1

Approximation Algorithms for Knapsack
Problems with Cardinality Constraints'

Alberto Caprara* Hans Kellerer** Ulrich Pferschy**
David Pisinger!

Abstract

We address a variant of the classical knapsack problem in which an upper bound
is imposed on the number of items that can be selected. This problem arises in the
solution of real-life cutting stock problems by column generation, and may be used
to separate cover inequalities with small support within cutting plane approaches
to integer linear programs. We focus our attention on approximation algorithms for
the problem, describing a linear-storage Polynomial Time Approximation Scheme
(PTAS) and a dynamic-programming based Fully Polynomial Time Approximation
Scheme (FPTAS). The main ideas contained in our PTAS are used to derive PTAS
for the knapsack problem and its multidimensional generalization which improve on
the previously proposed PTAS. We finally illustrate better PTAS and FPTAS for
the subset sum case of the problem in which profits and weights coincide.

Introduction

The classical Knapsack Problem (KP) is defined by a set N := {1,...,n} of items, each
having a positive integer profit p; and a positive integer weight w;, and by a positive integer
knapsack capacity c. The problem calls for selecting the set of items with maximum overall
profit among those whose overall weight does not exceed the knapsack capacity. KP has
the following immediate Integer Linear Programming (ILP) formulation:

maximize Y p;z; (1)
jEN

subject to Y w;z; <c (2)
jEN
zj € {0’ 1}7 JEN, (3)

tTechnical Report, DIKU, University of Copenhagen 98 /4.
*DEIS, University of Bologna, viale Risorgimento 2, I-40136 Bologna, Italy, acaprara@deis.unibo.it
**Universitdt Graz, Institut fiir Statistik und Operations Research, Universitétsstr. 15, A-8010 Graz,

Austria, {hans.kellerer,pferschy}@kfunigraz.ac.at
YDIKU, University of Copenhagen, Univ.parken 1, DK-2100 Copenhagen, Denmark, pisinger@diku.dk

where each binary variable z;, j € N, is equal to 1 if and only if item j is selected. The
Subset Sum Problem (SSP) is the special case of KP arising when p; = w; for each j € N.
For notational convenience, later in the paper we will use the notation p(S) := Y ,cqp;
and w(S) := X jeg w; for some S C N.

KP has widely been studied in the literature, see the book of Martello and Toth [13]
and the recent survey by Pisinger and Toth [19] for a comprehensive illustration of the
problem. Among the several applications of KP, two very important ones are the following.
First, KP is the subproblem which appears when instances of the one-dimensional Cutting
Stock Problem are solved by column generation, see e.g. [22]. Second, the separation of
cover inequalities in cutting-plane/branch-and-cut approaches to general ILPs calls for the
solution of a KP, see e.g. [15].

The m-Dimensional Knapsack Problem (m-DKP) is the generalization of KP in which
each item j € N has m nonnegative integer weights w,;, ..., wy,; and m positive integer
knapsack capacities cy, ..., ¢, are specified. The objective is to select a subset of the items
with maximum overall profit among those whose weight does not exceed the knapsack
capacity for any of the m dimensions. Formally, the problem can be formulated as (1)
subject to (3) and the capacity constraints

> wiyx; < ¢, i€ M, (4)
jJEN
where M := {1,...,m}. The importance of this problem follows from its generality,

namely it is a generic ILP in which all variables are binary and all coefficients nonnegative.
In the sequel we refer to m-DKP by implicitly assuming that m is fized, i.e. not part of
the problem input. This implies for instance that a time complexity of O(n™) will be
considered polynomial.

In this paper we address a problem which is at the same time a generalization of KP and
a special case of 2-DKP, namely the k-item Knapsack Problem (kKKP), which is a KP in
which an upper bound of £ is imposed on the number of items that can be selected in a
solution. The problem can be formulated as (1)—(3) with the additional constraint

jEN
with 1 < k < n. The Ezact k-item Knapsack Problem (E-kKP) is the variant of kKP where
the number of items in a feasible solution must be exactly equal to k. Clearly E-kKP can
be formulated as kKP by replacing (5) by

> a =k (6)
JEN
Without loss of generality we assume w; < ¢ for j € N. Actually, for E-kKP we shall
assume that, for each 7 € N, w; plus the sum of the smallest £ — 1 weights of items in
N\ {j} does not exceed c. The k-item Subset Sum Problem (kSSP) and FEzact k-item
Subset Sum Problem (E-kSSP) are the special cases of kKP and E-kKP, respectively, in
which item profits and weights coincide.

Observe that kKP and E-kKP can easily be transformed into each other. More precisely,
any KKP instance can be solved as the following E-AKP. The value of k is the same, whereas
the profits and the weights of the original items are multiplied by k£ and the new capacity
is defined as (k + 1)c — 1, where c is the original capacity. Finally, & “dummy” items with
profit and weight 1 are added. By definition, an item subset of cardinality, say, &' < k is
feasible for the original kKP instance if and only if it satisfies the knapsack constraint for
the E-kKP instance, in which case it can be made feasible by adding & — &' dummy items.
The ranking by profit of the feasible solutions of the two instances is the same due to profit
scaling. On the other hand, E-kKP can be solved as a kKP by adding a suitably large
quantity M to the item profits, e.g. M := p(IV). If the optimal value z* of kKP is smaller
than &M then E-kKKP has no solution, otherwise its optimal solution value is z* — kM.
This latter construction cannot be applied to show that E-kSSP can be transformed into
kSSP, in fact we are not aware of any simple transformation between the two problems.

kKP is the subproblem to be solved when instances of the Cutting Stock Problem
with cardinality constraints are tackled by column generation techniques. For instance the
problem appears where the number of pieces cut from each stock is bounded by a constant
due to the limited number of knives. KKP also appears in processor scheduling problems
on computers with k& processors and shared memory. The Collapsing Knapsack Problem
presented by [20], which has applications in satellite communication where transmissions
on the band require gaps between the portions of the band assigned to each user, can be
solved to optimality by considering n kKKP problems defined on different capacities but
with the same set of items.

