NORMALIZATION

IN \-CALCULUS AND TYPE THEORY

DISSERTATION

M.H.B. Sgrensen

Department of Computer Science
University of Copenhagen

Supervisors:
H.P. Barendregt, Catholic University of Nijmegen.

N.D. Jones, University of Copenhagen.

External reviewers:
T. Coquand, Chalmers University of Technology, Gothenburyg.
O. Danvy, University of Aarhus.
J.W. Klop, CWI, Amsterdam.

. it can apparently happen that someone, without much exact learning

and with little of the information collected by earlier generations in his head,

that such an individual, passing his days like other artists

in the creation of more or less fantastic pictures,

can one day feel ripen in himself a conscious wish to use his imaginary images

to approach infinity as purely and as closely as possible.

Deep, deep infinity! Quietness. To dream away from the tensions of daily living;
to sail over a calm sea at the prow of a ship, toward a horizon that always recedes;
to stare at the passing waves and listen to their monotonous soft murmur;

to dream away into unconsciousness . . .

M.C. Escher.

Preface

The present monograph constitutes the author’s Ph.D. thesis submitted to
the Department of Computer Science, University of Copenhagen on April
1st, 1997. The research reported in the thesis was conducted during several
periods between September 1994 and March 1997. The topic of the thesis
is A-calculus and type theory; more precisely, the thesis addresses certain
questions regarding normalization in these theories.

The thesis contains no tutorial on A-calculus or type theory, except for
a very brief introduction presenting enough concepts and terminology to
explain the motivation and achievements of the thesis to someone who does
not know the subject. In the rest of the thesis, the reader is expected to
have an elementary knowledge of A-calculus corresponding, e.g., to chapters
2-3 of Barendregt’s book [3]. Chapters 6-9, 11, and 13 of the same book
would also be useful, but are not essential. The reader is also expected to
be familiar with type theory as presented, e.g., in the handbook chapter [4].

Nevertheless, the thesis is self-contained in that it does not rely on any
notions from papers or textbooks. The few exceptions are mentioned in the
text; for instance, the definition of substitution is assumed to be known.

The bulk of the thesis is made up of three chapters, which have been so
written that they can be read in any desired order; each chapter begins with
a presentation of the fundamental notions used in that particular chapter
(this leads to a bit of duplication). However, the deepest appreciation of
ideas in later chapters is obtained by reading earlier chapters first.

To avoid proliferation of the same idea in several contexts, the thesis
is concerned with untyped and typed versions of A-calculus only; thus, no
attempt is made to modify results so as to hold for combinatory logic or for
various notions of higher-order rewriting systems. Nevertheless, references
to relevant similar results in the literature for such systems are given.

Acknowledgments

I owe a huge debt to Henk Barendregt for posing interesting problems and
for comments to my ideas. This thesis is a product of Henk’s knowledge of
the field; I am proud to be able to call myself his student. For his hospitality
during my stay in Nijmegen I am more than grateful. It is also a pleasure

vi Preface

to acknowledge my debt to Neil Jones for educating me as a researcher,
for helping me out in ways too numerous to be mentioned here, and for
supplying ideas for a number of interesting research projects reported in
several papers. That I ever became a researcher is due to Neil.

I am grateful to Thierry Coquand, Olivier Danvy, and Jan Willem Klop
for agreeing to become members of the thesis committee.

I am thankful to my co-workers on various research projects. In par-
ticular, thanks to John Hatcliff and Gilles Barthe whose knowledge of CPS
translations and pure type systems, respectively, had a significant influence
on my ideas. I would not have come this far without John and Gilles.

Thanks also to Herman Geuvers, Femke van Raamsdonk, Paula Severi,
Hongwei Xi, Ralph Loader, Zurab Khasidashvili, Amir Ben-Amram, Torben
Mogensen, and Laurent Regnier for discussions and comments.

Thanks to Wei-Ngan Chin, Chet Murthy, and Peter Sestoft for being
excellent committee members on previous projects. Thanks also to Fritz
Henglein for being a very inspiring supervisor on an early project. Oh, and
thanks also to Carsten Gomard, who was the first to see that it might be
relevant for me to do research.

Many thanks to Zurab Khasidashvili, Masami Hagiya, Sacchio Hirokawa,
Andrei Klimov, Sergei Romanenko, Sergei Abramov, Andrei Nemytykh,
Valentin Turchin, Gilles Barthe, Femke van Raamsdonk, and Paula Severi
for hospitality during visits in Thilisi, Tokyo, Kyushu, Moscow, Pereslavl,
New York, and Amsterdam.

