Centrality problems on dynamic trees

Stephen Alstrup® Jacob Holm*  Kristian de Lichtenberg*
December 9, 1997

Abstract

Sleator and Tarjan’s dynamic trees have proved an excellent tool.
Specifically, in cases where one wish to maintain local properties, such
as “the minimum edge weight on a path”. The dynamic trees have also
been used to maintain nodes with global properties such as the 1-median
(V. Auletta, D. Parente and G. Persiano, TCS’96 ) and 1-center (S. Cheng
and M. Ng, SODA’96), but in these cases the time complexity per oper-
ation becomes O(log?n) compared to the usual O(logn) for maintaining
local properties. Furthermore the algorithm becomes rather complicated.
In this paper we show how topology trees can provide a simple tool for
maintaining global and local properties with complexity O(logn) per op-
eration. As examples, we show how to maintain 1-center and 1-median in
fully dynamic trees with complexity O(logn) per operation.

1 Introduction

In this paper we investigate how to maintain global properties of dynamic trees.
Specifically, we consider the problem of finding a node/edge which is “most cen-
tral” with respect to a given cost criterion. We present a powerful black box
which can be used on this kind of optimization problems.

In order to demonstrate the black box we consider the dynamic 1-median
and l-center problems. In 1971 Goldman [9] gave a linear time algorithm for
determining a node in a tree, called a I-median, minimizing the sum of the
weighted distances to all other nodes. In 1973 Handler [11] showed how one in
linear time can compute a 1-center of a tree, minimizing the maximal distance to
any other node. The static median and center problems have been investigated
and generalized in many papers, see e.g. [10, 2, 8, 5]. A long list of references to
the 1-median and 1-center problem and similar problems can be found in [12].

*E-mail: (stephen, samson,morat)@diku.dk. Department of Computer Science, University
of Copenhagen.



More specific, the 1-median problem is defined as follows. Let V be the
weighted nodes in the tree. The task is to choose a node M, such that
Yvey weight(v) x dist(v, M) is minimal, where dist(v, M) is the sum of cost of
edges on the unique path from v to M in the tree. Both cost and weight are
assumed to be nonnegative. In [2] Auletta, Parente and Persiano showed how to
find a 1-median in time O(log®n) in a tree after a change of a node weight.

The 1-center problem is defined as follows. Let V' be the nodes in the tree.
The task is to choose a node C, such that max,cy dist(v,C) is minimal, where
cost again is assumed to be nonnegative. In [3] Cheng and Ng showed how to
maintain the 1-center for a dynamic forest under link and cut in O(log® n) time.

Both of these algorithms use the dynamic trees by Sleator and Tarjan [13].
Sleator and Tarjan’s dynamic trees have proved an excellent tool for finding nodes
or edges such as “the minimum edge weight on a path”. For this kind of problems
we have the following nice local property: Let T be a tree and let S be a subtree
of T. For any x € S we have that x is a solution to T implies that x is a solution
to S. The difficulty in solving the 1-center and 1-median problem comes from
the fact that we do not have this property for those problems.

Here we show how to maintain the 1-center and 1-median in O(logn) worst
case per operation including link, cut, and change of edge/node weight. Both
results follows as simple applications of the black box. The black box is presented
in section 3 and builds on the topology trees which are shortly presented in
section 2. In section 4 the applications are given.

Combining the results from [1, 7] with the results in this paper shows how
topology trees can be used as a black box to maintain global and local properties
and for searching in dynamic trees.

2 Topology Trees

In this section we give a short presentation of the topology trees by Frederick-
son [6, 4]. Our presentation differ slightly from the original topology trees, since
we use the simpler and less restrictive version as defined in [1]

Let T be an arbitrary tree with n nodes. For a connected subtree of T, we
call a node which has edges out of the subtree a boundary node. A cluster is a
connected subtree of T" with at most two boundary nodes. The set of boundary
nodes of a cluster C is denoted 0C. We say that 0C' = {a, b} if C has boundary
nodes a and b even if a and b are identical. Two clusters are said to be neighbors
if they intersect in exactly one node. A topology tree T of T is a binary tree such
that:

1. The nodes of T represents clusters of 7.

2. The leaves of T represents the edges of 7.



3. If C is represented by an internal node of 7 with children representing A
and B, then C = AU B and A and B are neighbors.

4. The root of T represents 7.
5. The height of T is O(logn).

A tree with a single node has an empty topology tree. From [1] we have the
following theorem.

