Budgeting with Bounded
Multiple-choice Constraints

David Pisinger
Dept. of Computer Science, University of Copenhagen,
Universitetsparken 1, DK-2100 Copenhagen, Denmark

March 1998

Abstract

We consider a budgeting problem where a specified number of projects from
some disjoint classes has to be selected such that the overall gain is largest possible,
and such that the costs of the chosen projects do not exceed a fixed upper limit.
The problem has several application in government budgeting, planning, and as
relaxation from other combinatorial problems.

It is demonstrated that the problem can be transformed to an equivalent Multiple-
choice Knapsack Problem through dynamic programming. A naive transformation
however leads to a drastic increase in the number of variables, thus we propose
an algorithm for the continuous problem based on Dantzig-Wolfe decomposition:
A master problem solves a Continuous Multiple-choice Knapsack Problem know-
ing only some extreme points in each of the transformed classes. The individual
subproblems find extreme points for each given direction, using a median search
algorithm.

An integer optimal solution is then derived by using the dynamic programming
transformation to a Multiple-choice Knapsack Problem for an expanding core. The
individual classes are considered in an order given by their gradients, and the trans-
formation to a Multiple-choice Knapsack Problem is performed when needed. In
this way, only a dozen of classes need to be transformed for standard instances from
the literature.

Computational experiments are presented, showing that the developed algorithm
is orders of magnitude faster than a general LP/MIP algorithm.

Subject Classification:
Programming, integer, algorithms: Dantzig-Wolfe decomposition;
Dynamic programming: Bounded Multiple-choice Knapsack Problem;

1 Introduction

Consider a budgeting problem with £ classes Ny, ..., Ny of projects. 1t is demanded that
at most (resp. at least or ezxactly) a; projects should be selected from class N;. Each

D. Pisinger / Budgeting with Bounded Multiple-choice Constraints 2

project j € N; has an associated gain (profit) p;; and cost (weight) w;; and the problem
is to choose the appropriate number of projects from each class such that the largest gain
is obtained without exceeding a limit ¢ on the cost. Thus the Budgeting Problem with
Bounded Multiple-choice Constraints (BBMC) may be formulated as

k
maximize 2z = Z Z DijTij
i=1 jEN;
k
subject to Z Z Wi 45 S C, (1)
i=1 jEN;
Z Tij <a, t€L,
JEN;
> xij>a;, i€G,
JEN;
Z Tij = Gy, 1 € F,
JEN;

.IijE{O,l}, 1=1,...,k, 7€ N,.

The sets L, G, E must be disjunctive and L UG U FE = K where K = {1,...,k}. All
coefficients p;;, w;;, and c are positive integers, and the classes Ny, ..., Ny are mutually
disjoint, class N; having size n;. The total number of items is n = 2% n;. If we relax
the integrality constraint z;; € {0,1} in (1) to 0 < z;; < 1 we obtain the Continuous
Budgeting Problem with Bounded Multiple-choice constraints (CBBMC).

To avoid unsolvable or trivial situations we assume that

Yoow<e< Y Ti+Y, > wi (2)

icEUG icEUL i€G jEN;

where v; is the weight sum of the a; lightest items in class N; and v; is the weight sum of
the a; heaviest items in the class.

The Budgeting Problem with Bounded Multiple-choice constraints is a generalization
of the Multiple-choice Knapsack Problem in which E = K and a; =1fort=1,...,k. If
each class has exactly two items, where one of these has (p;1,w;) = (0,0), i =1,...,k
and additionally a; = 1 for each class K = F, the problem (1) corresponds to the 0-1
Knapsack Problem (KP). The continuous relaxation of KP will be denoted by CKP.

The BBMC has a wide variety of applications in budgeting, where a number of projects
from each class N; has to be selected, such that the overall gain is largest possible, and
such that the costs demanded for the chosen projects do not exceed a fixed upper limit.
It may be applied in Sequencing and Scheduling Problems as well as in Strategic Produc-
tion Planning. BPBMC has several application in the social system, as it may be used
for Hospital Planning with production constraints in each department, or Government
Budgeting with demands in different sectors. Moreover BBMC contains several classical
Knapsack Problems as special cases, among which we should mention the 0-1 Knapsack
Problem, Subset-sum Problem, Bounded Knapsack Problem, Multiple-choice Knapsack

D. Pisinger / Budgeting with Bounded Multiple-choice Constraints 3

Problem. So all applications for these problems (see e.g. [6], and [8]) are immediately
adaptable to this general model.

