

. Ø6ß . x � % e � 1�2d��k�k�Z�l�$ T�@ l ] Y®& �j] 9 8 1=�������� T � � $�m e � & �j] 9*ö. x � % ¼ T�½ � � mt./Y�k�(�� T � � $ e 1�. ¼ T�½ � � m.7Y�k�(�� T � ] � E 1�./Y�k�(�� T $�m º P 14141:,./Y�k�(�� T �����[l�� v 1
Á ÂÂÂÂÃ
Á ÂÂÂÂÂÂÃ

Proof: By strong rule induction. For each case the Y�k�(�� T � � $ function is expanded
and the expression is reduced leaving only the relevant branch of ������� ’s nestedY���&6� -structure. Each branch is then handled in the following way:

Case Ò T ³ ] 9 i: By unfolding of call to �?] 9 G ����� .
Case Ò T�Ø $ oe1 e2: By unfolding of calls to ����� G��?] 9 . Then by induction hypothe-

sis and Lemma 5.3.

Case Ò T�½ � � m e1 e2: By unfolding of call to $�� � m G ����� . Then by induction hypoth-
esis.

Cases Ò T�Ù &?9 e and Ò T Ð ] ( e: By unfolding of call to ����� G $�� � m . Then by induction
hypothesis.

Cases Ò T ³ ] � e and Ò T ³ ] m e: By unfolding of call to &bl �	G ����� . Then by induction
hypothesis.

Cases Ò T�Ú ��&�� ex � e � xr er [left,right]: By unfolding of the calls to ����� G &jl � and tol�$�(���9�� T � ] � . Then by induction hypothesis.

Case Ò T ¼ ��m x: By Lemma 5.2.

Case Ò T ����9 xe1 e2: By unfolding of call to l�$�(���9�� T � ] � . Then by induction hy-
pothesis.

Case Ò T�Ú ����� f e: By Lemma 5.1 and unfolding of call to l�$�(���9�� T � ] � . Then by
induction hypothesis.

The theorem now follows from Theorem 3.18. ý
The implication in the other direction is harder to prove because direct evaluation
needs fewer evaluation steps than evaluation via the interpreter. We therefore start
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out by proving the following lemma, which uses the nested-call timed semantics
instead. After this we will use the approximation property of the nested-call timed
semantics, see Section 4.4, to prove the lemma we really need.

Furthermore, this lemma is slightly stronger than simply the opposite implica-
tion of Lemma 5.4. Experience shows that it is necessary to prove — in advance
or simultaneously — that any result from the interpreter is a properly encoded
value (provided that the inputs have the right form). Note that this is essentially a
type property.

Lemma 5.5 (Second
���=���

Lemma.)

� � x � % e � : ¾¿¿¿¿¿¿¿À
. Ø6ß . x � % e � 1;2f��k�k�Z�l�$ T�@ l ] Y & �j] 9 8 1=�
# N % e % P% E % vc :

¾¿¿¿¿¿À
������� T � � $�m T ] N e � & �?] 9*ä. x � % ¼ T�½ � � m\./Y�k�(�� T � � $ e 1�. ¼ T�½ � � m.7Y�k�(�� T � ] � E 1�./Y�k�(�� T $�m º P 14141:, vc!� v : ������� T � � $�m ePE v �J. vc 2óY�k�(�� T �����6l�� v 1

Á[ÂÂÂÂÂÃ
Á ÂÂÂÂÂÂÂÃ

Proof: The existence of x � and e � such that the first conjunct is satisfied is first
proven by brute-force expansion of & �?] 9 ’s and ��k�k�Z�l�$ T�@ l ] Y ’s definitions.

We now prove that the resulting x � and e � satisfy the second conjunct also. This
is done by (numeric) induction on N. The base case is trivial as the antecedent is
always false (because every evaluation of ������� T � � $�m T ] includes a function call).

The numeric induction case is handled by structural induction on the expres-
sion. Every case has the call to Y�k�(�� T � � $ expanded and is reduced. Again,
this leaves us with only the relevant branch of ������� ’s nested Y���&�� -structure. We
unfold all calls to �?] 9 G ����� , ����� G��?] 9 , $�� � m G ����� , ����� G $�� � m , &bl �=G ����� , ����� G &jl � ,
and l�$�(���9�� T � ] � . This leaves the following cases:

Case Ò T ³ ] 9 i: Trivial.

Case Ò T�Ø $ oe1 e2: By Lemma 4.17 and the structural induction hypothesis. Then
by structural case analysis on the results obtained by evaluating the subex-
pressions directly. Finally by Lemma 4.12 and Lemma 5.4.

Case Ò T�½ � � m e1 e2: By Lemma 4.17 and the structural induction hypothesis.

Cases Ò T�Ù &?9 e and Ò T Ð ] ( e: By Lemma 4.17 and the structural induction hypoth-
esis. Then by structural case analysis on the result obtained by evaluating
the subexpression directly.

Cases Ò T ³ ] � e and Ò T ³ ] m e: By Lemma 4.17 and the structural induction hypoth-
esis.
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Case Ò T�Ú ��&6� ex � e � xr er: By Lemma 4.17 and the structural induction hypothe-
sis. Then by structural case analysis on the result obtained by evaluating e
directly.

Case Ò T ¼ ��m x: By Lemmas 4.12 and 5.2.

Case Ò T Ò�m�m�k�m : Trivial.

Case Ò T ����9 xe1 e2: By Lemma 4.17 and the structural induction hypothesis.

Case Ò T�Ú ����� f e: The antecedent, the structural induction hypothesis, Lemmas
4.12 and 5.1 handle the evaluation of the argument. The numeric induction
hypothesis and Lemma 4.17 handle the evaluation of the body.

The theorem now follows from Theorem 3.8. ý
We are now able to prove (essentially) the opposite implication of 5.4:

Lemma 5.6 (Third
���=���

Lemma.)

� � x �+% e � : ¾¿¿¿¿¿¿¿À
. Ø�ß . x � % e � 1;2f��k�k�Z�l�$ T�@ l ] Y & �?] 9 8 1��
# e % P% E % vc :

¾¿¿¿¿¿À
������� T � � $�m e � & �j] 9*ä. x � % ¼ T�½ � � mc./Y�k�(�� T � � $ e 1�. ¼ T�½ � � m.7Y�k�(�� T � ] � E 1�.7Y�k�(�� T $�m º P 14141:, vc!� v : ������� T � � $�m ePE v �J. vc 2óY�k�(�� T �����6l�� v 1

Á[ÂÂÂÂÂÃ
Á[ÂÂÂÂÂÂÂÃ

Proof: By Lemmas 5.5 and 4.15. ý
The three ������� lemmas have now cleared the road for the following theorem stat-
ing that ������� is correct. (One could easily eliminate the existential quantifier on x �
and e � but that would require explicitly stating the body of ������� instead; that term
is large so this logically equivalent version is used instead.)

Theorem 5.7 (Correctness of
���	���

.)

� # e % P% E % v :
¾¿¿¿¿¿¿À
������� T � � $�m ePE v î
� x � % e � : ¾¿¿¿¿À

. Ø6ß . x � % e � 1�2d��k�k�Z�l�$ T�@ l ] Y®& �j] 9 8 1=�������� T � � $�m e � & �j] 9*ä. x � % ¼ T�½ � � mc./Y�k�(�� T � � $ e 1�. ¼ T�½ � � m.7Y�k�(�� T � ] � E 1�./Y�k�(�� T $�m º P 14141:,./Y�k�(�� T �����[l�� v 1
Á[ÂÂÂÂÃ
Á[ÂÂÂÂÂÂÃ

Proof: By Lemmas 5.4 and 5.6. ý
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5.3.6 Main Correctness Results

The lemmas of Section 5.3.5 are for expressions but since the semantics of a pro-
gram is basically the semantics of its first function body we are now ready to
state and prove the correctness of the interpreter itself. Since the formalisation
uses a predicate and not a partial function the correctness result is split into three
theorems.

Theorem 5.8 (Self-Interpreter Evaluates Correctly.)

� # P% vin % vout : ¾À ������� T $�m º Pvin vout î������� T $�m º & �?] 9\. ¼ T�½ � � mc./Y�k�(�� T $�m º P 1�./Y�k�(�� T �����[l�� vin 1'1./Y�k�(�� T �����[l�� vout 1
ÁÃ

Proof: Structural case analysis on the program. Case *n, (the empty program intro-
duced by the formalisation) is trivial. Case

Ú�Ø�Þ Ð H T is proven easily by reduction,
by unfolding calls to `�( and l�$�(���9�� T � ] � , and using Theorem 5.7. ý
Theorem 5.9 (Self-interpreter Produces Only Correct Results)

� # P% vin % vc
out : ¾À ������� T $�m º & �j] 9\. ¼ T�½ � � mc./Y�k�(�� T $�m º P 1�./Y�k�(�� T �����6l�� vin 141 vc

out!� vout : vc
out 2 Y�k�(�� T �����[l�� vout

ÁÃ
Proof: Structural case analysis on the program. Case *n, (the empty program intro-
duced by the formalisation) is trivial. Case

Ú�Ø�Þ Ð H T is proven easily by reduction,
by unfolding calls to `�( and l�$�(���9�� T � ] � , and using Theorem 5.7. ý
Theorem 5.10 (Self-Interpreter Has Correct Termination Properties.)

� # P% vin :

) � vout : ������� T $�m º Pvin vout î� vc
out : ������� T $�m º & �j] 9+* ¼ T�½ � � mc./Y�k�(�� T $�m º P 1�./Y�k�(�� T �����[l�� vin 1-, vc

out .
Proof: By Theorems 5.8 and 5.9. ý
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5.3.7 Static Correctness

The self-interpreter is not only dynamically correct as proven in the previous sec-
tions; it is also statically correct:

Theorem 5.11 � &[9���9 T k�Zô& �j] 9
Proof: By brute-force expansion of &?9���9 T k�Z and the utility functions it uses. ý
Note that the proof of dynamic correctness is completely independent of the proof
of static correctness. It would, in fact, be simple to modify the self-interpreter in
such a way that the dynamic properties were unchanged while the static properties
were ruined.

5.3.8 Typing

The self-interpreter can be given a type according to the definitions in Section 3.7.
If we define the following shorthands

SintVal q µ t0 > �?] 9-��.'. t0 � t0 1=�X. t0 � t0 141 (5.3)

SintOp q �j] 9-��. �j] 9-��. �j] 9�� �?] 9�141 (5.4)

SintExp q µ t1 > �?] 9 (5.5)� .4. SintOp � . t1 � t1 141� .4. t1 � t1 1� . t1� . t1� . t1� . t1� .'. t1 � .'� Var ��� . t1 � .4� Var ��� t1 1414141� .4� Var �� . �j] 9� .4.'� Func ��� t1 1� .4.4� Var �~� . t1 � t1 14141'141414141'141414141
SintEnv q µ t2 > �?] 9-��.'.4� Var �~� SintVal 1�� t2 1 (5.6)

SintPrg q µ t3 > �?] 9-��.'.4� Func �~� .4� Var �~� SintExp 141�� t3 1 (5.7)

where � Var � and � Func � are used for �?] 9 (the representaion of those names), then
we can assign types to every function in the following way.
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Function Argument Result$���� T �?] 9 SintPrg � SintVal SintVal�j] 9 G ����� �j] 9 SintVal����� G��?] 9 SintVal �j] 9$�� � m G ����� SintVal � SintVal SintVal����� G $�� � m SintVal SintVal � SintVal&bl �	G ����� SintVal � SintVal SintVal����� G &jl � SintVal SintVal � SintVal������� SintExp � . SintEnv � SintPrg 1 SintVall�$�(���9�� T � ] � SintEnv � .4� Var �~� SintVal 1 SintEnv��k�k�Z�l�$ T � ] � � Var ��� SintEnv SintVal��k�k�Z�l�$ T�@ l ] Y � Func �~� SintPrg � Var �~� SintExp������� T k6$ SintOp � . �?] 9­� �j] 9�1 SintVal`�( SintPrg � Func �~� .4� Var ��� SintExp 1
Theorem 5.12 (Self-Interpreter is Well-Typed.)� $�m º�T `���& T 9 E $��¯& �?] 9 & �j] 9 T 9 E $��
Proof: By construcing the type derivation tree. ý
(This proof is gigantic. The fact that the expression typing is not syntax directed
makes automation hard — at least when memory usage must be controlled.)

5.4 Final Note

The interpreter in Figures 10 through 13 is correct as proven in the previous sec-
tions. It has, however, never been run and therefore never tested.



Chapter 6

Program Transformations

Are my methods unsound?
— COL. WALTER E. KURTZ, Apocalypse Now, 1979

In this section we shall discuss, present, and prove the correctness of a number of
program transformations. Later, in Chapter 7, we shall see how these can be com-
bined to do the work of a partial evaluator. the following table gives an overview
of the transformations.

Sec. Transformation Two-Way? Repl?
6.1 Extended constant fold, i.e., elimination of

neighbouring producer and consumer
Yes Yes

6.2 Alpha conversion Yes Yes
6.3 Unfolding of ����9 bindings Yes Yes
6.4 Folding (introduction of) ����9 bindings No [1] Yes
6.5 Moving identity-function calls Yes Yes
6.6 Elimination of calls to identity functions No Yes
6.7 Moving function argument from ����9 to call Yes Yes
6.8 Unfolding a function call Yes Yes
6.9 Using old definition of function to perform

folding of function call
Yes Yes

6.10 Removing unused function definitions No [2] No
6.11 Adding a function definition Yes No

[1] Yes, under certain conditions [2] Reverse operation is two-way.

“Repl?” means that the program transformation is described in terms of replacing
one subexpression by another. “Two-Way?” means that the source and target pro-
grams will be in both the �b� $�m�k���� � � ] 9 and �ø� $�m�k���� � � ] 9�� relations. This, as we
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shall see in Sections 6.9 and 7.6, means that the transformations can be chained
while still allowing function call folding to be used freely. Program transforma-
tions that are not two-way are for use in a clean-up phase at the end.

6.1 Extended Constant Fold

Constant folding is normally the replacement of expressions like /10325476 with a
constant expression, 8 in situ. It is the closeness of the constants (“the produc-
ers”) to the addition operator (“the consumer”) that makes this operation straight-
forward. In the work we shall define constant folding to include several other
situation where the consumer of a value is located next to the producer or produc-
ers of that value:

Source expression Target expressionA
i1 o i2

H z �����[l�� G � � $�mp.0������� T k�$���m oi1 i2 1@ &[9 A
e1
D e2
H z ����9 x I e2

�j] e1 � ] (& ] ( A
e1
D e2
H z ����9 x I e1

�j] e2 � ] (Y���&���� e k @ � h x � a�� e �K� h�h�h � ] ( z ����9 x � I e �?] e ��� ] (Y���&���� e k @ h�h�h �Ï� h xr
a�� er � ] ( z ����9 xr

I e �?] er � ] (
The different x’s here are fresh variables with respect to the expression for which
x is in scope. Note that the transformation of

@ &[9 A
e1
D e2
H relies on the fact that

evaluation order does not matter.

Program P1
...

. . .
@ &?9 A

e1
D e2
H . . .

...

imp 9:;:<:>=
imp 9? :3:�: Program P2

...
. . . ����9 x I e2

�j]
e1 � ] ( . . .
...

(example for
@ &[9 )

In the above constant folding we carefully avoid changing termination prop-
erties by inserting ����9 -bindings in the

@ &[9 - and & ] ( -cases. A separate program
transformation (namely ����9 -unfolding) can be used to eliminate that ����9 under
certain conditions.

The function Y�&?9 T�@ k���( realises these transformations and — in order to make
the function total — passes anything else:



Extended Constant Fold 115

Definitional Theorem 6.1 (Constant Folding.)

�
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# i : Y�&?9 T�@ k���(t.nÒ T ³ ] 9 i 1;2<.gÒ T ³ ] 9 i 1# o % e1 % e2 : Y�&[9 T�@ k���(p.gÒ T�Ø $ oe1 e2 1;2.)� i1 % i2 : . e1 2»Ò T ³ ] 9 i1 1��J. e2 2XÒ T ³ ] 9 i2 1'1z .g�����[l�� G � � $�mp.0������� T k�$���m o .0� � $�m G��?] 9 e1 1�.0� � $�m G��?] 9 e2 14141��.gÒ T�Ø $ oe1 e2 1# e1 % e2 : Y�&[9 T�@ k���(p.gÒ T�½ � � m e1 e2 1;23.gÒ T�½ � � m e1 e2 1# e : Y�&?9 T�@ k���(t.gÒ T�Ù &[9 e 1�2.)� e1 % e2 : e 2»Ò T�½ � � m e1 e2 1z Ò T ����9\. º � ] ����mt./Yj` � ��( 1 e 141�.7Y?` � ��( 2 e 1�./Yj` � ��( 1 e 1��.gÒ T�Ù &[9 e 1# e : Y�&?9 T�@ k���(t.gÒ T Ð ] ( e 1�2.)� e1 % e2 : e 2»Ò T�½ � � m e1 e2 1z Ò T ����9\. º � ] ����mt./Yj` � ��( 2 e 141�.7Y?` � ��( 1 e 1�./Yj` � ��( 2 e 1��.gÒ T Ð ] ( e 1# e : Y�&?9 T�@ k���(t.gÒ T ³ ] � e 1�2õ.gÒ T ³ ] � e 1# e : Y�&?9 T�@ k���(t.gÒ T ³ ] m e 1�2õ.gÒ T ³ ] m e 1# e % x � % e � % xr % er : Y�&[9 T�@ k���(p.gÒ T�Ú ��&�� ex � e � xr er 1-2.)� e � > e 2»Ò T ³ ] � e � 1 z Ò T ����9 x � ./Yj` � ��( 1 e 1 e ���.4.)� e � > e 2»Ò T ³ ] m e � 1 z Ò T ����9 xr ./Yj` � ��( 1 e 1 er��.gÒ T�Ú ��&6� ex � e � xr er 141# x : Y�&[9 T�@ k���(~.gÒ T ¼ ��m x 1�23.nÒ T ¼ ��m x 1Y�&?9 T�@ k���( Ò T Ò�m�m�k�m­2KÒ T Ò�m�m�k�m# f % e : Y�&?9 T�@ k���(t.nÒ T�Ú ����� f e 1;23.gÒ T�Ú ����� f e 1# x % e1 % e2 : Y�&[9 T�@ k���(p.gÒ T ����9 xe1 e2 1;23.gÒ T ����9 xe1 e2 1

êë££££££££££££££££££££££££££££££££££££££££££££££ì££££££££££££££££££££££££££££££££££££££££££££££í
The following theorem states that an expression is equivalent to its constant fold-
ing in all contexts:

Theorem 6.2 (Constant Fold Local Improvement.)� # e % P% V : ç ��k�Y���� T �ø� $�m�k���� � � ] 9 V Pe .7Y�&[9 T�@ k���( e 1=���k�Y���� T �ø� $�m�k���� � � ] 9 V P ./Y�&[9 T�@ k���( e 1 e è
Proof: Structural case analysis on the expression followed by expansion of calls
to Y�&[9 T�@ k���( and conditional case analysis leaves 17 subgoals, 12 of which are
trivially handled by reflexivity of ��k�Y���� T �ø� $�m�k���� � � ] 9 . The remaining five goals,
corresponding to the five cases where the expressions are transformed, are rewrit-
ten with respect to Lemma 4.62 and thereafter handled in the following ways.
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Case Ò T�Ø $ : Handled by Lemma 4.49.

Cases Ò T�Ù &?9 and Ò T Ð ] ( : Handled by Lemma 4.44.

Cases Ò T�Ú ��&�� [left,right]: Handled by reduction. ý
The above local improvement theorem generalises nicely to a global theorem.

Theorem 6.3 (Constant Fold Correctness Theorem.)� # e % P1 % P2 % V : ç m���$�� T $�m º V P1 P2 e ./Y�&[9 T�@ k���( e 1;!. �b� $�m�k���� � � ] 9 P1 P2 � �b� $�m�k���� � � ] 9 P2 P1 1ïè
Proof: By Theorems 6.2 and 4.72. ý
Constant folding does not introduce extra free variables in a term nor does it in-
troduce extra function calls. Static correctness is therefore preserved.

Theorem 6.4 (Constant Fold Preserves Static Correctness.)

� # e % P1 % P2 % V : ¾À &?9���9 T k�Z P1 !m���$�� T $�m º V P1 P2 e ./Y�&?9 T�@ k���( e 1;!&?9���9 T k�Z P2

ÁÃ
Proof: By Theorem 4.91. ý
6.2 Alpha Conversion

Programs contain variable names and from time to time it is convenient to be able
to change names. For example, as explained in Section 4.7, the particular instance
of substitution used here will rename all bound variables of the term being substi-
tuted into names generated by

º � ] ����m . In examples, we do not want to be too spe-
cific on what these names are, since the only thing we want to know about

º � ] ����m
is Theorem 4.30. Following substitution up with changing the names to something
well-chosen makes examples significantly more readable.

Program P1
...

. . . e1. . .
...

imp 9:;:<:>=
imp 9? :3:�: Program P2

...
. . . e2. . .

...

(provided ���6$�`�� e1 e2 holds)
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Just as with the definition of substitution it turns out that formalising the def-
inition of alpha convertibility is non-trivial because names are explicit. But the
following definition works by defining that two expressions are alpha convertible
if they have the same structure and if we can do renaming in the second making it
identical to the first. Note that the definition is asymmetrical.1

Definitional Theorem 6.5 (Alpha Equivalence.)

�
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# i % e � : ���6$�`��t.nÒ T ³ ] 9 i 1 e � 23. e � 2»Ò T ³ ] 9 i 1# o % e1 % e2 % e � : ���[$�`��~.gÒ T�Ø $ oe1 e2 1 e � 2� e �1 % e �2 : . e � 2KÒ T�Ø $ oe �1 e �2 1=�ï���[$�`�� e1 e �1 �ï���6$�`�� e2 e �2
...# x % e � : ���[$�`��t.gÒ T ¼ ��m x 1 e � 2<. e � 2KÒ T ¼ ��m x 1# eb % x � % e � % xr % er % e � : ���[$�`��t.gÒ T�Ú ��&�� eb x � e � xr er 1 e � 2� e �b % x �� % e �� % x �r % e �r : . e � 2»Ò T�Ú ��&6� e �b x �� e �� x �r e �r 1=�ï���6$�`�� eb e �b ����[$�`�� e � .gm�� ] � � � T�@ m���� x �� x � .gm�� ] � � � T y k�l ] (~.gÒ T ¼ ��m x � 1 e �� 1'1=�.4. x � 2 x �� 1=���¯.g����m T�@ m���� x � e �� 141=����[$�`�� er .gm�� ] � � � T�@ m���� x �r xr .nm�� ] � � � T y k�l ] (~.gÒ T ¼ ��m xr 1 e �r 141=�.4. xr 2 x �r 1=���¯.g����m T�@ m���� xr e �r 141=�
...# x % e1 % e2 % e � : ���[$�`��t.gÒ T ����9 xe1 e2 1 e � 2� x � % e �1 % e �2 : . e � 2»Ò T ����9 x � e �1 e �2 1��ï���6$�`�� e1 e �1 ����[$�`�� e2 .gm�� ] � � � T�@ m���� x � x .nm�� ] � � � T y k�l ] (~.gÒ T ¼ ��m x 1 e �2 1'1=�.4. x 2 x � 1����¯.g����m T�@ m���� xe �2 141
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Note that this definition of alpha equivalence is solely a definition for expressions
and not for programs. We will thus not be able to use this to change the name of a
formal parameter of a function. This quirk turns out to have no significance. (The
obvious theorems about such renaming hold and some of them have even been
proven. There is, however, no use for them.)

We will now prove that alpha equivalent expressions have identical evaluation
properties.

Lemma 6.6 (Alpha Equivalent Terms Evaluate Identically.)� # N % ea % eb % P% E % v : ���6$�`�� ea eb ! ç ������� T � � $�m T ] N ea PE v î������� T � � $�m T ] N eb PE v è
1We shall call two expressions for which ���6$�`�� e1 e2 holds alpha equivalent even though we

will not prove that the relation is an equivalence relation. We only the need the property that such
two terms have identical evaluation properties.
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Proof: By structural induction on ea. The non-trivial cases, ����9 and Y���&6� as usual,
exactly match Lemma 4.47. ý
Given this lemma it is straightforward to prove the corresponding local and global
improvement theorems.

Theorem 6.7 (Alpha Equivalence Locally Improves Two-Way.)� # e1 % e2 % P% V : ç ���6$�`�� e1 e2 !��k�Y���� T �b� $�m�k���� � � ] 9 V Pe1 e2 ����k�Y���� T �ø� $�m�k���� � � ] 9 V Pe2 e1 è
Proof: By Lemmas 4.62 and 6.6. ý
Theorem 6.8 (Alpha Equivalence Globally Improves Two-Way.)