Theorem 1 Let info be some information of clusters in a dynamic forest with n
nodes so that
1. For any edge e, info({e}) can be computed in time t;.
2. For any neighboring clusters Cy and Cs, info(Cy U Co) can be computed in
time ty, given info(C) and info(Cs).

Then we can maintain info for all trees in a dynamic forest in O(t; + tologn)
worst case time per link and cut, given the ability to use O(nx* (t; +1t2)) time and
O(n) space for preprocessing. a

3 Black box for finding edges and nodes with
global properties

In this section we provide a general tool for maintaining nodes and edges with
global properties in dynamic trees. We give a general search algorithm which
require:

1. Given two neighboring clusters which together represents the whole tree
and some related information we can decide to which cluster the node or
edge requested belongs.

2. The information for an arbitrary cluster should be efficiently computable
by merging information of sub-clusters.

In the following section we will see examples on how to use the tool.

Theorem 2 Let info be some information of clusters in a dynamic forest with n
nodes, and let x be a node or an edge we wish to search for. If
1. For any edge e, info({e}) can be computed in time t;.

2. For any neighboring clusters Cy and Cs, info(Cy U Cs) can be computed in
time ty, given info(C1) and info(Cs).

3. For any pair of neighboring clusters C4,Cg such that C4UCg =T, we can
decide if x € Cy or x € Cg in time t3, given info(Cy) and info(Cp).

3



Then we can maintain info for all trees in a dynamic forest in O(t; + tologn)
worst case time per link and cut and we can find x in time O((t2+1t3) logn) worst
case, given the ability to use O((t1 +t2)n) time and O(n) space for preprocessing.

Proof: By theorem 1 we can maintain info for all trees in worst case time
O(t; + tologn) per link and cut as desired. For any cluster C' and any node v,
let C, denote the subtree in 7"\ C having v as its only boundary node.

Let C' = AUB be a cluster where z belongs to either A or B. Let 0A = {a, c},
0B = {c, b}, then 0C C {a,b}. We have three cases:

If 9C = () then C is the root of the topology tree and A and B are neighboring
clusters with AU B = T. So we can in O(t3) time decide if z € A or z € B.
Assume w.l.o.g. that z € A then info(A.) = info(B), and we continue the search
in A.

If |0C| = 1, (assume w.lo.g. that C = {a}). Let C4, = AUC,. Then C,4
and B are neighboring clusters, and C4UB = T'. If we have previously computed
info(C,) then we can in O(t,) time compute info(C4). In O(t3) time we can then
decide if z € Cy or z € B. If x € A we can in O(t,) time compute info(4,) and
info(A.) and continue the search in A. If x € B we have info(B,) = info(C,)
and we may continue the search in B.

If |0C| = 2 then dC = {a,b}. Let C4 = AUC, and Cp = BUC}. Then C, and
Cp are neighboring clusters, and C4 U Cg = T'. If we have previously computed
info(C,) and info(Cy) we can in O(t,) time compute info(C,) = info(AUC,) and
info(Cp) = info(B U Cy). In O(t3) time we can then decide if x € C4 or x € Cp.
W.lo.g. x € C'4 means that x € A since we knew z € C. We then compute in
O(ty) time info(A,) and info(A.) and continue the search in A.

Thus starting at the root of the topology tree the search uses O(ty + t3) time
for each of the O(logn) levels, yielding a total time of O((ty + t3) logn). O

4 Applications

In the following applications, we will use the following scheme: first we decide
which information is sufficient to answer the question and next how to make that
information available.

4.1 Dynamic 1-center

For any tree 7" and node v let h,(T) be the length of the longest path from v
in T. The 1-center problem is then finding a node v minimizing h, (7). For any
node v let p(v) be a node in 7" with maximal distance to v. It is well-known that
for all v, diam(T') = dist(p(v), p(p(v))) and thus 1-center(T) C p(v) ---p(p(v)).



Lemma 3 Let T be a tree, let C be a 1-center of T and let A and B be neighboring
clusters with AN B = {c} and AUB=T. Then h.(A) > h.(B)=Ce A

Proof: If h.(A) = h.(B) then C = c and thus C € A as stated. If h.(A) > h.(B)
then h.(A) = dist(c,p(c)) and p(c) € A. Now either p(p(c)) € A in which
case p(c)---p(p(c)) € A and thus C € A as stated, or p(p(c)) € A in which
case ¢ € p( )---p(p(c)), and h.(B) = dist(c,p(p(c))). Since h.(A) > h.(B)
we have dz’st(c,p( )) > dist(c,p(p(c))) and thus C & c---p(p(c)) \ {c} hence
C €p(c)---c C A as desired. O

For every cluster C, 0C = {a, b} we maintain:

e The distance between the boundary nodes: dist(a, b)
e The maximal distance in C' from each boundary node: hy(C), hy(C)

Theorem 4 The 1-center can be maintained dynamically under link, cut and
change of edge weights in O(logn) worst case time per operation.