Thanks to the A-group in Nijmegen and the TOPPS group at DIKU for
providing inspiring working environments.

Thanks to the Computer Department at DIKU for good support, to Erik
Barendsen and Henning Niss for help with IATEX, and to Kristoffer Rose for
help with Xy-pic.

Thanks to my friends in the Dead Computer Scientists’ Society for all
those happy evenings with discussions about Church, Goédel, and VIC 20.
Thanks also to Peter Harry Eidorff with whom I have spent great under-
graduate days, and to my brother in spirit, Jakob Rehof, who shares my
interest for A-calculus, type theory, and Clint Eastwood.

To my parents and to my girl-friend, Mette Bjgrnlund, I shall remain
forever indebted.

M.H.S., April 1997

Preface to the revised edition

In this revised version, appearing as a DIKU report, Chapter 1 has been
updated according to suggestions from referees of a paper based on the
previous version of the chapter. Thanks to Zurab Khasidashvili, Vincent
van Qostrom, and Roel de Vrijer whose comments significantly improved

Preface vii

that paper. Corrections and additions suggested by the thesis committee
have also been incorporated throughout the thesis, and an index has been
added.

Since the appearance of the first edition of this thesis, an interesting
translation has been developed by Xi [144], which is similar to the con-
tinuation passing style translation in Chapter 2. This new translation is
mentioned in passing in Chapter 1, but has not been worked into Chap-
ters 2 and 3. In fact, the new translation can be viewed as a so-called
thunkification translation—see [47]—and like the continuation passing style
translation, the thunkification translation can be viewed as a permutative
inner interpretation. Since the thunkification translation is simpler than the
continuation passing style translation, it would be interesting to see whether
it can be used to prove the Barendregt-Geuvers-Klop conjecture for a larger
class of pure type systems than that studied in Chapter 3.

Also, several other parts of the thesis call for elaboration. The strong
normalization proofs by Gandy, de Vrijer, etc. mentioned in Chapter 1,
which establish upper bounds for length of reduction sequences, seem to
yield reductions of strong normalization to weak normalization of the same
notion of reduction, and this should be investigated in greater detail. The
reduction of strong normalization to weak normalization by Loader men-
tioned in Chapter 2 should also be examined more closely. These techniques
may provide alternative approaches to attack the Barendregt-Geuvers-Klop
conjecture. Another idea for attacking the conjecture is to generalize the
translation due to Harper, Honsell, and Plotkin which eliminates dependent
types.

The relation between permutative inner interpretations and monads in
Chapter 2 should be explained in greater detail. Also, the technique in Chap-
ter 2 should be applied to a greater variety of systems, e.g., systems with
the permutative conversions known from proof normalization and Gdédel’s
system 7', if possible. It would also be interesting to study type systems
which are weakly but not strongly normalizing (at present no such systems
are known among the pure type systems, but one could choose among other
systems).

Finally, the connection in Chapter 3 to the K-conjecture and to the
looping combinators of Coquand and Herbelin should be elaborated.

These issues will be addressed elsewhere.

M.H.B.S., April 1998

viii

Contents

Preface v
Introduction 1
1 Perpetual Reductions in A-Calculus 11
1.1 Imtroduction. 11
1.2 Classification of strategies and redexes 13
1.3 Perpetual and maximal strategies 20
1.4 The Q-theorem 29
1.5 Strong normalization in type theory 37
1.6 Developments 42
1.7 Maximal and perpetual redexes 47
1.8 A note on shortest developments 62
2 Weak and Strong Normalization in Type Theory 71
2.1 Introduction. 71
2.2 Klop’s technique 74
2.3 Variations on Klop’s technique 7
2.4 Extensions of Klop’s technique 82
2.5 Simulation by permutative inner interpretation 87
2.6 Application to typed A-calculi & la Curry 94
2.7 Application to typed A-calculi & la Church 99
2.8 Conclusion 103
3 Normalization in Pure Type Systems 105
3.1 Imtroduction. 105
3.2 Puretypesystems 106
3.3 CPS translation of types 116
3.4 CPS translation of terms 127
3.5 Strong normalization from weak normalization 137
3.6 Conclusion 147
Bibliography 149
Index 161

ix

Contents

Introduction

A-calculus is a collection of formal theories of interest in, e.g., computer
science and logic. The objects of study in these theories are A-terms, which
express functions and applications of functions in a pure form. For instance,

AT.T

is a A-term which, intuitively, denotes the function that maps any argument
to itself, i.e., the identity function. This is similar to the notation n — n
employed in mathematics. However, A\z.x is a string over an alphabet with
symbols A, z, etc., whereas n — n is a function.

