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Abstract

The goal of this paper is to present segmentation algorithms which combine reg-
ularization by nonlinear partial differential equations (PDEs) with a watershed
transformation with region merging. We develop efficient algorithms for two well-
founded PDE methods. They use an additive operator splitting (AOS) leading
to recursive and separable filters. Further speed-up can be obtained by embed-
ding AOS schemes into a pyramid framework. Examples are presented which
demonstrate that the preprocessing by these PDE techniques eases and stabi-
lizes the segmentation. The typical CPU time for segmenting a 2562 image on a
workstation is less than 2 seconds.
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1 Introduction

Segmentation is one of the bottlenecks of many image analysis and computer vision
tasks ranging from medical image processing to robot navigation. Ideally it should
be efficient to compute and correspond well with the physical objects depicted in the
image.

In the last decade much research on PDE-based regularization methods has been car-
ried out, see e.g. [1, 2] for an overview. Although the impressive results suggest that
they might be attractive as a preprocessing step for many subsequent image analysis
methods, little research has been carried out which combines PDE-based preprocessing
methods with other techniques.

In the present paper we address this topic by combining two efficient PDE-based reg-
ularization methods with a watershed algorithm, a simple morphological technique for
image segmentation.

This leads to segmentation algorithms which can be generalized in a straightforward
way to arbitrary dimensional data sets. Their complexity is linear in the pixel number,
and they produce identical results if the image is rotated by 90 degrees. An overall
CPU time of less than 2 seconds for segmenting a 2562 image on a workstation makes
them attractive for many time-critical applications.

The paper is organized as follows. Section 2 sketches the basic ideas behind two well-
posed PDE-based regularization methods: a contrast-enhancing nonlinear diffusion fil-
ter and a diffusion reaction-method with a similarity term. In Section 3 we develop
efficient and reliable numerical techniques for these methods. They are based on an
additive operator splitting (AOS). For approximating the diffusion-reaction method,
these AOS techniques are embedded into a pyramid framework. In Section 4 we dis-
cuss the watershed algorithm with region merging, and in Section 5 we illustrate the
usefulness of the combined segmentation process by applying it to several examples.
The paper is concluded with a summary in Section 6.

Related work. The work presented here has been influenced by several related ap-
proaches. Closest in terms of efficient PDE-based regularization methods is the work of
Acton [3] on multigrid versions for nonlinear diffusion filtering. They are, however not
based on AOS schemes and they do not use methods with a reaction term. It is common
to supplement watershed segmentations with tools for reducing the oversegmentation
problem. An algorithm by Orphanoudakis et al. [4] also uses region merging for this pur-
pose, but it applies statistical instead of PDE-based smoothing strategies. Promising
results of combining watershed algorithms with nonlinear diffusion have been described
recently by De Vleeschauer et al. [5] and Sijbers et al. [6]. Investigations of watershed
algorithms within scale-space hierarchies have been carried out by Griffin et al. [7] and
Olsen [8] for the linear diffusion scale-space and by Jackway [9] for the dilation—erosion
scale-space. A nonmorphological segmentation algorithm based on nonlinear diffusion
scale-spaces has been studied by Niessen et al. [10, 11]. This discussion shows that the
novelty of our approach consist of using efficient PDE-based regularization strategies
such as pyramid AOS in combination with a classical morphological segmentation tool,
the watershed algorithm. This results in a fast segmentation tool.



2 PDE-Based Regularization

Below two prototypes for well-posed PDE-based regularization techniques are pre-
sented. The first one allows contrast enhancement, while the second one can be related
to energy minimization methods. These two methods are only representatives of a much
larger class of diffusion-based smoothing methods. For a more detailed treatment of
this topic the reader is referred to [2].

2.1 The Nonlinear Diffusion Filter of Catté et al.

In the m-dimensional case the filter of Catté, Lions, Morel and Coll [12] has the fol-
lowing structure:

Let Q := (0,0a1) X .... X (0, a,,) be our image domain and consider a (scalar) image f(z)
as a bounded mapping from € into the real numbers IR. Then a filtered image u(z,t)
of f(x) is calculated by solving the diffusion equation with the original image as initial
state, and reflecting boundary conditions:

ou = i@xl (g(|Vua|2) 8wlu) (1)
u(z,0) = f(z), (2)
Ontt|lga = 0, (3)

where n denotes the normal to the image boundary 0f2.