BBMC is NP-hard as it contains KP as a special case. In this paper we will show
that BBMC may be transformed to an ordinary MCKP through dynamic programming,
which then is solved by use of a minimal-core dynamic programming algorithm from [8].

Section 2 will present the transformation of BBMC to MCKP, and show several fun-
damental properties for MCKP. Section 3 shows how Dantzig-Wolfe decomposition may
be used to solve the continuous BBMC without transforming classes to MCKP. Finally
Section 4 describes how gradients in each class may be used to define a core of the prob-
lem, and how the same gradients may be used for reductions of states in a dynamic
programming algorithm. Some computational experiments are presented in Section 5.

A first version of this paper was presented at ATIRO’96 [9].

2 Transformation to MCKP

Every BBMC can be put on a form with equalities in all the cardinality constraints:

k
maximize 2z = Z z DijZsj

i=1 jEN;
k
subject to Z Z wi;Ti; < c, (3)
i=1 jEN;
inj:ai, izl,...,k,
JEN;

xijE{O,l}, 1=1,...,k, j€N,.
The transformation is a stepwise modification of the constraints and item profits/weights:

step 1 A class V; with a constraint }°;c n, zi; > a; is modified to a constraint of the form

Z xij Sn—ai (4)

JEN;

by adding >7;cn, pij to the objective function and subtracting 3¢y, wi; from the
capacity c¢. In addition, all items j € N; change sign to (—p;j, —w;;). In this way
we have changed the problem of choosing at least a; items to the problem of not
choosing at most n — a; items.

step 2 A class N; with a constraint ;¢ n, Ti; < a; is easily modified to equality constraint

Z xij = Q; (5)

JEN;

by adding a; new items to the class which have profit and weight equal to zero.

D. Pisinger / Budgeting with Bounded Multiple-choice Constraints 4

step 3 Negative profits and weights are handled by adding a sufficiently large constant to
all items in a class IV;. Let pj® = minjcn; p;; and wi® = minjen; w;;. Replace all item
profits and weights by (pi; —p}", wi; —w;™). This does not affect the optimal solution
since a specific number of items is chosen in each class. We must however add the
constant a;p]" to the objective function, and subtract a;,w;" from the capacity for
each class N;.

In the rest of the paper we will assume that BBMC is on the standard form (3).

A BBMC on the standard form may be transformed to an equivalent MCKP as fol-
lows: In each class N; we construct all undominated sets of a items through dynamic
programming for o« = 1,...,a;. Thus let f,i,a(é); h=1,...,n;a=1,...,a;;¢=0,...,c
be an optimal solution to the following cardinality constrained knapsack problem defined
on the first h items of class NV;, and with exactly a chosen items:

L (¢ Eh:l PijZij - Eh:1 Wi Zij = C; Ehﬂ Tij = o
: = J Je) J Jjlij) 244 j ;
fh,a(c) max{ Ti; € {0,1}’ i=1,....h . (6)

Initially we set fg,o(é) = 0 for all ¢ = 0,...,c, while subsequent values of f};,a are found
by using the recursion:

fi) = { fi14(€) ifa=0o0ré—wp<0,)

We may define an equivalent MCKP by for each class N;, and for each weight 7 =0,...,¢
setting (see Fig. 1):

wij = -7’ ﬁz] = 'rZL.;,ai(j)) (8)
In this way we obtain a MCKP with classes N;, and the problem is to maximize the

profit sum by choosing exactly one item from each class without exceeding the capacity
constraint [6]:

k
maximize 2z = Z Z DijTij
=1 jeN,
k
subject to Y > w;;T; < ¢, 9)
=1 jeN,
oz =1, i=1,...,k,
JEN;

Ei]‘E{O,l}, izl,---,k,]ENZ

Class N; has size m; = ¢, thus the transformation runs in O(n;a;c) in each class of BBMC,
using totally O(c ¥ , nja;) time. There are c items in each class of (9), so the MCKP
can be solved in O(kc?) through dynamic programming [8]. This gives a total solution
time for BBMC of O(c XF_, nja; + kc?).