The A-term Az.z is henceforth called I, in short:

I=)\z.2.

As in the notation n — n, the name of the bound variable x in Ax.z is not
significant; thus, we might as well have written

I=)y.y.

Another A-term is
K" = \y.\z.x

which, intuitively, denotes the function that maps any argument to a func-
tion, namely the one that maps any argument to itself, i.e., the identity
function. This is similar to programming languages where a procedure may
return a procedure as a result. A related A-term is

K= M\y.\z.y

which, intuitively, denotes the function that maps any argument to the
function that, for any argument, returns the former argument. A-terms
of the form A\z.P are generally called abstractions.

Since A-terms intuitively denote functions, there is a way to express
application of one A-term to another; this is expressed by juxtaposition.
Thus, the A-term

IK

2 Introduction

expresses application of I to K. Since K intuitively denotes a function too,
I denotes a function which may have another function as argument. This is
similar to programming languages where a procedure may receive another
procedure as argument.

In mathematics we usually write application of a function, say, f(n) =n
to an argument, say, 4 with the argument in parenthesis: f(4). By tradition
this is not done in A-calculus. However, we do need to put some parentheses
to delimit the scope of applications and abstractions. For instance,

2

Ax.x) T Ax.(z1)

are not the same A-term; the first is I applied to I, whereas the second
expects an argument x which is applied to I. To save parentheses, it is
customary to omit the parentheses in the second of the two A-terms.
Intuitively, if Axz.M denotes a function, and N denotes an argument, then
the the result of the function on the argument is denoted by the A-term that
arises by substitution of N for x in M. This latter A-term is written'

M{z := N}.

This is similar to common practice in mathematics; if f is as above, then
f(4) = 42, and we get from the application f(4) to the result 4% by substi-
tuting 4 for n in the body of the definition of f.

The process of calculating results is formalized by [-reduction. One
writes M —g N if N arises from M by replacing a [3-redez, i.e., a part of
form

(Azx.P) Q

by its B-contractum
P{x = Q}.
For instance,
IK=(\r.2) K =g 2{z =K} =K.

If M —g ... =g N in zero or more steps, one writes M —3 IN.
Since a A-term M may contain several (-redexes, i.e., several parts of
form (Az.P) @, there may be several N such that M —3 N. For instance,

K (IT) =4 Az.(I1)

and also
K(II) =3 KIL

However, the celebrated Church-Rosser theorem states that if

M—»ﬂ M,

!Some care must be taken in the substitution operation to avoid confusion between
different variables; such problems are beyond the scope of this introduction.

Introduction 3

and
M%}ﬂ MQ,

then a single A-term M3 can be found with
My 3 M3

and
M2 -3 Mg.

In particular, if M, and My are B-normal forms, i.e., A-terms that admit
no further B-reductions, then they must be the same A-term, since the (-
reductions from M; and Ms to M3 must be in zero steps. This is similar to
the fact that when we calculate the value of an arithmetical expression, e.g.,

4+2)-(3+7)-11,

the end result is independent of the order in which we do the calculations.
The idea that any A-term M denotes a function also gives rise to another
type of reduction, namely n-reduction, which states that M —, N, if N
arises from M by replacing a part of form Az.P = by P, where x does not
appear in P; a A-term of the former kind is an n-redez. For instance,

Ayly —, L

Usually one considers either S-reduction alone or (-reduction together with
n-reduction. To stress the distinction, one speaks of A(3-calculus and AGn-
calculus. In the rest of this introduction we are concerned with (-reduction
alone, and adopt the usual convention of omitting “38-” from the notions
B-redex, B-reduction, etc.

A-calculus is a type-free formalism. Unlike common mathematical prac-
tice, we do not insist that A-terms denote functions from certain domains,
e.g., the natural numbers, and that arguments be drawn from these domains.
In particular, we may have self-application as in the A-term

w =TT,
and we may apply this A-term to itself as in the A-term
Q=ww.

The type-free nature of A-calculus leads to some interesting phenomena;
for instance, a A-term may reduce to itself as in

= Mrr)w—=gww=D
Therefore, there are also A-terms with infinite reduction sequences, like

Q—)ﬂQ—)ﬂ....