Proof: For any edge e we can find info({e}) in constant time. Furthermore, given
two neighboring clusters Cy, Cy and info(C1), info(Cs) we can find info(Cy U Cy)
in constant time. Let A and B be neighboring clusters with A N B = {¢} and
AUB =T. By lemma 3 we can in constant time decide whether the 1-center
is located in the cluster A by testing if h.(A) > h.(B). Thus by theorem 2 the
1-center can be maintained in O(logn) worst case time per link or cut. When
an edge cost is changed we only need to update info for the O(logn) clusters
containing it. Thus change can also be done in O(log n) worst case time. a

4.2 Dynamic 1-median

The I-median problem is finding a node M minimizing Y,y weight(v) *
dist(v, M), where dist(v, M) is the sum of cost of edges on the unique path from
v to M in the tree. For any tree T, let w(7T) denote the sum of node weights of
T.

The lemma below follows from Goldman [9)].
Lemma 5 LetT be a tree, let M be a 1-median of T and let A and B be neighbor-
ing clusters with ANB = {c} and AUB =T. Then w(A) > w(B) => M e A. O

So given two neighboring subtrees whose union is 7" the 1-median node is in the
subtree with greatest weight. It follows that all we have to maintain for each
cluster C' is info(C) = w(C' \ 0C)

Theorem 6 The 1-median can be maintained dynamically under link, cut and
change of edge/node weights in O(logn) worst case time per operation.

5



Proof: For any edge e we can find info({e}) in constant time. Furthermore, given
two neighboring clusters Cy, Cy and info(C1), info(Cs) we can find info(Cy U Cy)
in constant time. Let A and B be neighboring clusters with AN B = {c} and
AUB =T. By lemma 5 we can in constant time decide whether the 1-median is
located in the cluster A by testing if w(A\ 0A) > w(B \ 0B).

Thus by theorem 2 the 1-median can be maintained in O(logn) worst case
time per link or cut. When a node weight is changed we only need to update
info for the O(logn) clusters containing it as a non-boundary node. By lemma 5
an edge update does not alter which node is the 7-median. Thus change can also
be done in O(log n) worst case time. O

References

[1] S. Alstrup, J. Holm, K. de Lichtenberg, and M. Thorup. Minimizing diam-
eters of dynamic trees. In ICALP’97, pages 270-280, 1997.

[2] V. Auletta, D. Parente, and G. Persiano. Dynamic and static algorithms
for optimal placement of resources in a tree. Theoretical Computer Science,
165:441-461, 1996. See also ICALP’94.

[3] S. Cheng and M. Ng. Isomorphism testing and display of symmetries in
dynamic trees. In Proceedings of the Seventh Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA’96).

[4] G.N. Frederickson. Data structures for on-line updating of minimum span-
ning trees, with applications. STAM J. Computing, 14(4):781-798, 1985.

[6] G.N. Frederickson. Parametric search and locating supply centers in trees.
In WADS’91, volume 519, pages 299-319, 1991. see also SODA’91.

[6] G.N. Frederickson. = Ambivalent data structures for dynamic 2-edge-
connectivity and k smallest spanning trees. In SIAM Journal on computing,
volume 26, pages 484-538, 1997. see also FOCS’91.

[7] G.N. Frederickson. A data structure for dynamically maintaining rooted
trees. Journal of Algorithms, 24(1):37-65, 1997. See also SODA’93.

[8] B. Gavish and S. Sridhar. Computing the 2-median on tree networks in
O(nlogn) time. Networks, 26, 1995. see also Networks Vol. 27, 1996.

[9] A.J. Goldman. Optimal center location in simple networks. Transportation
Seci., 5:212-221, 1971.



[10] S.L. Hakimi and O. Kariv. An algorithmic approach to network location
problems. ii: the p-medians. SIAM J. APPL. MATH., 37(3):539-560, 1979.

[11] G.Y. Handler. Minimax location of a facility in an undirected tree network.
Transportation. Sci., 7:287-293, 1973.

[12] A. Rosenthal and J.A. Pino. A generalized algorithm for centrality problems
on trees. Journal of the ACM, 36:349-361, 1989.

[13] D.D. Sleator and R.E. Tarjan. A data structure for dynamic trees. Journal
of Computer and System Sciences, 26(3):362-391, 1983. See also STOC’81.