D. Pisinger / Budgeting with Bounded Multiple-choice Constraints 5

Figure 1: Transformation N; to N;. Each entry in N; corresponds to the sum of a; items
from N;, dominated entries are deleted. In the present example a; = 4

2.1 Properties of MCKP and BBMC

Having transformed the BBMC to an equivalent MCKP, well-known properties of the
latter problem can be used to further restrict the solution space. We have:

Definition 1 If two items 7 and s in the same class N; satisfy that
Wy < Wi and Py > P, (10)

then we say that item r dominates item s. Similarly if some items r,s,t € N; with
Wi, < Wi < Wy and p;,. < p;; < Dy satisfy

pit - pi'r‘ > pis - pir (11)
Wit — Wip Wis — Wiy

then we say that item s is continuously dominated by items r and ¢.

Proposition 1 (Sinha and Zoltners [10]) Given two items r, s € N;. If item r dominates
item s then an optimal solution to MCKP with Z,;, = 0 exists. If two items r,t € N;
continuously dominate an item s € N; then an optimal solution to CMCKP with Z;; = 0
exists.

Proposition 2 (Sinha and Zoltners [10]) An optimal solution to CMCKP satisfies the
following: (a) The solution has at most two fractional variables Zy, and Zpy. (b) If it has
two fractional variables they must be in the same class N;.

To characterize solutions to CMCKP further, let us consider some results from 0-1
Knapsack Problems. Balas and Zemel [1] showed that the CKP may be solved in O(n)
through a partitioning technique which seeks a parameter A such that when we partition
the items {1,...,n}in S ={j:pj/w; > A}, T ={j : p;j/w; = A} and U = {j : pj/w, <
A} then Y, w; < ¢ < ¥ csurw;. The objective value of the continuous solution is then
2jes P+ Ae— >jes wy).

D. Pisinger / Budgeting with Bounded Multiple-choice Constraints 6

w

Figure 2: A class N;, where the white items are continuously dominated by the black
items. The undominated items R; (black) form the upper convex boundary of ;.

(~M 1) | o £ (1)

> W

Figure 3: Projection of (w;;,p;;) € R; on (=, 1). In this case M; = {¢;,;}, &; is the
lightest item in M;, and ; is the heaviest item in M.

Now for the MCKP assume that all continuously dominated items have been removed
according to Proposition 1, leaving back the undominated items R; (Fig. 2). Then due to
the convexity of each class one can see the continuous problem as a search for a A such
that

k k
Zm@ <c< Zwiwi (12)
i=1 i=1
where _ '
¢; = argmin, g7 W;;, Y; = argmax; ;. Wiy, 1=1,...,k 13

M; = {j € R; : (p;; — M0y;) = max,g. Dy —)\w,-g)}, i=1,...,k

Thus M; is the items in R; which have the largest projection of (W5, D;;) at (—=A,1) and
¢; resp. 1; are the lightest /heaviest among the items in M; (Fig. 3). The objective value
of the CMCKP is then defined as

k k
covoe = 3 P+ A (- Zm@> | (14)

=1 i=1

We have previously seen that the transformation of BBMC to MCKP is expensive,
thus the formulation (12) to (13) cannot directly be used for solving BBMC. For a given

D. Pisinger / Budgeting with Bounded Multiple-choice Constraints 7

value of) it is however easy for each class N; to find the corresponding extreme point in
N; which has the largest projection on (=), 1). The items in M; are determined by

m@x(ﬁw — /\wd) = max (Z Dij — A Z wij> = max Z(pzj —)\UJ”) , (15)

LER; BCN;,|Bl=a; jEB jeB BCN;,|Bl=a; jeB

i.e. an extreme point (P, Wi) € N; in direction (=), 1) is the sum of the a; items in N;
which have largest projection on (—\,1). To find the a; items in N; having the largest
projection, it is sufficient to order the items in N; according to

IL;;(A) = pij — Aw;j , (16)

choosing the qa; first entries in this list.