4 Introduction

Some A-terms admit both an infinite reduction sequence:
K'Q =23 K'Q —5...
(where the reductions are in €2) and a finite one to normal form:
K*Q —3L

A A-term is weakly normalizing if it admits a reduction sequence ending in a
normal form. A A-term is strongly normalizing if all its reduction sequences
eventually end in normal forms. The latter trivially implies the former, but
not vice versa as the above example illustrates.

However, the normalization theorem, due to Curry and Feys, states that
repeatedly reducing the left-most redex in a weakly normalizing A-term even-
tually leads to a normal form—even if the A-term is not strongly normalizing.
Another way to state this is that the reduction strategy which always reduces
the left-most redex is normalizing. There is also a reduction strategy with
the property that, for any A-term admitting an infinite reduction sequence,
reducing according to the strategy does not lead to a normal-form. Such a
strategy is called perpetual. A normalizing reduction strategy which, for any
weakly normalizing A-term, computes a shortest reduction sequence among
all those leading to a normal form is called minimal. Similarly, a perpetual
reduction strategy which, for any strongly normalizing A-term, computes a
longest reduction sequence is called mazimal.

Interestingly, the existence of A-terms that admit both a reduction se-
quence to normal form as well as an infinite reduction sequence vanishes
if we allow the formation of abstractions Az.P only when z occurs in P.
This result is known as the conservation theorem for AI, due to Church and
Rosser. The terminology stems from the fact that the resulting fragment of
A-calculus is called AI-calculus, and to make the distinction explicit, general
A-calculus is sometimes called AK -calculus.

A reduction sequence from a A-term M which only reduces redexes that
are present in M, in a certain sense, is called a development. For instance

(Az.z) (Ay-y) 2) =p (Ay.y) 2 =5 2

is a development, but

(Az.z 2) (A\y.y) =5 (A\y.y) 2 =35 2

is not, because the redex contracted in the last step is not present in the
original term; in contrast, it is created during the reduction path. Curry
and Feys’ finite developments theorem states that there are no infinite de-
velopments.

In some variants of A-calculus, collectively known as type theory, restric-
tions are made regarding the A\-terms that may be applied to other \-terms.
One considers types, e.g.,

0— (0—0).

Introduction 5

Intuitively, O denotes some set, and A — B denotes the set of functions
from A to B. However, like A-terms, types are strings.

One then stipulates that each variable x has some type A. Moreover, if
x has type A and M has type B, then Az.M has type A — B. This reflects
the intuition that if M denotes an element of B for each x in A, then \z.M
denotes a function from A to B. In a similar vein, if M has type A — B
and N has type A, then M N has type B.

A type theory is weakly and strongly normalizing if all terms that have
a type are weakly and strongly normalizing, respectively. Again, the latter
trivially implies the former. One can prove, using a classical technique due
to Tait and Girard, that many type theories satisfy both properties.

A-calculus and the related systems of combinatory logic were originally
proposed as a foundation of mathematics around 1930 by Church and Curry,
but the proposed systems were subsequently shown to be inconsistent by
Kleene and Rosser in 1935. However, the subsystem described above con-
sisting of the A-terms equipped with S-reduction turned out to be useful for
formalizing the intuitive notion of effective computability, and this was a
main motivation for the development of recursion theory. 2

With the invention of physical computers came also programming lan-
guages, and A-calculus and combinatory logic have proved to be useful tools
in the theory and implementation of programming languages. For instance,
A-calculus may be considered an idealized sublanguage of higher-order pro-
gramming languages like Lisp. In this case, f-reduction expresses an elemen-
tary computation step, and, roughly, normal forms are the results of compu-
tations. Also, A-calculus is useful for expressing semantics of programming
languages as done in denotational semantics. Hindley and Seldin [50, p43]
summarize the situation: “M-calculus and combinatory logic are regarded as
‘test-beds’ in the study of higher-order programming languages: techniques
are tried out on these two simple languages, developed, and then applied to
other more ‘practical’ languages.”

Similarly, type theory is useful for the study and implementation of pro-
gramming languages with types like Pascal and ML.® Type theory is also
of interest in logic due to the so-called Curry-Howard Isomorphism, which
interprets types as formulae in formal logic and A-terms as representations
of formal proofs. In this case, G-reduction expresses reductions of proofs,
studied independently in proof theory.