Furthermore, kKP could replace KP in the separation of cover inequalities, as outlined
in the following. In general, separation calls for a constraint in some class which is violated
by the optimal solution of the current LP relaxation, see [15]. Therefore, separation is a
recognition rather than an optimization problem. For cover inequalities, the exact solution
of a KP allows for the determination of the most violated such inequality, if any exists,
without any control on the number of variables with nonzero coefficient in the inequality,
which is the same as the number of items selected by the optimal KP solution. On the
other hand, within cutting-plane approaches it is typically better to separate inequalities
with a small number of nonzero coefficients, mainly because such inequalities are easier
to handle for the LP solvers. This would suggest to focus on the separation of violated
cover inequalities having a small number of nonzero coefficients, which can be carried out
by explicitly imposing a cardinality constraint on the KP to be solved. In fact, cover in-
equalities are typically “lifted” before being added to the current LP relaxation, increasing
the number of nonzero coefficients, as well as the strength of the inequality. Nevertheless,
a cover inequality with few nonzero coefficients before lifting will correspond to a set of
items with large weights, which are more likely to be selected if an upper bound on the
cardinality of the solution is imposed. If the weights of the items with nonzero coefficient
in the inequality before lifting are large with respect to the other weights, it is known [15]
that most of the lifting coefficients will be equal to 0, regardless of the lifting procedure
used. Accordingly, a cover inequality with fewer nonzero coefficients before lifting will tend

to have fewer nonzero coefficients also after.

It is well known that both KP and m-DKP are NP-hard but pseudopolynomially
solvable through dynamic programming, therefore the same properties hold for KKP and
E-kKP (actually, the fact that E-kKP is solvable in pseudopolynomial time follows from
the structure of the dynamic programming recursion that solves kKP, which will be shown
later). On the other hand, for fized k, both kKP and E-kKP are polynomially solvable
in O(n*) time by brute force. A natural question is whether these problems are fized-
parameter tractable [2], i.e. there is a constant o and an algorithm which solves either
problem in time O(n®f(k)), where f of course may have exponential growth. The results
reported in [3] state however that the existence of such an algorithm is unlikely, since this
would imply that the classes F'PT and W[1] are equal (something similar to P = NP).

In this paper we will mainly address polynomial time approximation algorithms for
kKP (and E-kKP). For a generic problem P we will denote by z* the optimal solution
value and by z the value of the solution returned by a heuristic algorithm H. Similarly,
for a subinstance S of P, z% and z¥ will denote the optimal and heuristic solution values,
respectively, for the subinstance. Assume P is a maximization problem, and consider
e € (0,1). We say that H is a (1 — &) approzimation algorithm if 2z > (1 — €)z* for all
instances of P. A Polynomial Time Approzimation Scheme (PTAS) for P is an algorithm
taking as input an instance of P and a value ¢ € (0,1), delivering a solution of value
2z > (1 — ¢)z*, and running in a time polynomial in the size of the P instance. If the
running time is also polynomial in 1/¢ the algorithm is called a Fully Polynomial Time
Approzimation Scheme (FPTAS).

A PTAS for KP was proposed by Sahni [21], and the first FPTAS by Ibarra and
Kim [7], later on improved by Lawler [11], Magazine and Oguz [12] and Kellerer and
Pferschy [8]. While PTAS for KP typically require only O(n) storage, all the FPTAS are
based on dynamic programming and their memory requirement increases rapidly with the
accuracy €, which makes them impractical even for relatively big values of €. For SSP,
the best PTAS requiring O(n) storage is due to Fischetti [4]. FPTAS were developed by
Lawler [11], Gens and Levner [6] and recently improved by Kellerer et al. [9]. Also the
more general m-DKP (recall that we assume m not to be part of the input) admits a
PTAS, as shown by Oguz and Magazine [16] and Frieze and Clarke [5], whereas Korte and
Schrader [10] proved that the problem does not admit any FPTAS unless P = NP. The
latter results clearly imply that kKP has a PTAS, while leaving open the question about
the existence of a FPTAS, as well as of a PTAS for E-kKP. Actually, the question of a
FPTAS for kKP is even more interesting as Korte and Schrader [10] proved that even for
the 2-dimensional KP such a scheme does not exist unless P = NP.

In this paper we adapt classical PTAS and FPTAS for KP and SSP to kKP, E-kKP and
kSSP. As a byproduct of our analysis, we propose some modifications to the classical
PTAS for KP and m-DKP. With these changes, one can achieve the same approximation
guarantee with a considerably reduced running time.

2 Linear programming and a PTAS for kKP

We start by defining a simple approximation algorithm for KKP based on the LP relaxation
of the problem, obtained by replacing constraints (3) by

0<z;<1, jeN. (7)
Denote the optimal solution value of this LP by z%%.

Lemma 1 An optimal basic solution (x*) of the LP relazation (1), (2), (5) and (7), has
at most two fractional components. Let J, := {k : x} = 1}. If the basic solution has two
fractional components x} and x7, supposing w.l.o.g. w; < wj, then p(J1) +pi > 2* and the
solution defined by Jy U {j} is feasible for kKP.