To find the extreme points with smallest/largest weights sums, i.e. (P4, Wig;) TESP.
(Diy;» Wiy;) We simply use the same ordering (16), breaking ties such that the smallest
resp. largest weights are chosen first. Using a median search algorithm to find the a; first
items with the given ordering, the extreme points in N; can be found in O(n;) time.

Let us end this section with a characterization of solutions to CBBMC:

Proposition 3 There exists a LP-optimal solution which satisfies the following: (a)
There are zero or two fractional variables. (b) If there are two fractional variables then
they belong to the same class N.

Proof Transform the BBMC to an equivalent MCKP through dynamic programming.
continuously dominated states will never lead to an LP-optimal solution, thus they may
be removed. Solve the continuous MCKP. Due to Proposition 2, zero or two decision
variables in CMCKP will be fractional. If there are zero fractional variables, then there
will neither be any fractional variables in the LP-optimal solution to BBMC.

Thus assume that there are two fractional variables in the LP-optimal solution to
MCKP. The variables will be found in the same set Nf. Let Ty, and Ty, be those two
variables and let X, = {z¢,,,..., xf,raf} resp. Xs = {Zfs.5---, xf,saf} be the variables in
BBMC which correspond to the two chosen states in MCKP. Obviously |X,| = |X,| = ay
and X, C Nf, X, C Nf.

Assume that the items are ordered according to their projection (16), and let v be the
projection of the last item x firay- Those items z,, which have a larger projection than
~ will be present in both sets and thus z,, = 1 in an optimal solution to CBBMC. The
remaining items will all have the same projection v. Then an LP-optimal solution may be
constructed by repeatedly exchanging an lighter item z,, with a heavier item z,,. When
two items are met where an exchange will lead to an overfilled knapsack, these are the
fractional variables, and the continuous solution is a convex combination of z,, and zs,
such that z,, + x5, = 1 and such that the total weight is applied. O

D. Pisinger / Budgeting with Bounded Multiple-choice Constraints 8

3 Dantzig-Wolfe decomposition for the CBBMC

The continuous BBMC can be solved through a dynamic programming transformation to
MCKP. The continuous MCKP can then be solved in linear time (measured in the number
of items in the transformed classes) by applying the algorithms by Dyer [4] or Zemel [11].
Since the number of items introduced by the dynamic programming transformation is
Y% 7 = ke, the CMCKP will be solved in O(kc) and thus the continuous BBMC is
solved in O(c Y°F_, n?+kc) when we take into account the time used for the transformation.
Better solution times can be obtained through Dantzig-Wolfe decomposition (Dantzig
and Wolfe [3]). A master problem solves a continuous MCKP, while the individual sub-
problems find extreme points for each class N;. The algorithm is a kind of binary search
for the parameter A which satisfies (12) to (13).
As seen in the proof of Proposition 3, we know that A will correspond to a quotient
)\ = g — Dir — Dis

ﬂ Wiy — Wis (17)

where 7, s are two items in the same class N;. If P, W are the largest profit resp. weight
of an item, then we know that A\ = % should be found among values 0 < o < P and
1 < B < W, thus we may use binary search to determine the optimal value of . Let
initially [A1, As] = [0, P] be the interval in which A should be found and consider the

following algorithm for the master problem:

step 1 Let A = % be a rational number in the interval [A;, As]. Such a value may be derived
efficiently using the function small rational_between from [5]. Derive ¢;,1); and
M; as given by (13) in each class by solving the subproblem (15). If the constraint
(12) is satisfied, we may stop since A defines the optimal solution.

step 2 Let A = (A, +Ay)/2. For each class N; derive ¢;,1; and M; as given by (13) for this
value of A. If constraint (12) is satisfied, then we may terminate with an optimal
value of \. Otherwise, if ¥F W;s, > ¢ we know that) is too small thus setting
A1 = A. In a similar way, if Zle Wiy, < ¢ we set Ay = A. Go to step 1.

In order to analyze the time complexity of the algorithm, we have previously noticed
that there are O(PW) possible values of A = «/f. A binary search among these values
will demand O(log(PW)) iterations of the master problem. Solving the subproblems
takes ¥ O(n;) = O(n) time for each value of), thus the whole algorithm runs in
O(nlog P + nlog W) which is polynomial in the input size.

