Technical Report DIKU-TR-98/11
Department of Computer Science
University of Copenhagen
Universitetsparken 1
DK-2100 KBH O
DENMARK

April 1998

Exact Algorithms for Plane Steiner Tree Problems:
A Computational Study

David M. Warme, Pawel Winter and Martin Zachariasen

Exact Algorithms for Plane Steiner Tree
Problems: A Computational Study

D.M. Warme
System Simulation Solutions, Inc.
Alexandria, VA 22314, USA

E-mail: warme@s3i.com

P. Winter

Department of Computer Science
University of Copenhagen, Denmark
E-mail: pawel@diku.dk

M. Zachariasen

Department of Computer Science
University of Copenhagen, Denmark
E-mail: martinz@diku.dk

Abstract

We present a computational study of exact algorithms for the Eu-
clidean and rectilinear Steiner tree problems in the plane. These algo-
rithms — which are based on the generation and concatenation of full
Steiner trees — are much more efficient than other approaches and al-
low exact solutions of problem instances with more than 2000 terminals.
The full Steiner tree generation algorithms for the two problem variants
share many algorithmic ideas and the concatenation part is identical (in-
teger programming formulation solved by branch-and-cut). Performance
statistics for randomly generated instances, public library instances and
“difficult” instances with special structure are presented. Also, results on
the comparative performance on the two problem variants are given.

Contents

1 Introduction 2

2 Generating Full Steiner Trees 5
2.1 Generation of RFSTs. 5
2.2 Generation of EFSTs 6
23 Pruning 9

2.3.1 LuneProperty 9
2.3.2 Bottleneck Steiner Distances 10
233 UpperBounds 11

3 Concatenating Full Steiner Trees 11
3.1 Backtrack Search L 12
3.2 Dynamic Programming 13
3.3 Integer Programming 14

4 Computational Experience 16
4.1 Experimental Conditions 16
4.2 Generation 17
4.3 Concatenationo 22
4.4 Steiner Minimum Tree Properties 23

5 Conclusion 30

References

1 Introduction

The Euclidean and rectilinear Steiner tree problems in the plane are by far the
most studied geometric Steiner tree problem variants. The classical Euclidean
problem has roots more than two centuries back while the rectilinear was first
considered by Hanan [13] in the 1960’s. The interest in the latter came mainly
from applications in, e.g., VLSI design. In the 1970’s both problems were shown
to be NP-hard [11, 12] and this virtually shattered the hope of finding efficient
(polynomial time) algorithms for these problems.

Informally, we ask for a shortest interconnection — a Steiner minimum tree
(SMT) — of a set Z of n terminals (points in the plane) with respect to a given
distance function. Let u = (us,uy) and v = (v,,vy) be a pair of points in the
Cartesian plane ®2. The distance in the L,-metric, 1 < p < oo, between u
and v (or simply the L,-distance) is ||uv|l, = (|uz — vz |P + |uy — vy[P)'/P. In
this work we consider the Steiner tree problem with the Euclidean L-distance
and the rectilinear (or Manhattan) L;-distance. Hanan [13] proved that for the
rectilinear version, it is always possible to find an SMT with edges belonging

to the Hanan grid. The Hanan grid is obtained by drawing horizontal and
vertical lines through all terminals. As a consequence, Steiner points appear at
intersections of these lines only.

Euclidean SMTs (ESMTs) and rectilinear SMTs (RSMTSs) are unions of full
Steiner trees (FSTs) whose terminals are incident with one FST-edge each. An
Euclidean FST (EFST) and a rectilinear FST (RFST) spanning k¥ terminals,
2 < k < n, has k — 2 Steiner points (except when k& = 4; RFSTs can then have
one Steiner point incident with four edges). Steiner points in EFSTs have three
incident edges meeting at 120°. Steiner points in RSMTs are incident with 3
edges (except for the already mentioned case).

A minimum spanning tree (MST) for the terminals in Z is a shortest network
spanning Z without introducing Steiner points. Euclidean MSTs (EMSTs) and
rectilinear MSTs (RMSTs) for Z can be constructed in O(nlogn) time [18].
The length of an EMST (resp. RMST) exceeds the length of an ESMT (resp.
RSMT) by at most a factor of 2/v/3 (resp. 3/2) [15].

First exact algorithms for the Euclidean and rectilinear Steiner tree problems
(see Hwang et al. [15] for references) are based on a straightforward common
framework. Subsets of terminals are considered one by one. For each subset,
all its FSTs are determined one by one, and the shortest is retained. Several
tests can be applied to these shortest FSTs in order to identify and prune away
those that cannot be in any SMT. Surviving FSTs are then concatenated in all
possible ways to obtain trees spanning all terminals. The shortest of them is an
SMT.

The bottleneck of this approach is the generation of FSTs. Winter [25]
suggested a departure from the above general framework. He observed that
substantial improvements are available if EFSTs are generated across various
subsets of terminals. Retained EFSTs are not necessarily minimal. However,
pruning tests are so powerful that only very few EFSTs survive. Similar strategy
was recently applied to the generation of RFSTs by Zachariasen [27]. Spectac-
ular speed-ups have been achieved in both cases. As a consequence, the con-
catenation of FSTs became a bottleneck of FST-based algorithms for both the
Euclidean and the rectilinear Steiner tree problems.

Recent result of Warme [24] improved the concatenation dramatically. He
noticed that the concatenation of FSTs can be formulated as a problem of
finding a minimum spanning tree in a hypergraph with terminals as vertices
and subsets spanned by FSTs as (hyper)edges. He solved this problem using
branch-and-cut. Instances of the Euclidean and rectilinear Steiner tree problem
with as many as 2000 terminals can today be solved in a reasonable amount
of time. In Figure 1 we illustrate the dramatic progress in the performance of
exact algorithms.

The purpose of this work is to present computational results using the EFST
generator of [25, 26] and the RFST generator of [27] with the FST concatenator
of [24]. We present the main algorithmic ideas, but the reader is referred to the
above mentioned papers for further details. The work is organized as follows:

29 citiesin the United States and Canada

532 citiesin the United States

Figure 1: Euclidean Steiner minimum tree examples. The top instance was pub-
lished in Scientific American in 1989 and was at that time “close to the limit
of computing capabilities” [2]. The bottom instance, att532 from the TSPLIB
collection, was solved in a few hours on a workstation using the algorithm pre-
sented in this paper.

The algorithms for generating EFSTs and RFSTs are described in Section 2. A
survey of FST concatenation algorithms is presented in Section 3. Computa-
tional results are given in Section 4 and concluding remarks in Section 5.

2 Generating Full Steiner Trees

The algorithms given by Winter [25] and Zachariasen [27] for generating EFSTs
and RFSTs, respectively, share many algorithmic ideas. The simpler RFST
algorithm is given first. The EFST algorithm is then described using the same
framework.

Before we present the general framework, we note that 2-terminal FSTs in
any SMT can be restricted to edges of an arbitrarily chosen MST [15]. Thus we
only describe the generation of FSTs with three or more terminals.

2.1 Generation of RFSTs

We assume that terminals are in general position, i.e., no pair of terminals has
the same z- or y-coordinates. This assumption simplifies the description by
avoiding some straightforward but tedious special cases.

Hwang [14] proved that there always exists an RSMT in which every RFST
has a very restricted shape shown in Figure 2. Any such RFST spanning &
terminals has a root terminal zg and a tip terminal z;. The root and the tip
are connected by a backbone. The backbone consists a long leg (incident with
the root) and a perpendicular short leg (incident with the tip). The remaining
terminals are attached to the long leg by alternating straight line segments called
branches. At most one branch can be attached to the short leg (away from the
root) as shown in Figure 2b. Steiner points are all on the backbone at points
xdvi adwhere branches are attached.

[
N
Lo
w!l)
L o
g
P
g
3
@
o
NUJ
o
g
&
[}
=]
[0}

i l S Sy l °* 51 S3 l—c z,
z, :
Z 2 z, t
a) Type (i) b) Type (ii)

Figure 2: Two types of RFSTs

The generation of RFSTs with three or more terminals is as follows. For a
given root zp, long legs are grown in each of the four possible directions. For a

given direction (to the right, say), only terminals with greater z-coordinate are
considered.

Suppose that the long leg from 2y has been extended to the z-coordinate
of the terminal 2, and the branches alternate below and above the long leg.
Several tests (described in Subsection 2.3 and in [27]) can be applied to check
whether such an alternating sequence can appear in at least one RSMT. If not,
the zg-branch is replaced by another (alternating) branch farther to the right
or backtracking occurs.

Assume that the long leg from zg to z; cannot be pruned away. Each terminal
z¢ to the right of 2 is attached to the long leg as a tip (by extending the long
leg and attaching the alternating short leg). Several tests can be applied to
check if this RFST can occur in any RSMT. Furthermore, each terminal z,. to
the right of the tip with its y-coordinate between yo and y, is attached to the
short leg. Again, most of such RFSTs can be pruned away by one of several
efficient pruning tests.

2.2 Generation of EFSTs

Consider an EFST for k terminals, 3 < k < n, as shown in Figure 3. A path
between 2 arbitrary terminals (one considered as a root and the other as a tip)
goes through one or more Steiner points and can be considered as a backbone. At
each Steiner point, the long leg turns 60° either to the left or to the right. Hence,
contrary to the rectilinear case, the long leg does not have a fixed direction.
Furthermore, in the rectilinear case, the branches are line segments appearing
in the alternating fashion. This is not so in the Euclidean case. Branches
can involve more than one terminal and consecutive branches do not need to
alternate. In conclusion, the generation of EFSTSs is more complicated than the
generation of RFSTs. On the other hand, pruning tests for the Euclidean case
are more efficient so that the number of surviving EFSTs is (on average) smaller
than the number of surviving RFSTs (for the same number of terminals).