In these applications of A-calculus, the property of weak normalization
is of considerable importance. For instance, in a programming language,
weak normalization of a term guarantees that the term has a result; in

2For more on the history of A-calculus, see, e.g., [3] or [50]. First hand information
may be obtained from Kleene and Rosser’s eye witness statements [75, 110], and from
Curry and Feys’ book [29], which contains a wealth of historical information.

3For instance, type theories are used as intermediate languages for the compilation of
realistic higher-order typed programming languages.

6 Introduction

general programming languages not all terms have this property, and it is
not decidable, in general, whether a term has the property—this is a variant
of the halting problem. In proof theory, weak normalization of type theories
is used to prove logical consistency of formal logics.

In some applications it is necessary, or at least more convenient, to know
that a A-term or a type theory is not merely weakly normalizing, but in
fact strongly normalizing. For instance, weak normalization of a A-term
implies that the A-term has a normal form, but to find this normal form
one needs a reduction strategy that is guaranteed to find the normal form,
e.g., left-most reduction. Knowing that all reduction sequences eventually
terminate allows us choose between different reduction strategies according
to, e.g., efficiency concerns. As another example, some proof techniques,
e.g., Newman’s Lemma, require strong normalization of A-terms. Finally, as
van de Pol [102, p3] puts it: “After all, it is quite natural to ask whether all
reduction sequences eventually lead to a normal form.”

As mentioned above, strong normalization of a A-term or of a type theory
trivially implies weak normalization of the A-term or the type theory, so
the benefits of weak normalization are inherited by strong normalization.
However, for some A-terms and type theories, weak normalization is easier to
prove than strong normalization. This raises the idea of studying techniques
to infer strong normalization from weak normalization in A-calculus and type
theory. This thesis is concerned with such techniques.

Overview

We end the introduction with a brief overview of the remaining three chap-
ters, emphasizing the research contribution of each chapter.

The first chapter surveys a part of the theory of S-reduction in A-calculus
which might aptly be called perpetual reductions. The theory is concerned
with perpetual reduction strategies, i.e., reduction strategies that compute
infinite reduction paths from A-terms (when possible), and with perpetual
redexes, i.e., redexes whose contraction in A-terms preserves the possibility
(when present) of infinite reduction paths. The survey not only recasts
classical theorems in a unified setting, but also offers new results and proof
techniques, as well as a number of applications to problems in A-calculus and
type theory. In particular, the theory provides techniques to infer strong
normalization from weak normalization which are used in the following two
chapters to address the connection between weak and strong normalization
in type theories.

The chapter begins with a classification of redexes and reduction strate-
gies and proves equivalence between some classifications from the literature.

Next a lemma is proved which we call the fundamental lemma of perpetu-
ality. The lemma is used—often implicitly—in many proofs in the literature,
e.g., in the Tait & Girard strong normalization proofs. An attempt is then

Introduction 7

made to show that the core of the recent techniques by van Raamsdonk
and Severi [106] and by Xi [140] for proving strong normalization results is
captured by this lemma.

Several known perpetual reduction strategies are then presented; the
proofs or perpetuality are an immediate consequence of the fundamental
lemma of perpetuality.

A stronger form of the fundamental lemma of perpetuality, which we call
the fundamental lemma of mazimality, is then presented. This result is often
used implicitly in strong normalization proofs which establish upper bounds
for the length of reduction paths. We use the lemma to show maximality of
a certain effective reduction strategy.

A new result is proved (Proposition 1.3.27) which states that to compute
an upper bound for the length of reduction sequences from some A-term, one
cannot do better, in a certain sense, than simply try to reduce the A-term to
normal form, using this maximal reduction strategy, and count the number
of reductions along the way. This shows that there is no analog in general
A-calculus of the techniques known for type theories and developments for
computing upper bounds for length of reductions.

A new result, which we call the Q-theorem, is then proved, stating that
every A-term in every infinite reduction sequence contains {2 as a substring.
This result gives a technique to infer strong normalization from weak nor-
malization of A-terms, and throws some light on a certain false conjecture.
It also implies some results that previously relied on tedious case analyses.

We then study approaches to proving strong normalization of simply
typed A-calculus based on the fundamental lemma of perpetuality and based
on the related techniques by van Raamsdonk and Severi and by Xi. In
particular, a new proof is presented.

We also study approaches to proving finiteness of developments, based
on a version of the fundamental lemma of perpetuality for developments,
and in particular give a new, perspicuous proof of this theorem.