� # e1 % e2 % P1 % P2 % V : ¾À ���[$�`�� e1 e2 !m��6$�� T $�m º V P1 P2 e1 e2 !�b� $�m�k���� � � ] 9 P1 P2 � �ø� $�m�k���� � � ] 9 P2 P1

ÁÃ
Proof: By Theorems 4.72 and 6.7. ý
Not surprisingly, alpha equivalent expressions have identical static correctness
properties.

Theorem 6.9 (Alpha Equivalence Preserves Static Correctness.)

� # P1 % P2 % e1 % e2 % V : ¾¿¿À &[9���9 T k�Z P1 !���6$�`�� e1 e2 !m���$�� T $�m º V P1 P2 e1 e2 !&[9���9 T k�Z P2

Á[ÂÂÃ
Proof: By Theorem 4.91. (Proving the preconditions of Theorem 4.91 is not
difficult.) ý
6.3 Unfolding of Let-Bindings

We now turn to unfolding of ����9 constructs. These might, for example, be pro-
duced by the constant folding explained previously. We shall eventually prove that
under certain conditions .gÒ T ����9 xe1 e2 1 has the same meaning as .:&bl y &[9 e1 xe2 1 .
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Program P1
...

. . . ����9 x I e1
�j]

e2 � ] ( . . .
...

imp 9:;:<:>=
imp 9? :3:�: Program P2

...
. . .
A &jl y &[9 e1

x e2
H . . .

...

(certain conditions on e1 and e2 apply)

Recall, however, from Section 4.7 that substitution is defined in terms of re-
naming of bound variables and raw substitution. We shall therefore first prove
lemmas telling us how m���å	&bl y &?9 influences evaluation. Since raw substitution
was not designed to handle variable capture (and since specifying the complicated
effect when variable capture does take place is pointless) we set sufficient (but not
necessary) preconditions to ensure this.

Lemma 6.10

� # e2 % e1 % P% E % v % v �ä% x % N % N � : ¾¿¿¿¿À
������� T � � $�m T ] N � e1 PE v � !�¯.g����m T y k6l ] ( xe2 1;!.+# x � : ����m T y k�l ] ( x � e2 !ÿ�¯.g����m T l�&6��( x � e1 141-!������� T � � $�m T ] N .gm���å	&bl y &[9 e1 xe2 1 PE v !������� T � � $�m T ] N e2 P . Ú�Ø�Þ Ð~. x % v � 1 E 1 v

Á ÂÂÂÂÃ
Proof: By structural induction on e2. Non-trivial cases are for ����9 and Y���&��
which add to the environment in front of the . x % v � 1 pair. These cases are handled
by Lemmas 4.40 and 4.43. ý
Note that the value of N � did not matter in the previous lemma because m���å	&bl y &?9
will always place e1 at the same or at a deeper level. (This is quite specific to the
nested-call timed evaluation, which treats the argument of a function call the same
as the body.) For the same reason, when we want to prove the opposite implication
we have to require that N � 2 0 so it does not matter how deep e2 is placed.

Lemma 6.11

� # e2 % e1 % P% E % v % v ��% x % N :
¾¿¿¿¿À
������� T � � $�m T ] 0e1 PE v � !��.n����m T y k�l ] ( xe2 1;!.+# x � : ����m T y k�l ] ( x � e2 ! ��.n����m T l	&���( x � e1 141-!������� T � � $�m T ] N e2 P . Ú�Ø�Þ Ð~. x % v � 1 E 1 v !������� T � � $�m T ] N .nm���å=&jl y &[9 e1 xe2 1 PE v

Á ÂÂÂÂÃ
Proof: By structural induction on e2. Non-trivial cases are for ����9 and Y���&��
which add to the environment in front of the . x % v � 1 pair. These cases are handled
by Lemmas 4.40 and 4.43. ý
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We can now combine the previous two lemmas into the following, which tells
us the effect of &bl y &?9 . Note that this lemma inherits the restrictive zero-depth
requirement of Lemma 6.11.

Lemma 6.12

� # e1 % e2 % E % v % v ��% x % P% N : ¾¿¿À ������� T � � $�m T ] 0e1 PE v � !¾À ������� T � � $�m T ] N e2 P . Ú�Ø�Þ Ðp. x % v � 1 E 1 vî ������� T � � $�m T ] N ./&jl y &[9 e1 xe2 1 PE v

ÁÃ Á[ÂÂÃ
Proof: By rewriting with the definition of &bl y &[9 . Then “ ! ” by Lemmas 6.11
and 4.46 and “  ” by Lemmas 6.10 and 4.46. ý
Given that we now know how &jl y &?9 works and that harmless (in the sense of
Theorem 4.36) terms always evaluate it is a simple matter to prove the following
two theorems connecting ����9 -binding and substitution.

Theorem 6.13 (Unfolding Harmless Lets Locally Improves Two-Way.)� # e1 % e2 % V % x % P : ¾À `���m � ����&�& V e1 !��k�Y���� T �b� $�m�k���� � � ] 9 V P .gÒ T ����9 xe1 e2 1�.:&jl y &[9 e1 xe2 1=���k�Y���� T �b� $�m�k���� � � ] 9 V P .:&jl y &?9 e1 xe2 1�.gÒ T ����9 xe1 e2 1
ÁÃ

Proof: By rewriting with Lemma 4.62 and reducing. At this point Lemma 4.37
shows that e1 evaluates to some value and the theorem follows from 6.12. ý
Theorem 6.14 (Unfolding Harmless Lets Globally Improves Two-Way.)� # e1 % e2 % x % P1 % P2 % V : ¾À `���m � ����&�& V e1 !m���$�� T $�m º V P1 P2 .gÒ T ����9 xe1 e2 1�.:&bl y &[9 e1 xe2 1;!�b� $�m�k���� � � ] 9 P1 P2 � �b� $�m�k���� � � ] 9 P2 P1

ÁÃ
Proof: By Theorems 4.72 and 6.13. ý
Finally we note that unfolding of ����9 preserves static correctness.

Theorem 6.15 (Unfolding Harmless Lets Preserves Static Correctness.)� # P1 % P2 % V % x % e1 % e2 : ¾À &[9���9 T k�Z P1 !m��6$�� T $�m º V P1 P2 .nÒ T ����9 xe1 e2 1�.:&jl y &[9 e1 xe2 1;!&[9���9 T k�Z P2

ÁÃ
Proof: By Theorem 4.91. (Proving the preconditions of Theorem 4.91 is not
difficult.) ý



Folding of Let-Bindings 121

6.4 Folding of Let-Bindings

Folding of ����9 -bindings is the reverse operation of unfolding: instead of replacing
free occurrences of a variable by a term we replace occurrences of a term by a free
variable and wrap with a ����9 -binding.

Program P1
...

. . .
A &bl y &?9 e1

x e2
H . . .

...

imp 9:;:<:>= Program P2
...

. . . ����9 x I e1
�?]

e2 � ] ( . . .
...

(certain conditions on e1 and e2 apply)

Observe from this diagram that we must look for occurrences of e1 * e2 @ x , (or&bl y &[9 e2 xe1 in HOL-parlance). Such a term will have all its bound variables
generated by

º � ] ����m so it is likely that any use of this program transformation
will be immediately preceded by an alpha conversion transformation.

The ����9 -fold program transformation is not always valid. Consider, for exam-
ple the following program.@ �QI»G-R��k�k6$ E»I ��k�k6$ E~R
We should not be able to transform this program into@ �QI ����9 F�I ��k�k6$ CN�?]fG � ] ( R��k�k6$ E»I ��k�k6$ E~R
by the folding transformation because we would have changed termination prop-
erties this way. The solution, as discussed in Section 4.9, is to require that the
newly bound variable be used strictly inside the body of the new ����9 .

Under this assumption the proof of correctness works approximately as the
proof of correctness for unfolding of ����9 -bindings. Again, since &bl y &?9 is defined
in terms of m���å=&jl y &[9 we need a technical lemma for that.

Lemma 6.16

� # e2 % e1 % P% E % v % x % N :
¾¿¿¿¿À
.+# x � : ����m T y k�l ] ( x � e2 !ÿ�¯.g����m T l�&6��( x � e1 1'1�!l	&���( T &?9�m � Y69�� E xe2 !# v � : �¯.0������� T � � $�m T ] N e1 PE v � 1;!�¯.g����m T y k6l ] ( xe2 1;!�¯.0������� T � � $�m T ] N .gm���å	&bl y &[9 e1 xe2 1 PE v 1

Á[ÂÂÂÂÃ
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Proof: By structural induction on e2. Non-trivial cases are for ����9 and Y���&6�
which add to the environment in front of the . x % v � 1 pair. These cases are handled
by Lemma 4.43. ý
Lemma 6.17

� # e1 % e2 % E % v % v ��% x % P% N % N � : ¾À ������� T � � $�m T ] N � e1 PE v � !������� T � � $�m T ] N .:&bl y &?9 e1 xe2 1 PE v !������� T � � $�m T ] N e2 P . Ú�Ø�Þ Ðp. x % v � 1 E 1 v
ÁÃ

Proof: By the definition of &bl y &[9 and Lemmas 6.10 and 4.46. ý
The following two lemmas correspond to Lemma 6.11 and “ ! ” from Lemma 6.12
except that they use ������� T � � $�m instead of ������� T � � $�m T ] and therefore need not
limit the evaluation resources available to the bound expression, e2.

Lemma 6.18

� # e2 % e1 % P% E % v % v ��% x :
¾¿¿¿¿À
������� T � � $�m e1 PE v � !�¯.g����m T y k�l ] ( xe2 1;!.+# x � : ����m T y k6l ] ( x � e2 ! �¯.g����m T l�&���( x � e1 141-!������� T � � $�m e2 P . Ú�Ø�Þ Ð�. x % v � 1 E 1 v !������� T � � $�mt.gm���å	&bl y &?9 e1 xe2 1 PE v

Á[ÂÂÂÂÃ
Proof: By structural induction on e2. Non-trivial cases are for ����9 and Y���&6�
which add to the environment in front of the . x % v � 1 pair. These cases are handled
by Lemmas 4.40 and 4.43. ý
Lemma 6.19

� # e1 % e2 % P% E % v % v �ä% x : ¾À ������� T � � $�m e1 PE v � !������� T � � $�m e2 P . Ú�Ø�Þ Ð~. x % v � 1 E 1 v !������� T � � $�mp.:&bl y &?9 e1 xe2 1 PE v

ÁÃ
Proof: By rewriting with the definition of &jl y &[9 . Then the lemma follows by
Lemmas 6.18 and 4.46. ý
We are now ready to prove that the folding of ����9 -bindings improve an expression
locally. Since the newly bound expression might have occurred deeply inside
function arguments in the original term we cannot hope to have improvement the
other way.
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Theorem 6.20 (Let Folding Improves Locally.)� # P% V % x % e1 % e2 : ç l	&���( T &?9�m � Y69�� E xe2 !��k�Y���� T �b� $�m�k���� � � ] 9 V P ./&jl y &[9 e1 xe2 1�.nÒ T ����9 xe1 e2 1 è
Proof: We rewrite by Theorem 4.54 and then need to prove the two conjuncts
in the definition of ��k�Y���� T �b� $�m�k���� � � ] 9 . The ������� T � � $�m conjunct follows by
Lemma 6.19. The ������� T � � $�m T ] is more difficult and we spilt into two cases: If
e1 terminates (i.e., � v : ������� T � � $�m T ] N e1 PE v using the variable names of Theo-
rem 4.54) then Lemma 6.17 solves the problem. Otherwise, Lemma 6.16 solves
the problem. ý
The above theorem generalises nicely to a global improvement theorem.

Theorem 6.21 (Let Folding Improves Globally.)

� # P1 % P2 % e1 % e2 % x % V : ¾À l	&���( T &?9�m � Y69�� E xe2 !m���$�� T $�m º V P1 P2 .:&jl y &?9 e1 xe2 1�.gÒ T ����9 xe1 e2 1;!�ø� $�m�k���� � � ] 9 P1 P2

ÁÃ
Proof: By Theorems 4.71 and 6.20. ý
Finally, the folding of ����9 -bindings preserves static correctness.

Theorem 6.22 (Let Folding Preserves Static Correctness.)

� ¾¿¿À &[9���9 T k�Z P1 !l�&���( T &[9�m � Y[9�� E xe2 !m���$�� T $�m º V P1 P2 .:&bl y &[9 e1 xe2 1�.nÒ T ����9 xe1 e2 1�!&[9���9 T k�Z P2

Á[ÂÂÃ
Proof: By Theorem 4.91. (Proving the preconditions of Theorem 4.91 is not
difficult.) ý

* * *

Combining our knowledge of ����9 -unfolding and ����9 -folding we see that if we
do a ����9 -folding that creates a harmless binding then, by Theorems 6.13, 6.14,
and 6.22 we have a program transformation that two-way improves and preserves
static correctness.
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6.5 Identity-Function Moving

The language’s semantics is defined in such a way that it allows us to move calls to
identity functions around with respect to some of the language’s constructs while
preserving both static correctness properties and timed evaluation properties.

Program P1
...

. . .
A ³ A/@ &?9 e H�H . . .

...

imp 9:;:<:>=
imp 9? :3:�: Program P2

...
. . .
A:@ &[9 A ³ e H�H . . .

...

(example for
@ &[9 )

More precisely we have the following theorems.Ò T�Ú ����� I .nÒ T�Ø $ oe1 e2 1BA Ò T�Ø $ o .nÒ T�Ú ����� I e1 1�.gÒ T�Ú ����� I e2 1Ò T�Ú ����� I .gÒ T�½ � � m e1 e2 1BA Ò T�½ � � mt.gÒ T�Ú ����� I e1 1�.gÒ T�Ú ����� I e2 1Ò T�Ú ����� I .gÒ T�Ù &[9 e 1BA Ò T�Ù &?9c.nÒ T�Ú ����� I e 1Ò T�Ú ����� I .gÒ T Ð ] ( e 1BA Ò T Ð ] (t.nÒ T�Ú ����� I e 1Ò T�Ú ����� I .gÒ T ³ ] � e 1BA Ò T ³ ] �~.nÒ T�Ú ����� I e 1Ò T�Ú ����� I .gÒ T ³ ] m e 1BA Ò T ³ ] mc.nÒ T�Ú ����� I e 1Ò T�Ú ����� I .gÒ T ����9 xe1 e2 1BA Ò T ����9 x .gÒ T�Ú ����� I e1 1�.gÒ T�Ú ����� I e2 1Ò T�Ú ����� I .gÒ T�Ú ��&�� ex � e � xr er 1BA ¨ Ò T�Ú ��&6�p.nÒ T�Ú ����� I e 1
x � .gÒ T�Ú ����� I e � 1 xr .gÒ T�Ú ����� I er 1Ò T�Ú ����� f e A Ò T ����9 x .nÒ T�Ú ����� I e 1�.gÒ T�Ú ����� f .gÒ T ¼ ��m x 141

Figure 14: Identity-Function Moves Equivalences.

Theorem 6.23 (Identity-Function Moves Locally Two-Way Improve.) Let X
and Y be any of the expression pairs from Figure 14. Then� # P% V %'>4>4> : ç � ( T�@ l ] Y P1 I !.0��k�Y���� T �b� $�m�k���� � � ] 9 V PX Y ����k�Y���� T �b� $�m�k���� � � ] 9 V PY X 1ïè
where “. . . ” represents the free variables of X and Y .

Proof: Using Lemma 4.82 makes the theorem symmetric in the two program ar-
guments, reducing the problem to proving one conjunct. The first conjunct follows
by expanding ��k�Y���� T �b� $�m�k���� � � ] 9 ’s definition and using Lemma 4.80. ý
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Theorem 6.24 (Identity-Function Moves Globally Two-Way Improve.) Let X
and Y be any of the expression pairs from Figure 14. Then

# P1 % P2 % V %4>4>4> : ¾À � ( T�@ l ] Y P1 I !m��6$�� T $�m º V P1 P2 X Y !�b� $�m�k���� � � ] 9 P1 P2 � �ø� $�m�k���� � � ] 9 P2 P1

ÁÃ
where “. . . ” represents the free variables of X and Y .

Proof: By Theorems 6.23 and 4.72. ý
Theorem 6.25 (Identity-Function Moves Preserve Static Correctness.) Let X
and Y be any of the expression pairs from Figure 14. Then� # P1 % P2 % V %4>4>4> : m���$�� T $�m º V P1 P2 X Y ! ./&[9���9 T k�Z P1 î &[9���9 T k�Z P2 1
where “. . . ” represents the free variables of X and Y .

Proof: Easy: “ ! ” follows from Theorem 4.91; “  ” follows from Lemma 4.23
and Theorem 4.91. ý

Note that the program transformations as described here use the same identity
function before and after substitutions. We could just as easily have used two
potentially different ones, if we wanted to apply an identity function to arguments
of different type.

6.6 Identity-Function Elimination

Any call to an identity function can be eliminated and will improve the program
and preserve static correctness. Improvement is generally one-way only.

Program P1
...

. . .
A ³ e H . . .

...

imp 9:;:<:>= Program P2
...

. . .
A
e H . . .
...

Theorem 6.26 (Identity-Function Elimination Improves Locally.)� # P% V % I % e : � ( T�@ l ] Y PI ! ��k�Y���� T �ø� $�m�k���� � � ] 9 V P .gÒ T�Ú ����� I e 1 e
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Proof: By expanding ��k�Y���� T �b� $�m�k���� � � ] 9 ’s definition and using Lemma 4.80. ý
Theorem 6.27 (Identity-Function Elimination Improves Globally.)

� # P1 % P2 % V % I % e : ¾À � ( T�@ l ] Y P1 I !m��6$�� T $�m º V P1 P2 .gÒ T�Ú ����� I e 1 e !�b� $�m�k���� � � ] 9 P1 P2

ÁÃ
Proof: By Theorems 6.26 and 4.71. ý
Theorem 6.28 (Identity-Function Elimination Preserves Static Correctness)

� # P1 % P2 % V % I % e : ¾À � ( T�@ l ] Y P1 I !m��6$�� T $�m º V P1 P2 .gÒ T�Ú ����� I e 1 e !.:&?9���9 T k�Z P1 î &[9���9 T k�Z P2 1
ÁÃ

Proof: Lemmas 4.82 and 4.23 produce extra assumptions such that Lemma 4.91
can be used to prove both implications. ý
6.7 Argument Manœuvres

In this section we shall describe program transformations designed to put a func-
tion call into the right form for folding as covered in Section 6.9. Assume that we
have a callh�h�h A:º�A

es
D ed
H�Hrh�h�h

in a program fragment@ �QI º�A
es
D7�=H5Rº EXIÕh�h�h` FQIÕh�h�h A LK�j] `���m�� D @ k�mK� � � � $���� L�H3h�h�h

In other words,
@

is a specialised version of
º

and the call is an instance of
@
’s

body. We should therefore eventually be able to transform the call of
º

into a call
to
@
. As one condition of using folding in the way we shall later define it, we must

transform the call intoh�h�h ����9 ��I ed
�?] º�A

es
D7�=H � ] ( h�h�h
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i.e., we must make the match of the call and the body of the function literal, not
just through instantiation.

The first steps of making this transformation is covered in Section 6.5, by
which we can transform the call intoh�h�h ����9 ��I ³ A es

D ed
HO�?] º � � ] ( h�h�h

and then intoh�h�h ����9 ��I A ³ es
D ³ ed

HP�?] º � � ] ( h�h�h
We shall now prove theorems that allow us to transform expressions like the latter
into the expression stated above. Unfortunately, the theorems are not quite as
general as we would want them to be; the structure of a call with a pair as argument
is built into the theorems.

Program P1
...

. . . ����9 x I A I e1
D e2
H�j] f x � ] ( . . .

...

imp 9:�:3:C=
imp 9? :3:�: Program P2

...
. . . ����9 x I e2 in

f
A
e1
D x H � ] ( . . .

...

(first argument move)

The theorems would therefore not be very useful for functions with three or more
parameters. Since such theorems would be proven in the same easy way we shall
ignore this generality problem.

Theorem 6.29 (First Argument Move Locally Two-Way Improves.)

� # P% V % I % f % x % e1 % e2 :

¾¿¿¿¿¿¿¿¿¿¿¿¿¿¿À

� ( T�@ l ] Y PI !�¯.g����m T�@ m���� xe1 1-!��k�Y���� T �b� $�m�k���� � � ] 9 V P.nÒ T ����9 x .gÒ T�½ � � m\.nÒ T�Ú ����� I e1 1 e2 1.gÒ T�Ú ����� f .gÒ T ¼ ��m x 141'1.nÒ T ����9 xe2 .gÒ T�Ú ����� f .gÒ T�½ � � m e1 .gÒ T ¼ ��m x 1'14141=���k�Y���� T �b� $�m�k���� � � ] 9 V P.nÒ T ����9 xe2 .gÒ T�Ú ����� f .gÒ T�½ � � m e1 .gÒ T ¼ ��m x 1'14141.nÒ T ����9 x .gÒ T�½ � � m\.nÒ T�Ú ����� I e1 1 e2 1.gÒ T�Ú ����� f .gÒ T ¼ ��m x 141'1

Á[ÂÂÂÂÂÂÂÂÂÂÂÂÂÂÃ
Proof: By reduction with Lemmas 4.62, 4.80, and 4.42. ý
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Theorem 6.30 (Second Argument Move Locally Two-Way Improves.)

� # P% V % I % f % x % e1 % e2 :

¾¿¿¿¿¿¿¿¿¿¿¿¿¿¿À

� ( T�@ l ] Y PI !�¯.g����m T�@ m���� xe2 1;!��k�Y���� T �b� $�m�k���� � � ] 9 V P.gÒ T ����9 x .gÒ T�½ � � m e1 .gÒ T�Ú ����� I e2 141.gÒ T�Ú ����� f .gÒ T ¼ ��m x 141'1.gÒ T ����9 xe1 .gÒ T�Ú ����� f .gÒ T�½ � � mt.gÒ T ¼ ��m x 1 e2 14141����k�Y���� T �b� $�m�k���� � � ] 9 V P.gÒ T ����9 xe1 .gÒ T�Ú ����� f .gÒ T�½ � � mt.gÒ T ¼ ��m x 1 e2 14141.gÒ T ����9 x .gÒ T�½ � � m e1 .gÒ T�Ú ����� I e2 141.gÒ T�Ú ����� f .gÒ T ¼ ��m x 141'1

Á[ÂÂÂÂÂÂÂÂÂÂÂÂÂÂÃ
Proof: By reduction with Lemmas 4.62, 4.80, and 4.42. ý
Theorem 6.31 (First Argument Move Globally Two-Way Improves.)

� # P1 % P2 % V % I % f % x % e1 % e2 :

¾¿¿¿¿¿¿¿¿¿¿À
� ( T�@ l ] Y PI !�¯.g����m T�@ m���� xe2 1;!m���$�� T $�m º V P1 P2.gÒ T ����9 x .gÒ T�½ � � mt.gÒ T�Ú ����� I e1 1 e2 1.gÒ T�Ú ����� f .gÒ T ¼ ��m x 141'1.gÒ T ����9 xe2 .gÒ T�Ú ����� f .gÒ T�½ � � m e1 .gÒ T ¼ ��m x 1'14141! . �b� $�m�k���� � � ] 9 P1 P2 � �b� $�m�k���� � � ] 9 P2 P1 1

Á[ÂÂÂÂÂÂÂÂÂÂÃ
Proof: By Theorems 4.72 and 6.29. ý
Theorem 6.32 (Second Argument Move Globally Two-Way Improves.)

� # P1 % P2 % V % I % f % x % e1 % e2 :

¾¿¿¿¿¿¿¿¿¿¿À
� ( T�@ l ] Y PI !�¯.g����m T�@ m���� xe2 1;!m���$�� T $�m º V P1 P2.nÒ T ����9 x .gÒ T�½ � � m e1 .nÒ T�Ú ����� I e2 141.gÒ T�Ú ����� f .gÒ T ¼ ��m x 14141.nÒ T ����9 xe1 .gÒ T�Ú ����� f .gÒ T�½ � � mt.gÒ T ¼ ��m x 1 e2 14141! . �ø� $�m�k���� � � ] 9 P1 P2 � �b� $�m�k���� � � ] 9 P2 P1 1

Á[ÂÂÂÂÂÂÂÂÂÂÃ
Proof: By Theorems 4.72 and 6.30. ý
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Theorem 6.33 (First Argument Move Preserves Static Correctness.)