The decomposition shows that we are able to solve the continuous BBMC without
knowing the items in each class N, and in particular we do not need to transform N; to
N;. Indeed, we do not even need to know all continuously undominated items (extreme
points) as these are generated “on the run” in O(n;) time. The solution times for the
continuous BBMC have been sketched in Figure 4. Problems with n; = 100 items in each
of the k classes can be solved in a couple of seconds, and the solution times seem to grow
linearly with the size of the problem.

D. Pisinger / Budgeting with Bounded Multiple-choice Constraints 9

k| time | logtime log time
10 | 0.004 -2.40
30 | 0.01 -2.00
100 | 0.03 -1.52 11
300 | 0.09 -1.05 | log
1000 | 0.32 -0.49

3000 | 1.05 0.02

10000 | 3.61 0.56

30000 | 14.78 1.17

100000 | 48.79 1.69 B

Figure 4: Solution times (in seconds) for solving the continuous problem through
Dantzig-Wolfe decomposition. The graph depicts log time as a function of log k for un-
correlated instances with n; = 100 items. Profits and weights are randomly distributed
in [1,1000], and a; is randomly distributed in [1,20]. Times are average values of 100
instances. The solution times seem to grow linearly with k£ as o = 1.0 and # = —3.4, thus
the solution times can be approximated by ¢(k) = 10°k® = 0.000398k

4 Solving BBMC to integer optimality

In the previous section we saw that Dantzig-Wolfe decomposition may be used to solve
the continuous BBMC efficiently. Obtaining an integer solution is however more difficult,
since this step somehow demands the transformation (8) of classes N; to N;.

If a core is used for solving the transformed BBMC, only the classes in the core need
to be transformed according to (8) and hopefully the size of the core is much smaller than
k. We will apply the core algorithm presented in Pisinger [8]. The algorithm is based on
dynamic programming, where the search is focused on a small number of classes where
there is a large probability for finding an optimal solution. Since it is difficult to say in
advance how large a core should be chosen, the algorithm initially start with one class
Ny in the core, and gradually expands the core according to some greedy rules. These
greedy rules are based on the concept of forward and backward gradients \;', \; defined
as follows:

Af = max M, i # f, (18)
JEN;, Wi >wip, Wij — Wip,
o= _min 2w TPy i # 1, (19)

JEN:, Wij<wy, Wib; — Wij

where item b; € N, is the continuously optimal choice in the set, and class Nf is the
fractional class with up to two fractional variables.

The forward gradient A is a measure of the largest possible gain per weight unit by
choosing a heavier items in class N; instead of the continuously optimal item b;. Similarly
the backward gradient); is a measure of the smallest possible loss per weight unit by

D. Pisinger / Budgeting with Bounded Multiple-choice Constraints 10

w

Figure 5: Gradients A\, \; in class N;.

choosing a lighter item in class N;. The gradients can be derived efficiently without
transforming classes N; to N;. Again we use the technique of deriving extreme points
from previous section using an iterative algorithm to derive \;:

Set * = 0.

repeat
Set A\;F = *.
Find an extreme point (P, W) € N; in direction A = \] according to (15).
Set A* = (P —Dy,)/ (W — Wyp,).

until (\ = *)

A similar approach may be used for A;, where we iterate from the initial value \; = oc.

Now the main algorithm for the exact solution of BBMC runs as follows: First, we
derive the gradients for all classes, and define the core as C = N, where class f is the
fractional class. In each iteration we choose the class with largest A\ resp. smallest \;
and add it to the core. The chosen class N; first must be transformed to the corresponding
set N;, and then all combinations are enumerated through dynamic programming, using
the recursion from [8].

The gradients are also used for fathoming states in the dynamic programming. Let
N, be the class with smallest \; among the classes not yet enumerated, and let N; be
the class with largest value \]. By this assumption we get the following upper bound on
a state in the dynamic programming with profit sum 7 and weight sum p:

T+ (- if p<e,

u(m, p) = { (20)

T+ (c—p)A, if u>ec

The state is fathomed if |u(m, u)| < 2z, where z is the so far best solution found in the
dynamic programming recursion. For conveniency we set A\ = 0 and A\] = oo when all
classes have been enumerated to fathom states which cannot be improved further.