Next a well-known proof technique is refined and used to give smooth
proofs of the conservation theorem for \I, of the so-called conservation the-
orem for AK, and of a related theorem due to Bergstra and Klop; these
theorems amount to characterizations of perpetual redexes, and also give a
method to infer strong normalization from weak normalization. The tech-
nique is also demonstrated to yield the normalization theorem with little
effort. We also show that the normalization theorem implies the conserva-
tion theorem for AI.

We conclude the first chapter with a new technique to compute shortest
developments. This result does not belong to the main path of the chapter,
but arises by an interesting principle of duality from a technique to compute
longest developments due to de Vrijer [135].

For some type theories it is easier to prove weak normalization than
strong normalization. More precisely, although it is equally difficult to prove

8 Introduction

weak and strong normalization using the Tait & Girard method, there is,
for some type theories, a method to prove weak normalization which is
substantially simpler than the Tait & Girard method.

A number of techniques to strong normalization from weak normalization
have been invented over the last twenty years by Nederpelt [92], Klop [76],
Khasidashvili [69], Karr [62], de Groote [31], and Kfoury and Wells [66], but
these techniques infer strong normalization of one notion of reduction from
weak normalization of a more complicated notion of reduction.

This has the undesirable consequence that, even if one knows that a
notion of reduction is weakly normalizing, one has to redo the weak nor-
malization proof for the complicated notion of reduction to conclude strong
normalization for the original notion of reduction. This is a non-trivial
process which involves very different techniques for different calculi. A tech-
nique to uniformly infer strong normalization for one notion of reduction
from weak normalization of the same notion of reduction would be better.

The second chapter presents a new technique to infer strong normaliza-
tion of a notion of reduction in a type theory from weak normalization of
the same notion of reduction. The technique not only simplifies the task of
proving strong normalization as compared to previous approaches, but also
suggests an approach to an open problem in type theory (see below).

The chapter begins with an account of Klop’s technique, which is based
on an interpretation of AK in A\I and the conservation theorem for AI. Klop’s
technique is then compared to related techniques.

Our technique is then presented as an extension of Klop’s technique
using a continuation passing style translation. The technique is used to
infer strong normalization from weak normalization in simply, second-order,
and higher-order typed \-calculus, a system with subtypes, and the system
of positive, recursive types.

Loader [85] independently uses a somewhat different translation to infer
strong normalization from weak normalization in simply and second-order
typed A-calculus. Xi [141] independently uses a translation similar to ours to
infer strong normalization from weak normalization in the same two calculi.

The chapter also shows that the continuation passing style translation
used in our technique is a special case of a class of translations, which we
call permutative inner interpretations, each of which gives rise to a similar
extension of Klop’s technique. The translation studied by Loader may be
viewed as another special case.

The Barendregt-Geuvers-Klop conjecture states that every weakly nor-
malizing pure type system is also strongly normalizing—pure type systems
are a general formalism of which specific type theories can be viewed as
special cases. In the third chapter, we show that the conjecture is true for
an infinite class of pure type systems that includes, e.g., the left hand side of
Barendregt’s A-cube as well as the well-known system AU. This seems to be
the first result giving a positive answer to the conjecture not merely for some

Introduction 9

concrete systems for which strong normalization is known to hold—for such
systems the conjecture is trivially true—but for a uniform class of systems
in which not all systems are strongly normalizing.

The chapter introduces the notion of a generalized non-dependent pure
type system, in which types do not depend on terms. This property allows us
to give separate continuation passing style translations on terms and types,
and these are used to extend the technique of the previous chapter to the
class of generalized non-dependent pure type systems.

This class is a generalization of Coquand and Herbelin’s [27] logical non-
dependent pure type system, and our continuation passing style translations
generalize Coquand and Herbelin’s translations of logical non-dependent
pure type systems.

The first chapter (except the last section) is based on [118, 119, 120],
and is also inspired by the papers [106, 140], as is elaborated in the chapter.
A paper based on the chapter (excluding the last section) has been accepted
for publication [107] as joint work with F. van Raamsdonk, P. Severi, and
H. Xi. Another paper based on the last section has been submitted for
publication [122].

The second chapter is based on [121].

A paper based on the third chapter has been submitted for publica-
tion [11] as joint work with G. Barthe and J. Hatcliff.