� # P1 % P2 % V % I % f % x % e1 % e2 :

¾¿¿¿¿¿¿¿¿¿¿À
� ( T�@ l ] Y PI !�¯.g����m T�@ m���� xe2 1;!m���$�� T $�m º V P1 P2.gÒ T ����9 x .gÒ T�½ � � m\.gÒ T�Ú ����� I e1 1 e2 1.gÒ T�Ú ����� f .gÒ T ¼ ��m x 14141.gÒ T ����9 xe2 .gÒ T�Ú ����� f .gÒ T�½ � � m e1 .gÒ T ¼ ��m x 141'141! .:&?9���9 T k�Z P1 î &[9���9 T k�Z P2 1

Á[ÂÂÂÂÂÂÂÂÂÂÃ
Proof: “ ! ” by Theorem 4.91. “  ” by Theorems 4.91 and 4.23 plus Lemma 4.82.ý
Theorem 6.34 (Second Argument Move Preserves Static Correctness.)

� # P1 % P2 % V % I % f % x % e1 % e2 :

¾¿¿¿¿¿¿¿¿¿¿À
� ( T�@ l ] Y PI !�¯.g����m T�@ m���� xe2 1;!m��6$�� T $�m º V P1 P2.gÒ T ����9 x .gÒ T�½ � � m e1 .gÒ T�Ú ����� I e2 141.nÒ T�Ú ����� f .nÒ T ¼ ��m x 14141.gÒ T ����9 xe1 .gÒ T�Ú ����� f .gÒ T�½ � � mt.gÒ T ¼ ��m x 1 e2 141'1! .:&?9���9 T k�Z P1 î &[9���9 T k�Z P2 1

Á[ÂÂÂÂÂÂÂÂÂÂÃ
Proof: “ ! ” by Theorem 4.91. “  ” by Theorems 4.91 and 4.23 plus Lemma 4.82.ý
6.8 Unfold Function Call

One of the most important program transformations we shall prove correct is the
unfolding of function calls. In the form we shall discuss it here it is the replace-
ment of .gÒ T�Ú ����� f e � 1 by .nÒ T�Ú ����� I .gÒ T ����9 xe � e 141 where the program in question
contains the definition f x I e R and where I is an identity function.

The identity function call as introduced this way does not influence regular
evaluation. It does, however, influence timed evaluation and that in such a way
that the replacement becomes a two-way improvement.
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Program P1
...

f x I e R
...

. . .
A

f e � H . . .

...

imp 9:;:5:C=
imp 9? :3:;: Program P2

...
f x IEDe R

...
. . . ³ A ����9 x I e � �?]

e � ] ( H . . .
...

(The diagram uses
à
e in P2 because an instance of the unfolded call might occur

inside e.)

Theorem 6.35 (Function Unfold Locally Two-Way Improves.)

� # P% f % x % e �ö% V % I :

¾¿¿¿¿¿¿¿¿¿¿À
� ( T�@ l ] Y PI !.0��k�k�Z�l�$ T�@ l ] Y P f 2 Ø6ß . x % e 141;!¾¿¿¿¿¿¿À
��k�Y���� T �b� $�m�k���� � � ] 9 V P.gÒ T�Ú ����� I .nÒ T ����9 xe � e 141.gÒ T�Ú ����� f e � 1����k�Y���� T �b� $�m�k���� � � ] 9 V P.gÒ T�Ú ����� f e � 1.gÒ T�Ú ����� I .nÒ T ����9 xe � e 141

Á ÂÂÂÂÂÂÃ
Á[ÂÂÂÂÂÂÂÂÂÂÃ

Proof: Rewriting by Lemma 4.62. Then reduction using Lemmas 4.80 and 4.93.ý
The local improvement generalises nicely to the following global improvement
theorem.

Theorem 6.36 (Function Unfold Globally Two-Way Improves.)

� # P1 % P2 % V % I % f % x % e % e � : ¾¿¿¿¿¿¿À
� ( T�@ l ] Y P1 I !.)��k�k�Z�l�$ T�@ l ] Y P1 f 2 Ø�ß . x % e 141;!m���$�� T $�m º V P1 P2.gÒ T�Ú ����� f e � 1.gÒ T�Ú ����� I .gÒ T ����9 xe � e 141;!. �b� $�m�k���� � � ] 9 P1 P2 � �ø� $�m�k���� � � ] 9 P2 P1 1

Á[ÂÂÂÂÂÂÃ
Proof: By Theorems 4.72 and 6.35. ý
Note at this point that Theorem 6.36 can be used to prove the correctness of a
limited form of folding also when considering the symmetry of m��6$�� T $�m º (i.e.,
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Lemma 4.23). If we do that, we must however still lookup f in P1 which would
then be the target program and not the source program. (By Lemma 4.82 we have
that I will automatically be an identity function in P2 also, so that does not cause
any problems.)

If we require that the body of the unfolded function come from a statically cor-
rect program then the replacement will produce a new statically correct program.

Theorem 6.37 (Function Unfold Preserves Static Correctness.)

� # P1 % P2 % V % I % f % x % e % e � : ¾¿¿¿¿¿¿¿¿À
&[9���9 T k�Z P1 !� ( T�@ l ] Y P1 I !.)��k�k�Z�l�$ T�@ l ] Y P1 f 2 Ø6ß . x % e 141;!m��6$�� T $�m º V P1 P2.gÒ T�Ú ����� f e � 1.gÒ T�Ú ����� I .gÒ T ����9 xe � e 141;!&[9���9 T k�Z P2

Á ÂÂÂÂÂÂÂÂÃ
Proof: By Theorem 4.91 and Lemma 4.92. ý
Since we are sometimes able to use function unfolding backwards for folding
we should also provide a theorem allowing us to prove static correctness in such
situation. This turns out to be simpler than forward preservation.

Theorem 6.38 (Reverse Function Unfold Preserves Static Correctness.)

� # P1 % P2 % V % I % f % x % e % e � : ¾¿¿¿¿¿¿À
&?9���9 T k�Z P1 !Î�Ò�Î f . @ l ] Y[9 � k ] & P1 1;!m���$�� T $�m º V P1 P2.gÒ T�Ú ����� I .gÒ T ����9 xe � e 141.gÒ T�Ú ����� f e � 1;!&?9���9 T k�Z P2

Á[ÂÂÂÂÂÂÃ
Proof: By Theorem 4.91. ý
6.9 Invoking the History of a Function

Folding is the opposite of unfolding: instead of replacing a call with the corre-
sponding body we replace an occurrence of the body with a call. Most discussions
on folding allow some kind of matching to take place in the search for occurrences
but we shall restrict ourselves to literal occurrences wrapped in a ����9 -binding and
a call to an identity function as produced also by unfolding.2 For example it is

2This is not a real restriction as other program transformations allow us to mutate the source in
advance.
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correct to replace the ³ -call in the following program by the call
A &6Ô�m A G�M��=H�H .

� � �j]»�QI ³ A ����9 E�I�G�M��K�?]KE�L[E � ] ( H�R&6Ô�m EKIOE�L6E~R
To make this program transformation extra useful in our case we need to gener-
alise it somewhat. Instead of looking for occurrences of &[Ô�m ’s body in the current
program — let us call that P2 — we look for occurrences of &[Ô�m ’s body in any pro-
gram, P1, which is in an �ø� $�m�k���� � � ] 9 / �b� $�m�k���� � � ] 9�� relationship with P2. This is
exactly the relationship in which P1 and P2 would be if we had obtained P2 from P1

by the program transformations discussed in the present chapter, c.f. Lemma 4.82.
In other words we reach back into &[Ô�m ’s history and use the definition it had then.
The following diagram outlines our folding transformation.

Program P1
...

f x I e1
R

...

� assums �
imp 9:�:3:>=

impR 9:�:3:>= Program P2
...

f x I e2
R

...
. . . ³ A ����9 x I e �?]

e1 � ] ( H . . .
...

� concls �
imp 9:�:<:C=
imp 9? :3:;: Program P3

...
f x I e3

R
...

. . .
A

f e H . . .

...

Note, that in this particular illustration P2 is our source program and P3 is our
target program. P1 is a program assumed to have an �b� $�m�k���� � � ] 9 / �b� $�m�k���� � � ] 9��
relationship with P2. Note furthermore, that the diagram uses e3 in P3 because
folding might take place inside e2 itself. (In fact, if it does not then the situation is
a special case of function unfolding.) Note finally, that the diagram uses e1 in P1

because
@

in P1 might have a body expression different from e2.

The following theorems state that this kind of folding improves globally as
well as locally (and in particular that it preserves evaluation and termination prop-
erties). First a necessary lemma.

When P1 and P2 are in an �ø� $�m�k���� � � ] 9 / �ø� $�m�k���� � � ] 9�� -relationship then any
of P1’s function bodies evaluates just as fast relative to P1 as the corresponding
function body in P2 does relative to P2.
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Lemma 6.39

� # P1 % P2 % e1 % e2 % f % x % N % E % v :

¾¿¿¿¿¿¿¿¿¿¿¿¿À

&[9���9 T k�Z P1 !&[9���9 T k�Z P2 !�b� $�m�k���� � � ] 9 P1 P2 !�b� $�m�k���� � � ] 9�� P1 P2 !.)��k�k�Z�l�$ T�@ l ] Y P1 f 2 Ø�ß . x % e1 141-!.)��k�k�Z�l�$ T�@ l ] Y P2 f 2 Ø�ß . x % e2 141-!����m�& T �?] T � ] �t* x , E !ç ������� T � � $�m T ] N e1 P1 E v î������� T � � $�m T ] N e2 P2 E v è

Á[ÂÂÂÂÂÂÂÂÂÂÂÂÃ
Proof: Lemmas 4.93 and 4.39 reduce E to a single binding for x. Then the im-
provement conditions show the rest. ý
Theorem 6.40 (History-Based Two-Way Local Improvement.)

� # P1 % P2 % f % x % e1 % e2 :

¾¿¿¿¿¿¿¿¿¿¿À
&?9���9 T k�Z P1 !&?9���9 T k�Z P2 !�ø� $�m�k���� � � ] 9 P1 P2 !�ø� $�m�k���� � � ] 9�� P1 P2 !.)��k�k�Z�l�$ T�@ l ] Y P1 f 2 Ø�ß . x % e1 1'1-!.)��k�k�Z�l�$ T�@ l ] Y P2 f 2 Ø�ß . x % e2 1'1-!ç ��k�Y���� T �b� $�m�k���� � � ] 9�* x , P2 e1 e2 ���k�Y���� T �b� $�m�k���� � � ] 9�* x , P2 e2 e1 è

Á[ÂÂÂÂÂÂÂÂÂÂÃ
Proof: First by rewriting with Lemma 4.62. Then Lemmas 4.92, 4.78, and 6.39
proves the theorem. ý
Theorem 6.41 (History-Based Folding Globally Improves Two-Way.)

� # P1 % P2 % P3 % f % x % e1 % e2 % e % I % V :

¾¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿À

&[9���9 T k�Z P1 !&[9���9 T k�Z P2 !�b� $�m�k���� � � ] 9 P1 P2 !�b� $�m�k���� � � ] 9�� P1 P2 !.)��k�k�Z�l�$ T�@ l ] Y P1 f 2 Ø6ß . x % e1 141-!.)��k�k�Z�l�$ T�@ l ] Y P2 f 2 Ø6ß . x % e2 141-!m��6$�� T $�m º V P2 P3.gÒ T�Ú ����� I .gÒ T ����9 xee1 1'1.gÒ T�Ú ����� f e 1;!� ( T�@ l ] Y P2 I !. �ø� $�m�k���� � � ] 9 P2 P3 � �b� $�m�k���� � � ] 9 P3 P2 1

Á[ÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÃ
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Proof: By Theorem 4.72 and Lemma 6.40 this is reduced to proving two-way
local improvement between .gÒ T�Ú ����� I .gÒ T ����9 xee1 141 and .gÒ T�Ú ����� f e 1 under the
given circumstances. This follows by Lemmas 4.93, 4.80, and 4.62. ý
Finally, we note that this form of folding preserves static correctness.

Theorem 6.42 (History-Based Folding Preserves Static Correctness.)

� # P2 % P3 % f % x % e1 % e2 % e % I % V :

¾¿¿¿¿¿¿¿¿À
&?9���9 T k�Z P2 !.0��k�k�Z�l�$ T�@ l ] Y P2 f 2 Ø�ß . x % e2 141;!m���$�� T $�m º V P2 P3.gÒ T�Ú ����� I .gÒ T ����9 xee1 141.gÒ T�Ú ����� f e 1;!� ( T�@ l ] Y P2 I !&?9���9 T k�Z P3

Á[ÂÂÂÂÂÂÂÂÃ
Proof: By Theorem 4.91. ý
6.10 Removing Unused Functions

We now turn to one of the few of our program transformation that cannot be
described by replacement. Unfortunately this means that powerful machinery like
Theorem 4.71 cannot be used.

The program transformation we are interested in is one that removes unused
functions. This is useful when, due to specialisation, some general functions are
no longer needed. It should be obvious that this program transformation does not
change the evaluation of a program but we must prove this anyway.

We will present a transformation that removes a set of functions from a pro-
gram at once because removing just one might leave us with a program that is no
longer statically correct. A correct subset extraction is one that leaves a statically
correct program and does not change the first function.

Program P1

f1 x1
I e1

R
f2 x2

I e2
R

...
fn F 1 xn F 1

I en F 1
R

fn xn
I en

R
imp 9? :3:;:

impR 9? :3:;: Program P2

f1 x1
I e1

R
fi1 xi1

I ei1
R

...
fik xik

I eik
R
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To prove that evaluation of programs is not influenced by removal of unused func-
tions we first prove the corresponding theorem for expressions. Having done this
we can use it for the main function of a program. Since we are going to use strong
rule induction we need to split the lemma into two.
Lemma 6.43

� # N % e % P1 % E % v :

¾¿¿¿¿¿¿¿¿¿¿¿¿¿¿À

������� T � � $�m T ] N eP1 E v !# P1 : &[9���9 T k�Z P2 !# f : ç .)��k�k�Z�l�$ T�@ l ] Y P1 f 2 Ù Í ³?��1;!.)��k�k�Z�l�$ T�@ l ] Y P2 f 2 Ù Í ³?��1 è !# f % x % e : ¾À .)��k�k�Z�l�$ T�@ l ] Y P1 f 2 Ø�ß . x % e 1'1�!.0��k�k�Z�l�$ T�@ l ] Y P2 f 2 Ù Í ³[��1=�.0��k�k�Z�l�$ T�@ l ] Y P2 f 2 Ø�ß . x % e 141
ÁÃ !# f : ç @ l ] Y T Y���������( f e !.)��k�k�Z�l�$ T�@ l ] Y P2 f §2 Ù Í ³?��1 è !������� T � � $�m T ] N eP2 E v

Á ÂÂÂÂÂÂÂÂÂÂÂÂÂÂÃ
Proof: By strong rule induction and reduction. ý
Lemma 6.44

� # N % e % P2 % E % v :

¾¿¿¿¿¿¿¿¿¿¿¿¿¿¿À

������� T � � $�m T ] N eP2 E v !# P1 : &[9���9 T k�Z P2 !# f : ç .)��k�k�Z�l�$ T�@ l ] Y P1 f 2 Ù Í ³?��1;!.)��k�k�Z�l�$ T�@ l ] Y P2 f 2 Ù Í ³?��1 è !# f % x % e : ¾À .)��k�k�Z�l�$ T�@ l ] Y P1 f 2 Ø�ß . x % e 1'1�!.0��k�k�Z�l�$ T�@ l ] Y P2 f 2 Ù Í ³[��1=�.0��k�k�Z�l�$ T�@ l ] Y P2 f 2 Ø�ß . x % e 141
ÁÃ !# f : ç @ l ] Y T Y���������( f e !.)��k�k�Z�l�$ T�@ l ] Y P2 f §2 Ù Í ³?��1Sè !������� T � � $�m T ] N eP1 E v

Á[ÂÂÂÂÂÂÂÂÂÂÂÂÂÂÃ
Proof: By strong rule induction and reduction. ý
Theorem 6.45 (Subset of Programs Global Improvement.)

� # P1 % P2 :

¾¿¿¿¿¿¿¿¿¿¿À
# f : ç .)��k�k�Z�l�$ T�@ l ] Y P1 f 2 Ù Í ³[��1;!.)��k�k�Z�l�$ T�@ l ] Y P2 f 2 Ù Í ³[��1 è !# f % x % e : ¾À .)��k�k�Z�l�$ T�@ l ] Y P1 f 2 Ø6ß . x % e 141-!.)��k�k�Z�l�$ T�@ l ] Y P2 f 2 Ù Í ³?��1��.)��k�k�Z�l�$ T�@ l ] Y P2 f 2 Ø6ß . x % e 141

ÁÃ !&?9���9 T k�Z P2 !.+ð ã P1 2Kð ã P2 1;!�ø� $�m�k���� � � ] 9 P2 P1 � �b� $�m�k���� � � ] 9�� P2 P1

Á[ÂÂÂÂÂÂÂÂÂÂÃ
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Proof: By Lemmas 6.43 and 6.44. ý
There is no local improvement theorem because the program transformation can-
not be described in terms of replacement. Also, there is no static correctness pre-
servement theorem because checking the necessary preconditions would be worse
than just checking static correctness.

6.11 Adding a New Function

Adding a new function to a program cannot be described by replacement either.
Fortunately, it is very simple to prove the improvement theorems for this transfor-
mation anyway: it is just a special case of removing unused functions!3 To see
this, we just need two simple lemmas.

Program P1

f1 x1
I e1

R
...

fn xn
I en

R
imp 9:;:<:>=

impR 9:;:<:>= Program P2

f1 x1
I e1

R
...

fn xn
I en

R
fn x 1 xn x 1

I en x 1
R

Lemma 6.46� # P% f % x % e % f � : ç .)��k�k�Z�l�$ T�@ l ] YS. Í ½�½ Ò Þ�ã P *ö. f % x % e 1/,n1 f � 2 Ù Í ³?��1;!.)��k�k�Z�l�$ T�@ l ] Y P f � 2 Ù Í ³?��1 è
Proof: By list induction. ý
Lemma 6.47

� # P% f % x % e % f �ä% x �+% e � : ¾À .)��k�k�Z�l�$ T�@ l ] YS. Í ½�½ Ò Þ�ã P *ä. f % x % e 1:,n1 f � 2 Ø�ß . x � % e � 141-!.)��k�k�Z�l�$ T�@ l ] Y P f � 2 Ù Í ³[��1=�.)��k�k�Z�l�$ T�@ l ] Y P f � 2 Ø6ß . x � % e � 1'1
ÁÃ

Proof: By list induction. ý
With these two lemmas we can now prove that adding a new function does not
influence evaluation.

3Given that we work mainly with predicates this might not be such a surprise for people in the
Prolog world.
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Theorem 6.48 (Adding a Function Two-Way Improves.)� # P% f % x % e : &[9���9 T k�Z P ! ç �ø� $�m�k���� � � ] 9 P . Í ½�½ Ò Þ�ã P *ö. f % x % e 1/,n1=��ø� $�m�k���� � � ] 9�� P . Í ½�½ Ò Þ�ã P *ä. f % x % e 1:,n1 è
Proof: By Theorem 6.45 and Lemmas 6.46 and 6.47. ý
Static correctness is also preserved when adding a new function, provided that the
new function is suitably well-behaved: It must not already be a function in the
program and it must use its variables and functions in an orderly manner.

Theorem 6.49 (Adding a Function Preserves Static Correctness.)

� # P% f % x % e :
¾¿¿¿¿À
&?9���9 T k�Z P !�¯.nÎ�Ò�Î f . @ l ] Y[9 � k ] & P 141-!Yj`���Y[Z T ����m=&ò* x , e !Yj`���Y[Z T�@ l ] Y�&ò. @ l ] Y69 � k ] &S. Í ½�½ Ò Þ�ã P *ö. f % x % e 1:,+1 e !&?9���9 T k�Z\. Í ½�½ Ò Þ�ã P *ö. f % x % e 1:,+1

Á ÂÂÂÂÃ
Proof: There are three conjuncts to check in the definition of &?9���9 T k�Z : Non-null:
because P is non-null. No rebindings: by Lemmas 4.84 and 4.85. Name usage:
by Lemmas 4.84 and 4.87. ý
6.12 Summary

We have presented a series of program transformations for our language. These
transformations, primarily based on replacing one equivalent expression with an-
other, have been proven semantics-preserving. In Chapter 7 we shall demonstrate
that our set of transformations is strong enough to describe partial evaluation.





Chapter 7

Partial Evaluation

For every problem, there is one solution which is
simple, neat and wrong.

— H. L. MENCKEN, 1880–1956

In this chapter we present a concrete partial evaluator, namely the trivial partial
evaluator, and show its correctness. We use this partial evaluator and the pro-
gram transformations from Chapter 6 to give an internal definition of what partial
evaluation is.

We shall show how a traditional partial evaluator’s actions can be embedded
into our framework, i.e., that our definition of partial evaluation contains the tra-
ditional meaning.

We also show that our program transformations can be sequenced meaning-
fully and use Ackermann’s function to demonstrate that our definition of partial
evaluation is strong enough to handle the problems that arise when specialising
this function.

7.1 The Trivial Partial Evaluator

The trivial partial evaluator is defined in the following way.

Definitional Theorem 7.1 (The Trivial Partial Evaluator.)

� # P% vs :
¾¿¿¿¿À
9�m � � T $�� Pvs 2Ú�Ø�Þ Ðp. º � ] @ l ] Y P%

1 %Ò T�Ú �����p. Ù Ð�â\.+ð ã P 141�.nÒ T�½ � � mt.n�����[l�� G � � $�m vs 1�.gÒ T ¼ ��m 1 14141
P

Á[ÂÂÂÂÃ
139
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In other words, for a program whose main function is
@

and which is being spe-
cialised to static first argument vs the trivial partial evaluator simply adds a new
main function g �QI @�A Dvs

D7�=H5R where
à
vs is the constant expression evaluating

to vs and g is some fresh function name.
This is, as we shall prove shortly, a partial evaluator. It is only supposed to

work for programs whose main function takes a pair as its argument. The trivial
partial evaluator will always instantiate the first component of the programs’ ar-
gument pair. The generalised definition with multiple static values is notationally
complex and we shall ignore it here.

The following theorem states that the trivial partial evaluator produces pro-
grams that are at least as statically correct as its input.

Theorem 7.2 (The Trivial Partial Evaluator Preserves Static Correctness.)� # P% v : &[9���9 T k�Z P ! &[9���9 T k�Zc.g9�m � � T $�� Pv 1
Proof: By structural case analysis on P and Lemmas 4.86, 4.87, 4.89, 4.51,
and 4.52. ý
The following theorem states that the trivial partial evaluator has the correct ex-
ternal behaviour as a partial evaluator.

Theorem 7.3 (The Trivial Partial Evaluator is Correct.)� # P% vs % vd % v : &?9���9 T k�Z P ! ç ������� T $�m º P . ¼ T�½ � � m vs vd 1 v 2������� T $�m º .n9�m � � T $�� Pvs 1 vd v è
Proof: By rewriting with ������� T $�m º ’s definition. Then by Theorem 7.2, Lem-
mas 4.49 and 4.89, and the following lemma. ý
Lemma 7.4

� # P% f % x % e ��% e % E % v : ¾¿¿À &?9���9 T k�Z\. Ú�Ø�Þ Ðp. f % x % e � 1 P 1-!&?9���9 T k�Z P !�¯. @ l ] Y T Y���������( f e 1;!.8������� T � � $�m ePE v îÿ������� T � � $�m e . Ú�Ø�Þ Ð~. f % x % e � 1 P 1 E v 1
Á[ÂÂÃ

Proof: By the (following) Lemmas 7.5 and 7.6. ý
The following lemma, which is the easy (“ ! ”) implication of Lemma 7.4 shows
that an expression’s meaning does not change if we add another function to the
program, provided the new function does not ruin static correctness.



An Internal Definition of Partial Evaluation 141

Lemma 7.5

� # e % P% E % v : ¾¿¿À ������� T � � $�m ePE v !# f % x % e � : ¾À &[9���9 T k�Zc. Ú�Ø�Þ Ð~. f % x % e � 1 P 1;!&[9���9 T k�Z P !������� T � � $�m e . Ú�Ø�Þ Ð~. f % x % e � 1 P 1 E v

ÁÃ Á[ÂÂÃ
Proof: By strong rule induction. ý
The following lemma, which is the other (“  ”) implication of Lemma 7.4, is
slightly more difficult because we have to make sure that the expression we are
evaluating does not depend on the function added to the program.