In order to explain how EFSTs with three or more terminals are generated,
we restrict our attention to 1-terminal branches. Assume that 2y is selected as
the root, and k terminals z1, 22, ..., zx have been attached to the long leg (in
that order) making 60° left turns at each Steiner point (Figure 4).

The first complication (when compared with the rectilinear case) arises due
to the fact that the locations of Steiner points are not known. The first Steiner
point s; on the long leg must be located somewhere on the Steiner arc Zpz1
of zp and z;. It is determined as follows. Consider the equilateral triangle
with the line segment zpz; as one of its sides, and with its third corner to the
right of 2921 (when looking from z¢ toward z;). This third corner is referred to
as the equilateral point and is denoted by e;. Consider the circle C(zo,21,e1)
circumscribing this equilateral triangle. The arc from zg to z; (clockwise) is the
Steiner arc Zpzi.

Possible locations of the Steiner point s2 adjacent to s; and 2z (with the long

backbone 4

S

);

21

/
L =
-

Figure 3: EFST

leg making a 60° left turn at ss) are on the Steiner arc €122. The corresponding
equilateral point is denoted by es. The Steiner arc €125 can be reduced; the edge
connecting s; and s must overlap with the line segment from e; to s2. Hence,
only projections of feasible locations of s; seen from e; are feasible locations of
S9 ON €123.

Steiner arcs for Steiner points s3, s4, ..., S are determined in analogous man-
ner. Consider the feasible subarc of the Steiner arc ex_12; (k = 3 in Figure 5).
Let e denote the associated equilateral point. Consider the region Ry bounded
by half-lines rooted at e, through the extreme points of the (pruned) Steiner arc
erx—12r (Figure 5). Any terminal 2, € Ry \ C(ex—1, 2k, er) yields an EFST. More
precisely, the intersection of the line segment z;e; with ez 1z is the location
of si. Given the location of sy, the location of s;_; is given as the intersection
of the line-segment sper_; with ex_52r_1. Locations of s_2, Sx_3, ..., 51 can be
determined successively in the same manner.

It can be shown that the length of the EFST is equal to the length of the
line-segment z.e;,. Hence, the locations of Steiner points could in principle be
determined only for EFSTs belonging to the ESMT.

Once all EFSTs for a given long leg have been identified, the long leg is ex-
tended by adding one more branch. If no extension is possible, the current long
leg is redirected by requiring 60° right turn at sx. This calls for the recomputa-
tion of e, (now to the left of the line segment from e;_; to z). Other equilateral
points ej, ea, ..., ex_1 are not affected. Once all extensions of this long leg have
been considered, zj is replaced by another terminal. If all terminals have been

Figure 4: Long leg construction

considered, backtracking occurs.

The efficiency of the above approach stems from the fact that when long legs
are expanded as well as when tips are attached, very powerful pruning tests can
be applied. Most long legs never involve more than 2-3 Steiner points. Steiner
arcs for these long legs are usually very narrow so that at most one or two tips
can be attached (if any).

A serious complication when generating EFSTs is that it is not sufficient to
grow long legs with 1-terminal branches. In fact, branches with arbitrary many
terminals can be attached. These branches are long legs. We omit a detailed
description of how such long legs are generated. Suffice it to say that whenever
a long leg is not pruned away, it is saved. Long legs are extended either by
attaching a terminal (as described above) or by attaching a saved disjoint long
leg. Only very few EFSTs of the latter kind survive the pruning tests.

Another rather technical issue which we do not cover here is how to avoid
multiple generation of the same EFST.

Figure 5: EFST construction

2.3 Pruning

In this subsection we give a brief description of some tests that make it possible
to prune away the majority of FSTs. We focus on pruning tests that are common
for both the Euclidean and the rectilinear case. The description is kept on a
general level. The reader is referred to Winter and Zachariasen [26] and to
Zachariasen [27] for details. Furthermore, some additional tests, not described
below, can be found in these two papers.

2.3.1 Lune Property

A lune Ly, of aline segment uwv is the intersection of two circles both with radius
|luv||, and centred at w and v, respectively (Figure 6). A necessary condition
for the line segment uv to be in any SMT is that its lune contains no terminals.

Edges in rectilinear backbones are known since the locations of Steiner points
are fixed. As backbones are expanded, it is straightforward to check if the lunes
of the end-points of added line segments are empty. The same applies when tips

a) Euclidean lune b) Rectilinear lune

Figure 6: Euclidean and rectilinear lunes

(possibly with side branches) are added.

The situation is more complicated in the Euclidean case. Locations of Steiner
points are not fixed. Fortunately, they are restricted to Steiner arcs. Consider
the most recent Steiner arc of the long leg. If the corresponding Steiner point sy,
is assumed to be one of the extreme points of this Steiner arc, then the location
of sp_1 on the long leg can be determined. If one of the lunes L, 5, , or L, .,
contains a terminal z, the Steiner arc e;_12; can be narrowed until none of
them contains z.

Several other tests involving more complex empty regions are available, in
particular for the rectilinear case. These tests will not be covered here; the
reader is referred to Zachariasen [27] for details.

2.3.2 Bottleneck Steiner Distances

Construct an MST for the set of terminals Z. Let b.,.; denote the length of the
longest edge on the unique path from a terminal z; to a terminal z;. We refer
to b.,.; as the bottleneck Steiner distance. Bottleneck Steiner distances for all
pairs of terminals can be determined in O(n?) time. Consider an Euclidean or
rectilinear SMT for Z. It is straightforward to show that no edge on the path
between a pair of terminals z; and z; can be longer than b.,..

When growing long legs in the rectilinear case, longest edges on paths from
the terminal of the added branch to other terminals can be determined. If
any of these edges has length greater than the corresponding bottleneck Steiner
distance, the long leg can be pruned away. Similar arguments apply when a tip
(possibly with a branch attached to the short leg) is added to the long leg.

10

The use of bottleneck Steiner distances when generating EFSTs is more
complicated since the locations of Steiner points are not fixed. However, as
already mentioned, they are restricted to Steiner arcs. It is therefore possible to
determine good lower and upper bounds for the lengths of edges incident with
Steiner points. If a lower bound for such an edge is greater than the bottleneck
Steiner distance between a pair of terminals forced to use this edge, then the
long leg can be pruned away. If an upper bound is greater than the bottleneck
Steiner distance, then it is usually possible to narrow the Steiner arc (upper
bounds are typically computed using the extreme points of Steiner arcs). It is
outside the scope of this work to give a detailed description of how these bounds
are determined and how the arcs are narrowed. The interested reader is referred
to Winter and Zachariasen [26].

2.3.3 Upper Bounds

Several good heuristics for both the rectilinear and the Euclidean Steiner tree
problems are available (see Hwang et al. [15]). They can be used to exclude
some long legs and FSTs. Once again, the situation is simpler for the rectilinear
case than for the Euclidean case.

Consider a rectilinear long leg with s; as the most recent Steiner point.
Use one of the rectilinear heuristics to determine a tree spanning s; and the
terminals attached to the long leg. If this tree is shorter than the tree given
by the long leg, then the long leg cannot occur in the RSMT. Similarly, when
a tip is added to the long leg (possibly with a branch attached to the short
leg), and the resulting RFST can be shown to be non-optimal for its terminals
(by generating a shorter tree using a heuristic), then the RFST can be pruned
away. Similarly, if the MST for the terminals (using bottleneck Steiner distances
between terminals) is shorter than the RFST, then the RFST can be pruned
away. This test can be very efficient since bottleneck Steiner distances between
pairs of terminals are often much smaller than L;-distances.

Similar tests are available for the Euclidean case when a tip is added to
a long leg. However, when a long leg is expanded, the location of the most
recent Steiner point s is not fixed, and the determination of upper bounds
becomes more complicated. Once again, the reader is referred to Winter and
Zachariasen [26] for a description of how upper bounds are determined and how
they are used to prune away long legs or to narrow the Steiner arcs.

3 Concatenating Full Steiner Trees
In contrast to the FST generation problem, the FST concatenation problem is
purely combinatorial and essentially metric-independent. Given a set of FSTs

F = {F,F;,...,F,}, known to contain a subset whose union is an SMT for
Z, the problem is to identify a subset F* C F such that the FSTs in F*

11

interconnect Z and have minimum total length.

This concatenation problem has been solved using simple backtrack search
(Section 3.1) and by applying dynamic programming (Section 3.2). However,
backtrack search has a very steep running time growth and can only be applied
for moderately sized problems. Dynamic programming has better worst-case
running time properties, but is in practice even slower (and consumes much
more memory).

Warme [24] presented an integer programming formulation for the concatena-
tion problem which was solved by branch-and-cut (Section 3.3). Warme proved
that the concatenation problem is equivalent to finding a minimum spanning tree
(MST) in the hypergraph H = (Z, F) and showed that the general hypergraph
MST problem is NP-hard. This algorithm has increased the solvable range by
more than an order of magnitude (see computational results in Section 4).

3.1 Backtrack Search

Backtrack search is a simple, yet reasonably effective ”dumb” algorithm. Start-
ing with a partial solution consisting of a single FST F; € F, we seek the
shortest-length tree interconnecting Z and containing F;. This is done by re-
cursively adding FSTs to the solution until it interconnects Z or it can be
concluded that it cannot be optimal, e.g., if a cycle is created. In this case
the search backtracks and some other FSTs are added. Obviously, it is only
necessary to try FSTs spanning a particular terminal as the initial FST.