The “time” ¢ is a scale parameter: larger values lead to simpler image representations. In
order to reduce smoothing at edges, the diffusivity g is chosen as a decreasing function
of the edge detector |Vu,|, where Vu, is the gradient of a Gaussian-smoothed version
of u:

Vu, = V(K,*u), (4)
1 jzf?
K, = — = _exp(—2L).
7 (2mwo?)m/2 <P ( 202) (5)
We use the diffusivity

1 (s2=0)
o) = { . ©)

1 —exp <(33/§)185) (s> > 0).

For such rapidly decreasing diffusivities, smoothing on both sides of an edge is much
stronger than smoothing across it. This selective smoothing process prefers intrare-
gional smoothing to interregional blurring. The factor 3.315 ensures that the flux
®(s) := sg(s) is increasing for |s| < A and decreasing for |s| > A. Thus, A is a contrast
parameter separating low-contrast regions with (smoothing) forward diffusion from
high-contrast locations where backward diffusion may enhance edges [13]. After some
time this filter creates segmentation-like results which are piecewise almost constant.
For ¢ — oo, however, the image becomes completely flat [2]. Well-posedness results
for this filter can be found in [12, 2] and a scale-space interpretation in terms of an
extremum principle as well as decreasing variance, decreasing energy, and increasing
entropy is given in [2].



2.2 A Diffusion-Reaction Filter

Diffusion filters with a constant steady-state require to specify a stopping time T, if
one wants to get nontrivial results. Sometimes it is attempted to circumvent this task
by adding an additional reaction term which keeps the steady-state solution close to
the original image:

O = div (g(|Vul?) Vu) + B(f-u)  (8>0). (7)
This equation can be regarded as the descent method of the energy functional
Ey(w) = [ (§-(u=1)?* + (| Vu))) da, ®)
Q

with a potential function ¥(|Vu|) whose gradient is given by
V(¥(Vu) = g(|Vul)Vu. (9)

The first term in the integrand of the energy functional is a similarity term which
causes the regularized image to be close to the original one, while the second term
tends to increase its smoothness.

It should be noted that the reaction term ((f—u) shifts the problem of specifying a
stopping time 7" to the problem of determining f3; so it appears to be a matter of taste
which formulation is preferred.

From a theoretical viewpoint, it is advantageous to choose a convex potential func-
tion W, since this guarantees well-posedness and stable algorithms [14]. For nonconvex
potentials as in [15], several well-posedness questions are open. An example for a dif-
fusivity leading to a convex potential is [16]

1

\/W (A >0). (10)

3 Efficient Algorithms for PDE-Based Regulariza-
tion

9(|Vul?) :=

3.1 Limitations of Conventional Schemes

Let us first consider finite difference approximations to the m-dimensional diffusion
filter of Catté et al..

A discrete m-dimensional image can be regarded as a vector f € RY, whose components
fi, 1 € {1,..., N} display the grey values at the pixels. Pixel i represents the location
x;. Let h; denote the grid size in the [ direction. We consider discrete times t; := k7,
where k € INg and 7 is the time step size. By u¥ and g we denote approximations to
u(z;, 1) and g(|Vu,(x;,t1)[?), respectively, where the gradient is replaced by central
differences.

The simplest discretization of the diffusion equation with reflecting boundary condi-
tions is given by

G o =) o



where V(i) consists of the two neighbours of pixel i along the [ direction (boundary
pixels may have only one neighbour). In vector-matrix notation this becomes

k+1 k m
ut T —u
— = ZAl(uk) u®. (12)
T =1
A; describes the diffusive interaction in ! direction. One can calculate u**! directly
(explicitly) from u* without any matrix inversion:
m
ubtl = (]—i—TZAl(uk)) u®. (13)
=1

For this reason it is called explicit scheme. Each explicit iteration step can be performed
very fast, but the step size has to be very small: one can show [17] that in order to
guarantee stability, the step size must satisfy

1
S m 2
iz hZ
For most practical applications, this restriction requires to use a very high number of

iterations, such that the explicit scheme is rather slow.
Thus, we consider a slightly more complicated discretization next, namely