Lemma 7.6

� # e % P% E % v :
¾¿¿¿¿¿¿À
������� T � � $�m ePE v !
# f % x % e � % P � : ¾¿¿¿¿À

�¯. @ l ] Y T Y���������( f e 1;!. P 2 Ú�Ø�Þ Ðp. f % x % e � 1 P � 1;!&?9���9 T k�Z P !&?9���9 T k�Z P � !������� T � � $�m eP � E v

Á ÂÂÂÂÃ
Á ÂÂÂÂÂÂÃ

Proof: By strong rule induction. Then by reduction and Lemma 4.92. ý
7.2 An Internal Definition of Partial Evaluation

From Section 7.1 we now have a partial evaluator which is proven correct but does
not produce optimised programs. From Chapter 6 we furthermore have program
transformations which are proven correct and improving. This means that we are
now ready to give our internal definition of what partial evaluation is by combining
these two.

Definition 3 Partial evaluation is optimisation1 of the trivial partial evaluator’s
output using the program transformations discussed in Chapter 6 subject to the
following constraints.

1. The first program transformation introduces a syntactic identity function.

1Here “optimisation” is used in the sloppy and incorrect way it usually is in the program trans-
formation community, i.e., as “program transformation with the honest intent of improving execu-
tion time for the program in question for most allowed input.” We do not claim to reach the/a best
possible program.
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2. In this phase, the main phase, partial evaluation shall do the following.

(a) All added new function definitions are specialisations of existing func-
tions, i.e., their bodies are calls to an existing function and their argu-
ment is a pairing of constants and components of the formal parame-
ters.

(b) Any function call folding, i.e., use of the inverse function call unfold
or the history rules, shall be with respect to either a function whose
initial definition was introduced in phase 2 or with respect to the main
function added by the trivial partial evaluator.

(c) No functions are removed in this phase.

3. The penultimate program transformations shall be a possibly empty series
of eliminations of calls to the syntactic identity function introduced above,
and the last program transformation shall be a subset transformation elim-
inating at least the syntactic identity function.

Constraints 1 and 3 are purely technical constraints that allow us to get things
started and finished in an orderly manner. The interesting part is constraint 2.

Constraint 2a characterises partial evaluation in that it only allows introduc-
tion of a certain class of functions, namely projections of existing functions.
This distinguishes partial evaluation from more general fold-unfold transforma-
tion schemes like [BD77], which allow introduction of arbitrary function defini-
tions.

Constraint 2b characterises partial evaluation in that the only folding we need
is recognising an already specialised function and using it instead of unfolding the
same call again. The methods in [BD77] are more general in this respect also, in
that any folding is allowed.

Constraint 2c is technical and makes sure that we always improve programs.
Note, that the above definition does not by itself define an algorithm. It lacks

two important aspects of an algorithm:� It is not deterministic. In the main phase there will always be many possible
program transformation that can be applied.� There is no termination criterion (and termination is not guaranteed). Since
most of the program transformations are two-way we can perform an end-
less series of transformations.

The former means that many more precise specifications will fall under our def-
inition of partial evaluation. The latter means that we have not solved the termi-
nation problems of partial evaluation (nor have we tried to), but as we shall see
in Section 7.6 we can stop at any time we want to and still have provably correct
behaviour of the residual program.
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7.3 Traditional Partial Evaluation

A traditional partial evaluator — for example the Scheme0 Mix from [JGS93,
Figure 5.6] — has the structure shown in Figure 15. (The figure shows a pre-
algorithm, not an algorithm, since termination is not guaranteed.) The outline does
not include pre- and post-processing of any kind and is shown slightly simplified
to match the two-parameter scheme.

pending : 2 ��. f0 % s0 1 � ;
marked : 2ó� � ;
while pending §2 � � do begin. f % s 1 : 2<� pick an element from pending � ;

e : 23� reduce f ’s body given static parameter s � ;
for each call g . s � % d � 1 in e do begin� change call to gs ¶ . d � 14� ;

pending : 2 pending G���. g % s � 1 �
end;� output function “ fs x f 2 e;” � ;
marked : 2 marked G���. f % s 1 � ;
pending : 2 pending H marked

end

Figure 15: Outline of traditional partial evaluation pre-algorithm.

In pending we keep a list of function-value pairs to keep track of which func-
tions we need to specialise with respect to which values. Initially that is the main
function, f0, and the initial static data s0.

Specialisation of a function f to a static value s is a purely local transformation
where f ’s body is optimised given the static value. This leaves some residual
expression e, which usually will contain calls to other functions with other static
values. These calls we turn into residual calls — to functions which may or may
not have been created yet — and we add the calls to our pending list. At this
point we have specialised f to s and we output the new definition and move the
function-value pair is moved to the marked list.

Finally we subtract all marked pairs from pending so the same function will
not be specialised to the same static value twice. (An obvious optimization here
is to avoid adding members of marked to pending in the inner loop and then just
remove . f % s 1 from pending.)
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7.4 Comparing Partial Evaluation Meanings

Some connections between the method of Figure 15 and Definition 3 are immedi-
ately clear:� All new functions created by either method are specialisations of existing

functions. (Actually, requirement 2a ensures only that new functions are
specialisation of functions present at the time of introduction. However,
since the composition of two projections is another projection the difference
is immaterial.)� All folding is done with respect to specialised functions. For Definition 3
this is captured by requirement 2b; for the traditional partial evaluation this
holds because all functions in the residual program are specialisations.2

Some differences are also apparent:� All intermediate programs produced during partial evaluation as defined
in Definition 3 are self-sufficient. Intermediate programs produced by the
method in Figure 15 will always contain calls to undefined functions except
just before the loop terminates. (For each . f % s 1\� pending there will be at
least one call to the not yet defined function fs.)

This difference is not important: it is trivial to augment Figure 15 so we can
exit the loop at any time we might want to and still end up with a correct
program.� In partial evaluation using Figure 15 there is a clear distinction between the
original program and the residual program. With Definition 3 the original
program and residual functions are mixed.

Since, as noted above, projections of projections are projections themselves,
this difference is immaterial.

7.5 Embedding Traditional Partial Evaluation

We shall now see how the traditional partial evaluation pre-algorithm can be em-
bedded in the framework of Definition 3.

2If we changed requirement 3 slightly to require that the final operation removed all functions
not introduced as specialisations then partial evaluation by Definition 3 would also have this prop-
erty. But in doing so, we would have to give up the ability to stop the main phase at any time of
our choice.
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Instead of working with pending and marked and instead of separating source
program from target program, we shall keep all information in one mutating pro-
gram. There will be four kinds of functions in this program:

1. The original program’s functions, not counting the projection added by the
trivial partial evaluator. These functions will remain unchanged until they
are finally eliminated.

2. The syntactic identity function. This will, likewise, remain unchanged and
eventually removed.

3. Introducted, but not yet reduced, functions. The new main function in-
troduced by the trivial partial evaluator will initially belong to this group.
These functions are all projections, h d 2 g . s % d 1 , and each correspond to an
element in pending.

4. Reduced functions. Such a function corresponds to a element in marked
and to a function output by Figure 15.

The grouping will not be evident from the intermediate program; it is instead
something we must keep track of separately.

Using this representation, Figure 15 becomes the pre-algorithm in Figure 16
augmented by the notes below.� introduce the new main function; �� introduce a syntactic identity function; �

while � program contains group 3 function � do begin
f : 23� pick a group 3 function � ;� unfold the call in f � ;� reduce f by repeated constant folding and ����9 -unfolding � ;� reduce f by propagating the outer I-call down the syntax tree � ;
for each “ ����9 x I A ³ s � D d � HP�?] g x � ] ( ” in f ’s body do begin� change to ����9 x I d � �?] g � s �JI x �Ñ� ] (�� ;� introduce h x I g

A
s � D x H5R in group 3 if . g % s � 1 is new � ;� fold f ’s ����9 to h d � �

end;� move f to group 4 �
end;� Eliminate all I-calls � ;� Eliminate functions not in group 4 �

Figure 16: Embedding of traditional partial evaluation pre-algorithm.
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In Figure 16 we pick a group 3 function. Such a function is a projection, and
as explained above it corresponds to an . f % s 1 in pending H marked.

In traditional partial evaluation we look up f ’s body and reduce it with the
knowledge of the static parameter. In Figure 16 this has become an unfolding
of a call g . s % d 1 and then reduction using ����9 -unfolding and (extended) constant
folding. These two program transformations cover what a typical partial evaluator
would do at this point.

Note that the body expression will now contain a call to a syntactic identity
function at top level. This call which does not have a counterpart in traditional
partial evaluation is now propagated down the syntax tree using the rules of Fig-
ure 14 read left-to-right. The rules should be used exhaustively, except that an
I-call should never be moved into a constant expression3. (To ensure termination,
the function call rule should not be used with the syntactic identity function.) Note
that the rules of Figure 14 are such that an I-call will be propagated down to every
leaf or constant.

At any point where traditional partial evaluation would leave us with g . s % d 1 ,
the I-call propagation and especially the function call rule of Figure 14 will have
left us with ����9 x I A ³X& D d � HP�?] g x � ] ( where d � is derived from I d. Where
Figure 15 searches for a call g . s % d 1 , in Figure 16 this has therefore become a
search for such a ����9 -binding.

For such a ����9 -binding, we use the argument manœuvres of Section 6.7 to
move the static value back to the function call. If we previously introduced a
function for g specialised to s � , we can now fold with that, possibly after an alpha-
conversion not shown in Figure 16. If . g % s � 1 is new, we can introduce a new
group 3 function and do a fold with that. (In the latter case, the fold degenerates
to an inverse function unfolding.)

The postprocessing eliminates all I-calls and functions no longer needed. As
discussed, this has not counterpart in Figure 15.

* * *

We have not formally proven that the embedding above works. It would be in-
teresting to do so, but we judge the task to be too big. We would, for one thing,
have to present a concreate non-trivial partial evaluator or other precise version of
Figure 15. The embedding would then essentially be a proof of correctness for the
partial evaluator.

3A constant expression is an expression in the range of �����[l�� G � � $�m , i.e., any expression
consisting solely of integers, pairs, and injections.
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7.6 Sequencing Program Transformations

In this section we show that sequencing program transformations produce new
program transformation which inherit the weakest improvement property of the
components. In doing so, we show that partial evaluation as defined in Definition 3
is semantics preserving.

If we have three programs, P1, P2, and P3, where P2 is generated from P1 with
a two-way improving program transformation and P3 is generated from P2 in a
similar manner, i.e., we have the situation

Program P1
...

imp 9:;:5:C=
imp 9? :3:;: Program P2

...

imp 9:;:<:>=
imp 9? :3:�: Program P3

...

then by transitivity of improvement (Lemma 4.61) we also have

Program P1
...

imp 9:;:<:>=
imp 9? :3:�: Program P3

...

Furthermore, if one or both (or none) of the ‘
imp 9K ¦�¦j¦ ’ is replaced by an ‘

impR 9¦b¦�¦ z ’ then
we are able to conclude

Program P1
...

imp 9:;:<:>=
impR 9:;:<:>= Program P3

...

by Lemmas 4.61, 4.74, and 4.75. Together with Lemma 4.59 then, if we have a
series of zero or more two-way improving program transformations

P1
T1¦ø¦�¦ z P2

T2¦b¦�¦ z w'w4w Pn F 1
Tn L 1¦b¦�¦ z Pn

then we can combine them into one two-way improving program transformation.
Two-way improvements as generated this way are needed in order to be able to
invoke the history of a function, see Section 6.9.

Assume now that we do partial evaluation as specified in Definition 3. Let Pa

be the output from the trivial partial evaluator, let Pb be the program after phase 1,
let Pc be the program after phase 2, let Pd be the program just before removal of
unused functions in phase 3, and let Pe be the final program.

By the global improvement theorems of Chapter 6 and transitivity of improve-
ment we have �b� $�m�k���� � � ] 9 Pa Pd and we have �ø� $�m�k���� � � ] 9 Pe Pd. This situation
exactly matches the preconditions in the following theorem which states that the
meaning of a program — including termination and error properties — is pre-
served for three programs in such relationships.
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Theorem 7.7 (Correctness of partial evaluation.)

� # Pa % Pd % Pe :
¾¿¿¿¿À
. Pa §23*n,n1-!. Pe §2<*g,+1-!�ø� $�m�k���� � � ] 9 Pa Pd !�ø� $�m�k���� � � ] 9 Pe Pd !# vin % vout : ������� T $�m º Pa vin vout îÿ������� T $�m º Pe vin vout

Á ÂÂÂÂÃ
Proof: By double use of Lemma 4.57. ý
(The grandiose name of this theorem does not imply that it is a deep theorem; it is
in fact a simple putting together of pieces.)

7.7 Example: Ackermann’s Function

The Ackermann function is, as mentioned in the introduction, a very common test
case for partial evaluators and partial evaluation techniques. In our language the
function looks like this.@ l ] ��Y[Z ��]»IY���&6� A:@ &[9 ��]»IK_�H k @� h T I�� A & ] ( ��]»MóC�H�Ó� h T I��Y���&�� A & ] ( ��]»IX_�H k @� h T I�� ��Y[Z A�A:@ &?9 ��]éafC�H�DbC�H�Ó� h T I�� ��Y[Z A�A:@ &?9 ��]éafC�H�D ��Y[Z A/@ &?9 ��]tD A & ] ( ��]fafC�H�H�H� ] (� ] ( R
If a value for the first component of ��] is known it is possible to derive a spe-
cialised version which does not contain the Y���&�� constructs for this component.
If, for example, we use the value G for the first component of ��] we can obtain the
following program.@ l ] ��Y[Z G�]»IY���&6� A ]»IK_�H k @� h T I�� ��Y[Z CQC�Ó� h T I�� ��Y[Z C A ��Y[Z G A ]faéC�H�H� ] ( R@ l ] ��Y[Z C ]»IY���&6� A ]»IK_�H k @� h T I�� ��Y[Z _éC�Ó� h T I�� ��Y[Z _ A ��Y[Z C A ]faéC�H�H� ] ( R@ l ] ��Y[Z _�]»I A ]»MóC�H5R
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The calls
A ��Y[Z _fC�H and

A ��Y[Z CPC�H could even be reduced further, but following
the off-line partial evaluation tradition with mono-variant binding-time analysis
[JGS93] we have not done this.

Studying the residual program we see why Ackermann’s function so often is
used as a test case. It is a small example which exhibits most of the problems with
the technique:� There is a need for having several specialised versions of the same function.� There is a need for memorisation, i.e., when we see a call ��Y?Z A em

D en
H dur-

ing our specialisation it is important that we do not always blindly unfold
the call because that would lead to non-termination of the partial evaluation.
(In this case this is because contains a recursive call where the static param-
eter does not decrease.) Instead we must check whether we have already
specialised ��Y[Z with respect to the (hopefully) constant expression em. If
we have, we should create a residual call,

A ��Y?Z em en
H , instead of unfolding.� There is a need for constant folding, i.e., the partial evaluation process ac-

tually performs part of the computation. For example, during specialisation
we see that the zero-tests on ��] ’s first component as well as component
extractions with

@ &[9 and & ] ( are computations that are constant folded.

Appendix B shows how the program transformations of Chapter 6 can be used
to perform partial evaluation of Ackermann’s function with respect to the value G
for the first parameter. There are a total of 70 transformations used to derive
(modulo naming of functions) the above residual program. The transformations
were selected as per Figure 16, except that the order of a few transformations were
swapped.

Note that, as explained in Appendix B, when a transformation P1 z P2 is
shown it is often the case that we have a hidden middle program which is alpha
equivalent to either P1 or P2:

P1
α¦b¦�¦ z P �1 T¦ø¦5¦ z P2 or P1

T¦j¦�¦ z P �2 α¦ø¦5¦ z P2

The middle program has been hidden because it contains one or more variable
names generated by

º � ] ����m . We do not want to keep such names because (1) the
inner workings of

º � ] ����m should be hidden, and (2) having variables get new
names all the time makes the example hard to follow.

Note that when constant folding occurs — 14 times — we use the opportunity
to replace all occurrences of the expression being constant folded simultaneously.
This reduces the number of transformations needed significantly.

There are four phases in the transformation: From P1 to P2 we prepare for
the main work by adding a syntactic identity function to the program; from P2
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to P63 we perform the specialisation; from P63 to P70 we clean up by removing
calls to the identity function; and finally from P70 to P71 we eliminate unused
function definitions. This gives us the following improvement diagram (collapsing
for space reasons the first two phases as shown above),

Program P1
...

imp 9:;:<:>=
impR 9:;:<:>= Program P63

...

imp 9:;:<:>= Program P70
...

imp 9? :<:�:
impR 9? :<:�: Program P71

...

If we furthermore collapse the first/second and the third phase by using transitivity
of improvement (Lemma 4.61) and drop our knowledge of the reverse improve-
ment relation we get the following diagram:

Program P1
...

imp 9:;:<:>= Program P70
...

imp 9? :<:�: Program P71
...

By Theorem 7.7 we have correctness of the residual program.



Chapter 8

Further Work

Prediction is difficult —
especially of the future.

— STORM P., 1882–1949

The present work is concentrated in two areas: programming language theory and
the use of mechanically verified proofs. In our discussion of future research direc-
tions we will therefore split into work that has to do with programming languages
and work that has to do with HOL.

8.1 The Programming Language Theory Side

This section discusses further research that should be conducted in the program-
ming language theory direction of the present thesis.

8.1.1 Higher-Order Languages and timed Semantics

In [San96] Sands shows that the folding operation can be handled in a language
with higher-order constructs also. However, the presence of closures as values
opens the need for a weaker equality concept, usually called bi-similarity. It is
immediately clear that a formalisation of Sands’ work would be highly compli-
cated by this need. What is not immediately clear, however, is whether Sands’
work could be made to work with a timed semantics of “re-usable resource” kind,
see Section 3.4. Since the non-reusable resourced timed semantics put counter-
intuitive restrictions on the moving of identity function calls, see Section 9.3, we
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strongly believe that further research should be conducted in the direction of find-
ing a re-usable resource timed semantics that will work with Sands’ system or a
slightly modified version of it.

Seen from the point of folding, a good timed semantics is one that puts as
many expressions as possible in the same class while still having a true Improve-
ment Globalisation Theorem. To see this, consider the alternative: if we count
evaluation steps in the traditional sense, then very few program transformations
are two-way improving. If, on the other hand, we count nothing at all (i.e., use������� T � � $�m ) then local improvement — which degenerates to evaluation equiva-
lence — is not strong enough to give us global improvement. The right choice is
somewhere in-between and research should locate where.

8.1.2 More Program Transformations

The set of program transformations in Chapter 6 has been selected with partial
evaluation in mind. There is no reason why it should not be possible to extend
the set to include, for example, deforestation’s Y���&6� -of- Y���&6� rule, (7) in [Wad90,
Figure 4]. This rule says that the fragmentY���&6� A Y���&��P�Kk @ � h8� � Cva�� ��� C �Ó� h0� m C^a�� ��m C � ] ( H k @� h0� � GOa�� ��� G�×� h0� m GOa�� ��m G� ] (
and the fragmentY���&6�Q�Qk @� h0� � C^a�� Y���&6�Q��� C k @ � h0� � GOa�� ��� G �Ó� h0� m GOa�� ��m G � ] (�×� h0� m C^a�� Y���&6�Q��m C k @ � h0� � GOa�� ��� G �Ó� h0� m GOa�� ��m G � ] (� ] (
are equivalent provided neither � � C nor � m C are free in either ��� G or ��m G . The
effect of this is to move the destructor in the hope that constant folding can be
used, Y���&6� , closer to the construction of the value it destructs. There is a similarY���&6� -of- ����9 rule.

It should be straightforward to prove that these two program transformations
two-way improve a program, as they do not involve function calls.

8.1.3 Typing

Section 3.7 contains basic work on adding a type system to our language. But it is
not carried through: the relationship between typing of expressions and programs
and the evaluation of these is not stated, nor have interesting theorems about it
been proven. These holes should be patched.
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Furthermore we should make sure that our program transformation not only
preserve static correctness, as we have proven, but also typing. No properties
stating this have been proven.

We expect both of these directions to require a large amount of work.

8.2 The HOL Side

HOL has been used for theorem proving in connection with both hardware and
software, although there seems to be an imbalance in favour of hardware theorem
proving. The present work and previous works like [MG94] show that HOL is
perfectly able to work with programming language theory so the bias is likely due
to historical reasons.

During the present work some problems and potential problems with using the
HOL theorem prover in software contexts have been identified. These concentrate
on automation, i.e., the proof search techniques and tools present in HOL.

8.2.1 Quadratic-Time Behaviour with Abstract Syntax

Programming language theory typically involves definition of some language us-
ing “abstract syntax,” i.e., by defining a type and a set of constants with properties
as constructors, see Section 3.2.1.

There is a serious problem with efficiency programmed into this approach
to abstract syntax: the number of theorems1 stating that the constructors have
different images grows as n . n ¦ 1 1 where n is the number of constructors. For the
language used herein there were 132 theorems for this purpose.

This large number of theorems hurts automation: it is essential for productiv-
ity to have some automatic method to replace equalities between different con-
structors with falsity. Without automation we would explicitly have to exhibit the
theorem stating that constructors C1 and C2 are different. Currently we just request
rewriting with respect to all 132 theorems.

Automatic tools for improving the efficiency of such rewriting do exist: HOL
comes with relatively efficient discrimination-net based functions that allow left-
to-right rewriting with respect to a set of equalities. In the face of large numbers
of theorems these methods become slow, however, as they are of linear complex-
ity when applied to sets of theorems with the same shape. A variation of this
method, turning the rewriter’s kernel into a generating extension, was explored

1Counted as HOL’s rewriting logic will see it, i.e., disregarding that several theorems can be
combined into one by using conjunctions. The HOL tools actually return all the theorems stating
that constructors are different as one gigantic conjunction.
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in [Wel95]. This approach results in significantly2 faster rewriting at the cost of
reduced flexibility and higher start-up cost. The proofs described in this thesis
have been conducted using rewriting tools produced by this generating extension
technique.

Although tools as described above provide some relief we feel that further
research into a more fundamental solution to this problem is needed. A possible
direction this research might take could be to give up having all n constructors
belong to the same type. If, for example, n constructors were divided into two
groups and we defined three mutually recursive types

T :: 2 T1 � T2

T1 :: 2 C1 >4>4>=��>4>'>=� C M n N 2 O >4>4>
T2 :: 2 C1 x M n N 2 O >4>4>=��>'>4>=� Cn >4>4>

then the number of theorems stating syntactic difference would be approximately
2 � 2 . n @ 2 1 2, i.e., about half the n . n ¦ 1 1 theorems the direct method would pro-
duce. If the constructors were divided into smaller, but more groups — for ex-
ample with two in each — then the number of theorems could be reduced to
approximately 2n. (When defining a type with HOL’s standard method [Mel91]
the type is actually defined as isomorphic to a type having this structure.) Unfor-
tunately, using such methods would be visible to the user of HOL. Furthermore,
the initiality theorem for mutually recursive types are complicated.

8.2.2 Existential Quantifiers with Witness

Working with a semantics described by an inductive set of rules often lead to goals
with a subterm of the form� x1 : � x2 : >4>4>7� xn : *;>4>'>ø. x1 2 e 1=>4>4>�, (8.1)

where the equality appears in some “positive context” that would allow us to drop
the outermost existential quantifier and replace x1 by e in the body. These subterms
are annoying in the extreme since: (a) they occur often, (b) they block automatic
simplification, (c) they are not quite easy to handle manually as they involve bound
variables and might occur deep inside the goal. There are two major sources of
such terms in the proof described earlier in this thesis: rewriting by Theorems 4.7
and 4.11 which state that the semantics of the language is deterministic and that
syntax directed reduction is possible. Consider, for example, an attempt at proving

2The actual complexity depends on the implementation’s treatment of Standard ML’s case-
constructs.
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the goal (one half of Equation 3.19)� ? # N % e % P% E % v : ������� T � � $�m T ] N ePE v !¬������� T � � $�m ePE v (8.2)

by rule induction will lead to 12 subgoals. After reduction by Theorem 4.11 and
injectivity of constructors one of the subgoals — the one for Ò T ³ ] � — will be¨ ������� T � � $�m T ] N ePE v������� T � � $�m ePE v ü � ? � v � : . v ��2 v 1��ï������� T � � $�m ePE v � (8.3)

In this simple example, the existential quantifier is at top level and we might pro-
ceed by exhibiting the witness, v, by hand. In more complicated situations this
approach does not work, either because the quantifier is not at top level or because
the witness depends on variables not in scope at the quantifier’s position, e.g., by
x2 in Equation 8.1.