The cut-off tests applied during the search determine the practical behaviour
of the algorithm, which otherwise runs in time ©(2™). Winter [25] used only rel-
atively simple cut-off tests and observed that the concatenation phase began to
dominate the generation phase already at n = 15. Cockayne and Hewgill [6, 7]
improved the concatenation phase considerably by applying problem decompo-
sition, FST compatibility and FST pruning. Similar ideas were also applied to
the rectilinear problem by Salowe and Warme [20] but with substantially less
success. More recently, Winter and Zachariasen [26] improved FST compatibil-
ity and pruning substantially and this allowed the exact solution of randomly
generated Euclidean instances with up to 140 terminals (on average one hour
on a workstation).

Problem decomposition reduces the initial concatenation problem to several
smaller concatenation problems. Define G(F) to be an undirected graph with
Z as its vertices; two nodes (terminals) z; and z; of G(F) are adjacent if and
only if there exists an FST in F spanning z; and z;. If G(F) has an articulation
point, it can be split into two subproblems at that node [6] — each biconnected
component corresponds to a subproblem for which concatenation may be done
separately. More sophisticated decomposition methods, based on vertex separa-
tors, have been proposed [6, 20, 23]. Problem decomposition has been the single
most important algorithmic improvement for concatenation based on backtrack
search, but the effect of decomposition diminishes for larger problem instances,

12

in particular for the rectilinear problem. Also, for problem instances with spe-
cial structure, such as regular lattices for the Euclidean problem, decomposition
has virtually no effect.

The notion of FST compatibility was introduced by Cockayne and Hewgill [7]
(a slightly different definition is given here). Two FSTs F;, F; € F are incom-
patible if they cannot appear simultaneously in any SMT (e.g., if they span two
or more common terminals), and otherwise they are compatible. A series of
compatibility tests are applied to every pair of FSTs; the result is stored in a
compatibility matrix which is used during backtrack search, as described later.

Let F;, F; € F be two FSTs sharing at least one terminal. In the current
implementation we used the following series of compatibility tests:

e F; and Fj; share at most one common terminal z..

e The angle between the two edges incident with z. is at least 120° (resp.
90°) for the Euclidean (resp. rectilinear) problem.

e F; U F} passes longest edge test (described in Section 2.3.2).
e F;UF; passes MST-BSD test (described in Section 2.3.3).

These tests can be performed with a fairly low computational overhead and
they dominate many of the tests proposed in the literature, some of which are
apparently metric-dependent [7, 20, 26].

The notion of FST compatibility can be used to remove FSTs from candi-
dacy. Sophisticated variants of FST pruning can remove more than half of the
initial list of FSTs [9, 26] at moderate computational effort — and have ap-
proximately doubled the solvable range. One effective pruning technique is the
following: Consider an FST F; € F and the set F; of FSTs compatible to this
FST. If the graph G({F;} U F;) is disconnected, then F; cannot be augmented
to a tree spanning Z and may be eliminated from further consideration.

Furthermore, FST compatibility can be used during backtrack search. At
any point during the search only FSTs which are compatible to all FSTs in the
current solution need to be considered. This reduces the search tree drastically
without any significant computational overhead (recall that the compatibility
matrix is computed in a preprocessing phase). Salowe and Warme [20] gave a
strategy for scheduling the FSTs to add during the search in a ”most promising”
fashion; these ideas were elaborated by Warme [23]. However, the effect of using
various scheduling techniques has been much less prominent than the effect of
problem decomposition and FST compatibility.

3.2 Dynamic Programming

One of the earliest exact algorithms for the Steiner tree problem in graphs is
the dynamic programming algorithm of Dreyfus and Wagner [8]. By reduc-
ing the rectilinear problem to the Steiner tree in graphs this algorithm solves

13

the rectilinear problem in time O(n?3"). Apart from the divide-and-conquer
algorithm of Smith [21] which runs in time n®(V™ (but with a huge constant
factor), dynamic programming algorithms provide the best worst-case bounds
for the rectilinear problem (the running time bounds given in this section do
not generalize to the Euclidean problem as explained below).

Ganley and Cohoon [10] gave the first FST based dynamic programming
algorithm. It uses the well-known fact that an SMT is either an FST or can
split into two SMTs joined at a terminal; note that at least one of these smaller
SMTs can again be assumed to be an FST. Subsets of Z are enumerated in order
of increasing cardinality — SMTs for each subset are computed and stored in a
lookup table. Since rectilinear FSTs can be computed in linear time! finding the
shortest joined SMT dominates the running time which is O(n3™). By proving
an O(n1.62™) bound on the number of FSTs with Hwang topology, Ganley and
Cohoon reduced the running time to O(n?2.62™). More recently, Foéfimeier and
Kaufmann [9] improved the former bound to O(nl.38") by using additional
necessary conditions on rectilinear FSTs, thereby improving the latter bound
to O(n?2.38™).

Although dynamic programming provides the best worst-case bounds for
the concatenation problem the practical behaviour seems to be inferior to back-
track search [9]. In addition, huge memory requirements make the approach
impractical for instance sizes larger than n = 40.

These running time bounds do not generalize to the Euclidean problem,
since no upper bound except from O(2™) is known for the total number of Eu-
clidean FSTs. Furthermore, no polynomial time algorithm exists for computing
a shortest FST for a set of terminals — this may be compared to the linear time
algorithm for the rectilinear problem.

3.3 Integer Programming

In this section an integer programming formulation is given for the concatena-
tion problem. Fundamental valid inequalities and polytope properties are pre-
sented and important details on the branch-and-cut algorithm are highlighted.
For further details, we refer to the paper by Warme [24].

Consider a hypergraph H = (Z, F) with the set of terminals Z as its vertices
and the set of FSTs F as its hyperedges, that is, each FST F; € F is considered
to be a subset of Z which is denoted by Z(F;). A chain in H from zy € Z
to zx € Z is a sequence zg, F1,21,F5,29,..., Fg, 2 such that all vertices and
hyperedges are distinct and z;_1,2; € Z(F;) for i =1,2,..., k. A spanning tree
in H is is a subset of hyperedges ' C F such that there is a unigue chain
between every pair of vertices 2;,2; € Z. The uniqueness implies that there can
be no pair of hyperedges F;, F; € F' that share two or more vertices, i.e., we

! Assuming that the terminals have been sorted in x- and y-direction in a preprocessing
phase.

14

have |Z(F;)NZ(F};)| < 1for all F;, F; € F'. The problem of finding a minimum
spanning tree (MST) in H where each hyperedge F; € F has weight equal to
its length |F;| is equivalent to solving the concatenation problem.

The hypergraph MST problem is NP-hard, even when all hyperedges span
at most a constant number K > 3 of vertices. In fact, Tomescu and Zimand [22]
have shown that the existence of a spanning tree in a K-uniform hypergraph
(in which all hyperedges span exactly K vertices) is an NP-complete problem
for K > 3. For K = 2 the problem reduces to the MST problem in ordinary
graphs, which can be solved in polynomial time.

Now we give the integer programming (IP) formulation. Let ¢ be a vector
in ™ whose components are ¢; = |F;|. Denote by z an m-dimensional binary
vector. The IP formulation is then

min cz (1)

s.t. S (Z2F) -V = n—1 (2)
F,eF

xz; +x; < 1, F;incompatible with F; 3)

Y max(0,|Z(F)nS|— Dz < [|S|-1, VSCZ 2<(S|<n (4)

F,eF

The objective (1) is to minimize the total length of the chosen FSTs subject
to the following constraints: Equation (2) enforces the correct number and
cardinality of hyperedges to construct a spanning tree. Constraints (3) add
compatibility information to the formulation (Section 3.1). Finally, constraints
(4) eliminate cycles by extending the standard notion of subtour elimination
constraints; these constraints also ensure, in conjunction with equation (2),
that the chosen FSTs interconnect Z.

Warme [24] proved several fundamental properties of the corresponding poly-
tope. Let K, be the complete hypergraph with n vertices. This graph has
2™ —n — 1 hyperedges (all hyperedges span two or more vertices). Let ST, C
{0,1}?"~"=1 denote the set of incidence vectors of spanning trees of K,. That
is, each spanning tree of K,, defines a binary vector in which an element is 1 if
and only if the corresponding hyperedge is chosen.

Then conv(ST,), the convex hull of the incidence vectors of all spanning
trees, is the spanning tree in hypergraph polytope, STHGP(n). Warme proved
that conv(ST,) has dimension 2™ — n — 2, that all spanning trees are extreme
points and that the cycle elimination constraints (4) are facet defining for n > 3.
In particular the last result explains the strength of this formulation (as evi-
denced by the computational results in Section 4).

The integer program is solved via branch-and-cut. Lower bounds are pro-
vided by linear programming (LP) relaxation, i.e., by relaxing integrality of
every component z; of z to 0 < z; < 1. Obviously the number of compatibility
constraints (3) is bounded by O(m?), but the number of cycle elimination con-
straints (4) is exponential in n. The latter constraints are dynamically added

15

by separation methods. This separation problem can be solved in polynomial
time (in n and m) by finding minimum cuts in certain graphs [24]. However,
heuristic separation methods are also used whenever applicable in order to speed
up convergence to LP-optimum.

Enumeration is done using best choice branching. Let z; be a possible non-
integral branch variable. Assume that the two LP-subproblems corresponding
to z; = 0 and z; = 1 yield objective values z? and z}, respectively. The z; that
maximizes the value of min(z2?, z}) is chosen as the new branch variable. Note
that solving the z; = 1 subproblem can be skipped if 2¢ is already too low to
be maximum. Furthermore, the process can terminate immediately if both z?
and 2z} meet or exceed the best known integer solution.

Nodes in the branching tree are chosen using a best node first selection strat-
egy, such that the outstanding node having the lowest objective value is pro-
cessed next. This may (theoretically) produce a large number of outstanding
nodes, but in practice the tightness of the formulation produces only a fairly
small number of nodes.