T (14)

uk+1

—-Uk m
— = ZAl(uk)ukH. (15)
=1

This scheme does not give the solution u**! directly (explicitly): It requires to solve
a linear system first. It is called a linear-implicit (semi-implicit) scheme. The solution
uF*! is given by

uft!t = (I — TZAl(uk))_ uk. (16)
This scheme is absolutely stable [2].
In the 1-D case the system matrix is tridiagonal and diagonally dominant. For such a
system a Gaussian algorithm for tridiagonal systems (also called Thomas algorithm)
solves the problem in linear complexity.
For dimensions m > 2, however, it is not possible to order the pixels in such a way
that in the i-th row all nonvanishing elements of the system matrix can be found
within the positions [i,7 — m] to [, + m]: Usually, the matrix reveals a much larger
bandwidth. Applying direct algorithms such as Gaussian elimination would destroy the
zeros within the band and would lead to an immense storage and computation effort.
Typical iterative algorithms become slow for large 7, since this increases the condition
number of the system matrix. Thus, in spite of its absolute stability, the semi-implicit
scheme is often not much faster than the explicit one.

3.2 AOS Schemes

In order to address the preceding problem we consider a modification of (16), namely
the additive operator splitting (AOS) scheme

utt = — % (I - mTAl(uk))_ uk. (17)



The operators Bj(u¥) := I — m7A;(u*) describe one-dimensional diffusion processes
along the z; axes. Under a consecutive pixel numbering along the direction [ they
come down to strictly diagonally dominant tridiagonal matrices which can be efficiently
inverted by the Thomas algorithm.

Moreover, (17) has the same first-order Taylor expansion in 7 as the explicit and semi-
implicit scheme: all methods are O(7 + h? + ...+ h2,) approximations to the continuous
equation.

Since it is an additive splitting, all coordinate axes are treated in exactly the same
manner. This is in contrast to conventional splitting techniques from the literature,
which are multiplicative [18]. They may produce different results if the image is rotated
by 90 degrees.

Recently a general framework for discrete nonlinear diffusion scale-spaces has been dis-
covered, which guarantees that the discretization reveals the same scale-space proper-
ties as its continuous counterpart [2]. One can verify [17] that the AOS scheme creates
such a discrete nonlinear diffusion scale-space for every (!) step size 7. As a conse-
quence, it preserves the average grey level yu, satisfies a causality property in terms of a
maximum-minimum principle, and converges to a constant steady state. Moreover, the
process is a simplifying, information-reducing transform with respect to many aspects:
The p-norms

N
[u¥]lp == (O [ufP)/? (18)
i=1
and all even central moments
k 1 k 2
M) := < S (u — ) (19)
j=1

are decreasing in k£, and the entropy
N
S[uf] = =Y u} Inwb, (20)
j=1

a measure of uncertainty and missing information, is increasing in k (if f; is positive
for all j).

Table 1 summarizes the features of the discussed schemes. Full algorithmic details of
AOS schemes can be found in [17], and a parallel implementation for processing 3-D
images is described in [19].

Many nonlinear diffusion problems require only the elimination of noise and some small-
scale details. Usually this can be accomplished with less than 10 iterations in sufficient
precision. On an HP 9000/889 workstation, this takes about 1 second for a 2562 image.

3.3 Pyramid AOS

The diffusion-reaction method (7) requires to find the steady-state of the process. Even
with large time step sizes, the diffusion process will mainly act within a fairly small
vicinity around each pixel. Thus, many iterations are required if the image size is large.
In order to speed up the process, we may embed the AOS schemes into a pyramid
framework. The idea is as follows:



Table 1: Schemes which create discrete nonlinear diffusion scale-spaces.

scheme formula stability | costs/iter. | efficiency
m

explicit uktl = (I +7 3 Al(uk)) uk e very low low
=1 > hlz

=1 1
. . . . m _1 . .

semi-implicit | u*t! = (I -7 Al(uk)) uk T <00 high fair

I=1
I m —1
AOS ubtt = — (I—mTAl(uk)) ubF | T < o0 low high

e downsample the image by creating a Gaussian pyramid [20] with the smoothing
mask (7, %, 1)

e adapt the filter parameters to the downsampled image; experiments have shown
that A\ should be divided by 1.5 and § by 4 if one reduces the image size by a
factor 2.

e start with the coarsest level (e.g. a 4 x 4 image), and apply AOS iterations until
convergence is obtained.

e expand this solution to the next finer level by linear interpolation, and use it as
initial value for AOS iterations at this level.

e proceed in the same way until convergence at the finest level is reached.

Figure 1 illustrates the effect of pyramid AOS. Typically, only a few iterations (around
10) are necessary in order to obtain good convergence at each level. Since the Gaussian
pyramid decomposition can be performed with linear complexity, the overall complexity
remains linear as well. For regularizing a 256 image on an HP 9000/889 workstation,
a CPU time of 1-1.5 seconds is sufficient.