To help solve goals like this a quite general existential quantifier eliminating
conversion had to be constructed. When applied to a term of the form in 8.1 it
will eliminate the outermost existential quantifier provided a witness in form of
an equality is present as a top-level conjunct of the body. The elimination will
take place even if the witness depends on any of x2, . . . , xn. (This complication is
handled by moving the quantifier inwards.) When applied to Equation 8.3 it will
produce the simplified goal¨ ������� T � � $�m T ] N ePE v������� T � � $�m ePE v ü � ? ������� T � � $�m ePE v (8.4)

which is easily proven.
There is a similar problem with universally quantified implications where the

antecedent names a witness, i.e., terms of the form# x1 : # x2 : >4>4>+# xn : *P*->4>4>4. x1 2 e 1=>4>4>Q,�! >4>4>Q,t> (8.5)

Again, the equality should occur in a positive position but with respect to the
antecedent. A similar reduction should be possible to automate for this class of
terms which occur frequently in, for example, induction proofs using ����m T y k�l ] ( .

We feel that HOL needs some work in this direction, i.e., that quantifier-
eliminating tools as general as possible should be provided.

8.2.3 Redefinition of Constants

The HOL system does not allow redefinition of constants as this could be used
to make the logic inconsistent. (For example: define c 2 T and prove � c; then
redefine c 2 F and use this definition and the previous theorem to obtain � F .)
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Thus prohibiting redefinition of constants is good for consistency. But at the
same time it is also very damaging to the use of HOL in the development phase
because any change necessary in a constant’s value can make it necessary to replay
literally several hours of proof scripts. This happened twice to the author while
proving the correctness of the self-interpreter which initially had a few problems
with badly placed nested pairing.

It is therefore the author’s impression that HOL needs to be extended with a
means of redefining constants. Since it poses the same threat to proof security as
the � Z T 9�` � function3 it would make sense to flag any use of redefinition in the
same way. This would tell the user to re-run the proof scripts for optimal proof
security, but at a convenient time instead of insisting on it right away.

8.2.4 Syntax-Directed Reduction

As discussed in Section 4.3.2 the case analysis theorem one gets from defining a
function by an inference scheme — for example Theorem 3.16 — is in an incon-
venient shape because it is hard to use with automatic tools.

Since the start-up costs of using HOL (or any other theorem prover, probably)
are high just for learning the system it is our impression that tools for deriving
syntax-direction reduction theorems like Theorem 4.8 from Theorem 3.16 should
be provided.

3A “cheat” function which converts arbitrary sequents into objects of theorem type.
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Related Work

Which of us [. . . ] is to do the hard and dirty work
for the rest — and for what pay?

Who is to do the pleasant and clean work,
and for what pay?

— JOHN RUSKIN, 1819–1900

9.1 Partial Evaluation

There is now extensive literature on partial evaluation. For a guide to the literature
in the field in general, see [JGS93, Chapter 18]. Here we shall only deal with more
closely related works.

9.1.1 Partial Evaluation and Correctness

John Hughes in [Hug96] presents a novel way of doing partial evaluation, namely
by specifying the partial evaluator as a non-standard type inference. Almost ev-
ery feature of any other partial evaluator is embedded into Hughes’ system, e.g.,
poly-variance, constructor specialisation [Mog93], and higher-order specialisa-
tion. Being based on an inference system it appears that there is some hope that
the method can eventually be proven correct. Unfortunately, the inference system
is not syntax directed so some kind of fixed-point iteration is needed in order to
perform actual partial evaluation with the system. It remains to be seen whether
this promising new approach can be efficiently implemented and what effect it
will have on partial evaluation.

157
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Specialisation of various lambda calculi has been the subject of much research.
In the following we cover some of the λ-calculus specialisers. However, since
these specialisers are built with a completely different evaluation paradigm in
mind compared to this dissertation — λ-calculus compared to recursive functions
— there are many differences. Some of the problems in partial evaluation, mem-
oisation for example, simple do not show up in connection with λ-calculus at a
recognisable level.

λ-Mix

The correctness of λ-mix [Gom91, GJ91b], a partial evaluator for the untyped
λ-calculus, has been studied by Gomard in [Gom92]. λ-mix works on annotated
two-level λ-calculus terms. The partial evaluator performs constant folding and
function unfolding but does no memoisation. Even so, λ-mix is self-applicable in
the practical sense of the word.

In [Gom92] a correctness proof for λ-mix appears. The correctness proof,
essentially that λ-mix satisfies Equation 1.1, is conducted under the condition that* * λ ¦ �5�6� , , is defined on not only the expression, e, and its static input but also on
any subexpression of e and any static input. The effect of having such strong a
precondition is unclear, but one might fear that the precondition simply does not
hold in many interesting situation and thus that the correctness proof cannot be
applied.

Hatcliff’s Specialiser

Hatcliff in [Hat95] works with the simply typed lambda calculus with constants.
(The fragment used in [Hat95] is strongly normalising but this is not used in the
proofs. In the upcoming [Hat96] this restriction has been removed.) Following
λ-mix, both a regular (one-level) and a two-level language is defined and well-
annotation rules are given. A partial evaluator is an implementation of the seman-
tics of the two-level language.

Using Elf, an implementation of LF (Logical Framework) and in some re-
spects comparable to a theorem prover like HOL, Hatcliff shows the correctness
of the well-annotatedness rules, i.e., that a two-level program which satisfies these
rules will not commit type errors during specialisation.

A specialiser is also given, and it is proven sound that any terminating com-
putation (i.e., any specialisation) of a two-level term reflects a computation of the
corresponding one-level term with the same result. The proof is also in Elf.

The specialiser in [Hat95] mostly works like λ-mix, i.e., it does constant fold-
ing and function unfolding but not memoisation.
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Mogensen’s Specialisers

Mogensen in [Mog92a], [Mog92b], and [Mog95] discusses partial evaluation of
the pure lambda calculus. Mogensen first exhibits a self-reducer, R, operating on
higher-order syntax. A self-reducer is a program that reduces the representation of
a term to the representation of the term’s normal form if such exist. (So the self-
reducer in Mogensen’s terminology does what a self-interpreter in this dissertation
does. The term “self-interpreter,” following [Bar91] is used for a reverse of the
encoding function.) From the self-reducer it is easy to program a partial evaluator

P q λm % n > R . Apply m n 1
where Apply is a function that constructs the higher-order representation of the
application of m and n, themselves higher-order representations of lambda terms.
The self-reducer is proven correct in [Mog92a].

Also this specialiser for a lambda calculus works by constant folding and func-
tion unfolding. It does not do memoisation.

In [Wan93] Wand takes up Mogensen’s specialiser, specifies correctness crite-
ria, and prove that the specialiser is correct according to these criteria.

9.2 Correctness of Interpreters

In [And91] a self-interpreter for a small Lisp-like language is presented and then
proven correct. The language treated works with S-expressions and allows one
(recursive) function having one parameter. The set of operators include basic
list manipulation and a conditional. The language is thus Turing-complete even
though it is much simpler than the language used in this dissertation. As ex-
pected, using a smaller language makes the self-interpreter relative larger. In this
case, for example, one function must emulate evaluation for both programs and
expressions.

Andersen proves the self-interpreter correct by giving a denotational semantics
for the language, which is the limit of a nested-call timed semantics. Even though
the semantics is given in a completely different way and even though the proof is
domain theory based, it is not very different from the proof given in Chapter 5.
There is a difference in notation, for example that an implication between two
fully applied ������� T � � $�m T ] predicates becomes a relation, R , between the result
of fully applying the meaning functions. Another major difference is that the
language and the interpreter are untyped and that there are no encoding functions
involved in the proofs.

The proof is in traditional mathematical style and cuts some corners with re-
spect to selecting the right branch of the n-way nested conditional that checks
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the outermost constructor of an expression. While this “syntactic dispatch” is no
doubt correct, one of the proofs for a lemma stating part of this correctness is just
as obviously incorrect. (To be precise: proving Lemma 1 by case analysis will
never work. Structural induction, at the minimum, will be needed.) Based on our
own work especially with Lemma 5.6 we have some doubt that the outlined proof
of termination correctness will in fact work.

The correctness of interpreters for λ-calculi has been proven numerous times,
see for example [Bar91], [Kle36], [Mog92a], but these proofs have a completely
different structure. We will therefore not discuss these in any detail.

9.3 Correctness of Folding

In [San96] Sands presents a language and a set of program transformations de-
signed to cover techniques like fold-unfold transformations [BD77], partial evalu-
ation, and deforestation [Wad90]. The present dissertation borrows ideas like the
use of identity functions (called “ticks” ( S ) in [San96]) and improvement as the
source of correctness in connection with folding.

In Sands’ language a program is a set of mutually recursive equations. Ex-
pressions allowed are given by the grammar outline

e :: 2 x � f � λx > e � e1 e2 � e1 @e2 �6Y���&��~>'>4>=� c .�Te 1 � p .�Te 1
where c ranges over a set of constructors and p ranges over a set of primitive
functions. “@” is strict application; the implicit application is lazy. The language
is thus higher-order language. Values for the language are weak head normal form
terms, i.e., constants and constant expressions are identified. Identity of values is
by observational equivalence, see [Mil77] or [Pit95].

Sands introduces a timed semantics for the language with the resource bound
being a limit on the total number of non-primitive function calls, i.e., the semantics
is closely related to the semantics in Section 3.4.2. Based on this, Sands introduces
local improvement (under another name) and improvement which, since Sands
only allows addition of new functions, not mutation of old ones, is a property that
is not relative to a specific program. Sands proves equivalents of the improvement
globalisation theorems (Theorems 4.71 and 4.72) contained in this dissertation.
Sands notes that the two-way improvement globalisation theorem does not seem
to follow from the one-way improvement globalisation theorem. Based on our
experience with proving Theorem 4.72 we agree.

The rôle of identity functions is the same in [San96] as here: a call to an iden-
tity function servers as a marker for a position where folding is allowed. But as
the timed semantics used is of the non-reusable kind none of the program transfor-
mations in Section 6.5 that multiply identity function calls are two-way improve-
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ments in Sands’ system. Instead, transformations like the following examples
using our notation.

Ò T�Ú ����� I .gÒ T�Ø $ oe1 e2 1BA Ò T�Ø $ o .nÒ T�Ú ����� I e1 1 e2Ò T�Ú ����� I .gÒ T�Ø $ oe1 e2 1BA Ò T�Ø $ oe1 .gÒ T�Ú ����� I e2 1Ò T�Ú ����� I .gÒ T�½ � � m e1 e2 1BA Ò T�½ � � mt.gÒ T�Ú ����� I e1 1 e2Ò T�Ú ����� I .gÒ T�½ � � m e1 e2 1BA Ò T�½ � � m e1 .gÒ T�Ú ����� I e2 1
The interpretation of these rules is that if we need an outer identity function call
propagated into a term in order to do folding safely there, then we must select one
of the terms in which we will be allowed to fold. We find this need for selection
counter-intuitive, see Section 8.1.1. To get around this restriction Sands shows
how an identity function call located at top level in the definition of a function call
be used to “pay” for folding calls to that function.

Finally, [San96] has an excellent coverage of related work in this particular
area. We shall not try to duplicate this here.

9.4 Standard ML and HOL

A lot of work has gone into formalising the semantics of Standard ML, as defined
in the language definition [MTH90], in HOL. There are many reasons for this, in
particular� HOL and Standard ML are closely related: The ML languages owe their ex-

istence to theorem provers such as HOL and HOL is implemented in Stan-
dard ML. In particular every HOL researcher knows Standard ML1.� The definition of Standard ML is an unusually rigorous language specifica-
tion (at least from the level of parse trees and up). That is, [MTH90] con-
tains more precise mathematical specifications and much less descriptive-
language specifications than for example Scheme’s definition [CR91].� There are a number of known problems with the semantics of Standard ML,
see [Kah93] and [Kah95]. A good formalisation would help confirm and
complete this list of problems as could be used to make sure that suggested
work-arounds do not introduce problems of their own.

1Recall that HOL in this thesis stands for HOL version 90.7 which is the version of HOL
written in Standard ML. Its predecessor, HOL-88, predates the definition of Standard ML and is
written in “classic” ML which is slightly different from Standard ML though mostly in syntactic
ways. But still most users will know Standard ML.



162 Related Work� Standard ML is not a toy language like the language used in this thesis. The
reason for using a toy language in this thesis and other places is that treating
a full language like Standard ML is not currently feasible.

Common to the various approaches to the problem of formalising Standard
ML is the need for defining mutually recursive data types, as the The Core Lan-
guage [MTH90] is defined syntactically by a grammar with mutual recursion.
While the tools described previously in Chapter 3 do not directly handle this
there are no unsurmountable difficulties linked to this. See [Rus92], [Gun93],
or [Har95] for more details.

Also common is the need to define a representation for a program’s values.
Since the language definition does not put any limit on the number of user defined
types in a program, some layer of encoding must be used. In fact, Gunter showed
in [Gun92] that even if we did restrict ourselves to a fixed set of types there would
be problems: HOL’s and Standard ML’s ideas of types are different in essence and
that if a type T was defined in HOL in such a way that it was a solution to

T 2 Var num � App T T � Abs . T z T 1
then Abs would not be injective and thus not constructor-like.

Syme in [Sym93] describes one attempt at formalising The Core Language.
The approach used is very different in nature from the one used to define the
language in Chapter 3 in that inferability of a sentence

s % obj � phrase ! res % s �
is defined to be equal to existence of a valid and finite inference tree with the
sentence in question as root. Validity for inference trees means that they follow
the inference rules for The Core Language. Thus, inferability is based directly
on existence of inference trees while a least fixed point approach was used in
Chapter 3. Syme’s definition of inferability is not directly suitable for proving
properties about the language but he shows that the forward inference rules follow
from his definition.

The forward inference rules and the structural induction theorem from the
syntax definition is used to prove two important theorems about the language:� the Pattern Matching Theorem: If a sentence is inferable for a pattern then

the two states s and s � are identical. In other words: pattern matching does
not influence the store.� The Determinacy Theorem: if two inferable sentences are identical to the
left of “ ! ” then they are completely identical, i.e., the results and final
stores are also identical.



Late Arrivals 163

In order to for this to hold, Syme formalises a deterministic choice of new
addresses in stores. This is done using Hilbert’s choice operator.

Another work aimed at formalising The Core Language in HOL was under-
taken by VanInwegen and Gunter in [VG93] at the same time as [Sym93] dis-
cussed above. Interestingly, [Sym93] and [VG93] restrict themselves from the
same parts of The Core Language: “reals,” streams, and the ³ ] 9���m�m�l�$�9 exception.
The reasons for omitting these parts are not given but it is a safe bet that the reason
is that Standard ML’s definition [MTH90] is very weak on exactly these subjects.
It is a — perhaps surprising — fact that the definition of the C language [KR88]
is considerably more precise on, for instance, machine-represented “reals”: the
C Standard defines minimum ranges and resolutions for the relevant types and
provides symbolic names for the actual ranges and resolutions.

9.5 Late Arrivals

A few related works surfaced around the time the present thesis was turned over
to the committee.

In [NN96], Nazareth and Nipkow prove the correctness of Algorithm W pay-
ing special attention to the issue of fresh variables. The authors use global unique-
ness since the set of variable names — integers as in the present work — is
strongly ordered they only have to pass the “counter” around. Proofs are done
with the Isabelle theorem prover.

Graham Collins discusses co-induction with a PCF-like language and mecha-
nisation of co-inductive proofs in [Col96]. A tool that works with rules not unlike
those used in Section 3.7 is developed but it is not immediately clear how power-
ful its monotonicity prover is but it is likely to be stronger than the one used for
Section 3.7.
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Summary and Conclusions

The object of oratory alone is not truth but persuasion
— THOMAS BABINGTON MACAULAY, 1800–1859

We will now summarise this dissertation and the contributions in it. We will then
re-discuss our thesis and goals. In this dissertation we have� presented a simple language and formalised it and its semantics in the HOL

theorem proving environment. Our formalisation has allowed us to reason
about programs and expressions from our language, their evaluation prop-
erties, and termination within the HOL system.� exhibited an interpreter for this language written in the language itself. We
have proven, using HOL, that the interpreter is correct with respect to the
programming language’s semantics and with respect to the coding opera-
tions for values and syntax needed in order to program the interpreter in a
typed style. The proof takes termination properties into account.� shown a series of program transformations ranging from purely local trans-
formations like constant folding, over transformations with a larger area of
effect such as ����9 -unfolding and alpha conversion, to transformations with
global consequences such a folding and unfolding of function calls. These
program transformations have been proven correct with respect both to suc-
ceeding evaluation and to non-terminating or erring evaluation.� defined and shown the correctness of the trivial partial evaluator.� given an internal definition of partial evaluation and demonstrated that the
above program transformations are powerful enough to be used for partial
evaluation with both specialisation and memorisation.
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166 Summary and Conclusions

Returning now to our thesis from Section 1.1 we conclude the following for each
of its three points.

1. Although the term “partial evaluation” has been used to describe many pro-
gram transformations and techniques, thus making a statement of what par-
tial evaluation can or cannot be described as hard to reason on, we find that
we have given convincing evidence that the transformations described in
Chapter 6 can be used to perform partial evaluation.

2. Yes, the correctness of partial evaluation has definitively been shown to be
susceptible to proofs. This is clear from Chapters 4 and 6.

3. We believe that mechanical verification is indeed an asset to programming
language researchers because it provides an unprecedented assurance of cor-
rectness in the results. The price is some extra work:� There is a significant start-up cost for learning the tool, in our case

HOL. There is no hope of eliminating this cost, but it ought to be
possible to lower it by creating better documentation1 and by having
more programming language examples available.� In proving the interesting theorems one seems to need an incredible
amount of trivial lemmas, for example “ Í ½�½ Ò Þ�ã is null exactly when
the arguments are” and “ Î Í�ù is commutative”. Most of the ‘obvious
theorems’ are true but a few are false. The purpose of HOL is to weed
out the few false ones by requiring a formal proof of each and every
one. Proving these theorems takes a significant amount of time and
even though libraries of theorems exist they somehow never seem to
contain the theorem one needs.� There is a significant need for computer time involved, both CPU-
time and interactive time. Moreover, it is occasionally necessary to
abandon a logically correct proof method solely because carrying it
through would require unacceptable amounts of time or memory. This
was discussed also in Section 4.3.2.

On the other hand, mechanical theorem proving can also save time: in paper
proofs a structural induction or rule induction means a serious amount of
work and one is tempted to put it aside for later only to discover that it turns
out to be false. When using a theorem prover, however, induction proofs

1HOL is a freely distributable program and the authors make no or little money directly from
it. We realise that the level of academic recognition obtained by writing and maintaining docu-
mentation makes it difficult to defend spending time on it. HOL, in other words, needs at least a
minimal funding.
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as such do not imply much work because one can simultaneously reduce
all resulting subgoals. In fact, the rule induction proofs conducted for this
work most often had only two non-trivial kinds of cases: recursive function
calls and ����9 / Y���&�� .
Based on the above observations and the work we have been through we
strongly believe that much programming language work would benefit from
some kind of formalisation.

In Chapter 2 we put forward the separate goal of working towards a provably
correct and optimal partial evaluator for a typed language. We believe that we
have forwarded this goal on two counts.� We provided a self-interpreter using a universal encoding of values and

proved that it functions correctly.� We presented proven program transformations which are strong enough to
do what some optimal partial evaluators for untyped languages do.

* * *

One of the most hard-earned lessons learnt during HOL proof sessions for this
dissertation is that false theorems are hard to prove. If a full day’s proof work has
not resulted in a HOL-acceptable proof of some proposed theorem then that the-
orem probably is not true. Mostly this happened with goals involving evaluation
and variable renaming and/or substitution which can look very convincing, yet be
false. On the other hand, some true theorems are hard to prove too.
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Appendix A

Transcription of HOL Terms

Die Mathematiker sind eine Art Franzosen:
redet man zu ihnen, so übersetzen sie es in ihre Sprache,

und dann ist es alsobald ganz etwas Anders.
— JOHANN WOLFGANG VON GOETHE, 1829

HOL is mainly an ASCII based system: all input and output takes place using
a sequence of characters. The benefit of this approach is that it is efficient, it is
portable, and it has simple and unambiguous syntactic rules. Some of the draw-
backs are� it does not make use of extended character sets that might be available in

some settings. For example one might get lucky and find a keyboard with a
“# ”-key only to find that HOL will not let one use it.� it is inheritly one-dimensional, i.e., just a string of characters, while theo-
rems, as other mathematical objects, traditionally are shown with the occa-
sional excursion into two dimensions.

This thesis uses notation that is more from the mathematical world than from the
HOL world and this appendix shows the correspondence.

For traditional mathematical entities used in formulae the following table sum-
marises how this thesis uses a character set larger than the one used by HOL. In
addition to these symbols, some of the functions defined for the purpose of this
thesis also have special notation. For example, the semantics predicate for expres-
sions is written E � P e ! v.
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172 Transcription of HOL Terms

Object HOL world Mathematical world
Universal quantifier U�VXWYV5Z3V # x > x 2 x
Existential quantifier [�V�W\V5Z�] � x > x 2 1
Unique existence [^U�VXWYV5Z50 � !x > x 2 2
Abstraction _�VXW\V`2a] λx > x � 1
Negation bCc � b
Conjunction dfe<_hg s � t
Disjunction df_<eig s � t
Implication djZ<Z5klg s ! t
Bi-implication djZjg s î t or s 2 t
Conditional cmZ5kn]porq b z 1 � 0
Inequality b�/ Ì Zfs$6 x §2 4
Less-or-equal relation

Ìnt Z � m u n
Greater-or-equal relation

Ì k3Z � m © n
Sequent o0æf0uZv0 � 2 2 2

Formulae in this borderline between computer science and mathematics have an
eerie tendency of becoming larger than traditional mathematical notation was pre-
pared for. HOL solves this by linearisation, i.e., a large formula is just a large
string of symbols. This works but makes for poor readability, so this thesis in-
stead uses two-dimensional displays like

� ¢££¤ ££¥ # x % i : &?9�m � Y69t. ¼ T ³ ] 9 i 1 x 2 x# x % v1 % v2 : &?9�m � Y69t. ¼ T�½ � � m v1 v2 1 x 2 x# x % v : &?9�m � Y69t. ¼ T ³ ] � v 1 x 2 x# x % v : &?9�m � Y69t. ¼ T ³ ] m v 1 x 2 x

ê ££ì££í
to stand for a sequent whose conclusion is a universally quantified conjunct of four
conjuncts. Note that the conjunction ( � ) is implicit in the above display. Further-
more, we will occasionally omit parentheses that would be necessary in a linear
representation of such displays. This is especially true for formulae threatening to
exceed the line width.



Appendix B

Ackermann’s Function

It’s as large as life, and twice as natural!
— LEWIS CARROLL, 1832–1898

This appendix shows in great detail partial evaluation of Ackermann’s function
with respect to a known first argument equal to 2.

In this particular derivation there are a total of 70 program transformations,
i.e., there are 69 intermediate programs. All 71 programs can be summarised as
follows:

# Phase Raison d’être
1 Initialise Source program with static argument inserted
2 w Identity function introduced

2–63 Main work Partial evaluation
64–70 Cleanup Elimination of identity function calls

71 w Final program, removal of unused functions

All the program that appear in the initialisation and main work phases, i.e., pro-
grams 1–63, are equivalent in the sense that the depth of any evaluation is pre-
served for any expression moved from being evaluated in one program context to
being evaluated in another. Once the cleanup phase starts this no longer holds, but
the transformed programs still calculate the same functions.

The actual proofs use numbered, not “named” functions and variables. The
correspondence for function is 1 A � � �?] , 2 A ��Y[Z , 3 A ³ , 4 A ��Y[Z C , and 5 A��Y[Z _ . Uniformly over all programs, the correspondence for variables is 1 A ] ,
2 A ��] , 3 A T

, 4 A � , and 5 A ] o .
Some program transformations needed to keep the uniform variable naming

scheme have been left out, namely alpha conversions in connection with constant
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174 Ackermann’s Function

folds, ����9 -unfolds, and ����9 -folds. This is because aa constant fold can introduce
a
º � ] ����m -constructed variable and ����9 -operations rename all bound variables us-

ing
º � ] ����m . Using an intermediate unshown program which is alpha-equivalent

allows us to hide the implementation details of
º � ] ����m .