Proof. If upper bounds on the variables are treated implicitly, there will be two basic
variables z}, 27 in a basic LP solution, whereas the other variables will take an integer
value. If z} and z} are both fractional, then z} 4+ 2} = 1, p(h) + piz} + p;z} = 2" and
Wiy +w;T; = ¢ — w(Jy). Therefore, if w; < w;, then p; > p;, otherwise one could improve
the LP solution by setting z; = 0 and z; = 1. Hence, p;x; +p;z} < p;(z} +2}) = p;, show-
ing that 2* < 2F < p(J1) 4 pi. Moreover, w; = w;(z} + x}) < wiz} + w;z = ¢ — w(Jy),
which yields the feasibility of J; U {j}. a
Lemma 1 is immediately extended to E-kKP, for which the number of fractional compo-
nents in the LP solution can be either 0 or 2.

The algorithm below is a rather straightforward generalization of the well-known
1/2 approximation algorithm for KP, see e.g. [13], and proceeds as follows.

Algorithm Hs:

1. Compute an optimal basic solution of the LP relaxation of kKP. Let J; and Jg
contain, respectively, the indices of the variables at 1 and of the fractional variables
in the LP solution.

2. If Jp = 0, return the (optimal) kKP solution Ji, of value 2 := p(.J;).

3. If Jp = {i} for some i € N, return the best kKP solution among .J; and {7}, of value

2 = max{p(J,), pi}-

4. If Jp = {i,j} for some i,j € N such that w; < w;, return the best kKP solution
among J; U {5} and {i}, of value 27 := max{p(J1) + p;, pi}.

Proposition 2 H? is a 1/2 approzimation algorithm for kKP and runs in O(n) time.

Proof. The time complexity is due to the fact that the LP relaxation of kKP can be
solved in O(n) time, as shown by Megiddo and Tamir [14]. (The method by Megiddo and
Tamir is in fact more general and rather sophisticated, applying Lagrangian relaxation

and a multidimensional search procedure.) The feasibility of the solution returned follows
immediately from Lemma 1. As to the approximation ratio, if the algorithm terminates at
Step 2., the solution returned is clearly optimal, otherwise, denoting by z%* the optimal
LP solution value and letting 2% := p(J;) if the algorithm stops at Step 3., 2% := p(J1) +p;
if it stops at Step 4., one has z* < 21 < 26 4+ p; < 227, O

A class of instances for which the approximation can be arbitrarily close to 1/2 is
defined by n = 3, p1 = 2, wy =1, po = p3 = M, wy = w3 = M, k = 3 and ¢ = 2M,
where M is some “big” integer. The optimal solution consists of items 2 and 3, whereas
the best solution computed by H 2 selects item 1 and only one item from 2 and 3, which
yields 27 /7 = M2 M2go 1

The adaptation of H > to BE-kKP is quite easy. Using the same notation as in the
description of H %, observe that in the E-kKP case Jr has cardinality zero or two. In the
second case, the heuristic solution returned is the best among J; U{j} and {i} U R;, where
R; is the set of the £ — 1 items with smallest weight in N \ {7}, which can be determined
in O(n) time by partial sorting techniques [1].

Our PTAS for kKP (and E-kKKP) is based on heuristic H 2, and has the same flavor as
the classical approximation scheme by Sahni [21] for KP and by Oguz and Magazine [16],

Frieze and Clarke [5] for m-DKP.

Algorithm PTAS,kp:

1. Let € < 1/2 be the required accuracy, and define ¢ := min{[1/e] — 2, k}. Initialize
the solution H to be the empty set and set the corresponding value z to 0.

2. Consider each L C N such that |L| < £ —1. If w(L) < c and p(L) > 2" let H := L,
1= w(L).

3. Consider each L C N such that |L| = £. If w(L) < ¢, apply algorithm H: to the
subinstance S defined by item set {k € N\ L : p, < minjer, p;}, by capacity ¢ —w(L)
and by the cardinality upper bound k —¢. Let T and z¥ denote the solution and the
solution value returned by H=. If p(L)+2zZ > 2% let H := LUT and 27 := p(L)+2Z.

4. Return solution H of value 2.

The main difference to the scheme of Sahni [21] is the fact that in Step 3. we complete the
partial solution L by considering only items whose profit is at most equal to the smallest
profit of the items in L, according to [5,16].

Proposition 3 PTAS,kp is a PTAS for kKP which runs in O(n"'/¢1=1) time and requires
linear space.

Proof. As defined in Step 1., let £ := min{[1/e] —2, k}. The time and space requirements
follow from the fact that algorithm H > and the definition of subinstance S by partial
sorting require O(n) time and are executed O(n) times in Step 3., whereas in Step 2.

6

the algorithm considers O(n*~!) subsets, for each one performing operations that clearly
require O(n) time.

What remains to be shown is that PTASixp is a (1 —) approximation algorithm.
Clearly, if an optimal solution contains at most ¢ items, the solution returned by
PTASykp is optimal. Otherwise, let {j;,75,...,7;,...} be the set of items in an opti-
mal solution ordered so that p;j; > pjz > ... > pj: > In one of the iterations of
Step 3., the set L considered by PTASykp is L* := {ji,j5,...,7;}. Let S* be the corre-
sponding subinstance, on which algorithm H?2 is applied, returning a solution of value zZ..
The optimal solution value is clearly given by z* = p(L*) + z&., where z§. is the optimal
solution value for S*. As 2z > p(L*)+ 2L it is sufficient to show that p(L*)+z4 > &Lz,

+2
and then the claim follows from the definition of /. We distinguish between two cases.