4 Computational Experience

4.1 Experimental Conditions

The computational study was made on an HP9000 workstation?. The rectilinear
and Euclidean FST generators were programmed in C++ using the class library
LEDA version 3.4.1 [17]; the random_source class in LEDA was used for gen-
erating pseudo-random numbers. The FST concatenator was programmed in C
using CPLEX version 5.0 to solve all the linear programming (LP) relaxations.

The test bed mainly consists of three sets of problem instances. The first
set is a collection of 60 randomly generated instances from the OR-Library [1],
15 instances for each problem size 100, 250, 500 and 1000. All instances in
the OR-Library with 100 and fewer terminals have previously been solved as
Euclidean instances [26] and all instances with 1000 and fewer terminals have
previously been solved as rectilinear instances [24].

The second set is a selection of 26 public library instances taken from
TSPLIB [19] (ranging from 198 to 7397 terminals). These are the same in-
stances as studied by Zachariasen [27]; none of these have previously been solved
as rectilinear or Euclidean problems. TSPLIB is a collection of instances for the
Traveling Salesman Problem (TSP), mainly plane real-world Euclidean problem
instances. All instances are given as (the coordinates of) points in the plane.

Thirdly, the average behaviour of the exact algorithm is studied on a large
set of randomly generated instances. Fifty instances were generated for each size

2Machine: HP 9000 Model C160. Processor: 160 MHz PA-RISC 8000. Main memory:
256 MB. Performance: 10.4 SPECint95 and 16.3 SPEC{p95. Operating system: HP-UX 10.20.
Compiler: GNU C++ 2.7.2.1 (optimization flag -O3).

16

100, 200, 300, 400 and 500. Terminals were drawn with uniform distribution
from the unit square.

Computational results on FST generation, FST concatenation and SMT
properties for these three sets are presented in Sections 4.2, 4.3 and 4.4, respec-
tively. In addition, we present results for two small sets of instances (one for the
rectilinear and one for the Euclidean problem) for which the full Steiner tree
approach performs relatively badly — at least when compared to the average
case. These results are given in Section 4.4.

In order to ease the comparison between the rectilinear and the Euclidean
problem, statistics for both problems are presented in the same table. Also,
we use the same table layout for each of the three main instance classes. How-
ever, while results for OR-Library and TSPLIB instances are presented for each
instance, only averages (and standard deviations) are given for the randomly
generated instances. Thus it is possible both to study algorithmic behaviour
and solution properties for specific instances and to identify general tendencies
for increasing problem sizes.

4.2 Generation

As observed in previous studies (e.g. [20, 26]) the number of FSTs surviving the
pruning tests described in Section 2 is almost linear. For randomly generated
instances (Table 1 and 3; Figure 7), approximately 4.0n rectilinear and 2.3n Eu-
clidean FSTs survive. For problems with more structure (in particular instances
with many co-linear and equidistant terminals) fewer rectilinear FSTs survive
(Table 2). These instances are on the other hand very difficult to solve as Eu-
clidean problems; for many of these instances the Euclidean FST generation did
not finish within the allotted CPU time of approximately one week.

Generated rectilinear FSTs on average span less than four terminals while
largest FSTs span 14 terminals (Table 3). Euclidean FSTs on average only
span three terminals and at most 9 terminals. Figure 10 illustrates this more
clearly: For a given FST size, approximately twice as many rectilinear FSTs are
generated — the ratio increases for larger FSTs.

We also present statistics on incompatibility based on the tests described
in Section 3.1. These tests are essentially metric-independent. Recall that two
FSTs are incompatible if they cannot appear simultaneously in any SMT and
that tests for incompatibility are only applied to FST pairs which share at least
one terminal. The percentage of FST pairs sharing at least one terminal which
are incompatible will be used as “measure of incompatibility”. Interestingly, this
measure is extremely independent of the metric (rectilinear/Euclidean), termi-
nal set distribution and instance size. More than two-thirds of all FST pairs
sharing at least one terminal are incompatible. The effect of adding incompati-
bility constraints to the integer programming formulation is small compared to
the speed-up obtained when using compatibility in conjunction with backtrack
search. In some cases it is even negative since larger LPs need to be solved.

17

Rectilinear | | Euclidean
I

n | Count] Size [Incomp [CPU Count | Size [Incomp [CPU
100 1 397 3.60 11 66.95 1.9 239 3.05 7 69.37 208.9
100 2 508 3.84 17 66.48 4.6 239 2.97 8 65.86 264.7
100 3 331 3.42 12 68.98 1.3 219 2.97 8 66.34 214.7
100 4 349 3.48 10 71.42 1.4 231 2.96 6 70.67 193.2
100 5 337 3.41 9 67.15 1.4 211 2.85 5 65.51 177.5
100 6 495 3.91 12 67.87 4.9 225 3.05 8 65.80 233.7
100 7 490 3.89 11 69.22 4.1 245 2.99 7 64.46 333.1
100 8 361 3.51 (9 69.32 1.5 221 2.96 8 68.14 177.2
100 9 396 3.69 (11 68.24 2.6 237 2.95 7 67.38 206.1
100 10 365 3.46 9 65.21 1.7 225 2.93 6 63.49 188.3
100 11 336 3.28 8 67.14 1.2 235 3.01 6 65.89 153.8
100 12 357 3.37 9 65.32 1.4 210 2.82 6 66.74 114.7
100 13 401 3.87 (13 72.13 3.0 221 2.95 8 68.30 135.3
100 14 312 3.15 9 63.44 0.8 224 2.92 8 66.38 179.9
100 15 356 3.39 10 67.90 1.4 233 3.09 7 68.05 240.8
250 1 936 3.65 21 69.00 6.5 550 2.87 7 65.00 1303.4
250 2 889 3.34 10 65.35 3.9 527 2.84 8 64.74 935.3
250 3 870 3.37 12 66.53 3.8 575 3.01 9 71.43 1279.2
250 4 911 3.48 11 68.34 4.4 537 2.84 7 63.29 1129.4
250 5 914 3.45 11 66.16 4.3 537 2.88 8 67.53 1031.2
250 6 909 3.40 10 66.76 4.1 501 2.80 7 65.22 975.3
250 7 914 3.47 11 68.21 4.0 533 2.87 7 65.36 1054.2
250 8 1102 3.65 17 66.81 8.2 631 3.09 7 67.46 2046.8
250 9 922 3.43 12 66.01 4.2 537 2.85 8 64.00 1228.6
250 10 1139 3.72 14 67.60 8.8 573 2.99 9 66.47 1518.6
250 11 980 3.67 17 65.74 7.0 590 3.00 8 66.31 1280.4
250 12 951 3.62 18 68.77 5.7 557 2.89 7 66.23 1085.7
250 13 1009 3.49 9 66.43 5.1 627 3.06 8 67.83 1565.5
250 14 992 3.51 12 67.82 5.3 575 2.98 7 68.28 1152.3
250 15 988 3.53 12 65.47 6.0 574 2.99 8 68.11 1301.6
500 1 1927 3.57 15 67.10 14.0 1271 3.16 (10 71.51 5461.8
500 2 2249 3.86 15 69.79 20.7 1184 2.98 (7 68.15 6620.6
500 3 2159 3.77 15 69.51 15.8 1248 3.14 (10 70.22 6572.3
500 4 1891 3.62 15 68.04 11.1 1159 3.01 8 66.39 5768.3
500 5 1875 3.46 15 68.03 9.5 1080 2.89 7 67.12 4112.7
500 6 2070 3.68 14 67.40 14.3 1191 3.06 9 69.22 6378.0
500 7 1953 3.51 10 67.61 10.1 1118 2.91 7 65.42 4738.5
500 8 2027 3.59 14 67.95 12.0 1092 2.92 8 65.78 5027.0
500 9 2011 3.63 13 66.91 13.2 1191 3.01 8 69.30 5445.7
500 10 1953 3.48 11 67.45 10.3 1208 3.00 8 67.20 5326.4
500 11 2068 3.55 12 67.21 12.2 1150 2.96 8 67.52 6330.9
500 12 1912 3.59 13 68.77 12.2 1086 2.88 8 65.69 5255.1
500 13 1879 3.48 17 66.71 9.6 1077 2.86 6 65.10 4085.0
500 14 2126 3.68 17 67.71 14.3 1305 3.14 (10 69.40 7511.8
500 15 1962 3.61 13 67.24 12.4 1176 2.99 9 68.48 5277.4
1000 1 4176 3.70 12 68.70 31.1 2197 2.90 9 65.26 20933.1
1000 2 4012 3.61 17 67.75 25.5 2280 2.96 (10 66.73 23147.0
1000 3 4023 3.58 16 67.11 26.7 2185 2.93 (9 65.98 22887.5
1000 4 4092 3.62 18 67.96 26.8 2476 3.07 10 69.53 24932.6
1000 5 4025 3.69 16 67.73 32.5 2214 2.94 10 67.11 23218.7
1000 6 4336 3.81 21 69.91 31.8 2313 2.98 10 67.80 24286.8
1000 7 3998 3.64 14 68.50 29.3 2236 291 8 66.48 20443.2
1000 8 4294 3.77 17 69.10 35.2 2266 2.92 8 66.05 23819.0
1000 9 4481 3.82 14 68.41 43.4 2393 3.01 9 67.72 26676.5
1000 10 4002 3.56 15 67.97 26.4 2239 2.92 9 67.17 20917.7
1000 11 4042 3.62 20 67.63 30.0 2311 2.96 (10 67.16 23504.0
1000 12 4690 3.95 18 69.75 48.9 2430 3.03 8 67.97 28115.9
1000 13 3876 3.58 16 68.72 26.3 2253 2.94 9 67.61 19564.7
1000 14 4336 3.75 14 68.77 32.6 2309 2.97 510 66.33 25001.8
1000 15 4151 3.63 14 68.34 28.3 2331 2.99 10 68.62 23183.7

Table 1: FST-generation, OR-library instances. Count: Number of FSTs gen-
erated, including MST-edges. Size: Average number of terminals spanned in
generated FSTs (resp. maximum number of terminals spanned). Incomp: Per-
centage of FST pairs sharing at least one terminal which are incompatible. CPU:
CPU-time (seconds).