Not all work of the author relevant for the third chapter has been in-
cluded. Some difficulties with the system of higher-order A-calculus in [121]
lead to the study of so-called domain-free pure type systems [14, 15] joint with
G. Barthe, and to the study of continuation passing style translations into
such systems [10, 12] joint with G. Barthe and J. Hatcliff. These techniques
were subsequently used to study a framework for A-calculi corresponding to
classical logics via the Curry-Howard isomorphism [9]. Also, the technique
for defining general CPS translations was generalized to a general induction
principle in joint work with G. Barthe and J. Hatcliff [13]. The chapter uses
ideas developed in these projects, but does not use directly the techniques
developed in the papers.

10

Introduction

CHAPTER 1

Perpetual Reductions in A\-Calculus

This chapter surveys a part of the theory of S-reduction in A-calculus which
might aptly be called perpetual reductions. The theory is concerned with
perpetual reduction strategies, i.e., reduction strategies that compute infinite
reduction paths from A-terms (when possible), and with perpetual redezes,
i.e., redexes whose contraction in A-terms preserves the possibility (when
present) of infinite reduction paths. The survey not only recasts classical
theorems in a unified setting, but also offers new results and proof tech-
niques, as well as a number of applications to problems in A-calculus and
type theory. In particular, the theory provides techniques to infer strong nor-
malization from weak normalization which are used in the next two chapters.

1.1. Introduction

Considerable attention has been devoted to classification of reduction strate-
gies in A-calculus [5, 17, 18, 29, 76, 84, 138]—see also [3, Ch. 13]. We are
concerned with strategies differing in the length of reduction paths.

(i) A mazimal strategy computes for a term a longest reduction path to
normal form, if one exists, otherwise some infinite reduction path.

(ii) A minimal strategy computes for a term a shortest reduction path to
normal form, if one exists, otherwise some infinite reduction path.

(iii) A perpetual strategy computes for a term an infinite reduction path, if
one exists, otherwise some finite reduction path to normal form.

(iv) A normalizing strategy computes for a term a finite reduction path to
normal form, if one exists, otherwise some infinite reduction path.!

'In this presentation, attention is restricted to the usual A-calculus. In the so-called
infinite A-calculus one also studies infinite reductions ending in infinite normal forms.

11

12 Chapter 1. Perpetual Reductions in A-Calculus

Perpetual and normalizing strategies are opposite, in some sense, as are
maximal and minimal strategies.

Another classification is concerned with redexes rather than strategies.
For instance, a redex A with contractum A’ is perpetual if, for any context
C such that C[A] has an infinite reduction path, C[A'] also has an infinite
reduction path. This chapter presents a theory of perpetual and maximal
[B-reduction strategies and (-redexes. The chapter not only recasts in a
unified setting classical theorems due to Barendregt, Bergstra, Klop, and
Volken, to Church and Rosser, to Curry and Feys, and to de Vrijer, but
also presents new results, proofs, and techniques, as well as a number of
applications to problems in A-calculus and type theory demonstrating the
elegance and relevance of the theory.

The chapter is organized as follows. Section 1.2 classifies reduction
strategies and redexes in A-calculus and proves equivalence between different
formulations of perpetual and maximal strategies and redexes.

Section 1.3 is about perpetual and maximal G-reduction strategies. This
is a central theme in work of de Vrijer [135, 136, 138], who uses the technique
of counting steps to establish several strong normalization results. The
counting functions in fact define reduction strategies.

We first prove a result which we call the fundamental lemma of perpe-
tuality. The lemma is used—often implicitly—in many strong normalization
proofs in the literature. An attempt is then made to show that the core of the
recent techniques by van Raamsdonk and Severi and by Xi for proving strong
normalization results is captured by this lemma. The section presents several
perpetual reduction strategies; perpetuality is in each case an immediate
consequence of the fundamental lemma of perpetuality.

The section then proves a stronger form of the fundamental lemma of
perpetuality which we call the fundamental lemma of maximality. This
result is often used implicitly in strong normalization proofs which establish
upper bounds for the length of reduction paths. We use the lemma to show
maximality of a certain reduction strategy and to give a certain, trivial
technique for computing upper bounds for the length of reduction paths
from A-terms without infinite reduction paths. We also prove that, in a
certain sense, the trivial technique cannot be improved.

Sections 1.4-1.6 give applications of perpetual and maximal G-reduction
strategies. Section 1.4 presents the recent 2-theorem, stating that every A-
term in every infinite reduction path contains the A-term {2 as a substring.
The proof uses a certain perpetual reduction strategy. Section 1.5 stud-
ies approaches to proving strong normalization of simply typed A-calculus
based on the fundamental lemma of perpetuality and based on the related
techniques by van Raamsdonk and Severi and by Xi. In particular, a new
perspicuous proof is presented. Section 1.6 similarly studies approaches to
proving finiteness of developments and in particular gives a new, perspicuous
proof of this theorem.