(i) p(L*) > ¢52*: From Proposition 2 we get
(= =p(L")

= l(*"*ﬂD(L*)) > l<2"+ £ Z) _ il

DN | =

X * 1* *
p(L7) + 2. = p(L7) + 575 = p(L) +

9 9 (+2°) T i+
(ii) p(L*) < HLQZ*I Obviously, the smallest profit of an item in L*, and hence all the
profits of items in S*, are smaller than H%z*. We can assume that the solution of

the LP relaxation of subinstance S* is fractional, otherwise the solution returned
by PTASikp is optimal. In particular, let p;« be profit of the item of larger weight
whose associated variable is fractional, and p(J}) be the sum of the profits of items
with variable at 1 in the LP solution (see algorithm H %). Due to Lemma 1 one has

2t = p(L") + 25 < p(L*) +p(J7) + pir

1
< p(L*) + 2§ +pi < p(L*) + 25 + H—Zz*’

and hence £52* < p(L*) 4 z&. 0

A class of instances for which the approximation ratio can be arbitrarily close to ﬁ_; for a
given £ is defined by n=4+3, p1 =2, w1 =1, po=...=p, =M, wy=...=w, = M,
k =n,and ¢ = (£ 4+ 2)M, where M is some “big” integer. The optimal solution consists
of all £+ 2 big items, whereas the best solution computed by PTAS;kp selects item 1 and
only ¢+ 1 big items, which yields 2% /z* = % Mogo gi—é.

Again, algorithm PTASykp can be easily modified to handle E-kKP. In particular,
Step 2. can be skipped, whereas in Step 3. one has to replace the call to heuristic H 3 by
a call of the corresponding heuristic for E-kKP. The call must in fact be preceded by a
preprocessing of subinstance S, which removes the items j such that w; plus the smallest
k — £ — 1 weights of items in S other than j exceeds the capacity. Such a preprocessing
can be done in O(n) time by partial sorting techniques. The time and space complexity

and approximation analysis of the algorithm obtained are essentially unchanged.

7

3 Improved PTAS for KP and m-DKP

The main difference between the PTAS proposed in the previous section and the PTAS
presented in the literature for KP [21] and m-DKP [5,16] is the fact that we use procedure
H? instead of simply rounding down the LP solution. This modification yields improved
PTAS also for KP and m-DKP, in the sense that we get better approximations for a given
asymptotic running time bound. In fact, for KP we can make additional considerations to
further reduce the complexity of our scheme.

The straightforward adaptation of PTASykp to KP just requires running the algorithm
with the kKP instance obtained from a KP by setting the cardinality upper bound k& := n.
This would already constitute an improvement with respect to the scheme proposed by
Sahni [21]. As anticipated, we can do better, by exploiting the structure of optimal LP
solutions of KP. Namely, it is well-known that an LP solution of KP can be determined
by sorting the items by decreasing profit/weight ratios, and this ordering solves the LP
relaxation of KP for any given capacity. Let PTASkp be the algorithm derived from
PTASkkp as follows, assuming ¢ < 1/3 .

In Step 1., we set £ := min{[1/e| —2,n} (£ > 3) and sort and store items according to
increasing profits. Furthermore, items are also sorted both by decreasing weights and by
decreasing profit/weight ratios, and their consecutive indices according to these sortings
are stored in arrays W and PW, respectively. This step requires O(nlogn) time.

In Step 3., we replace Hz by its (straightforward) counterpart for KP, that returns
the best solution among the one defined by the set of items with variable at 1 in the
solution of the LP relaxation and the one defined by the item with fractional variable (if
any). Moreover, the enumeration of the subsets L of cardinality £ and the corresponding
computation of a heuristic solution is carried out in the following way. Let every subset L
consist of {i1,a,...,i} and assume p; < py < ... < p,.

Fori;:=1,...,.n—/¢+1
Let S:={1,...,4; — 1} and sort the items in S in increasing order of profit/weight
ratio in O(n) time by using PW.
Foriy,:=4+4—-2,...,n—1
For every T C {iy +1,...,4p 1 — 1} with |T|=¢-3
Let the array R contain the items {i,_; + 1,...,n} sorted in decreasing
order of weight by using W.
Let i, := R[1] and compute the LP solution and the associated heuristic
solution for a knapsack with item set S and capacity ¢ — W (L).
For ig = R[Q], ey R[TL - ie_l]
Recompute the LP solution and the associated heuristic solution for
a knapsack with item set S and capacity ¢ — W(L) starting from
the previous solution.

In an outer loop, we let the item 7; with smallest profit in the current set L go from
1 ton—/¢+1. For each i;, we let the item in L with the second largest profit, i.e. item

11, go through all possible indices from i; + ¢ — 2 to n — 1, and iteratively consider all
subsets T of (¢ — 3) items within {i; +1,...,4,_1 — 1}. These subsets, jointly with 4; and
ig_1, form O(n‘!) subsets to consider. For each such subset we let the largest item in L,
1g, go through all indices from i, ; + 1 to n, in decreasing order of weight. Now we can
compute the LP solution, and therefore the heuristic one, consecutively for all values of i,
by inserting the items in S into a knapsack of capacity ¢ — w(L) according to their order.
As soon as the capacity is filled, we compute the heuristic solution and choose the next i,
which yields a capacity ¢ — w(L) not smaller than before. Therefore, we can continue the
computation of the LP solution from the point it was stopped for the previous set L, and
hence the heuristic solutions for all possible items i, can indeed be determined in linear
time.

Overall, we get a running time bound of O(n®) for Step 3., whereas three calls to a
sorting procedure are required in Step 1. By using the same analysis as for PTASyxp, we
have

Proposition 4 PTASkp is a PTAS for KP which runs in O(n[Y¢1=2 4 nlogn) time and
requires linear space.