18

| Rectilinear || Euclidean

Instance || Count] Size [Tncomp [CPU [[Count Size [Tncomp]| CPU
d198 275 2.38 5 37.08 0.6 807 4.95 (21 87.74 4153.9
1in318 998 3.32 10 63.28 4.5 1235 3.54 (8 71.84 10299.9
fl417 1192 2.93 17 46.94 4.9 3715 6.84 (24 82.12 81803.9
pcb442 558 2.27 (7 39.43 1.2 - - - - -
att532 2239 3.76 (16 69.76 19.4 1246 3.02 (9 67.92 7403.8
ub74 1506 3.06 (9 62.31 4.9 1340 2.98 (10 68.66 5347.9
p654 933 2.55 11 57.84 3.2 - - - - -
rat783 3899 4.02 25 68.31 45.7 1954 3.15 (11) 69.27 21258.2
pr1002 2198 2.90 (11) 59.18 7.6 2322 2.96 8 66.92 15447.9
ul060 2818 3.04 9 59.04 11.9 3630 4.10 2133 77.00 59230.9
pcbl1173 3001 3.07 (12 65.67 11.5 3052 4.61 36 89.96 72887.3
d1291 1393 2.09 7 15.51 5.8 - - - - -
rl1323 1957 2.49 9 52.63 7.7 2351 2.67 (7) 71.72 8569.4
fl1400 5870 3.02 (11 40.61 32.7 - - - - -
ul432 1431 2.00 2 0.00 4.8 - - - - -
1577 3822 2.71 7 47.40 12.5 - - - - -
d1655 2219 2.34 7 44.85 7.7 - - - - -
vm1748 4015 3.12 15 66.59 18.1 3329 2.77 10 66.56 28653.0
rl1889 2920 2.56 11 58.98 11.3 3579 3.13 16 82.81 33193.8
u2l152 2173 2.01 3 1.53 9.6 - - - - -
pr2392 4792 2.83 9 55.59 16.1 5923 3.12 (10) 71.48 101522.3
pcb3038 9356 3.28 (12 64.48 44.1 - - - - -
fi3795 7770 2.62 (7 36.28 45.7 - - - - -
fnl4461 27959 4.59 (34 71.05 543.5 12246 3.19 (12) 67.90 965730.9
r15934 8168 2.38 $8 49.15 71.0 - - - - -
pla7397 10595 2.46 9 53.84 100.9 - - - - -

Table 2: FST-generation, TSPLIB instances. See Table 1 for captions.

| Rectilinear Euclidean |

n_|[Count] Size [Tncomp [CPU Count]| Size [Tncomp [CPU |
100 363.3 3.42 (9.6) 67.44 1.7 220.0 2.92 (7.0) 66.81 162.3
+47.7 +0.21 +1.7 +2.53 +0.8 +21.7 +0.16 +1.4 +3.79 +49.6
200 797.4 3.60 (12.3) 68.08 5.0 454.5 2.95 (7.7) 66.61 781.0
+78.9 +0.18 +2.9 +2.20 +1.8 +33.2 +0.12 +1.2 +2.93 +202.2
300 1196.6 3.62 (13.4) 68.24 7.8 671.8 2.94 (8.0) 66.75 1740.7
+90.1 +0.15 +2.6 +1.68 +2.5 +36.4 +0.09 +1.1 +1.96 +394.9
400 1599.9 3.61 (13.6) 68.10 10.7 910.3 2.96 (8.3) 67.20 | 3171.4
+127.1 +0.15 +2.3 +1.62 +3.7 +36.9 +0.07 +1.1 +1.49 +593.3
500 1997.6 3.62 (13.9) 68.30 13.5 1139.8 2.96 (8.6) 67.16 | 5194.8
+125.0 +0.12 +2.3 +1.30 +3.6 +55.7 +0.09 +1.4 +1.86 +985.4

Table 3: FST-generation, randomly generated instances.
stances for each size; standard deviations on the second line of each row. See
Table 1 for captions.

19

Averages over 50 in-

2500 T T T T T
Rectilinear ,/’/
2000 | A E
1500 |- R
= -
3 -
[=] -
38 >
=
) -
B e L
1000 |- { e L b
7 e } Euclidean
500 - i 7 } 4
0 2 1 1 1 1 1
0 100 200 300 400 500

Figure 7: FST generation, randomly generated instances. Total FST-count,
including MST-edges; average, minimum and maximum.

20

CPU-time (seconds)

CPU-time (seconds)

Figure 8: FST generation, randomly generated instances. CPU-time (seconds);

25

20

15

10

8000

7000

6000

5000

4000

3000

2000

1000

T I | | [
Rectilinear 1
- I | I I I
100 200 po N N
n
T I | | I
Euclidean .
T I | I I
100 200 po N N
n

average, minimum and maximum. Note different scaling on y-axes.

21

Another measure of incompatibility could have been the number of incom-
patible FST pairs normalized by either n or m (number of FSTs) — or by the
square of these numbers. However, this would not have given a good basis for
comparing the two problem variants because of the larger number of rectilinear
FSTs.

Rectilinear FSTs are generated in a fraction of the CPU-time needed for
generating Euclidean FSTs (more than 100 times faster). However, as noted
in Section 2, the generation of Euclidean FSTs is much more complicated and
involves heavy use of floating point operations and trigonometric functions.
When comparing the CPU-times with those given in [26, 27], the following
should be noted: First of all a faster workstation has been used in this study
(20-30% faster). The code for the Euclidean generator has been optimized to
make fewer calls to trigonometric functions and the upper bounding procedure
has been improved. These improvements have reduced the running time by
30-40%. The running times reported for the rectilinear generator are greater
than those reported in [27]. This comes from the fact that incompatibility
information has been computed in this study. This increases the running time
by a factor of approximately five — thus the computation of incompatibility
information completely dominates the generation of rectilinear FSTs.

4.3 Concatenation

Statistics on the performance of the branch-and-cut algorithm for solving the
FST concatenation problem are given in Table 4, 5, 6 and Figure 9. We present
root LP/optimal IP value gap, number of branch-and-bound nodes and total
number of LPs solved, i.e., number of separation iterations.

The strength of the LP relaxation is indicated by a very small LP/IP gap;
for many instances the root LP solution is integral and no branching is needed.
Only two instances have a gap of more than 0.1% and few instances require more
than 10 branch-and-bound nodes. However, the computational effort required
to solve the FST concatenation problem using integer programming shows a
very large variance compared to the FST generation algorithms. The running
time growth is clearly exponential (Figure 9).

One subtle observation regarding Table 4 is that even though the rectilinear
FST generator used in the current study generates significantly fewer FSTs than
the FST generator by Warme [24], this does not necessarily have a positive
effect on the time to solve the concatenation problem. For many instances the
branch-and-cut algorithm requires more separation iterations (LPs) and branch-
and-bound nodes (Nds). The reason for this behaviour is as yet unclear.

Out of 26 instances in the TSPLIB selection, 19 have been solved as recti-
linear problems and 13 as Euclidean problems using a cut-off of approximately
one week. Instance pr2392 was the largest instance solved, both for the Eu-
clidean and rectilinear problem. It is interesting to note that instances with
many co-linear and equidistant terminals are easy to solve as rectilinear prob-

22

lems while instances with a more uniform and less structured distribution are
easier to solve as Euclidean problems. Also note that all Euclidean instances
for which FSTs have been generated are solved using only a few hours for the
concatenation (except for £n14461 which was not solved within one week).

4.4 Steiner Minimum Tree Properties

In this section we present some structural properties of rectilinear and Euclidean
SMTs (Table 7, 8, 9 and Figure 10). Similar statistics have been presented for
Euclidean SMTs spanning up to 150 terminals [26]. No such statistics have
previously been given for rectilinear SMTs spanning more than 50 terminals.

The number of FSTs in an average RSMT spanning n terminals is approx-
imately 0.5n while an ESMT has approximately 0.6n FSTs. An ESMT has
more MST-edges, 0.3n, compared to 0.2n in an RSMT. This difference is also
reflected in the size of the FSTs. RFSTs on average span 2.95 terminals while
EFSTs span 2.70 terminals; furthermore, for n = 500 the largest RFST spans
7 terminals and the largest EFST 6 terminals (see also Figure 10). The size of
the largest FST grows very slowly for both problems, apparently with a growth
that is o(logn). For large instances (n = 500) the reduction over the MST is
11.5% for the rectilinear problem and 3.3% for the Euclidean problem.

In order to test the limits of FST based exact algorithms for plane Steiner
tree problems, we performed a series of tests on seemingly “difficult” instances.
FoBmeier and Kaufmann [9] constructed an infinite series of (rectilinear) in-
stances for which the number of FSTs fulfilling a so-called tree star condition is
exponential. Zachariasen [27] noted that the rectilinear FST generator actually
produced a super-polynomial number of FSTs for this series of instances. In
Table 10 we present statistics on the first five instances in this series (12-52 ter-
minals). The number of FSTs and the total CPU-time grows rapidly although
the structure of the optimal solutions (number of FSTs and average size) does
not differ radically from randomly generated instances. The total CPU-time
needed to solve the 52 terminal instance is more than 10 minutes; this is almost
200 times the CPU-time needed to solve a randomly generated 100 terminal
instance (Table 9).