Program 1: Initial program.xQy�z�{}|1~Jz�z���|��������C��z����xQy�z�|�����{-z����|�������x-����{-z����1����x�;���������J��z	�X{-z��¡ ��¢�£ ���������|����¤�J��z	�X{-z����1����x�;���¥���¥|���������x-����{-z§¦� ����¨ ��¢�£ ���¥���¥|���������x-����{-z§¦� �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�
Program 2: Introduce new function.xQy�z�{}|1~Jz�z���|��������C��z����xQy�z�|�����{-z����|�������x-����{-z����1����x�;���������J��z	�X{-z��¡ ��¢�£ ���������|����¤�J��z	�X{-z����1����x�;���¥���¥|���������x-����{-z§¦� ����¨ ��¢�£ ���¥���¥|���������x-����{-z§¦� �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬(®¥��®>�
Program 3: Unfold call.xQy�z�{}|1~Jz�z��¬«�¨¯Q�Q�{-z������C��z��~Jz ��|����¤��x-����{-z����1����x�;�������­�J��z	��{-z��§ ��¢P£ ���������|������J��z	��{-z����1����x�;�������¥|���������x-����{-z«¦« ����¨ ��¢�£ �������¥|���������x-����{-z«¦« �����|����©��x-����{-zª���J��z	��{-z�¦« ��������z	���z	���z	�}���xQy�z�|�����{-z����|�������x-����{-z����1����x�;���������J��z	�X{-z��¡ ��¢�£ ���������|����¤�J��z	�X{-z����1����x�;���¥���¥|���������x-����{-z§¦� ����¨ ��¢�£ ���¥���¥|���������x-����{-z§¦� �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬(®¥��®>�
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Program 4: Unfold harmless ����9 .xQy�z�{}|1~Jz�z��¬«�J��|�������x-�������C��z��(���1����x�;�������°�J��z	�����C��z��X�¡ ��¢�£ ���������|������J��z	�����C��z��X���1����x�;���¥����|����±����x-���¤���C��z���¦« ����¨ ��¢�£ ���¥����|����±����x-���¤���C��z���¦« �����|����©��x-�������C��z������J��z	�±���C��z���¦� ��������z	���z	�}���xQy�z�|����¥{-z����|����¤��x-����{-z����1����x�;�������­�J��z	��{-z��§ ��¢�£ ���������|������J��z	��{-z����1����x�;�������¥|���������x-����{-z«¦« ����¨ ��¢�£ �������¥|���������x-����{-z«¦« �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬X®��¥®>�
Program 5: Constant fold

@ &[9 A G-D8]�H .xQy�z�{}|1~Jz�z��¬«�J��|������¨¯Q�Q�«���¥z¡~Jz«����z	�����1����x�;�������°�J��z	�����C��z��X�¡ ��¢�£ ���������|������J��z	�����C��z��X���1����x�;���¥����|����±���¨¯Q�Q������z­~Jz��¥��z	�«¦« ����¨ ��¢�£ ���¥����|����±���¨¯Q�Q������z­~Jz��¥��z	�«¦« ����|������¨¯Q�Q�«���¥z¡~Jz«����z	�>���J��z	�����C��z��¥¦« ��������z	���z	�}���xQy�z�|����¥{-z����|����¤��x-����{-z����1����x�;�������­�J��z	��{-z��§ ��¢�£ ���������|������J��z	��{-z����1����x�;�������¥|���������x-����{-z«¦« ����¨ ��¢�£ �������¥|���������x-����{-z«¦« �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬X®��¥®>�
Program 6: Unfold harmless ����9 .xQy�z�{}|1~Jz�z��¬«�J��|��������¥���1�X��x�;�������°�J��z	�����C��z��X�¡ ��¢�£ ���������|������J��z	�����C��z��X���1����x�;���¥����|����±������¦� ����¨ ��¢�£ ���¥����|����±������¦� �����|����©���C���J��z	�©���C��z���¦« ��������z	���z	�}���xQy�z�|����¥{-z����|����¤��x-����{-z����1����x�;�������­�J��z	��{-z��§ ��¢�£ ���������|������J��z	��{-z����1����x�;�������¥|���������x-����{-z«¦« ����¨ ��¢�£ �������¥|���������x-����{-z«¦« �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬X®��¥®>�
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Program 7: Constant fold GKafC .xQy�z�{}|1~Jz�z��¬«�J��|��������¥���1����x�;���¥���°�J��z	�¤���C��z��X�­ ��¢�£ ���¥�����|������J��z	�¤���C��z��X���1�X��x�;�������¥|������� ��¨ ��¢�£ �������¥|������� ���|����±���C���J��z	�����C��z���¦§ ��������z	���z	�}���xQy�z�|�����{-z����|�������x-����{-z����1����x�;���������J��z	�X{-z��¡ ��¢�£ ���������|����¤�J��z	�X{-z����1����x�;���¥���¥|���������x-����{-z§¦� ����¨ ��¢�£ ���¥���¥|���������x-����{-z§¦� �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬(®¥��®>�
Program 8: Constant fold GQIX_ .xQy�z�{}|1~Jz�z��¬«�J��|���� £ ����x�;���¥���°�J��z	�¤���C��z��X�­ ��¢�£ ���¥�����|������J��z	�¤���C��z��X���1�X��x�;�������¥|������� ��¨ ��¢�£ �������¥|������� ���|����±���C���J��z	�����C��z���¦§ ��������z	���z	�}���xQy�z�|�����{-z����|�������x-����{-z����1����x�;���������J��z	�X{-z��¡ ��¢�£ ���������|����¤�J��z	�X{-z����1����x�;���¥���¥|���������x-����{-z§¦� ����¨ ��¢�£ ���¥���¥|���������x-����{-z§¦� �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬(®¥��®>�
Program 9: Constant fold Y���&6� Ù ����&�� h�h�h .xQy�z�{}|1~Jz�z��¬«�¨¯Q�Q� �¥���~Jz ��|����¤�J��z	�����C��z��(���1����x�;��������|����©�� ��¨ ��¢P£ ��������|����©�� ���|����±���C���J��z	�����C��z���¦� ��������z	���z	�}���xQy�z�|�����{-z����|�������x-����{-z����1����x�;���������J��z	�X{-z��¡ ��¢�£ ���������|����¤�J��z	�X{-z����1����x�;���¥���¥|���������x-����{-z§¦� ����¨ ��¢�£ ���¥���¥|���������x-����{-z§¦� �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬(®¥��®>�
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Program 10: Unfold harmless ����9 .xQy�z�{}|1~Jz�z��¬«�J��|������J��z	�����C��z��(���1����x�;�������¥|������� ��¨ ��¢�£ �������¥|������� ���|����±���C���J��z	�©���C��z���¦§ ��������z	�}���xQy�z�|����¥{-z����|����¤��x-����{-z����1����x�;�������­�J��z	��{-z��§ ��¢�£ ���������|������J��z	��{-z����1����x�;�������¥|���������x-����{-z«¦« ����¨ ��¢�£ �������¥|���������x-����{-z«¦« �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬X®��¥®>�
Program 11: Constant fold & ] ( A G-Dg]5H .xQy�z�{}|1~Jz�z��¬«�J��|������¨¯Q�Q�«�����«~Jz�z���z	�����1����x�;�������¥|������� ��¨ ��¢�£ �������¥|������� ���|����±���C���¨¯Q�Q�§�����«~Jz�z���z	��¦� ��������z	�}���xQy�z�|����¥{-z����|����¤��x-����{-z����1����x�;�������­�J��z	��{-z��§ ��¢�£ ���������|������J��z	��{-z����1����x�;�������¥|���������x-����{-z«¦« ����¨ ��¢�£ �������¥|���������x-����{-z«¦« �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬X®��¥®>�
Program 12: Unfold harmless ����9 .xQy�z�{}|1~Jz�z��¬«�J��|������²z����1�X��x�;�������¥|������� ��¨ ��¢�£ �������¥|������� ���|����±���C���²z§¦« ��������z	�}���xQy�z�|����¥{-z����|����¤��x-����{-z����1����x�;�������­�J��z	��{-z��§ ��¢�£ ���������|������J��z	��{-z����1����x�;�������¥|���������x-����{-z«¦« ����¨ ��¢�£ �������¥|���������x-����{-z«¦« �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬X®��¥®>�
Program 13: Identity function/ Y���&�� move.xQy�z�{}|1~Jz�z����|����¡¬§�²z����1����x�;��������¬§��|������� ��¨ ����¢�£ ��������¬§��|������� ���|����±���C���²z§¦« ����������z	�>�xQy�z�|����¥{-z����|����¤��x-����{-z����1����x�;�������­�J��z	��{-z��§ ��¢�£ ���������|������J��z	��{-z����1����x�;�������¥|���������x-����{-z«¦« ����¨ ��¢�£ �������¥|���������x-����{-z«¦« �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬X®��¥®>�
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Program 14: Argument move.xQy�z�{}|1~Jz�z����|����§¬¡�²z����1����x�;�������§¬§��|������� ��¨ ����¢�£ �������§¬§�¨¯Q�Q��®��§¬§�� ���|����±���C���²z«¦« �������~Jz«|�����®���z	�}���z	�>�xQy�z�|�����{-z����|�������x-����{-z����1����x�;���������J��z	�X{-z��¡ ��¢�£ ���������|����¤�J��z	�X{-z����1����x�;���¥���¥|���������x-����{-z§¦� ����¨ ��¢�£ ���¥���¥|���������x-����{-z§¦� �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬(®¥��®>�
Program 15: Identity function/pairing move.xQy�z�{}|1~Jz�z����|����§¬¡�²z����1����x�;�������§¬§��|������� ��¨ ����¢�£ �������§¬§�¨¯Q�Q��®�����¬� ��¨¬¡��|����©���C���²z«¦« ���������~Jz�|�����®���z	�}���z	�>�xQy�z�|�����{-z����|�������x-����{-z����1����x�;���������J��z	�X{-z��¡ ��¢�£ ���������|����¤�J��z	�X{-z����1����x�;���¥���¥|���������x-����{-z§¦� ����¨ ��¢�£ ���¥���¥|���������x-����{-z§¦� �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬(®¥��®>�
Program 16: Argument move.xQy�z�{}|1~Jz�z����|����§¬¡�²z����1����x�;�������§¬§��|������� ��¨ ����¢�£ �������§¬§�¨¯Q�Q��®�����¬� ��¨¬¡�¨¯Q�Q��z��¡¬«���C���²z¡¦« �����~Jz�|�����z���z	�}���~Jz�|�����®���z	�}���z	�>�xQy�z�|�����{-z����|�������x-����{-z����1����x�;���������J��z	�X{-z��¡ ��¢�£ ���������|����¤�J��z	�X{-z����1����x�;���¥���¥|���������x-����{-z§¦� ����¨ ��¢�£ ���¥���¥|���������x-����{-z§¦� �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬(®¥��®>�
Program 17: Identity function/pairing move.xQy�z�{}|1~Jz�z����|����§¬¡�²z����1����x�;�������§¬§��|������� ��¨ ����¢�£ �������§¬§�¨¯Q�Q��®�����¬� ��¨¬¡�¨¯Q�Q��z��¤��¬X�C�¨¬¡�²z«¦� �����~Jz�|�����z«��z	�}���~Jz�|�����®���z	�}���z	�>�xQy�z�|�����{-z����|�������x-����{-z����1����x�;���������J��z	�X{-z��¡ ��¢�£ ���������|����¤�J��z	�X{-z����1����x�;���¥���¥|���������x-����{-z§¦� ����¨ ��¢�£ ���¥���¥|���������x-����{-z§¦� �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬(®¥��®>�
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Program 18: First argument move.xQy�z�{}|1~Jz�z����|����¡¬§�²z����1����x�;��������¬§��|������� ��¨ ����¢�£ ��������¬§�¨¯Q�Q��®�����¬¥ ��¨¬¡�¨¯Q�Q�¥z��§¬¡�²z�¦« ���~Jz�|��������C��z�����z	�}���~Jz�|�����®���z	�}���z	�>�xQy�z�|����¥{-z����|����¤��x-����{-z����1����x�;�������­�J��z	��{-z��§ ��¢�£ ���������|������J��z	��{-z����1����x�;�������¥|���������x-����{-z«¦« ����¨ ��¢�£ �������¥|���������x-����{-z«¦« �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬X®��¥®>�
Program 19: Invoke history of � � �?] .xQy�z�{}|1~Jz�z����|����¡¬§�²z����1����x�;��������¬§��|������� ��¨ ����¢�£ ��������¬§�¨¯Q�Q��®�����¬¥ ��³{}|1~Jz©��¬§�²z«¦§ �������~Jz�|�����®���z	�}���z	�>�xQy�z�|����¥{-z����|����¤��x-����{-z����1����x�;�������­�J��z	��{-z��§ ��¢�£ ���������|������J��z	��{-z����1����x�;�������¥|���������x-����{-z«¦« ����¨ ��¢�£ �������¥|���������x-����{-z«¦« �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬X®��¥®>�
Program 20: First argument move.xQy�z�{}|1~Jz�z����|����¡¬§�²z����1����x�;��������¬§��|������� ��¨ ����¢�£ ��������¬§�¨¯Q�Q��®���{}|1~Jz���¬§�²z«¦� �����~Jz«|������� ��´®}����z	�}���z	�>�xQy�z�|����¥{-z����|����¤��x-����{-z����1����x�;�������­�J��z	��{-z��§ ��¢�£ ���������|������J��z	��{-z����1����x�;�������¥|���������x-����{-z«¦« ����¨ ��¢�£ �������¥|���������x-����{-z«¦« �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬X®��¥®>�
Program 21: Introduce new function.xQy�z�{}|1~Jz�z����|����¡¬§�²z����1����x�;��������¬§��|������� ��¨ ����¢�£ ��������¬§�¨¯Q�Q��®���{}|1~Jz���¬§�²z«¦� �����~Jz«|������� ��´®}����z	�}���z	�>�xQy�z�|����¥{-z����|����¤��x-����{-z����1����x�;�������­�J��z	��{-z��§ ��¢�£ ���������|������J��z	��{-z����1����x�;�������¥|���������x-����{-z«¦« ����¨ ��¢�£ �������¥|���������x-����{-z«¦« �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬X®��¥®>�xQy�z�|����� Xz���|������� ���z����
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Program 22: Alpha conversion.xQy�z�{}|1~Jz�z����|����§¬¡�²z����1����x�;�������§¬§��|������� ��¨ ����¢�£ �������§¬§�¨¯Q�Q�¥z��({}|1~Jz±��¬«�²z«¦« �����~Jz�|����©�� ���z�����z	�}���z	�>�xQy�z�|�����{-z����|�������x-����{-z����1����x�;���������J��z	�X{-z��¡ ��¢�£ ���������|����¤�J��z	�X{-z����1����x�;���¥���¥|���������x-����{-z§¦� ����¨ ��¢�£ ���¥���¥|���������x-����{-z§¦� �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬(®¥��®>�xQy�z�|����� Xz���|������� ���z����
Program 23: Argument move.xQy�z�{}|1~Jz�z����|����§¬¡�²z����1����x�;�������§¬§�¨¯Q�Q�¥z��§¬§�� ��¨ ���~Jz�|�����z���z	�}�¢�£ �������§¬§�¨¯Q�Q�¥z��({}|1~Jz±��¬«�²z«¦« �����~Jz�|����©�� ���z�����z	�}���z	�>�xQy�z�|�����{-z����|�������x-����{-z����1����x�;���������J��z	�X{-z��¡ ��¢�£ ���������|����¤�J��z	�X{-z����1����x�;���¥���¥|���������x-����{-z§¦� ����¨ ��¢�£ ���¥���¥|���������x-����{-z§¦� �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬(®¥��®>�xQy�z�|����� Xz���|������� ���z����
Program 24: Identity function/pairing move.xQy�z�{}|1~Jz�z����|����§¬¡�²z����1����x�;�������§¬§�¨¯Q�Q�¥z�����¬� ��¨¬� ���~Jz�|�����z���z	�}�¢�£ �������§¬§�¨¯Q�Q�¥z��({}|1~Jz±��¬«�²z«¦« �����~Jz�|����©�� ���z�����z	�}���z	�>�xQy�z�|�����{-z����|�������x-����{-z����1����x�;���������J��z	�X{-z��¡ ��¢�£ ���������|����¤�J��z	�X{-z����1����x�;���¥���¥|���������x-����{-z§¦� ����¨ ��¢�£ ���¥���¥|���������x-����{-z§¦� �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬(®¥��®>�xQy�z�|����� Xz���|������� ���z����
Program 25: First argument move.xQy�z�{}|1~Jz�z����|����§¬¡�²z����1����x�;�������§¬§�¨¯Q�Q�¥z��§¬� ¥~Jz«|������� ���z�����z	�}�¢�£ �������§¬§�¨¯Q�Q�¥z��({}|1~Jz±��¬«�²z«¦« �����~Jz�|����©�� ���z�����z	�}���z	�>�xQy�z�|�����{-z����|�������x-����{-z����1����x�;���������J��z	�X{-z��¡ ��¢�£ ���������|����¤�J��z	�X{-z����1����x�;���¥���¥|���������x-����{-z§¦� ����¨ ��¢�£ ���¥���¥|���������x-����{-z§¦� �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬(®¥��®>�xQy�z�|����� Xz���|������� ���z����
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Program 26: Inverse function unfold.xQy�z�{}|1~Jz�z����|����¡¬§�²z����1����x�;��������¬§�¨¯Q�Q�¥z��­¬¥ �~Jz�|������� ���z��X��z	�}�¢�£ ��������|����� ¡��{}|1~Jz±��¬«�²z«¦« ��������z	�>�xQy�z�|����¥{-z����|����¤��x-����{-z����1����x�;�������­�J��z	��{-z��§ ��¢�£ ���������|������J��z	��{-z����1����x�;�������¥|���������x-����{-z«¦« ����¨ ��¢�£ �������¥|���������x-����{-z«¦« �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬X®��¥®>�xQy�z�|����� Xz���|������� ���z����
Program 27: Inverse function unfold.xQy�z�{}|1~Jz�z����|����¡¬§�²z����1����x�;��������|����� ¡��¬� ��¢�£ ��������|����� ¡��{}|1~Jz±��¬«�²z«¦« ��������z	�>�xQy�z�|����¥{-z����|����¤��x-����{-z����1����x�;�������­�J��z	��{-z��§ ��¢�£ ���������|������J��z	��{-z����1����x�;�������¥|���������x-����{-z«¦« ����¨ ��¢�£ �������¥|���������x-����{-z«¦« �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬X®��¥®>�xQy�z�|����� Xz���|������� ���z����
Program 28: Unfold call.xQy�z�{}|1~Jz�z����|����¡¬§�²z����1����x�;��������|����� ¡��¬� ��¢�£ ��������|����� ¡��{}|1~Jz±��¬«�²z«¦« ��������z	�>�xQy�z�|����¥{-z����|����¤��x-����{-z����1����x�;�������­�J��z	��{-z��§ ��¢�£ ���������|������J��z	��{-z����1����x�;�������¥|���������x-����{-z«¦« ����¨ ��¢�£ �������¥|���������x-����{-z«¦« �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬X®��¥®>�xQy�z�|����� Xz��¬«�¨¯Q�Q�{-z��¤�� ���z��~Jz ��|����¤��x-���X{-z����1�X��x�;�������°�J��z	�X{-z��¡ ��¢�£ ���������|����¤�J��z	�X{-z����1����x�;�������¥|����©����x-����{-z«¦� ����¨ ��¢�£ �������¥|����©����x-����{-z«¦� �����|����±��x-����{-zª���J��z	��{-z§¦� ��������z	���z	���z	�}���
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Program 29: Unfold harmless ����9 .xQy�z�{}|1~Jz�z����|����§¬¡�²z����1����x�;��������|����� §��¬� ��¢�£ ��������|����� §��{}|1~Jz©��¬§�²z§¦� ��������z	�>�xQy�z�|�����{-z����|�������x-����{-z����1����x�;���������J��z	�X{-z��¡ ��¢�£ ���������|����¤�J��z	�X{-z����1����x�;���¥���¥|���������x-����{-z§¦� ����¨ ��¢�£ ���¥���¥|���������x-����{-z§¦� �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬(®¥��®>�xQy�z�|����� Xz��¬«�J��|�������x-���¤�� ���z��X���1����x�;���¥���°�J��z	�¤�� ���z��X�­ ��¢�£ ���¥�����|������J��z	�¤�� ���z��X���1�X��x�;�������¥|���������x-���©�� ���z���¦� ����¨ ��¢�£ �������¥|���������x-���©�� ���z���¦� �����|����©��x-���©�� ���z������J��z	�©�� ���z���¦« ��������z	���z	�}���
Program 30: Constant fold