To compare our algorithm with the Sahni PTAS [21] notice that the running time complex-
ity of the latter is O(n/*/¢1). In other words, for £ > 2, to achieve an approximation ratio
of ﬁ—; the Sahni scheme requires a running time of O(n*"?) whereas our algorithm runs
in O(n?) time. E.g. for a still reasonable running time of O(n?®) we get an approximation
ratio of 4/5 compared to the previous 2/3. As both PTAS are practical only for very small
values of ¢, this speedup by a factor of O(n?) is a considerable gain in performance and
enables one to get a solution with an approximation ratio “improved by two levels” within
the same asymptotic running time (cf. Table 1).

In order to extend our PTAS and the corresponding analysis to m-DKP for any fixed
m, we initially modify procedure H ? 50 as to get its obvious extension H m;ﬂ, which
solves the LP relaxation of m-DKP determining a basic solution with at most m fractional
components. Again, let J; and Jg = {i1,...,ix}, K < m, contain respectively the indices
of t}ie variables at 1 and with fractional value in the solution. The solution returned by
Hw=+1 is the best one among Jy, {i1},..., {ix}, of value max{p(Jy),pi,...,pi, }- It was
shown by Megiddo and Tamir [14] that the LP relaxation of m-DKP can be solved in
O(n) time (recall that we assume m to be fixed). Hence, an immediate counterpart of
Proposition 2 is

Proposition 5 H# is a 1/(m + 1) approzimation algorithm for m-DKP and runs in
O(n) time.

The corresponding PTAS, called PTAS,,_pkp, is obtained by modifying PTA Sk p, defin-
ing ¢ := min{[m/e] — (m + 1),n} in Step 1., and replacing the call to H> by a call
to H#+ in Step 3., after having removed the items whose weight exceeds the residual
knapsack capacity on some of the dimensions.

Proposition 6 PTAS,,_pxp is a PTAS for m-DKP which runs in O(nI™/1=™) time.

9

KP: | Complexity | O(n) | O(nlogn) | O(n?) |O®?)|... |O(nY)
Previous[21] | 1/2 1/2 1/2 | 2/3 =
Ours 1/2 2/3 3/4 | 4/5 ﬁi—;

kKP:| Complexity [O(n)|O(n?)|0(n3)]...|0(n?
Previous[5,16]| — | 1/3 | 1/2 |...| =
Ours 1/2 | 2/3 | 3/4 |...| 5

2-DKP: | Complexity |O(n)|O(n?) |O(n3)|... |O(nf)
Previous[5,16] | — | 1/3 | 1/2 |... %
Ours 1/3 | 1/2 | 3/5 |...| 5

Table 1: Comparison of our PTAS and by the previous ones for KP, Kk KP and 2-DKP.

Proof. Analogous to the proof of Proposition 3. In particular, in the analysis of the
approximation ratio one has to show that p(L*) + z{. > ; Jf:;ilz* This is done again by
considering two cases, namely p(L*) > Z—Hﬁ—klz* and p(L*) < £+rf;+1 z*. O
The comparison with the previously proposed PTAS for m-DKP [5,16] shows that our
scheme guarantees the same approximation ratio with an asymptotic running time reduced
by a factor of n.

We give an overview of our improvements in Table 1, where we report the approximation
achieved for a fixed running time bound by our PTAS and by the previous ones for KP,
kKP and 2-DKP. For KP we consider the Sahni PTAS for time complexities < O(n?) and

the classical greedy algorithm for lower complexities.

4 Dynamic programming and an FPTAS for £k KP

In this section we first describe how to solve kKP and E-kKP to optimality by a pseu-
dopolynomial dynamic programming scheme which is an immediate adaptation of the
schemes for KP. The presented scheme is then used to derive a FPTAS for both problems.
Note that dynamic programming algorithms for KP with cardinality constraints are also
considered in [17] and [18].

Let b be an upper bound on the optimal solution value. A straightforward dynamic
programming recursion which has time complexity O(nkb) and space complexity O(k?b),
can be stated as follows. Denote by function g;(a,f) fori = 1,...,n; £ =1,...,k; a =
0,...,b, the optimal solution value of the following problem:

gi(a,f) := min{z;zl wT; E;lejxj = a; Z;-:l z; =4 xz;€{0,1},j=1,.. .,i} (8)

One initially sets go(a,¥) := +oo for all £ = 0,...,k; a =0,...,b, and then g4(0,0) := 0.
Then, for ¢ = 1,...,n the entries of g; can be computed from those of g;_; by using the

10

formula
gi*l(a'a E)
gi1(a—pi,l—1)+w; ifl>0; a>p;

(9)

The optimal solution value of E-kKP is given by max,—o . s{a : gn(a, k) < c}, whereas
the optimal solution value of kKP is max,—o, . pe=0,. k{a : gn(a,?) < c}.

g:(a,£) := min {

To achieve the stated time and space complexities we observe that only entries in
gi—1(a,?) need to be stored in order to derive g;(a,). However to determine the optimal
solution vector we must save some previous entries as follows. Every modified entry g;(a, £)
is generated from a previous entry g;_1(a — p;, £ — 1) by adding a new item 7 in recursion
(9). Hence associated with g;(a,£) we store a pointer to the added item and a pointer to
the previous entry in g;_;. In this way, the representation of the solution vector can be
seen as a directed rooted tree with nodes corresponding to items. Some nodes are linked to
a function entry in g; while the nodes on the path from the root of a tree to such a linked
node represent the corresponding set of chosen items. Clearly, each of the kb function
entries may contain a list of at most k items which yields the O(k2b) space bound.

After each iteration of (9) we also have to release the nodes in g;_; which are not
anymore part of a solution vector. Thus we keep a counter in each node indicating the
number of immediate child nodes. Moving from stage ¢ — 1 to ¢ each counter associated
with g;_1(a,?) is decreased by one. If the counter reaches 0, the node is put back in the
pool of unused memory (organized as a garbage list) and its predecessor’s counter is also
decreased with the obvious recursive continuation.