As previously noted [26], regular lattices are difficult to solve as Euclidean
problems using FST based exact algorithms. Polynomial time algorithms for
regular lattice problems have recently been given by Brazil et al. [3, 4, 5]. In
Table 11 we present data for solving regular lattices spanning 2 x 7,3 x 7, ...,
7 X 7 terminals. Again the CPU-times are orders of magnitude larger than
for solving randomly generated instances of similar size. In particular, it is
interesting to note that the LP relaxation is much weaker for these instances
and that relatively heavy branching is required. One explanation is the large
number of symmetric near-optimal solutions.

23

| Rectilinear | | Euclidean |
| Gap [Nds [LPs | CPU || Gap [Nds [LPs [CPU |
100 1 0.000 1 33 5.1 0.000 1 4 0.5
100 2 0.000 1 15 2.4 0.000 1 8 0.8
100 3 0.000 1 22 2.8 0.000 1 30 1.6
100 4 0.000 1 7 1.1 0.000 1 3 0.2
100 5 0.000 1 6 0.8 0.000 1 2 0.2
100 6 0.000 1 7 6.0 0.000 2 6 0.4
100 7 0.000 1 55 6.4 0.000 1 3 0.6
100 8 0.001 1 22 3.2 0.000 1 3 0.5
100 9 0.000 1 7 4.4 0.000 1 26 1.3
100 (10 0.000 1 22 2.6 0.000 1 6 0.5
100 11 0.109 5 20 2.2 0.000 1 3 0.3
100 12 0.000 1 27 1.9 0.000 1 3 0.3
100 13 0.000 1 8 3.0 0.000 1 3 0.3
100 14 0.046 2 72 5.3 0.000 1 4 0.7
100 15 0.000 1 10 4.4 0.000 1 4 0.4
250 1 0.000 1 24 7.8 0.000 3 10 2.2
250 2 0.009 3 60 18.7 0.000 1 12 2.3
250 3 0.000 1 102 30.7 0.000 1 42 4.5
250 4 0.013 2 36 22.7 0.000 2 22 3.3
250 5 0.000 1 272 37.4 0.000 1 129 23.1
250 6 0.003 2 110 44.3 0.003 5 12 2.1
250 7 0.000 1 44 17.1 0.000 1 4 1.6
250 8 0.053 5 41 26.1 0.000 1 18 4.8
250 9 0.000 1 604 242.7 0.000 3 23 2.6
250 (10 0.060 3 95 63.8 0.000 3 30 4.0
250 11 0.017 3 32 18.9 0.000 1 6 1.7
250 12 0.005 2 58 38.3 0.000 4 11 3.1
250 13 0.028 8 325 330.7 0.000 2 34 6.2
250 14 0.000 1 12 9.8 0.001 1 85 7.4
250 15 0.000 1 58 21.4 0.000 1 38 4.0
500 1 0.004 2 38 65.1 0.000 1 52 17.4
500 2 0.009 1 50 63.8 0.004 2 68 28.9
500 3 0.000 1 216 966.4 0.000 1 180 138.7
500 4 0.000 1 169 367.3 0.000 3 182 52.3
500 5 0.034 9 455 2112.7 0.000 2 210 105.0
500 6 0.000 1 28 48.6 0.000 1 47 22.0
500 7 0.006 1 31 66.1 0.000 3 50 15.2
500 8 0.001 1 142 505.8 0.000 2 80 37.6
500 9 0.017 4 52 80.9 0.000 4 60 47.9
500 (10 0.000 1 66 98.9 0.000 2 24 12.9
500 11 0.000 2 206 1186.4 0.007 1 215 158.0
500 12 0.002 2 70 184.9 0.000 2 284 118.3
500 13 0.005 2 52 86.7 0.000 2 52 24.3
500 14 0.038 4 112 474.7 0.000 1 75 46.7
500 15 0.007 2 44 40.0 0.000 2 615 396.5
1000 1 0.047 25 232 2780.9 0.000 4 93 117.2
1000 2 0.000 2 124 616.5 0.000 2 299 347.9
1000 3 0.001 2 | 1099 34313.0 0.000 1 27 31.9
1000 4 0.011 7 490 1172.3 0.000 1 157 107.8
1000 5 0.004 3 | 1330 34970.7 0.000 1 66 73.0
1000 6 0.032 16 | 5560 | 351933.9 0.000 2 328 3006.8
1000 7 0.006 2 | 1310 39551.3 0.001 5 56 72.3
1000 8 0.005 5 743 28679.8 0.003 5 | 1160 | 21956.0
1000 9 0.004 5 86 544.4 0.000 2 60 102.4
1000 10 0.013 6 | 1202 48770.7 0.000 2 33 44.4
1000 11 0.012 5 485 1341.6 0.000 1 114 72.1
1000 12 0.010 4 | 2107 | 214567.0 0.000 2 503 513.6
1000 13 0.000 1 | 4300 | 263917.3 0.000 1 35 35.0
1000 14 0.022 17 | 5416 | 540376.5 0.000 2 448 1579.3
1000 15 0.010 2 285 2701.5 0.000 2 472 569.5

Table 4: FST-concatenation,

OR-library instances. Gap:

Root LP objective

value vs. optimal value (gap in percent). Nds: Number of branch-and-bound
nodes. LPs: Number of LPs solved. CPU: CPU-time (seconds).

24

| Rectilinear || Euclidean |

Instance || Gap [Nds [LPs [CPU |[[Gap [Nds [LPs CPU |
d198 0.000 1 63 4.4 0.000 1 47 10.4
lin318 0.046 7 130 451.7 0.000 1 154 499.8
1417 0.018 52 331 267.2 0.000 1 75 48.9
pcb442 0.000 1 13 7.0 - - - -
att532 0.014 5 633 16110.9 0.000 1 431 1698.8
ub74 0.003 1 91 69.1 0.002 5 36 19.9
p654 0.024 5 74 27.1 - - - -
rat783 0.008 6 126 209.6 0.000 1 131 73.4
pr1002 0.010 14 69 143.1 0.000 1 21 61.3
ul060 0.016 113 660 3807.8 0.005 157 533 1220.9
pcb1173 - - - - 0.004 1 2088 9002.1
d1291 0.000 1 44 43.0 - - - -
rl1323 0.024 3 87 86.9 0.000 1 24 46.9
11400 - - - - - - - -
ul432 0.000 1 1 0.4 - - - -
1577 0.002 1 268 701.5 - - - -
d1655 0.000 15 270 513.9 - - - -
vm1748 0.004 3 168 402.0 0.000 1 89 186.7
r11889 0.011 4 2353 14147.6 0.000 1 2366 11580.1
u2l152 0.000 1 7 4.4 - - - -
pr2392 0.000 3 130 693.9 0.000 8 92 1109.2
pcb3038 - - - - - - - -
13795 - - - - - - - -
fnld461 - - - - - - - -
r15934 - - - - - - - -
pla7397 - - - - - - - -

Table 5: FST-concatenation, TSPLIB instances. See Table 4 for captions.

| Rectilinear || Euclidean |

n || Gap [Nds [TPs [CPU [Gap Nds [TPs | CPU |
100 0.008 1.1 15.6 2.3 0.001 1.1 5.9 0.5
+0.028 +0.4 +14.3 +1.4 +0.009 +0.4 +6.4 +0.4
200 0.005 1.4 42.6 15.9 0.001 1.2 23.1 3.6
+0.010 +0.9 +41.6 +16.2 +0.002 +0.6 +29.8 +3.4
300 0.008 1.7 71.3 73.4 0.000 1.5 35.8 7.3
+0.010 +1.2 +63.8 +122.9 +0.000 +0.7 +48.6 +11.5
400 0.012 3.0 98.9 161.9 0.000 1.7 88.5 30.1
+0.013 +2.8 +91.6 +297.3 +0.000 +1.1 +125.6 +42.7
500 0.010 3.3 155.5 504.4 0.000 2.0 89.7 54.7
+0.012 +3.7 +153.4 1+803.6 +0.001 +1.3 +95.7 +90.9

Table 6: FST-concatenation, randomly generated instances. Averages over 50
instances for each size; standard deviations on the second line of each row. See
Table 4 for captions.

25

CPU-time (seconds)

CPU-time (seconds)

1000

100

10

0.1

1000

100

10

0.1

One hour

One minute

200

300 400

500

One hour

One minute

Euclidean

200

300 400

500

Figure 9: FST concatenation, randomly generated instances. CPU-time (sec-
onds); average, minimum and maximum. Note the logarithmic scaling on y-axes.