@ &?9 A C5Dg]5H .xQy�z�{}|1~Jz�z����|����§¬¡�²z����1����x�;��������|����� §��¬� ��¢�£ ��������|����� §��{}|1~Jz©��¬§�²z§¦� ��������z	�>�xQy�z�|�����{-z����|�������x-����{-z����1����x�;���������J��z	�X{-z��¡ ��¢�£ ���������|����¤�J��z	�X{-z����1����x�;���¥���¥|���������x-����{-z§¦� ����¨ ��¢�£ ���¥���¥|���������x-����{-z§¦� �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬(®¥��®>�xQy�z�|����� Xz��¬«�J��|������¨¯Q�Q������z­~Jz­ (��z	�����1����x�;���¥���°�J��z	�¤�� ���z��X�­ ��¢�£ ���¥�����|������J��z	�¤�� ���z��X���1�X��x�;�������¥|��������¨¯Q�Q�§���¥z­~Jz¡ X��z	��¦§ ����¨ ��¢�£ �������¥|��������¨¯Q�Q�§���¥z­~Jz¡ X��z	��¦§ ����|����±�¨¯Q�Q������z­~Jz­ (��z	�>���J��z	�±�� ���z���¦« ��������z	���z	�}���
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Program 31: Unfold harmless ����9 .xQy�z�{}|1~Jz�z����|����¡¬§�²z����1����x�;��������|����� ¡��¬� ��¢�£ ��������|����� ¡��{}|1~Jz±��¬«�²z«¦« ��������z	�>�xQy�z�|����¥{-z����|����¤��x-����{-z����1����x�;�������­�J��z	��{-z��§ ��¢�£ ���������|������J��z	��{-z����1����x�;�������¥|���������x-����{-z«¦« ����¨ ��¢�£ �������¥|���������x-����{-z«¦« �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬X®��¥®>�xQy�z�|����� Xz��¬«�J��|������� (���1�X��x�;�������°�J��z	���� ���z��X�¡ ��¢�£ ���������|������J��z	���� ���z��X���1����x�;���¥����|����±���� �¦� ����¨ ��¢�£ ���¥����|����±���� �¦� �����|����©�� ����J��z	�©�� ���z���¦« ��������z	���z	�}���
Program 32: Constant fold CNafC .xQy�z�{}|1~Jz�z����|����¡¬§�²z����1����x�;��������|����� ¡��¬� ��¢�£ ��������|����� ¡��{}|1~Jz±��¬«�²z«¦« ��������z	�>�xQy�z�|����¥{-z����|����¤��x-����{-z����1����x�;�������­�J��z	��{-z��§ ��¢�£ ���������|������J��z	��{-z����1����x�;�������¥|���������x-����{-z«¦« ����¨ ��¢�£ �������¥|���������x-����{-z«¦« �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬X®��¥®>�xQy�z�|����� Xz��¬«�J��|������� (���1�X��x�;�������°�J��z	���� ���z��X�¡ ��¢�£ ���������|������J��z	���� ���z��X���1����x�;���¥����|����±���C�¨ ��¢�£ ���¥����|����±���C��|����©�� ����J��z	���� ���z���¦« ��������z	���z	�}���
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Program 33: Constant fold CvIK_ .xQy�z�{}|1~Jz�z����|����§¬¡�²z����1����x�;��������|����� §��¬� ��¢�£ ��������|����� §��{}|1~Jz©��¬§�²z§¦� ��������z	�>�xQy�z�|�����{-z����|�������x-����{-z����1����x�;���������J��z	�X{-z��¡ ��¢�£ ���������|����¤�J��z	�X{-z����1����x�;���¥���¥|���������x-����{-z§¦� ����¨ ��¢�£ ���¥���¥|���������x-����{-z§¦� �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬(®¥��®>�xQy�z�|����� Xz��¬«�J��|���� £ ����x�;���¥���°�J��z	�¤�� ���z��X�­ ��¢�£ ���¥�����|������J��z	�¤�� ���z��X���1�X��x�;�������¥|��������C�¨ ��¢�£ �������¥|��������C��|����±�� ����J��z	���� ���z���¦§ ��������z	���z	�}���
Program 34: Constant fold Y���&�� Ù ����&6� h�h�h .xQy�z�{}|1~Jz�z����|����§¬¡�²z����1����x�;��������|����� §��¬� ��¢�£ ��������|����� §��{}|1~Jz©��¬§�²z§¦� ��������z	�>�xQy�z�|�����{-z����|�������x-����{-z����1����x�;���������J��z	�X{-z��¡ ��¢�£ ���������|����¤�J��z	�X{-z����1����x�;���¥���¥|���������x-����{-z§¦� ����¨ ��¢�£ ���¥���¥|���������x-����{-z§¦� �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬(®¥��®>�xQy�z�|����� Xz��¬«�¨¯Q�Q� �¥���~Jz ��|����¤�J��z	���� ���z��(���1����x�;��������|����©���C�¨ ��¢P£ ��������|����©���C��|����±�� ����J��z	���� ���z���¦� ��������z	���z	�}���
Program 35: Unfold harmless ����9 .xQy�z�{}|1~Jz�z����|����§¬¡�²z����1����x�;��������|����� §��¬� ��¢�£ ��������|����� §��{}|1~Jz©��¬§�²z§¦� ��������z	�>�xQy�z�|�����{-z����|�������x-����{-z����1����x�;���������J��z	�X{-z��¡ ��¢�£ ���������|����¤�J��z	�X{-z����1����x�;���¥���¥|���������x-����{-z§¦� ����¨ ��¢�£ ���¥���¥|���������x-����{-z§¦� �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬(®¥��®>�xQy�z�|����� Xz��¬«�J��|������J��z	�¤�� ���z��X���1����x�;���¥���¥|��������C�¨ ��¢�£ ���¥���¥|��������C��|����©�� ����J��z	�©�� ���z���¦« ��������z	�}���
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Program 36: Constant fold & ] ( A C5Dg]5H .xQy�z�{}|1~Jz�z����|����¡¬§�²z����1����x�;��������|����� ¡��¬� ��¢�£ ��������|����� ¡��{}|1~Jz±��¬«�²z«¦« ��������z	�>�xQy�z�|����¥{-z����|����¤��x-����{-z����1����x�;�������­�J��z	��{-z��§ ��¢�£ ���������|������J��z	��{-z����1����x�;�������¥|���������x-����{-z«¦« ����¨ ��¢�£ �������¥|���������x-����{-z«¦« �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬X®��¥®>�xQy�z�|����� Xz��¬«�J��|������¨¯Q�Q�«���¡ ¥~Jz�z���z	�����1����x�;�������¥|��������C�¨ ��¢�£ �������¥|��������C��|����±�� ����¨¯Q�Q�§���¡ ¥~Jz�z���z	��¦� ��������z	�}���
Program 37: Unfold harmless ����9 .xQy�z�{}|1~Jz�z����|����¡¬§�²z����1����x�;��������|����� ¡��¬� ��¢�£ ��������|����� ¡��{}|1~Jz±��¬«�²z«¦« ��������z	�>�xQy�z�|����¥{-z����|����¤��x-����{-z����1����x�;�������­�J��z	��{-z��§ ��¢�£ ���������|������J��z	��{-z����1����x�;�������¥|���������x-����{-z«¦« ����¨ ��¢�£ �������¥|���������x-����{-z«¦« �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬X®��¥®>�xQy�z�|����� Xz��¬«�J��|������²z����1�X��x�;�������¥|��������C�¨ ��¢�£ �������¥|��������C��|����±�� ����²z§¦« ��������z	�}���
Program 38: Identity function/ Y���&�� move.xQy�z�{}|1~Jz�z����|����¡¬§�²z����1����x�;��������|����� ¡��¬� ��¢�£ ��������|����� ¡��{}|1~Jz±��¬«�²z«¦« ��������z	�>�xQy�z�|����¥{-z����|����¤��x-����{-z����1����x�;�������­�J��z	��{-z��§ ��¢�£ ���������|������J��z	��{-z����1����x�;�������¥|���������x-����{-z«¦« ����¨ ��¢�£ �������¥|���������x-����{-z«¦« �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬X®��¥®>�xQy�z�|����� Xz����|����¡¬§�²z����1����x�;��������¬§��|��������C�¨ ����¢�£ ��������¬§��|��������C��|����±�� ����²z§¦« ����������z	�>�
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Program 39: Argument move.xQy�z�{}|1~Jz�z����|����§¬¡�²z����1����x�;��������|����� §��¬� ��¢�£ ��������|����� §��{}|1~Jz©��¬§�²z§¦� ��������z	�>�xQy�z�|�����{-z����|�������x-����{-z����1����x�;���������J��z	�X{-z��¡ ��¢�£ ���������|����¤�J��z	�X{-z����1����x�;���¥���¥|���������x-����{-z§¦� ����¨ ��¢�£ ���¥���¥|���������x-����{-z§¦� �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬(®¥��®>�xQy�z�|����� Xz����|����§¬¡�²z����1����x�;�������§¬§��|��������C�¨ ����¢�£ �������§¬§�¨¯Q�Q��®��§¬§���C��|����±�� ����²z«¦« �������~Jz«|�����®���z	�}���z	�>�
Program 40: Identity function/pairing move.xQy�z�{}|1~Jz�z����|����§¬¡�²z����1����x�;��������|����� §��¬� ��¢�£ ��������|����� §��{}|1~Jz©��¬§�²z§¦� ��������z	�>�xQy�z�|�����{-z����|�������x-����{-z����1����x�;���������J��z	�X{-z��¡ ��¢�£ ���������|����¤�J��z	�X{-z����1����x�;���¥���¥|���������x-����{-z§¦� ����¨ ��¢�£ ���¥���¥|���������x-����{-z§¦� �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬(®¥��®>�xQy�z�|����� Xz����|����§¬¡�²z����1����x�;�������§¬§��|��������C�¨ ����¢�£ �������§¬§�¨¯Q�Q��®�����¬X�C�¨¬¡��|����©�� ����²z«¦« ���������~Jz�|�����®���z	�}���z	�>�
Program 41: Argument move.xQy�z�{}|1~Jz�z����|����§¬¡�²z����1����x�;��������|����� §��¬� ��¢�£ ��������|����� §��{}|1~Jz©��¬§�²z§¦� ��������z	�>�xQy�z�|�����{-z����|�������x-����{-z����1����x�;���������J��z	�X{-z��¡ ��¢�£ ���������|����¤�J��z	�X{-z����1����x�;���¥���¥|���������x-����{-z§¦� ����¨ ��¢�£ ���¥���¥|���������x-����{-z§¦� �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬(®¥��®>�xQy�z�|����� Xz����|����§¬¡�²z����1����x�;�������§¬§��|��������C�¨ ����¢�£ �������§¬§�¨¯Q�Q��®�����¬X�C�¨¬¡�¨¯Q�Q��z��¡¬«�� ����²z¡¦« �����~Jz�|�����z���z	�}���~Jz�|�����®���z	�}���z	�>�
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Program 42: Identity function/pairing-move.xQy�z�{}|1~Jz�z����|����¡¬§�²z����1����x�;��������|����� ¡��¬� ��¢�£ ��������|����� ¡��{}|1~Jz±��¬«�²z«¦« ��������z	�>�xQy�z�|����¥{-z����|����¤��x-����{-z����1����x�;�������­�J��z	��{-z��§ ��¢�£ ���������|������J��z	��{-z����1����x�;�������¥|���������x-����{-z«¦« ����¨ ��¢�£ �������¥|���������x-����{-z«¦« �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬X®��¥®>�xQy�z�|����� Xz����|����¡¬§�²z����1����x�;��������¬§��|��������C�¨ ����¢�£ ��������¬§�¨¯Q�Q��®�����¬(�C�¨¬¡�¨¯Q�Q�¥z�����¬� ��¨¬§�²z«¦� �����~Jz�|�����z���z	�}���~Jz�|�����®���z	�}���z	�>�
Program 43: First argument move.xQy�z�{}|1~Jz�z����|����¡¬§�²z����1����x�;��������|����� ¡��¬� ��¢�£ ��������|����� ¡��{}|1~Jz±��¬«�²z«¦« ��������z	�>�xQy�z�|����¥{-z����|����¤��x-����{-z����1����x�;�������­�J��z	��{-z��§ ��¢�£ ���������|������J��z	��{-z����1����x�;�������¥|���������x-����{-z«¦« ����¨ ��¢�£ �������¥|���������x-����{-z«¦« �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬X®��¥®>�xQy�z�|����� Xz����|����¡¬§�²z����1����x�;��������¬§��|��������C�¨ ����¢�£ ��������¬§�¨¯Q�Q��®�����¬(�C�¨¬¡�¨¯Q�Q�¥z��§¬¡�²z�¦« ���~Jz�|������� ���z�����z	�}���~Jz�|�����®���z	�}���z	�>�
Program 44: Invoke history of ��Y?Z C .xQy�z�{}|1~Jz�z����|����¡¬§�²z����1����x�;��������|����� ¡��¬� ��¢�£ ��������|����� ¡��{}|1~Jz±��¬«�²z«¦« ��������z	�>�xQy�z�|����¥{-z����|����¤��x-����{-z����1����x�;�������­�J��z	��{-z��§ ��¢�£ ���������|������J��z	��{-z����1����x�;�������¥|���������x-����{-z«¦« ����¨ ��¢�£ �������¥|���������x-����{-z«¦« �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬X®��¥®>�xQy�z�|����� Xz����|����¡¬§�²z����1����x�;��������¬§��|��������C�¨ ����¢�£ ��������¬§�¨¯Q�Q��®�����¬(�C��|����� ¡��¬§�²z«¦§ �������~Jz�|�����®���z	�}���z	�>�



188 Ackermann’s Function

Program 45: First argument move.xQy�z�{}|1~Jz�z����|����§¬¡�²z����1����x�;��������|����� §��¬� ��¢�£ ��������|����� §��{}|1~Jz©��¬§�²z§¦� ��������z	�>�xQy�z�|�����{-z����|�������x-����{-z����1����x�;���������J��z	�X{-z��¡ ��¢�£ ���������|����¤�J��z	�X{-z����1����x�;���¥���¥|���������x-����{-z§¦� ����¨ ��¢�£ ���¥���¥|���������x-����{-z§¦� �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬(®¥��®>�xQy�z�|����� Xz����|����§¬¡�²z����1����x�;�������§¬§��|��������C�¨ ����¢�£ �������§¬§�¨¯Q�Q��®���|����� ­��¬«�²z«¦« �����~Jz�|����©���C�´®}����z	�}���z	�>�
Program 46: Introduce new function.xQy�z�{}|1~Jz�z����|����§¬¡�²z����1����x�;��������|����� §��¬� ��¢�£ ��������|����� §��{}|1~Jz©��¬§�²z§¦� ��������z	�>�xQy�z�|�����{-z����|�������x-����{-z����1����x�;���������J��z	�X{-z��¡ ��¢�£ ���������|����¤�J��z	�X{-z����1����x�;���¥���¥|���������x-����{-z§¦� ����¨ ��¢�£ ���¥���¥|���������x-����{-z§¦� �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬(®¥��®>�xQy�z�|����� Xz����|����§¬¡�²z����1����x�;�������§¬§��|��������C�¨ ����¢�£ �������§¬§�¨¯Q�Q��®���|����� ­��¬«�²z«¦« �����~Jz�|����©���C�´®}����z	�}���z	�>�xQy�z�|�������z���|��������C��z����
Program 47: Argument move.xQy�z�{}|1~Jz�z����|����§¬¡�²z����1����x�;��������|����� §��¬� ��¢�£ ��������|����� §��{}|1~Jz©��¬§�²z§¦� ��������z	�>�xQy�z�|�����{-z����|�������x-����{-z����1����x�;���������J��z	�X{-z��¡ ��¢�£ ���������|����¤�J��z	�X{-z����1����x�;���¥���¥|���������x-����{-z§¦� ����¨ ��¢�£ ���¥���¥|���������x-����{-z§¦� �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬(®¥��®>�xQy�z�|����� Xz����|����§¬¡�²z����1����x�;�������§¬§�¨¯Q�Q�¥z��§¬§���C�¨ ���~Jz�|�����z���z	�}�¢�£ �������§¬§�¨¯Q�Q��®���|����� ­��¬«�²z«¦« �����~Jz�|����©���C�´®}����z	�}���z	�>�xQy�z�|�������z���|��������C��z����
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Program 48: Identity function/pairing move.xQy�z�{}|1~Jz�z����|����¡¬§�²z����1����x�;��������|����� ¡��¬� ��¢�£ ��������|����� ¡��{}|1~Jz±��¬«�²z«¦« ��������z	�>�xQy�z�|����¥{-z����|����¤��x-����{-z����1����x�;�������­�J��z	��{-z��§ ��¢�£ ���������|������J��z	��{-z����1����x�;�������¥|���������x-����{-z«¦« ����¨ ��¢�£ �������¥|���������x-����{-z«¦« �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬X®��¥®>�xQy�z�|����� Xz����|����¡¬§�²z����1����x�;��������¬§�¨¯Q�Q�¥z�����¬(�C�¨¬� ��¥~Jz�|�����z«��z	�}�¢�£ ��������¬§�¨¯Q�Q��®���|����� §��¬§�²z«¦� �����~Jz«|��������C�´®}����z	�}���z	�>�xQy�z�|�������z���|��������C��z����
Program 49: First argument move.xQy�z�{}|1~Jz�z����|����¡¬§�²z����1����x�;��������|����� ¡��¬� ��¢�£ ��������|����� ¡��{}|1~Jz±��¬«�²z«¦« ��������z	�>�xQy�z�|����¥{-z����|����¤��x-����{-z����1����x�;�������­�J��z	��{-z��§ ��¢�£ ���������|������J��z	��{-z����1����x�;�������¥|���������x-����{-z«¦« ����¨ ��¢�£ �������¥|���������x-����{-z«¦« �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬X®��¥®>�xQy�z�|����� Xz����|����¡¬§�²z����1����x�;��������¬§�¨¯Q�Q�¥z��­¬¥ �~Jz�|��������C��z��X��z	�}�¢�£ ��������¬§�¨¯Q�Q��®���|����� §��¬§�²z«¦� �����~Jz«|��������C�´®}����z	�}���z	�>�xQy�z�|�������z���|��������C��z����
Program 50: Inverse function unfold.xQy�z�{}|1~Jz�z����|����¡¬§�²z����1����x�;��������|����� ¡��¬� ��¢�£ ��������|����� ¡��{}|1~Jz±��¬«�²z«¦« ��������z	�>�xQy�z�|����¥{-z����|����¤��x-����{-z����1����x�;�������­�J��z	��{-z��§ ��¢�£ ���������|������J��z	��{-z����1����x�;�������¥|���������x-����{-z«¦« ����¨ ��¢�£ �������¥|���������x-����{-z«¦« �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬X®��¥®>�xQy�z�|����� Xz����|����¡¬§�²z����1����x�;��������|������¤��¬� ��¢�£ ��������¬§�¨¯Q�Q��®���|����� §��¬§�²z«¦� �����~Jz«|��������C�´®}����z	�}���z	�>�xQy�z�|�������z���|��������C��z����



190 Ackermann’s Function

Program 51: Fold harmless ����9 .xQy�z�{}|1~Jz�z����|����§¬¡�²z����1����x�;��������|����� §��¬� ��¢�£ ��������|����� §��{}|1~Jz©��¬§�²z§¦� ��������z	�>�xQy�z�|�����{-z����|�������x-����{-z����1����x�;���������J��z	�X{-z��¡ ��¢�£ ���������|����¤�J��z	�X{-z����1����x�;���¥���¥|���������x-����{-z§¦� ����¨ ��¢�£ ���¥���¥|���������x-����{-z§¦� �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬(®¥��®>�xQy�z�|����� Xz����|����§¬¡�²z����1����x�;��������|���������¬� ��¢�£ ��������¯Q�Q�¥zªµ��¥z¡~Jz­¬¡�¨¯Q�Q��®���|����� ¡��¬«�²zªµ&¦� �����~Jz�|��������C�´®}����z	�}�X��z	���z	�>�xQy�z�|�������z���|��������C��z����
Program 52: Alpha conversion.xQy�z�{}|1~Jz�z����|����§¬¡�²z����1����x�;��������|����� §��¬� ��¢�£ ��������|����� §��{}|1~Jz©��¬§�²z§¦� ��������z	�>�xQy�z�|�����{-z����|�������x-����{-z����1����x�;���������J��z	�X{-z��¡ ��¢�£ ���������|����¤�J��z	�X{-z����1����x�;���¥���¥|���������x-����{-z§¦� ����¨ ��¢�£ ���¥���¥|���������x-����{-z§¦� �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬(®¥��®>�xQy�z�|����� Xz����|����§¬¡�²z����1����x�;��������|���������¬� ��¢�£ ��������¯Q�Q�¥zªµ��¥z¡~Jz­¬¡�¨¯Q�Q�¥z���|����� ¡��¬«�²zªµ&¦� �����~Jz�|��������C��z�����z	�}�X��z	���z	�>�xQy�z�|�������z���|��������C��z����
Program 53: Inverse function unfold.xQy�z�{}|1~Jz�z����|����§¬¡�²z����1����x�;��������|����� §��¬� ��¢�£ ��������|����� §��{}|1~Jz©��¬§�²z§¦� ��������z	�>�xQy�z�|�����{-z����|�������x-����{-z����1����x�;���������J��z	�X{-z��¡ ��¢�£ ���������|����¤�J��z	�X{-z����1����x�;���¥���¥|���������x-����{-z§¦� ����¨ ��¢�£ ���¥���¥|���������x-����{-z§¦� �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬(®¥��®>�xQy�z�|����� Xz����|����§¬¡�²z����1����x�;��������|���������¬� ��¢�£ ��������¯Q�Q�¥zªµ��¥z¡~Jz�|������¤��|����� ¡��¬§�²zªµ!¦§ ������X��z	���z	�>�xQy�z�|�������z���|��������C��z����
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Program 54: Unfold harmless ����9 .xQy�z�{}|1~Jz�z����|����¡¬§�²z����1����x�;��������|����� ¡��¬� ��¢�£ ��������|����� ¡��{}|1~Jz±��¬«�²z«¦« ��������z	�>�xQy�z�|����¥{-z����|����¤��x-����{-z����1����x�;�������­�J��z	��{-z��§ ��¢�£ ���������|������J��z	��{-z����1����x�;�������¥|���������x-����{-z«¦« ����¨ ��¢�£ �������¥|���������x-����{-z«¦« �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬X®��¥®>�xQy�z�|����� Xz����|����¡¬§�²z����1����x�;��������|������¤��¬� ��¢�£ ��������|������¤��|����� ­��¬«�²z«¦« ��������z	�>�xQy�z�|�������z���|��������C��z����
Program 55: Unfold call.xQy�z�{}|1~Jz�z����|����¡¬§�²z����1����x�;��������|����� ¡��¬� ��¢�£ ��������|����� ¡��{}|1~Jz±��¬«�²z«¦« ��������z	�>�xQy�z�|����¥{-z����|����¤��x-����{-z����1����x�;�������­�J��z	��{-z��§ ��¢�£ ���������|������J��z	��{-z����1����x�;�������¥|���������x-����{-z«¦« ����¨ ��¢�£ �������¥|���������x-����{-z«¦« �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬X®��¥®>�xQy�z�|����� Xz����|����¡¬§�²z����1����x�;��������|������¤��¬� ��¢�£ ��������|������¤��|����� ­��¬«�²z«¦« ��������z	�>�xQy�z�|�������z��¬«�¨¯Q�Q�{-z��¤���C��z��~Jz ��|����¤��x-���X{-z����1�X��x�;�������°�J��z	�X{-z��¡ ��¢�£ ���������|����¤�J��z	�X{-z����1����x�;�������¥|����©����x-����{-z«¦� ����¨ ��¢�£ �������¥|����©����x-����{-z«¦� �����|����±��x-����{-zª���J��z	��{-z§¦� ��������z	���z	���z	�}���
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Program 56: Unfold harmless ����9 .xQy�z�{}|1~Jz�z����|����§¬¡�²z����1����x�;��������|����� §��¬� ��¢�£ ��������|����� §��{}|1~Jz©��¬§�²z§¦� ��������z	�>�xQy�z�|�����{-z����|�������x-����{-z����1����x�;���������J��z	�X{-z��¡ ��¢�£ ���������|����¤�J��z	�X{-z����1����x�;���¥���¥|���������x-����{-z§¦� ����¨ ��¢�£ ���¥���¥|���������x-����{-z§¦� �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬(®¥��®>�xQy�z�|����� Xz����|����§¬¡�²z����1����x�;��������|���������¬� ��¢�£ ��������|���������|����� ¡��¬§�²z§¦� ��������z	�>�xQy�z�|�������z��¬«�J��|�������x-���¤���C��z��X���1����x�;���¥���°�J��z	�¤���C��z��X�­ ��¢�£ ���¥�����|������J��z	�¤���C��z��X���1�X��x�;�������¥|���������x-���©���C��z���¦� ����¨ ��¢�£ �������¥|���������x-���©���C��z���¦� �����|����©��x-���©���C��z������J��z	�©���C��z���¦« ��������z	���z	�}���
Program 57: Constant fold