To get the time complexity of O(nkb) observe that the recursion (9) demands nkb op-
erations, and at each update only one counter is increased in some node. Hence, totally we
can also have at most nkb decrements of counters (and thus freeings of nodes) throughout
the algorithm.

By using the dynamic programming scheme above, we can devise a simple FPTAS
for KP and kKP, referred to as FPTAS,xp. Let zfI be the solution value returned by
heuristic H2. Scale the item profits space by replacing each value p; by ¢; := [%-‘, where
¢ is the accuracy required, and set the upper bound b for the new instance to 2 [k/e]| + k
(this upper bound is correct since 2z is an upper bound for the original instance and the
optimal solution values before and after round up differ by at most k). Then apply the
above dynamic programming scheme, and return as heuristic solution the optimal solution

for the scaled profits. It is easy to see that

Proposition 7 FPTASykp is an FPTAS for KP which runs in O(nk?/¢) time and re-
quires O(n + k3/¢) space.

Proof. The time and space requirements are easily computed by plugging in the value of b
in the time and space requirements of the dynamic programming scheme. We still have to
show that the solution value returned is within (1 — &) of the optimum. Let T* and T* be
an optimal item set for the original and for the scaled problem, respectively, and observe

11

that 7* is a feasible solution of the original problem. Using the notation ¢(S) := Y jes G
we further observe that ¢(7™) > ¢(7*). Using the fact that

2He 2He
— (G =1 <pi<——q

we obtain that

* T ZH& * T T zH‘S T *
p(T)_p(T)ST(Q(T)+|T‘_Q(T))ST\T|§52. O

It is straightforward to check that the above scheme works for E-kKP as well.

Note that the scheme above may further be improved by using more complicated tech-
niques as given in [11]. However, it is beyond the scope of this paper to elaborate all the
details presented in that paper.

5 Approximation algorithms for £SSP

As kSSP is a special case of kKP, all the approximation algorithms presented in the
previous section are suited for £SSP as well. In fact, by exploiting the fact that weights
and profits coincide, it is possible to derive considerably improved approximation schemes
for this latter problem. The key result for the derivation of such algorithms is Lemma 8
below.

All the algorithms presented in this section split the set of items into two subsets.
More precisely, let £ € (0,1) be the accuracy required: the set of small items S contains
the items whose weight does not exceed ec, whereas the set of large items L contains the
remaining ones, whose weight is larger than ec. The first obvious observation is that at
most ¢ := min{[1/e] — 1, k} large items can be selected by a feasible solution. On the
other hand, an accuracy of € in the solution of the subinstance defined by the items in L
is sufficient to guarantee the same accuracy for the overall instance, as explained in the
sequel.

We start by describing a simple linear-time greedy procedure SUB(c/, k') which returns
a feasible solution of cardinality at most k&' for the subinstance defined by the small items
and capacity ¢':

Procedure SUB(c, k'):
1. Let T be the set of the k' items in S with largest weight.
2. If w(T) < ¢, return T.

3. Otherwise, remove iteratively an arbitrary item from 7" until w(7) < ¢ and then
return 7.

12

A large item heuristic for kSSP is a heuristic algorithm structured as follows. For each
value ¢' € {0,...,¢} the algorithm determines a heuristic solution as L(¢') U S(¢'), where
L(¢) is a solution of cardinality ¢ for the subinstance defined by the large items, while
S(¢') is the solution returned by SUB(c — w(L(¢')),k — ¢'). Then the algorithm outputs
the best solution among the ¢ + 1 computed, of value, say, 2. For ¢ = 0,...,¢, let
2H(¢") ;== w(L(¢)) and denote by z*(¢') the value of the best solution of cardinality ¢’ for
the £SSP subinstance defined by the large items.

Lemma 8 Let H be a large item heuristic for kSSP. If z2(¢') > (1 — &)z*(¢") for all
0 €H0,...,0}, then H is a (1 — €) approzimation algorithm.

Proof. Let ¢* be the number of large items in an optimal solution of £SSP. Let 27 denote
the total weight of these ¢* large items and z§ the weight of the corresponding small items,
respectively. Of course, z* = 2] + 2§ and z} < 2*(€%).

Consider the iteration of H for which ¢' = ¢*. If procedure SUB(c — w(L(£*)), k — £*)
performs Step 3., i.e. some small items must be removed in order to satisfy the capacity
constraint, then

>)+ w(SE) > (1—e)e>(1—¢)z.

Otherwise, procedure SUB(c — w(L(¢*)),k — ¢*) stops at Step 2., i.e. the k — £* largest
small items do not completely fill the capacity. In this case, z§ < w(S(¢*)), and hence
> 2 +w(SWE) > (1 —e)z" () + 25 > (1 —e)z) + 25 > (1 —€)2". O

As an illustration of the above result, we present a simple 3/4 approximation linear-
time heuristic H1.

Algorithm Hi:
1. Initialize L := {j € N : w; > ¢/4}, S:={j € N : w; < ¢/4}, and £ := min{3, k, |L|}.
2. Let H(0) be the solution returned by SUB(c, k).

3. Let H(1) be the solution defined by the union of the largest item ¢ in L and the
solution returned by SUB(c — w;, k — 1).

4. If ¢ < 2 go to 6. Otherwise, let 7, j be the two largest items in L with weight < ¢/2.
If two such items exist let L(2) := {i,j}, otherwise let L(2) := 0.
Let h be the smallest item in L and k be the smallest item in L with weight > ¢/2.
If such an item k exists and w(L(2)) < wy, + wy < ¢, update L(2) := {h, k}.
If L(2) # 0, let H(2) be the solution defined by the union of L(2) and the solution
returned by SUB(c — w(L(2)), k — 2), otherwise let H(2) := 0.