4 Watershed Segmentation with Region Merging

The previously discussed PDE-based regularization techniques lead to piecewise almost
constant images with less noise and less fine-scale details.

In order to create a true segmentation, we have to postprocess the regularized image
by a technique which gives an edge map without dangling edges. This edge map should
lead to a partitioning of the entire image into a finite number of regions, it should
handle the semantically important corners and junctions gracefully, and — last but not
least — it should be fast.

We found a watershed technique [21, 22, 23] based on the gradient magnitude very
useful for these purposes. Such a technique regards an image as a landscape where the
intensity values correspond to the elevation. Areas where a rain drop would drain to
the same minimum are denoted as catchment basins, and the lines separating adjacent
catchment basins are called watersheds. Watersheds are a morphological technique,
since they are invariant under monotone grey scale-transformations. They lead to an
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Figure 1: Topr: Gaussian pyramid of a test image. BoTTOM: Regu-
larized by pyramid AOS.

image segmentation into regions, and they can describe edge junctions [24]. This is in
contrast to edge detectors based on zero-crossings of differential operators: they do not
allow to detect T-junctions [25].

We used an implementation as proposed by Fairfield [26]. The basic idea of this algo-
rithm is sliding downhill on the gradient squared surface until one arrives at a local
minimum. Then one replaces all pixels along this path by the image intensity at its
corresponding extremum. This algorithm has linear complexity.

Watershed algorithms often create too many segments. Although this oversegmentation
is less dominant in the PDE-regularized image than in the original one, it may still lead
to problems. Numerous ways are described in order to deal with the oversegmentation
problem, for instance by using markers [23, 27], region merging [28, 29, 4], or scale-
space techniques [7, 9, 8]. In our case we shall see that a simple region merging strategy
is adequate.

In such a step, adjacent regions are merged if their contrast difference is below a
specified threshold. This contrast parameter can be related to the contrast parameter A
of the PDE-based regularization, thus it does not constitute an additional parameter.



Finding a connected region where neighbouring pixels do not differ by more than
a specified contrast value can be performed in linear complexity and the result is
independent of the order in which the algorithm runs through the pixels. Thus, the
entire segmentation algorithm is invariant under image rotations by 90 degrees and it
reveals a linear total complexity.

A watershed segmentation of a 2562 image with subsequent region merging takes about
0.5 CPU seconds on an HP 9000/889. Thus, the overall segmentation time including
the PDE-based regularization is less than 2 seconds.

5 Experiments

Figure 2 illustrates how preprocessing by nonlinear diffusion filtering greatly reduces
the number of segments in a medical MR image. We also observe that under nonlinear
diffusion the segment boundaries remain well located and need not be traced back in
order to improve their localization. As can be seen for instance at the cerebellum, the
segments correspond well with the depicted physical objects. Moreover, segmentation
of elongated objects does not create any problem.

In Figure 3 it is shown that the merging step can be essential for avoiding the over-
segmentation problems in the watershed algorithm. Nonlinear diffusion may create
almost piecewise constant areas, but small fluctuations within such an area introduce
many semantically irrelevant catchment basins. Such fluctuations can also be caused by
quantization errors, e.g. by storing grey values in a bytewise manner. Merging adjacent
regions with similar grey values constitutes a simple remedy for these problems.
Finally, Figure 4 gives a comparison between the two PDE-based regularization tech-
niques. The diffusion-reaction method gives smoother results and is better capable of
eliminating small-scale structures, while the pure nonlinear diffusion process is advan-
tageous for recovering elongated structures. It leads to a very realistic segmentation of
the man walking along the hallway.

6 Summary

We have presented efficient algorithms for two prototypes for PDE-based regularization
techniques. These regularizations greatly simplify subsequent segmentation tasks, such
that already a simple watershed algorithm with region merging gives good results.
Thanks to the AOS and pyramid AOS schemes these segmentation techniques are
very fast. This makes them attractive for many time-critical applications. All axes
are treated equally, since the result is independent of the pixel ordering. The entire
algorithm can be extended in a straightforward way to m-dimensional data, and the
linear complexity in the pixel number remains valid in any dimension.
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Figure 2: ToP LEFT: Test image. TOP RIGHT: Filtered by isotropic
nonlinear diffusion. BorTrOM LEFT: Segmented. BorTOM RIGHT:
Diffused and segmented.
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