26

‘| Rectilinear || Euclidean
[

n | Count [Size [Red | CPU Count [Size [Red | CPU
100 1 48 18 3.06 9 12.11 7.0 55 22 2.80 5 3.24 209.4
100 2 45 12 3.20 8 12.45 7.0 56 26 2.77 5 3.48 265.5
100 3 53 17 2.87 4 11.63 4.2 60 29 2.65 5 3.42 216.4
100 4 51 19 2.94 5 10.80 2.5 55 25 2.80 5 3.25 193.4
100 5 55 23 2.80 7 10.21 2.2 62 34 2.60 5 3.31 177.7
100 6 50 22 2.98 7 12.89 10.8 60 32 2.65 5 3.40 234.0
100 7 48 12 3.06 6 12.69 10.5 54 23 2.83 5 3.98 333.7
100 8 52 19 2.90 7 11.27 4.7 61 34 2.62 5 3.57 177.7
100 9 52 19 2.90 6 13.56 7.0 51 21 2.94 6 3.50 207.4
100 (10 54 22 2.83 6 11.40 4.4 61 32 2.62 6 3.37 188.8
100 11 52 20 2.90 7 9.97 3.4 59 29 2.68 6 2.82 154.1
100 12 49 14 3.02 5 12.49 3.3 58 523§ 2.71 §5§ 2.69 115.0
100 13 46 13 3.15 6 12.27 6.0 62 34 2.60 5 2.66 135.6
100 14 56 23 2.77 5 10.63 6.2 55 27 2.80 5 3.57 180.7
100 215 51 20 2.94 9 11.43 5.8 65 39 2.52 5 2.78 241.2
250 1 120 36 3.08 7 10.86 14.3 149 70 2.67 5 3.08 1305.6
250 2 127 43 2.96 6 11.66 22.6 147 81 2.69 6 2.99 937.6
250 3 138 54 2.80 6 11.23 34.4 153 80 2.63 5 3.28 1283.7
250 4 132 47 2.89 7 11.35 27.1 145 68 2.72 6 3.23 1132.7
250 5 131 50 2.90 8 12.00 41.7 148 78 2.68 7 3.48 1054.3
250 6 129 46 2.93 6 10.58 48.4 149 74 2.67 5 2.93 977.4
250 7 130 47 2.92 7 10.60 21.1 144 70 2.73 6 2.80 1055.8
250 (8) || 126 (43) | 2.98 (6) | 12.70 342 || 151 (75) | 2.65 (5) | 3.65 | 2051.6
250 (9 125 41 2.99 6; 11.84 247.0 148 E77; 2.68 55; 3.09 1231.2
250 (10 125 37 2.99 6 12.51 72.6 150 80 2.66 5 3.40 1522.6
250 11 126 46 2.98 7 12.03 25.9 143 69 2.74 5 3.31 1282.1
250 12 130 52 2.92 6 11.41 44.0 149 78 2.67 6 3.45 1088.8
250 13 123 39 3.02 7 12.09 335.8 151 75 2.65 4 3.29 1571.7
250 14 128 49 2.95 7 11.75 15.2 142 70 2.75 7 2.99 1159.8
250 15 125 38 2.99 6 12.09 27.3 143 73 2.74 7 3.15 1305.6
500 1 253 79 2.97 6 11.52 79.1 286 134 2.74 6 3.42 5479.2
500 2 244 74 3.05 7 12.80 84.5 285 123 2.75 5 3.51 6649.5
500 3 248 86 3.01 7 12.40 982.1 288 139 2.73 6 3.37 6711.0
500 4 266 (106 2.88 8 11.26 378.4 291 141 2.71 6 3.50 5820.6
500 5 256 90 2.95 7 11.08 2122.2 300 157 2.66 6 2.87 4217.7
500 6 261 95 2.91 7 11.69 63.0 287 133 2.74 5 3.37 6400.0
500 7 248 Ky4 3.01 7 11.74 76.3 290 139 2.72 6 3.38 4753.8
500 8 257 99 2.94 7 11.50 517.8 304 158 2.64 6 3.17 5064.7
500 9 259 93 2.93 6 11.15 94.1 294 146 2.70 6 3.38 5493.6
500 (10 258 97 2.93 7 11.53 109.2 284 134 2.76 6 3.60 5339.4
500 11 257 91 2.94 5 11.67 1198.6 297 156 2.68 5 3.25 6488.8
500 12 260 99 2.92 7 11.21 197.2 302 153 2.65 6 3.21 5373.4
500 13 259 93 2.93 6 11.66 96.3 288 141 2.73 6 3.37 4109.3
500 14 247 84 3.02 7 12.02 489.0 285 136 2.75 6 3.27 7558.5
500 215 261 597 2.91 7 11.22 52.5 294 147 2.70 7 3.22 5674.0
1000 1 521 188 2.92 7 11.84 2812.0 580 278 2.72 6 3.45 21050.3
1000 2 496 164 3.01 7 11.43 642.0 587 296 2.70 6 3.40 23494.8
1000 3 520 197 2.92 6 11.16 34339.7 609 318 2.64 5 3.17 22919.3
1000 4 499 184 3.00 8 11.61 1199.1 572 279 2.75 8 3.30 25040.5
1000 5 522 205 2.91 7 11.34 35003.2 604 305 2.65 6 3.10 23291.7
1000 6 507 188 2.97 9 11.57 351965.7 582 279 2.72 6 3.23 27293.6
1000 7 523 206 2.91 7 11.33 39580.6 587 292 2.70 6 3.26 20515.5
1000 8 517 186 2.93 7 11.80 28715.0 586 288 2.70 5 3.42 45775.0
1000 9 501 167 2.99 7 12.10 587.8 576 272 2.73 6 3.37 26778.9
1000 (10 507 169 2.97 7 11.81 48797.1 598 305 2.67 6 3.36 20962.1
1000 11 511 181 2.95 8 11.36 1371.6 582 294 2.72 6 3.14 23576.2
1000 12 492 164 3.03 7 12.71 214615.9 570 281 2.75 6 3.58 28629.5
1000 13 518 181 2.93 8 11.43 263943.6 591 290 2.69 6 3.19 19599.6
1000 514; 517 5179; 2.93 §8; 11.74 540409.9 587 5287; 2.70 §6§ 3.48 26581.2
1000 15 512 184 2.95 8 11.58 2729.8 576 280 2.73 8 3.24 23753.2

Table 7: SMT-properties, OR-library instances. Count: Number of FSTs in
SMT (resp. number of MST-edges). Size: Average number of terminals spanned
by FSTs in SMT (resp. maximum number of terminals spanned). Red: Reduc-
tion over MST in percent. CPU: Total CPU-time (seconds).

27

| Rectilinear || Euclidean
[

Instance || Count [Size [Red T CPU Opt [Count [Size | CPU
d198 171 146 2.15 4 3.66 5.0 102 (54 2.93 8 2.91 4164.4
1in318 227 148 2.40 4 8.90 456.2 208 (129 2.52 5 4.77 10799.7
fl417 237 111 2.76 5 11.94 272.1 180 (47 3.31 7 3.34 81852.8
pcb442 392 (347 2.12 5 3.99 8.2 - - - - - -
att532 272 (93 2.95 8 11.44 16130.3 310 §159; 2.71 56; 3.36 9102.6
ub74 370 (211 2.55 7 8.92 74.0 344 175 2.67 7 3.15 5367.7
p654 584 526 2.12 5 5.89 30.4 - - - - - -
rat783 414 163 2.89 9 12.59 255.3 448 221 2.75 6 3.52 21331.6
pr1002 689 437 2.45 5 8.61 150.7 581 E278; 2.72 EG; 3.05 15509.2
ul060 674 (393) 2.57 (8) 11.31 3819.8 599 g274; 2.77 512; 3.25 60451.8
pcb1173 - - - - - - 802 522 2.46 10 3.18 81889.4
d1201 || 1250 (1213) | 2.03 (4) | 1.80 48.8 - - - - - -
rl1323 1150 (1005) 2.15 (6) 5.39 94.5 1075 (899) 2.23 (5) 1.65 8616.3
11400 - - - - - - - - - - - -
ul432 1431 (1431 2.00 2 0.00 5.2 - - - - - -
11577 1189 (879 2.33 5 10.59 714.0 - - - - - -
d1655 1508 1368 2.10 4 3.57 521.6 - - - - - -
vm1748 1320 51009 2.32 8 8.93 420.1 1258 (888) 2.39 (6) 2.81 28839.6
rl1889 1605 1381 2.18 5 5.48 14159.0 1485 (1190) 2.27 (8) 2.02 44773.9
u2152 2141 2131 2.00 3 0.22 14.0 - - - - - -
pr2392 || 1712 (1163) | 2.40 (7 7.75 710.1 || 1490 (869) | 2.60 (5) | 3.61 | 102631.5
pcb3038 - - - - - - - - - - - -
13795 - - - - - - - - - - - -
fnl4461 - - - - - - - - - - - -
rl5934 - - - - - - - - - - - -
pla7397 - - - - - - - - - - - -
Table 8: SMT-properties, TSPLIB instances. See Table 7 for captions.

Rectilinear || Euclidean |

n_ || Count [Size [Opt [CPU || Count [Size [Red [CPU |
100 51.7 (19.4) 2.93 (5.7) 11.30 4.0 58.2 (29.0) 2.71 (5.3) 3.16 162.8
+3.8 +4.6 | +0.14 +1.0 | +1.03 +1.8 +3.2 +4.2 | £0.09 +0.9 | +0.43 +49.7
200 102.0 (35.8) 2.95 (6.3) 11.51 20.9 116.2 (57.7) 2.72 (5.5) 3.25 784.6
+4.3 +5.1 | +0.08 +0.8 | +0.81 +16.2 +4.7 +6.7 | +0.07 +0.6 | +0.34 +202.3
300 153.5 (54.7) 2.95 (6.6) 11.47 81.2 177.2 (88.5) 2.69 (5.9) 3.25 1748.0
+5.4 +6.5 +0.07 +1.4 +0.51 +123.6 +4.8 +8.2 +0.05 +0.9 +0.23 +401.2

400 205.6 (73.3) 2.94 (6.8) 11.54 172.6 234.6 (116.8) 2.70 (6.0) 3.20 3201.5
+6.7 +8.1 | +0.06 +1.0 | +0.45 | £2908.3 +5.9 +9.3 | +0.04 +0.9 | +0.20 +596.6

500 256.4 (92.2) 2.95 (7.1) 11.53 517.9 293.1 (145.2) 2.70 (6.0) 3.25 5249.5
+6.6 +7.5 | 40.05 +1.0 | £0.45 | +803.9 +6.9 +10.5 | +0.04 +0.7 | 4+0.20 | +1013.3

Table 9: SMT-properties, randomly generated instances. Averages over 50 in-
stances for each size; standard deviations on the second line of each row. See
Table 7 for captions.