5. If £ < 3 go to 6. Otherwise, let L(3) be the set of the three smallest items in L. If
w(L(3)) < ¢, let H(3) be the solution defined by the union of L(3) and the solution
returned by SUB(c — w(L(3)), k — 3), otherwise let H(3) := 0.

13

6. Return the best solution among H(¢'), ¢’ =0,1,2, 3.
Proposition 9 Hi is a 3/4 approzimation algorithm for kSSP and runs in O(n) time.

Proof. The running time bound follows from the fact that SUB can be performed in linear
time by standard partial-sorting algorithms. To complete the proof, one can readily check
that for every ¢/ = 0,1, 2,3 the large items selected have an overall weight at least equal
to 3z*(¢') /4. Then the claim follows from Lemma 8. O

The best known PTAS for SSP requiring only linear storage is due to Fischetti [4], and
can be briefly described as follows. For a given accuracy ¢, the set of items is subdivided
into small and large items as defined above. Furthermore, the set L of large items is
partitioned into a minimal number of ¢ buckets By, ..., B, such that the difference between
the smallest and the biggest item in a bucket is at most ec. Clearly, ¢ < 1/e —1. A g-tuple
(11,...,14) is called proper if there exists a set LCLwith|LNB|=v (i=1,...,q)
and w(L) < ¢. Then a procedure LOCAL returns for any proper g-tuple a subset L C L
with |[LN By =v; (i=1,...,q) and w(L) < ¢ such that w(L) > (1 —&)c or w(L) > w(L)
for each L C L with [LN B;| = v; (i = 1,...,q) and w(L) < ¢. Procedure LOCAL is
completed by adding small items in a greedy way. Since the g¢-tuple which corresponds
to an optimal solution is not generally known, all possible values for vy,..., v, are tried.
Therefore, only the current best solution value produced by LOCAL has to be stored. Any
call of LOCAL can be done in linear time and an upper bound for the number of proper ¢-
tuples is given by 2 [\/E] — 3 which gives a running time bound of O(nZ[\/m]_z), whereas
the memory requirement is only O(n), see [4]. In fact, a more careful analysis shows that
the time complexity is also bounded by O(nlogn + ¢(1/¢)), where ¢ is a suitably-defined
(exponentially growing) function. Moreover, a (simplified) variant of the scheme runs in
O(n + (1/¢)log?1/e + ¢(1/¢)), but requires O(n + 1/¢) space.

It is easy to adapt the above scheme and its variant to kSSP. Since the number of large
items in a set L which corresponds to (v1, .. ., V) 18 just v := Y1, v;, we only have to
discard the tuples such that v > £ and to replace the call to a greedy algorithm in LOCAL
by a call to SUB(c — w(L), k — v). Time and storage requirements remain the same. Let
PTASyssp be the resulting scheme and PTAS) gsp its variant. The following propositions
follow immediately from the results of [4] and Lemma 8.

Proposition 10 PTAS,ssp is a PTAS for kSSP which runs in O(min{nﬂ\/l/d_g,
nlogn + ¢(1/¢)}) time and requires linear space.

Proposition 11 PTAS,cqp is a PTAS for kSSP which runs in O(n + (1/¢)log?1/e +
#(1/€)) time and requires O(n + 1/¢) space.

We conclude this section by showing an exact algorithm and a FPTAS for £SSP. At
first a special dynamic programming algorithm is presented.

14

Let g;(d) for i = 1,...,n; d = 0,...,c be the optimal solution value of the following
kSSP defined on the first ¢ items and by knapsack capacity d:

gi(d) := min {Z Y wiry =d; Yoy =4 x;€{0,1},5=1,.. .,i} (10)

where g;(d) := n+1 if no solution satisfies the two constraints. One initially sets go(0) := 0,
and go(d) :=n+1ford=1,...,c. Then, for i =1,...,n the entries of g; are computed
from those of g; ; by using the recursion

R i—1(d)
gi(d) = mm{ Zi_l(d —w;)+1 ifd>w; (11)

and the optimal solution value of kSSP is given by z* = maxg—o,. {d : go(d) < k}. This
means that we compute for every reachable subset value the minimum number of items
summing up to this value. The recursion has time complexity O(nc) and space complexity
O(kc), improving by a factor of k over the recursion for kK KP. Indeed, we solve the problem
in O(nc) for all cardinalities ' < k and all capacities ¢’ < c.

Unfortunately, we could not find a way to construct an FPTAS directly from this
dynamic programming scheme. However, most classical FPTASs can be extended to the
kSSP by “expanding by a factor of £”. In the following we will briefly explain such an
approach, called FPTASissp.

Given the accuracy e, we partition the item set into big and small items as above,
consider the subinstance defined by the big items in L, and perform the dynamic pro-
gramming scheme (9) on intervals instead of all possible weight sums. Therefore, we let
£:=min{[1/e] —1,k} and partition the range of values [0, c| into [1/e] intervals of equal
length ce. Instead of determining every reachable weight sum in [0, ¢] we keep at most 2 /¢
values for each interval. In particular we consider a new item ¢ by adding w; to all currently
stored weight sums, but then keep only the smallest and the largest weight sums for every
interval and for every cardinality ¢ = 1, ..., ¢ of the associated subset. The corresponding
modification of the recursion (9) is easy to implement.