5 Computational Results

To test the actual performance of the presented BBMC algorithm, it has been implemented
in C. The algorithm assumes that BBMC is on the standard form (3).

D. Pisinger / Budgeting with Bounded Multiple-choice Constraints 11

Table I: Time used for solving continuous problem. Average of 100 instances
Uncorrelated | Weakly corr. Subset-sum Zig-zag
k n; | R:100 1000 | R:100 1000 | R:100 1000 | R:100 1000
10 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
100 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1000 10 0.03 0.03 0.04 0.04 0.02 0.02 0.04 0.04
10000 10 0.38 0.37 0.47 045 024 0.24 0.47 048
10 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
100 100 0.03 0.03 0.04 0.03 0.01 0.01 0.03 0.04
1000 100 0.32 0.33 0.38 0.38 0.14 0.15 0.34 0.39
10000 100 3.53 3.61 4.08 4.02 1.56 1.56 3.80 4.32

Table IT: Number of sets which have been enumerated (core size). Average of 100 instances

Uncorrelated Weakly corr. Subset-sum Zig-zag

k n; | R:100 1000 | R:100 1000 | R:100 1000 | R:100 1000
10 10 3 3 4 7 1 1 4 5
100 10 6 12 6 11 1 2 6 16
1000 10 6 17 5 9 1 2 6 14
10000 10 11 10 5 9 1 2 10 12
10 100 3 5 2 3 0 0 1 6
100 100 3 12 2 3 0 0 1 8
1000 100 4 8 2 3 0 0 2 6
10000 100 6 10 2 4 0 0 2 8

We will consider four different instance types taken from the literature [8,10]. Each
instance is tested with coefficients in the range R = 100 or 1000 and different numbers of
classes k and sizes n;:

e Uncorrelated instances: In each class we generate n; items by choosing w;; and p;;
randomly in [1, R].

o Weakly correlated instances: In each class, w;; is randomly distributed in [1, R] and
pij is randomly distributed in [w;; — 10, w;; + 10], such that p;; > 1.

o Subset-sum instances: w;; is randomly distributed in [1, R| and p;; = w;;.

e Zig-zag: Sinha and Zoltners [10] constructed some special instances which have
very few dominated items. For each class i, n; items (w;, p;) are constructed as in
the uncorrelated case, and the profits and weights are oredered in increasing order.
Finally we set wy; = wj and p;; = p; for j =1,...,n,.

The cardinalities a; in (1) are randomly chosen in [1, A], where A =5 when n; = 10, and
A = 20 when n; = 100. The capacity c is set to ¢ = ¥, (v; + 7;)/2, where v; and ;
are defined as in (2). All tests were run on a hp9000/C200 200 Mhz, and the entries are
average values of 100 instances.

First, Table I gives the average time for solving the continuous problem. Notice that
the solution times grow linearly with the problem size, and that even problems with

D. Pisinger / Budgeting with Bounded Multiple-choice Constraints 12

Table III: Total time used. Average of 100 instances

Uncorrelated | Weakly corr. Subset-sum Zig-zag
k n; | R:100 1000 | R:100 1000 | R:100 1000 | R:100 1000
10 10 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00
100 10 0.01 0.02 0.01 0.02 0.00 0.01 0.01 0.02
1000 10 0.05 0.09 0.06 0.07 0.03 0.03 0.06 0.08
10000 10 0.52 0.52 0.69 0.68 0.34 0.35 0.67 0.69
10 100 0.05 0.09 0.07 1.10 0.07 1.09 0.09 1.15
100 100 0.08 0.68 0.08 0.37 0.08 0.95 0.12 2.55
1000 100 0.49 0.62 0.57 0.86 025 1.24 0.58 2.38
10000 100 4.81 5.05 5.76 6.18 2.11 3.07 5.69 7.59

1000 000 variables are solved in less than 5 seconds. Thus the Dantzig-Wolfe decomposi-
tion for the continuous problem is very successful.