Generation || Concatenation || SMT |
n || Count [Size [Incomp | CPU || Gap [Nds [LPs [CPU |[Count [Size [Opt [CPU |
12 107 5.38 91.27 0.6 0.000 1 7 0.1 4 3.75 11.90 0.7
22 243 7.7 91.88 5.2 0.000 1 16 1.3 8 3.62 11.47 6.6
32 460 11.03 94.32 28.1 0.000 1 47 7.3 12 3.58 11.43 35.4
42 831 15.34 96.16 131.9 0.000 1 51 32.8 16 3.56 11.42 164.7
52 1522 20.35 97.44 585.7 0.000 1 104 138.7 20 3.55 11.42 724.4

Table 10: Difficult rectilinear instances. See text for instance descriptions and
Tables 1, 4 and 7 for captions.

28

14 T T T T T T T T T
12 Rectilinear 1
1r Generated FSTs B
o
- 0.8 - i
IS
=}
o
?
o o6l g
w
0.4 .
0.2 e//__»/é\\ FSTs in RSMT B
o
0 ! ! ! \\?’“»»»\A A e L
2 3 4 5 6 7 8 9 10
FST-size (number of terminals) >10
14 T T T T T T T T T
12 Euclidean 1
l - -
o
- 0.8 |- Generated FSTs B
€
3
o
?
o o6l g
w
0.4 B
S FSTs in ESMT
02| Ta i
\\\&\\
0 1 1 1 By S P L S L 4 e
2 3 4 5 6 7 8 9 10
FST-size (number of terminals) >10

Figure 10: FST-size distribution, randomly generated instances (n = 500).

29

Generation Concatenation SMT

| | [
n || Count [Size | Incomp | CPU || Gap [Nds [LPs | CPU [[Count | Size [Opt | CPU

96 | 5.50 90.30 52.2 0.000 1 1 0.1 1 14.00 | 7.13
216 | 5.67 79.93 236.6 0.000 1 1 0.1 8 3.50 | 8.04 236.7
376 | 5.83 76.89 679.3 0.071 7 11 0.7 9 4.00 | 8.34 680.0
565 | 6.04 75.14 | 1697.8 0.230 26 72 7.6 12 3.83 | 8.20 | 1705.4
798 | 6.42 75.06 | 4049.6 0.094 25 126 18.5 15 3.73 | 8.50 | 4068.0
1057 | 6.76 75.24 | 8747.7 0.203 92 383 | 144.8 18 3.67 | 8.37 | 8892.4

Table 11: Difficult Euclidean instances. See text for instance descriptions and
Tables 1, 4 and 7 for captions.

5 Conclusion

This paper presented an extensive computational study on exact algorithms for
the Euclidean and rectilinear Steiner tree problems in the plane. Optimal solu-
tions to problem instances with more than 2000 terminals have been obtained.
The branch-and-cut FST concatenation algorithm is orders of magnitude faster
than algorithms based on backtrack search or dynamic programming. However,
for the rectilinear problem, the concatenation phase is still the bottleneck.

The Euclidean FST generator is remarkably effective on (uniformly) ran-
domly generated problem instances. For structured (real-world) instances, such
as those in TSPLIB, the generator is less efficient. One reason is simply that
fewer FSTs can be pruned away by using current tests. In order to solve larger,
structured Euclidean problems, the Euclidean FST generator must be improved.
Often such instances contain terminal subsets which can be mapped into other
subsets by translation and rotation (and sometimes scaling). If such congruent
subsets could be identified, FSTs generated for one subset could essentially be
copied to all congruent subsets. However, whether this is a practical option for
improving the FST generator is still an open question.

The FST concatenator can, on the other hand, most likely be improved. We
are currently investigating three options: Firstly, FST pruning can be applied
to the list of generated FSTs. If faster and perhaps even more powerful tests
than those already suggested [9, 26] can be applied, it may be worthwhile to
reduce the list of FSTs before entering the concatenation phase. But as noted
in Section 4.3 the effect of reducing the FST list need not have a positive effect
on the concatenation.

Another option is early branching, i.e., branching in the root node before
an LP optimal solution has been obtained. The problems that require the most
time to concatenate spend the vast majority of their time generating constraints
that improve the lower bound only minutely before LP-optimum is reached.
Orders of magnitude reduction in total concatenation time are possible when
good heuristics are used to detect such tailing off in the convergence rate and
choosing a good branching variable instead.

Thirdly, other types of valid inequalities may be added to the formulation.
For other well-studied problems (e.g., TSP) the inclusion of new types of valid

30

inequalities has formed the basis for substantially improved exact algorithms.

FST concatenation can be avoided altogether by enumerating all so-called
full topologies for Z (see, e.g., [15]). A shortest tree for a given full topology
or any of its degenerate topologies can be determined in O(n?) time using the
luminary algorithm of Hwang and Weng [16] or by using a numerical algorithm
suggested by Smith [21]. Since the number of full topologies is superexponential
in the number of terminals, these methods can only be effective if the number
of full topologies can be reduced by using pruning tests similar to those applied
in this paper.

References

[1] J. E. Beasley. OR-Library: Distributing Test Problems by Electronic Mail.
Journal of the Operational Research Society, 41:1069-1072, 1990.

[2] M. W. Bern and R. L. Graham. The Shortest-Network Problem. Scientific
American, pages 66—71, January 1989.

[3] M. Brazil, T. Cole, J. H. Rubinstein, D. A. Thomas, J. F. Weng, and N. C.
Wormald. Minimal Steiner Trees for 2F x 2* Square Lattices. Journal of
Combinatorial Theory, Series A, 73:91-110, 1996.

[4] M. Brazil, J. H. Rubinstein, D. A. Thomas, J. F. Weng, and N. C. Wormald.
Full Minimal Steiner Trees on Lattice Sets. Journal of Combinatorial The-
ory, Series A, 78:51-91, 1997.

[5] M. Brazil, J. H. Rubinstein, D. A. Thomas, J. F. Weng, and N. C. Wormald.
Minimal Steiner Trees for Rectangular Arrays of Lattice Points. Journal
of Combinatorial Theory, Series A, 79:181-208, 1997.

[6] E. J. Cockayne and D. E. Hewgill. Exact Computation of Steiner Minimal
Trees in the Plane. Information Processing Letters, 22:151-156, 1986.

[7] E. J. Cockayne and D. E. Hewgill. Improved Computation of Plane Steiner
Minimal Trees. Algorithmica, 7(2/3):219-229, 1992.

[8] S.E. Dreyfus and R. A. Wagner. The Steiner Problem in Graphs. Networks,
1:195-207, 1971.

[9] U. FoBimeier and M. Kaufmann. On Exact Solutions for the Rectilinear
Steiner Tree Problem. Technical Report WSI-96-09, Universitét Tiibingen,
1996.

[10] J. L. Ganley and J. P. Cohoon. Improved Computation of Optimal Rec-
tilinear Steiner Minimal Trees. International Journal of Computational
Geometry and Applications, 7(5):457-472, 1997.

31

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

M. R. Garey, R. L. Graham, and D. S. Johnson. The Complexity of Com-
puting Steiner Minimal Trees. SIAM Journal on Applied Mathematics,
32(4):835-859, 1977.

M. R. Garey and D. S. Johnson. The Rectilinear Steiner Tree Problem
is NP-Complete. SIAM Journal on Applied Mathematics, 32(4):826-834,
1977.

M. Hanan. On Steiner’s Problem with Rectilinear Distance. STAM Journal
on Applied Mathematics, 14(2):255-265, 1966.

F. K. Hwang. On Steiner Minimal Trees with Rectilinear Distance. SIAM
Journal on Applied Mathematics, 30:104-114, 1976.

F. K. Hwang, D. S. Richards, and P. Winter. The Steiner Tree Problem.
Annals of Discrete Mathematics 53. Elsevier Science Publishers, Nether-
lands, 1992.

F. K. Hwang and J. F. Weng. The Shortest Network under a Given Topo-
logy. Journal of Algorithms, 13:468-488, 1992.

K. Mehlhorn and S. Ndher. LEDA - A Platform for Combinatorial
and Geometric Computing. Max Planck Institute for Computer Science
http://www.mpi-sb.mpg.de/LEDA /leda.html, 1996.

F.P. Preparata and M. I. Shamos. Computational Geometry: An Introduc-
tion. Springer-Verlag, New York, second edition, 1988.

G. Reinelt. TSPLIB - A Traveling Salesman Problem Library. ORSA
Journal on Computing, 3(4):376-384, 1991.

J. S. Salowe and D. M. Warme. Thirty-Five-Point Rectilinear Steiner Mini-
mal Trees in a Day. Networks, 25(2):69-87, 1995.

W. D. Smith. How to Find Steiner Minimal Trees in Euclidean d-Space.
Algorithmica, 7(2/3):137-177, 1992.

I. Tomescu and M. Zimand. Minimum Spanning Hypertrees. Discrete
Applied Mathematics, 54:67-76, 1994.

D. M. Warme. Practical Exact Algorithms for Geometric Steiner Problems.
Technical report, System Simulation Solutions, Inc., Alexandria, VA 22314,
USA, 1996.

D. M. Warme. A New Exact Algorithm for Rectilinear Steiner Minimal
Trees. Technical report, System Simulation Solutions, Inc., Alexandria,
VA 22314, USA, 1997.

32

[25] P. Winter. An Algorithm for the Steiner Problem in the Euclidean Plane.
Networks, 15:323-345, 1985.

[26] P. Winter and M. Zachariasen. Euclidean Steiner Minimum Trees: An
Improved Exact Algorithm. Networks, 30:149-166, 1997.

[27] M. Zachariasen. Rectilinear Full Steiner Tree Generation. Technical Report
97/29, DIKU, Department of Computer Science, University of Copenhagen,
1997.

33