After performing the dynamic programming algorithm on the large items, consider for
each ¢/ = 0,...,/¢ the item set L(¢') corresponding to a value in a dynamic programming
interval with largest weight among all such sets of cardinality ¢, and complete this partial
solution by adding the items returned by SUB(c — w(L(¢')),k — £'). The final solution is
the best among these.

It is shown by induction in [9] that this yields an FPTAS. In fact, one can show that
after considering a new item, for every weight sum in an optimal dynamic programming
scheme there exist an upper and a lower bound in the above dynamic programming array
which differ by at most ce.

Obviously, the size of the above dynamic programming array is O(k/e) and each entry
contains a subset of at most ¢ items. This yields the following improvement on Proposi-
tion 7.

15

Proposition 12 FPTASyssp is an FPTAS for kSSP which runs in O(nf/c) time and
requires O(n + £2/€) space. O

Assuming the more natural case of £ < 1/e, one has an improvement by a factor of &k in
both time and space complexity. Again, this scheme may further be improved by using
more sophisticated techniques e.g. from [9], but presenting all the details is beyond the
scope of this paper.

Acknowledgements:

The hospitality of the Universities of Bologna and Graz are gratefully acknowledged. The
work of the first author was partially supported by CNR and MURST, Italy. The work
of the fourth author was partially supported by the EC Network DIMANET through the
European Research Fellowship No. ERBCHRXCT-94 0429.

References

[1] N. Blum, R.W. Floyd, V. Pratt, R.L. Rivest, R.E. Tarjan, “Time Bounds for Selec-
tion”, Journal of Comput. Syst. Sci. 7 (1973), 448-461.

[2] R.G. Downey, M.R. Fellows, “Fixed-Parameter Tractability and Completeness I: Basic
Results”, STAM Journal on Computing 24 (1995), 203—-225.

[3] R.G. Downey, M.R. Fellows, “Fixed-Parameter Tractability and Completeness II: On
Completeness for W1]”, Theoretical Computer Science 141 (1995), 109-131.

[4] M. Fischetti, “A New Linear Storage, Polynomial-Time Approximation Scheme for
the Subset-Sum Problem”, Discrete Applied Mathematics 26 (1990), 61-77.

[6] A.M. Frieze, M.R.B. Clarke, “Approximation Algorithms for the m-Dimensional
0-1 Knapsack Problem:Worst-Case and Probabilistic Analyses”, FEuropean Journal
of Operational Research 15 (1984), 100-109.

[6] G.V. Gens, E.V. Levner, “Fast Approximation Algorithms for Knapsack Type Prob-
lems”, in K. Iracki, K. Malinowski, S. Walukiewicz (eds.) Optimization Techniques,
Part 2, Lecture Notes in Control and Information Sciences 23 (1980), Springer, Berlin,
185-194.

[7] O.H. Ibarra, C.E. Kim, “Fast Approximation Algorithms for the Knapsack and Sum
of Subset Problems”, Journal of the ACM 22 (1975), 463-468.

[8] H. Kellerer, U. Pferschy, “A New Fully Polynomial Approximation Scheme for the
Knapsack Problem”, Technical Report, Faculty of Economics, University Graz, sub-
mitted.

16

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

H. Kellerer, R. Mansini, U. Pferschy, M.G. Speranza, “An efficient fully polynomial
approximation scheme for the subset-sum problem”, Technical Report, Faculty of Eco-
nomics, University Graz, submitted, see also Proceedings of the 8th ISAAC Sympo-
stum, Springer Lecture Notes in Computer Science 1350, 394-403, 1997.

B. Korte, R. Schrader, “On the Existence of Fast Approximation Schemes”, Nonlinear
Programming 4 O.L. Mangasarian, R.R. Meyer, S.M. Robinson (ed.), Academic Press
1981, 415-437.

E.G. Lawler, “Fast Approximation Algorithms for Knapsack Problems”, Mathematics
of Operations Research 4 (1979), 339-356.

M.J. Magazine, O. Oguz, “A Fully Polynomial Approximation Algorithm for the 0-1
Knapsack Problem”, European Journal of Operational Research 8 (1981), 270-273.

S. Martello, P. Toth, Knapsack Problems, J. Wiley & Sons, Chichester, 1990.

N. Megiddo, A. Tamir, “Linear Time Algorithms for some Separable Quadratic Pro-
gramming Problems”, Operations Research Letters 13 (1993), 203-211.

G.L. Nemhauser, L.A. Wolsey, Integer and Combinatorial Optimization, J. Wiley &
Sons, New York, 1988.

0. Oguz, M.J. Magazine, “A Polynomial Time Approximation Algorithm for the
Multidimensional 0-1 Knapsack Problem”, Working Paper, University of Waterloo,
1980.

U. Pferschy, D. Pisinger, G.J. Woeginger, “Simple but Efficient Approaches for the
Collapsing Knapsack Problem”, Discrete Applied Mathematics 77 (1997), 271-280.

D. Pisinger, “Strongly Correlated Knapsack Problems are Trivial to Solve”, Proceed-
ings CO96, Imperial College of Science, Technology and Medicine, London 27-29
March, 1996.

D. Pisinger, P. Toth, “Knapsack Problems”, in D.Z. Du, P. Pardalos (eds.) Handbook
of Combinatorial Optimization (1998), Kluwer, Norwell, 1-89.

M.E. Posner, M. Guignard, “The collapsing 0-1 knapsack problem”, Mathematical
Programming 15 (1978), 155-161.

S. Sahni, “Approximate Algorithms for the 0/1 Knapsack Problem”, Journal of the
ACM 22 (1975), 115-124.

F. Vanderbeck, “Computational Study of a Column Generation Algorithm for Bin
Packing and Cutting Stock Problems”, TR-14/96, University of Cambridge, 1996.

17