@ &?9 A _;Dg]5H .xQy�z�{}|1~Jz�z����|����§¬¡�²z����1����x�;��������|����� §��¬� ��¢�£ ��������|����� §��{}|1~Jz©��¬§�²z§¦� ��������z	�>�xQy�z�|�����{-z����|�������x-����{-z����1����x�;���������J��z	�X{-z��¡ ��¢�£ ���������|����¤�J��z	�X{-z����1����x�;���¥���¥|���������x-����{-z§¦� ����¨ ��¢�£ ���¥���¥|���������x-����{-z§¦� �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬(®¥��®>�xQy�z�|����� Xz����|����§¬¡�²z����1����x�;��������|���������¬� ��¢�£ ��������|���������|����� ¡��¬§�²z§¦� ��������z	�>�xQy�z�|�������z��¬«�J��|������¨¯Q�Q������z­~Jz��¥��z	�����1����x�;���¥���°�J��z	�¤���C��z��X�­ ��¢�£ ���¥�����|������J��z	�¤���C��z��X���1�X��x�;�������¥|��������¨¯Q�Q�§���¥z­~Jz�����z	��¦§ ����¨ ��¢�£ �������¥|��������¨¯Q�Q�§���¥z­~Jz�����z	��¦§ ����|����±�¨¯Q�Q������z­~Jz��¥��z	�>���J��z	�±���C��z���¦« ��������z	���z	�}���
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Program 58: Unfold harmless ����9 .xQy�z�{}|1~Jz�z����|����¡¬§�²z����1����x�;��������|����� ¡��¬� ��¢�£ ��������|����� ¡��{}|1~Jz±��¬«�²z«¦« ��������z	�>�xQy�z�|����¥{-z����|����¤��x-����{-z����1����x�;�������­�J��z	��{-z��§ ��¢�£ ���������|������J��z	��{-z����1����x�;�������¥|���������x-����{-z«¦« ����¨ ��¢�£ �������¥|���������x-����{-z«¦« �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬X®��¥®>�xQy�z�|����� Xz����|����¡¬§�²z����1����x�;��������|������¤��¬� ��¢�£ ��������|������¤��|����� ­��¬«�²z«¦« ��������z	�>�xQy�z�|�������z��¬«�J��|��������¥���1�X��x�;�������°�J��z	�����C��z��X�¡ ��¢�£ ���������|������J��z	�����C��z��X���1����x�;���¥����|����±������¦� ����¨ ��¢�£ ���¥����|����±������¦� �����|����©���C���J��z	�©���C��z���¦« ��������z	���z	�}���
Program 59: Constant fold _XIX_ .xQy�z�{}|1~Jz�z����|����¡¬§�²z����1����x�;��������|����� ¡��¬� ��¢�£ ��������|����� ¡��{}|1~Jz±��¬«�²z«¦« ��������z	�>�xQy�z�|����¥{-z����|����¤��x-����{-z����1����x�;�������­�J��z	��{-z��§ ��¢�£ ���������|������J��z	��{-z����1����x�;�������¥|���������x-����{-z«¦« ����¨ ��¢�£ �������¥|���������x-����{-z«¦« �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬X®��¥®>�xQy�z�|����� Xz����|����¡¬§�²z����1����x�;��������|������¤��¬� ��¢�£ ��������|������¤��|����� ­��¬«�²z«¦« ��������z	�>�xQy�z�|�������z��¬«�J��|�����������x�;�������°�J��z	�����C��z��X�¡ ��¢�£ ���������|������J��z	�����C��z��X���1����x�;���¥����|����±������¦� ����¨ ��¢�£ ���¥����|����±������¦� �����|����©���C���J��z	�©���C��z���¦« ��������z	���z	�}���
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Program 60: Constant fold Y���&��Pâ�m�l�� h�h�h .xQy�z�{}|1~Jz�z����|����§¬¡�²z����1����x�;��������|����� §��¬� ��¢�£ ��������|����� §��{}|1~Jz©��¬§�²z§¦� ��������z	�>�xQy�z�|�����{-z����|�������x-����{-z����1����x�;���������J��z	�X{-z��¡ ��¢�£ ���������|����¤�J��z	�X{-z����1����x�;���¥���¥|���������x-����{-z§¦� ����¨ ��¢�£ ���¥���¥|���������x-����{-z§¦� �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬(®¥��®>�xQy�z�|����� Xz����|����§¬¡�²z����1����x�;��������|���������¬� ��¢�£ ��������|���������|����� ¡��¬§�²z§¦� ��������z	�>�xQy�z�|�������z��¬«�¨¯Q�Q� �¥���~Jz �J��z	�����C��z��X�¡ ����z	�}���
Program 61: Unfold harmless ����9 .xQy�z�{}|1~Jz�z����|����§¬¡�²z����1����x�;��������|����� §��¬� ��¢�£ ��������|����� §��{}|1~Jz©��¬§�²z§¦� ��������z	�>�xQy�z�|�����{-z����|�������x-����{-z����1����x�;���������J��z	�X{-z��¡ ��¢�£ ���������|����¤�J��z	�X{-z����1����x�;���¥���¥|���������x-����{-z§¦� ����¨ ��¢�£ ���¥���¥|���������x-����{-z§¦� �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬(®¥��®>�xQy�z�|����� Xz����|����§¬¡�²z����1����x�;��������|���������¬� ��¢�£ ��������|���������|����� ¡��¬§�²z§¦� ��������z	�>�xQy�z�|�������z��¡¬«�J��z	�����C��z��(�­ ����
Program 62: Constant fold & ] ( A _;Dg]5H .xQy�z�{}|1~Jz�z����|����§¬¡�²z����1����x�;��������|����� §��¬� ��¢�£ ��������|����� §��{}|1~Jz©��¬§�²z§¦� ��������z	�>�xQy�z�|�����{-z����|�������x-����{-z����1����x�;���������J��z	�X{-z��¡ ��¢�£ ���������|����¤�J��z	�X{-z����1����x�;���¥���¥|���������x-����{-z§¦� ����¨ ��¢�£ ���¥���¥|���������x-����{-z§¦� �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬(®¥��®>�xQy�z�|����� Xz����|����§¬¡�²z����1����x�;��������|���������¬� ��¢�£ ��������|���������|����� ¡��¬§�²z§¦� ��������z	�>�xQy�z�|�������z��¡¬«�¨¯Q�Q�«�����«~Jz�z���z	���§ ����
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Program 63: Unfold harmless ����9 .xQy�z�{}|1~Jz�z����|����¡¬§�²z����1����x�;��������|����� ¡��¬� ��¢�£ ��������|����� ¡��{}|1~Jz±��¬«�²z«¦« ��������z	�>�xQy�z�|����¥{-z����|����¤��x-����{-z����1����x�;�������­�J��z	��{-z��§ ��¢�£ ���������|������J��z	��{-z����1����x�;�������¥|���������x-����{-z«¦« ����¨ ��¢�£ �������¥|���������x-����{-z«¦« �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬X®��¥®>�xQy�z�|����� Xz����|����¡¬§�²z����1����x�;��������|������¤��¬� ��¢�£ ��������|������¤��|����� ­��¬«�²z«¦« ��������z	�>�xQy�z�|�������z��¡¬§�²z��¡ ����
Program 64: Identity function call elimination.xQy�z�{}|1~Jz�z����|����¤�²z����1����x�;��������|����� ¡��¬� ��¢�£ ��������|����� ¡��{}|1~Jz±��¬«�²z«¦« ��������z	�>�xQy�z�|����¥{-z����|����¤��x-����{-z����1����x�;�������­�J��z	��{-z��§ ��¢�£ ���������|������J��z	��{-z����1����x�;�������¥|���������x-����{-z«¦« ����¨ ��¢�£ �������¥|���������x-����{-z«¦« �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬X®��¥®>�xQy�z�|����� Xz����|����¡¬§�²z����1����x�;��������|������¤��¬� ��¢�£ ��������|������¤��|����� ­��¬«�²z«¦« ��������z	�>�xQy�z�|�������z��¡¬§�²z��¡ ����
Program 65: Identity function call elimination.xQy�z�{}|1~Jz�z����|����¤�²z����1����x�;��������|����� ¡��¬� ��¢�£ ��������|����� ¡��{}|1~Jz±��¬«�²z«¦« ��������z	�>�xQy�z�|����¥{-z����|����¤��x-����{-z����1����x�;�������­�J��z	��{-z��§ ��¢�£ ���������|������J��z	��{-z����1����x�;�������¥|���������x-����{-z«¦« ����¨ ��¢�£ �������¥|���������x-����{-z«¦« �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬X®��¥®>�xQy�z�|����� Xz����|����¤�²z����1����x�;��������|������¤��¬� ��¢�£ ��������|������¤��|����� ­��¬«�²z«¦« ��������z	�>�xQy�z�|�������z��¡¬§�²z��¡ ����
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Program 66: Identity function call elimination.xQy�z�{}|1~Jz�z����|������²z����1����x�;��������|����� §��¬� ��¢�£ ��������|����� §��{}|1~Jz©��¬§�²z§¦� ��������z	�>�xQy�z�|�����{-z����|�������x-����{-z����1����x�;���������J��z	�X{-z��¡ ��¢�£ ���������|����¤�J��z	�X{-z����1����x�;���¥���¥|���������x-����{-z§¦� ����¨ ��¢�£ ���¥���¥|���������x-����{-z§¦� �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬(®¥��®>�xQy�z�|����� Xz����|������²z����1����x�;��������|���������¬� ��¢�£ ��������|���������|����� ¡��¬§�²z§¦� ��������z	�>�xQy�z�|�������z��¤�²z��¡ ����
Program 67: Identity function call elimination.xQy�z�{}|1~Jz�z����|������²z����1����x�;��������|����� §��¬� ��¢�£ ��������|����� §��{}|1~Jz©�²z«¦§ ������z	�>�xQy�z�|�����{-z����|�������x-����{-z����1����x�;���������J��z	�X{-z��¡ ��¢�£ ���������|����¤�J��z	�X{-z����1����x�;���¥���¥|���������x-����{-z§¦� ����¨ ��¢�£ ���¥���¥|���������x-����{-z§¦� �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬(®¥��®>�xQy�z�|����� Xz����|������²z����1����x�;��������|���������¬� ��¢�£ ��������|���������|����� ¡��¬§�²z§¦� ��������z	�>�xQy�z�|�������z��¤�²z��¡ ����
Program 68: Identity function call elimination.xQy�z�{}|1~Jz�z����|������²z����1����x�;��������|����� � ¢�£ ��������|����� §��{}|1~Jz©�²z«¦§ ������z	�>�xQy�z�|�����{-z����|�������x-����{-z����1����x�;���������J��z	�X{-z��¡ ��¢�£ ���������|����¤�J��z	�X{-z����1����x�;���¥���¥|���������x-����{-z§¦� ����¨ ��¢�£ ���¥���¥|���������x-����{-z§¦� �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬(®¥��®>�xQy�z�|����� Xz����|������²z����1����x�;��������|���������¬� ��¢�£ ��������|���������|����� ¡��¬§�²z§¦� ��������z	�>�xQy�z�|�������z��¤�²z��¡ ����
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Program 69: Identity function call elimination.xQy�z�{}|1~Jz�z����|����¤�²z����1����x�;��������|����� � ¢�£ ��������|����� ¡��{}|1~Jz±�²z�¦« ������z	�>�xQy�z�|����¥{-z����|����¤��x-����{-z����1����x�;�������­�J��z	��{-z��§ ��¢�£ ���������|������J��z	��{-z����1����x�;�������¥|���������x-����{-z«¦« ����¨ ��¢�£ �������¥|���������x-����{-z«¦« �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬X®��¥®>�xQy�z�|����� Xz����|����¤�²z����1����x�;��������|������¤��¬� ��¢�£ ��������|������¤��|����� ­�²z�¦« ������z	�>�xQy�z�|�������z��¤�²z��§ ����
Program 70: Identity function call elimination.xQy�z�{}|1~Jz�z����|����¤�²z����1����x�;��������|����� � ¢�£ ��������|����� ¡��{}|1~Jz±�²z�¦« ������z	�>�xQy�z�|����¥{-z����|����¤��x-����{-z����1����x�;�������­�J��z	��{-z��§ ��¢�£ ���������|������J��z	��{-z����1����x�;�������¥|���������x-����{-z«¦« ����¨ ��¢�£ �������¥|���������x-����{-z«¦« �����|����©��x-����{-zª���J��z	��{-z«¦« ��������z	���z	�>�xQy�z­¬X®��¥®>�xQy�z�|����� Xz����|����¤�²z����1����x�;��������|������¡ ¢�£ ��������|������¤��|����� ­�²z�¦« ������z	�>�xQy�z�|�������z��¤�²z��§ ����
Program 71: Subset.xQy�z�{}|1~Jz�z����|����¤�²z����1����x�;��������|����� � ¢�£ ��������|����� ¡��{}|1~Jz±�²z�¦« ������z	�>�xQy�z�|����� Xz����|����¤�²z����1����x�;��������|������¡ ¢�£ ��������|������¤��|����� ­�²z�¦« ������z	�>�xQy�z�|�������z��¤�²z��§ ����





Appendix C

The Self-Interpreter as a HOL Term

Still with me?
I hope you’re all taking notes —

there will be a short quiz afterwards.
— TOM LEHRER, The Elements

For purposes of completeness and as a reference this appendix shows the Self-
interpreter of Section 5.2.5 as the HOL-term that encodes it. In particular, the
term below shows the translation from names to integers of variable and function
names. Since some proofs of lemmas reference functions from the self-interpreter
by number we show the correspondence here:

1 AÜ$���� �j] 9 2 A �?] 9 G ����� 3 Aª����� G��j] 9
4 AÜ$�� � m G ����� 5 Aª����� G $�� � m 6 A &jl �=G �����
7 A«����� G &jl � 8 Aþ������� 9 Aµl�$�(���9�� T � ] �

10 Aþ��k�k�Z�l�$ T � ] � 11 Aÿ��k�k�Z�l�$ T�@ l ] Y 12 Aþ������� T k�$
13 AÜ`�(

Note that the term below is how HOL sees the self-interpreter, not how it would
be presented to itself if self-application was desired. That would add another layer
of encoding producing a term an order of magnitude larger.a�a-{ A�Ú�Ø�Þ Ð A C5DøC5D Ò T ����9 G A Ò T�Ù &[9 A Ò T ¼ ��m C�H�H A Ò T ����9 e A Ò T Ð ] ( A Ò T ¼ ��m C�H�HA Ò T ����9 U A Ò T�Ú ����� C?e A Ò T ¼ ��m G�H�H A Ò T�Ú �����¶� A Ò T�½ � � m A Ò T Ð ] ( A Ò T Ð ] (A Ò T ¼ ��m U=H�H�H A Ò T�½ � � m A Ò T�Ú �����¶� A Ò T�½ � � m A Ò T ³ ] � A Ò T ³ ] 9 _�H�H A Ò T�½ � � mA Ò T�Ù &[9 A Ò T Ð ] ( A Ò T ¼ ��m U=H�H�H A Ò T ¼ ��m e�H�H�H�H A Ò T ¼ ��m G�H�H�H�H�H�H�H A:Ú�Ø�Þ Ð A G-DbC�DÒ T ³ ] � A Ò T ¼ ��m C�H�H A:Ú�Ø�Þ Ð A e-DbC5D Ò T�Ú ��&6� A Ò T ¼ ��m C�H�G A Ò T ¼ ��m G�H�G Ò T Ò�m�m�k�m HA:Ú�Ø�Þ Ð A U�DbC�D Ò T ³ ] m A Ò T ³ ] � A Ò T ¼ ��m C�H�H�H A�Ú�Ø�Þ Ð A 
 DøC5D Ò T�Ú ��&�� A Ò T ¼ ��m C�HPGÒ T Ò�m�m�k�m G A Ò T�Ú ��&�� A Ò T ¼ ��m G�H�e A Ò T ¼ ��m e�H�e Ò T Ò�m�m�k�m H�H A�Ú�Ø�Þ Ð A V-DbC5DÒ T ³ ] m A Ò T ³ ] m A Ò T ¼ ��m C�H�H�H A�Ú�Ø�Þ Ð A 
 DøC5D Ò T�Ú ��&�� A Ò T ¼ ��m C�HPG Ò T Ò�m�m�k�m G
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200 The Self-Interpreter as a HOL TermA Ò T�Ú ��&�� A Ò T ¼ ��m G�H�e Ò T Ò�m�m�k�m e A Ò T ¼ ��m e�H�H�H A�Ú�Ø�Þ Ð A � DøC5D Ò T ����9 G A Ò T�Ù &[9A Ò T ¼ ��m C�H�H A Ò T ����9 e A Ò T�Ù &?9 A Ò T Ð ] ( A Ò T ¼ ��m C�H�H�H A Ò T ����9 U A Ò T Ð ] (A Ò T Ð ] ( A Ò T ¼ ��m C�H�H�H A Ò T�Ú ��&6� A Ò T ¼ ��m G�H 
 A Ò T�Ú ����� G A Ò T ¼ ��m·
 H�H 
A Ò T�Ú ��&�� A Ò T ¼ ��m·
 H�V A Ò T�Ú ����� C[G A Ò T�½ � � m A Ò T�Ù &[9 A Ò T ¼ ��m V�H�H A Ò T�½ � � mA Ò T�Ú ����� e A Ò T�Ú �����¸� A Ò T�½ � � m A Ò T�Ù &[9 A Ò T Ð ] ( A Ò T ¼ ��m V�H�H�H A Ò T�½ � � mA Ò T ¼ ��m e�H A Ò T ¼ ��m U�H�H�H�H�H A Ò T�Ú ����� e A Ò T�Ú �����¸� A Ò T�½ � � m A Ò T Ð ] ( A Ò T Ð ] (A Ò T ¼ ��m V�H�H�H A Ò T�½ � � m A Ò T ¼ ��m e�H A Ò T ¼ ��m U�H�H�H�H�H�H�H�HvV A Ò T�Ú ��&�� A Ò T ¼ ��m V�H
 A Ò T�Ú ����� U A Ò T�½ � � m A Ò T�Ú �����¸� A Ò T�½ � � m A Ò T�Ù &[9 A Ò T ¼ ��m·
 H�H A Ò T�½ � � mA Ò T ¼ ��m e�H A Ò T ¼ ��m U�H�H�H�H A Ò T�Ú �����¸� A Ò T�½ � � m A Ò T Ð ] ( A Ò T ¼ ��mE
 H�H A Ò T�½ � � mA Ò T ¼ ��m e�H A Ò T ¼ ��m U�H�H�H�H�H�H 
 A Ò T�Ú ��&�� A Ò T ¼ ��m¹
 H � A Ò T�Ù &[9 A Ò T�Ú �����º
A Ò T�Ú �����¸� A Ò T�½ � � m A Ò T ¼ ��m¹� H A Ò T�½ � � m A Ò T ¼ ��m e�H A Ò T ¼ ��m U=H�H�H�H�H�H �A Ò T�Ú ��&�� A Ò T ¼ ��m¹� H � A Ò T Ð ] ( A Ò T�Ú �����¸
 A Ò T�Ú �����¶� A Ò T�½ � � m A Ò T ¼ ��m¹� HA Ò T�½ � � m A Ò T ¼ ��m e�H A Ò T ¼ ��m U=H�H�H�H�H�H � A Ò T�Ú ��&�� A Ò T ¼ ��m¹� HXC[_ A Ò T�Ú ����� VA Ò T ³ ] � A Ò T�Ú �����¸� A Ò T�½ � � m A Ò T ¼ ��m C?_�H A Ò T�½ � � m A Ò T ¼ ��m e�H A Ò T ¼ ��m U�H�H�H�H�HHXC[_ A Ò T�Ú ��&�� A Ò T ¼ ��m C[_�HXC�C A Ò T�Ú ����� V A Ò T ³ ] m A Ò T�Ú �����¸� A Ò T�½ � � mA Ò T ¼ ��m C�C�H A Ò T�½ � � m A Ò T ¼ ��m e�H A Ò T ¼ ��m U=H�H�H�H�H�HOC�C A Ò T�Ú ��&�� A Ò T ¼ ��m C�C�HC6G A Ò T�Ú ��&�� A Ò T�Ú �����¸
 A Ò T�Ú �����¸� A Ò T�½ � � m A Ò T�Ù &[9 A Ò T ¼ ��m C6G�H�H A Ò T�½ � � mA Ò T ¼ ��m e�H A Ò T ¼ ��m U�H�H�H�H�HOC[e A Ò T�Ú �����¶� A Ò T�½ � � m A Ò T�Ù &[9 A Ò T Ð ] ( A Ò T Ð ] (A Ò T ¼ ��m C6G�H�H�H�H A Ò T�½ � � m A Ò T�Ú �����¸� A Ò T�½ � � m A Ò T ¼ ��m e�H A Ò T�½ � � m A Ò T�Ù &[9A Ò T Ð ] ( A Ò T ¼ ��m C6G�H�H�H A Ò T ¼ ��m C[e�H�H�H�H A Ò T ¼ ��m U�H�H�H�HQC[e A Ò T�Ú �����¸� A Ò T�½ � � mA Ò T Ð ] ( A Ò T Ð ] ( A Ò T Ð ] ( A Ò T Ð ] ( A Ò T ¼ ��m C6G�H�H�H�H�H A Ò T�½ � � m A Ò T�Ú �����¸�A Ò T�½ � � m A Ò T ¼ ��m e�H A Ò T�½ � � m A Ò T�Ù &[9 A Ò T Ð ] ( A Ò T Ð ] ( A Ò T Ð ] ( A Ò T ¼ ��m C[G�H�H�H�HH A Ò T ¼ ��m C[e�H�H�H�H A Ò T ¼ ��m U�H�H�H�H�HXC[G A Ò T�Ú ��&�� A Ò T ¼ ��m C[G�HXC?e A Ò T�Ú ����� C?_A Ò T�½ � � m A Ò T ¼ ��m C?e�H A Ò T ¼ ��m e�H�H�HQC[e A Ò T�Ú ��&6� A Ò T ¼ ��m C[e�HXC?U Ò T Ò�m�m�k�m C?UA Ò T�Ú ��&�� A Ò T ¼ ��m CjU=HXC 
 A Ò T ����9 C[V A Ò T�Ú ����� C�C A Ò T�½ � � m A Ò T�Ù &?9 A Ò T ¼ ��mC 
 H�H A Ò T ¼ ��m U�H�H�H A Ò T�Ú �����¸� A Ò T�½ � � m A Ò T Ð ] ( A Ò T ¼ ��m C[V�H�H A Ò T�½ � � mA Ò T�Ú �����¸� A Ò T�½ � � m A Ò T ³ ] � A Ò T ³ ] 9 _�H�H A Ò T�½ � � m A Ò T�Ù &?9 A Ò T ¼ ��m C[V�H�HA Ò T�Ú �����¸� A Ò T�½ � � m A Ò T Ð ] ( A Ò T ¼ ��m C 
 H�H A Ò T�½ � � m A Ò T ¼ ��m e�H A Ò T ¼ ��m U=H�H�H�HH�H�H A Ò T ¼ ��m U=H�H�H�H�HQC 
 A Ò T ����9 C?V A Ò T�Ú �����¸� A Ò T�½ � � m A Ò T�Ù &[9 A Ò T Ð ] (A Ò T ¼ ��m C 
 H�H�H A Ò T�½ � � m A Ò T ¼ ��m e�H A Ò T ¼ ��m U=H�H�H�H A Ò T�Ú �����¸� A Ò T�½ � � mA Ò T Ð ] ( A Ò T Ð ] ( A Ò T ¼ ��m C 
 H�H�H A Ò T�½ � � m A Ò T�Ú �����¸� A Ò T�½ � � m A Ò T ¼ ��m e�HA Ò T�½ � � m A Ò T�Ù &[9 A Ò T ¼ ��m C 
 H�H A Ò T ¼ ��m C?V�H�H�H�H A Ò T ¼ ��m U�H�H�H�H�H�H�H�H�H�H�H�H�H�H�H�H�H�HH A�Ú�Ø�Þ Ð A � DbC�D Ò T ����9 G A Ò T�Ù &[9 A Ò T ¼ ��m C�H�H A Ò T ����9 e A Ò T�Ù &[9 A Ò T Ð ] (A Ò T ¼ ��m C�H�H�H A Ò T ����9 U A Ò T Ð ] ( A Ò T Ð ] ( A Ò T ¼ ��m C�H�H�H A Ò T ³ ] m A Ò T�½ � � mA Ò T�½ � � m A Ò T ¼ ��m e�H A Ò T ¼ ��m U=H�H A Ò T ¼ ��m G�H�H�H�H�H�H A�Ú�Ø�Þ Ð A C[_-DbC5D Ò T ����9 GA Ò T�Ù &?9 A Ò T ¼ ��m C�H�H A Ò T ����9 e A Ò T Ð ] ( A Ò T ¼ ��m C�H�H A Ò T�Ú ��&6� A Ò T ¼ ��m e�H�UÒ T Ò�m�m�k�m U A Ò T�Ú ��&6� A Ò T�Ø $QÒ�Ô�l���� A Ò T ¼ ��m G�H A Ò T�Ù &?9 A Ò T�Ù &[9 A Ò T ¼ ��m U�H�H�H�H
 A Ò T�Ú ����� C?_ A Ò T�½ � � m A Ò T ¼ ��m G�H A Ò T Ð ] ( A Ò T ¼ ��m U�H�H�H�H 
 A Ò T Ð ] ( A Ò T�Ù &[9A Ò T ¼ ��m U=H�H�H�H�H�H�H A�Ú�Ø�Þ Ð A C�C�DbC�D Ò T ����9 G A Ò T�Ù &[9 A Ò T ¼ ��m C�H�H A Ò T ����9 eA Ò T Ð ] ( A Ò T ¼ ��m C�H�H A Ò T�Ú ��&�� A Ò T ¼ ��m e�H^U Ò T Ò�m�m�k�m U A Ò T�Ú ��&6� A Ò T�Ø $KÒ�Ô�l����A Ò T ¼ ��m G�H A Ò T�Ù &[9 A Ò T�Ù &[9 A Ò T ¼ ��m U=H�H�H�H 
 A Ò T�Ú ����� C�C A Ò T�½ � � m A Ò T ¼ ��m G�HA Ò T Ð ] ( A Ò T ¼ ��m U=H�H�H�H 
 A Ò T Ð ] ( A Ò T�Ù &?9 A Ò T ¼ ��m U�H�H�H�H�H�H�H A:Ú�Ø�Þ Ð A C[G-DøC5DÒ T ����9 G A Ò T�Ù &[9 A Ò T ¼ ��m C�H�H A Ò T ����9 e A Ò T�Ù &?9 A Ò T Ð ] ( A Ò T ¼ ��m C�H�H�H A Ò T ����9U A Ò T Ð ] ( A Ò T Ð ] ( A Ò T ¼ ��m C�H�H�H A Ò T�Ú ��&6� A Ò T ¼ ��m G�H 
 A Ò T�Ú ��&6� A Ò T�Ø $KÒ�Ô�l����A Ò T ¼ ��m e�H A Ò T ¼ ��m U�H�H�V A Ò T�Ú ����� V A Ò T ³ ] � A Ò T�Ú ����� G A Ò T ³ ] 9 _�H�H�H�H�VA Ò T�Ú ����� V A Ò T ³ ] m A Ò T�Ú ����� G A Ò T ³ ] 9 _�H�H�H�H�H 
 A Ò T�Ú ��&6� A Ò T ¼ ��m·
 H�VA Ò T�Ú ����� G A Ò T�Ø $ Í (�( A Ò T ¼ ��m e�H A Ò T ¼ ��m U�H�H�H^V A Ò T�Ú ��&�� A Ò T ¼ ��m V�H 
A Ò T�Ú ����� G A Ò T�Ø $dÐ6l y A Ò T ¼ ��m e�H A Ò T ¼ ��m U�H�H�H 
 A Ò T�Ú ����� G A Ò T�Ø $QÎ�l��A Ò T ¼ ��m e�H A Ò T ¼ ��m U�H�H�H�H�H�H�H�H�H A:Ú�Ø�Þ Ð A C[e;DøC5D Ò T�Ú ��&6� A Ò T ¼ ��m C�H�G Ò T Ò�m�m�k�mG A Ò T�Ù &?9 A Ò T ¼ ��m G�H�H�H Þ ³[� H�H�H�H�H�H�H�H�H�H�H�H�H�»4Û $�m�k º m�� �\{/a�a
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