Next Table II shows the average core size for each instance type. The core size is
the number of classes which were transformed N; — N; and enumerated in the dynamic
programming algorithm for the MCKP. Most problems are solved with only a dozen of
classes enumerated, meaning that a very limited number of the expensive transformations
N; — N; need to be performed. This demonstrates that the gradients are well suited for
defining a core.

Finally Table ITI gives the total computational times for solving the problems to integer
optimality. Even very large sized instances are solved within 8 seconds, and the solution
times are very stable for all sizes and types of instances.

A few experiments with CPLEX 5.0 [2] were run to compare the performance of the
developed algorithm with that of a good LP/MIP solver. The first instance in each class
of the uncorrelated instances with n; = 100 and R = 1000 were run for different values
of k. The obtained results are reported in Table IV, demonstrating that the specialized
algorithm for BBMC is able to solve the continuous problem two orders of magnitude faster
than the best of the LP algorithms. The integer problems seem to be very degenerated,
since CPLEX is not able to find the optimal solution in reasonable time for large instances.

Table IV: Time used by CPLEX for solving uncorrelated instances with n; = 100,
R = 1000. The first three columns give the solution time for solving the LP-relaxation
by using primal simplex, dual simplex or interior point methods. The next two columns
give the solution times and the number of branch-and-bound nodes generated for solving
the problem to integer optimality.

LP-primal = LP-dual LP-barrier | integer opt branch-and-bound
k | (seconds) (seconds) (seconds) (seconds) (nodes)
10 0.03 0.04 0.09 2.96 1302
100 0.88 2.14 1.38 587.83 19654 (*)
1000 72.21 316.70 27.26 8761.26 20523 (7)

(*) terminated with solution 0.00962 % from optimum
(1) terminated with solution 0.02185 % from optimum

REFERENCES 13

6 Conclusion

The BBMC is a very general model which has concrete applications in budgeting, manu-
facturing and packing/loading. In particular, it contains all “classic” knapsack problems
as a special case. It has been shown that the BBMC is solvable in pseudopolynomial time
O(c>¥ | mja; + kc?). For the continuous BBMC, Dantzig-Wolfe decomposition lead to
an efficient division of the problem: A master problem solves a MCKP problem, while
subproblems find extreme points of the transformed sets N;. This results in a polynomial
algorithm running in O(nlog P + nlogW). Computational experiments have demon-
strated that the continuous as well as integer BBMC can be solved orders of magnitude
faster than by using a general LP/MIP solver.

References

[1] E.Balas and E.Zemel (1980), “An Algorithm for Large Zero-One Knapsack Prob-
lems”, Operations Research, 28, 1130-1154.

[2] “CPLEX base system with barrier and mixed integer solver options” (1997), ILOG
inc, NV, USA.

[3] G.B.Dantzig and P. Wolfe (1960), “Decomposition principle for linear programs”,
Operations Research, 8, 101-111.

[4] M.E. Dyer (1984), “An O(n) algorithm for the multiple-choice knapsack linear pro-
gram”, Mathematical Programming, 29, 57-63.

[5] “LEDA — Library of Efficient Datatypes and Algorithms” (1997), LEDA Software
GmbH, Saarbriicken, Germany.

[6] S.Martello and P.Toth (1990), Knapsack Problems: Algorithms and Computer Im-
plementations, Wiley, Chichester, England.

[7] G.L.Nemhauser, L.A. Wolsey (1988), Integer and Combinatorial Optimization, Wi-
ley, Chichester, England. Chapter 1.4, 83-113.

[8] D. Pisinger (1995), “A minimal algorithm for the Multiple-choice Knapsack Prob-
lem,” Furopean Journal of Operational Research, 83, 394-410.

[9] D.Pisinger (1996), “Budgeting with Bounded Multiple-choice Constraints”, Proceed-
ings AIRO’96, Perugia, September 17-20, 1996.

[10] A.Sinha and A. A.Zoltners (1979), “The multiple-choice knapsack problem”, Oper-
ations Research, 27, 503-515.

[11] E.Zemel (1984), “An O(n) algorithm for the linear multiple choice knapsack problem
and related problems”, Information Processing Letters, 18, 123-128.