1.2. Classification of strategies and redexes 13

Section 1.7 is about perpetual -redexes (as we shall see, maximal (-
redexes turn out to be trivial). A well-known proof technique is refined
and used to give smooth proofs of the conservation theorem for Ay, of the
conservation theorem for Ag, and of a related theorem due to Bergstra and
Klop; these results together give characterizations of perpetual redexes in
A7 and Ag. The technique is also demonstrated to yield the normalization
theorem with little effort. The section ends with a very short proof of the
conservation theorem for A; using the normalization theorem.

We conclude the chapter with a new technique to compute shortest de-
velopments. This result does not belong to the main path of the chapter,
but arises by an interesting principle of duality from a technique to compute
longest developments due to de Vrijer [135].

Klop [77] surveys some results about reduction strategies in first-order
term rewriting systems. Due to the absence of abstractions and the presence
of patterns in the term language, some parts of that theory are rather differ-
ent from what is presented in this chapter; therefore, we shall not consider
such systems any further. Several notions of higher-order term rewriting sys-
tem exist, some of which contain as special cases A-calculus with S-reduction.
We will not consider such systems, although we do try to give references to
results that generalize those for A-calculus presented in this chapter.

1.2. Classification of strategies and redexes

In this section we classify strategies and redexes as outlined in the introduc-
tion. The first subsection reviews preliminary notions. The second subsec-
tion introduces some notation and properties pertaining to reductions. The
third and fourth subsections then classify strategies and redexes and prove
equivalence between different classifications from the literature.

1.2.1. Preliminaries

Most notation, terminology, and conventions are adopted from [3]; in this
subsection we merely fix the notation for some well-known concepts.

A is the set of type-free A-terms. Some example terms are K = Az \y.x,
I=MXrx, w=Arxx, and Q@ = ww. We use z,y,z,... to range over the
set V' of variables. Familiarity is assumed with conventions for omitting
parentheses in A-terms. Familiarity is also assumed with the notions of free
and bound variables, the variable convention, substitution, and the subterm
relation, which is denoted by C. Syntactic equality up to renaming of bound
variables is denoted by =. FV(M) denotes the set of free variables in M.
| M|, denotes the number of free occurrences of = in M. |M| denotes the
size of M, i.e., the number of occurrences of abstractions, applications, and
variables in M. Ay is the set of all A-terms where for every subterm Az.M,
x € FV(M). Thus, I,w,Q € A;, whereas K € A;. A A-context C is a term

14 Chapter 1. Perpetual Reductions in A-Calculus

with a single occurrence of the symbol [|; the result of replacing [| by the
term M in C is denoted by C[M]. Occasionally the name of bound variables
matters, e.g., when dealing with contexts. In such cases, BV(M) denotes
the set of variables bound in M.

We occasionally use vector notation P for a sequence of terms P, ... P,
(where n > 0), e.g., QPfor QP ...P,,and Pe S for P,... ,P, €85.

A notion of reduction on a set S is a binary relation R C § x S. If
M R N, then M is an R-redex and N its R-contractum. By R;R, we
denote the union of two notions of reduction R; and R3. For a notion of
reduction R, the corresponding reduction relation —pr is the compatible
closure (relative to some set of contexts). For a reduction relation —p, —»g
is the reflexive, transitive closure, —»E is the transitive closure, and =p is
the transitive, reflexive, symmetric closure. We assume the reader is familiar
with the notion of reduction 5 on Ag. Several elementary properties about
substitution and [-reduction will be used implicitly.

Let N* = N U {oo}. The following calculation rules are convenient:
min() = max() = co. Moreover, maxU = oo if U C N is unbounded, i.e.,
if, for all m € U, there is an n € U with n > m. Also, 00 —k =00+ k =
00+ o0 =k-00o = o0, for any £k € N. Finally, for m*,n* € N* we write
m* < n* iff either m* # oo and n* = 0o, or m*,n* € N and m* < n* by the
usual ordering on N. We write m* < n* iff m* < n* or m* = n".

We use =, <, &, V, 3 as connectives and quantifiers in the informal meta-
language. For a map F : S — S on some set S, we define FO(M) = M and
F"tY (M) = F(F"(M)).

1.2.2. Some notation concerning normalization

In this subsection R denotes a notion of reduction on some set S, and —p
denotes the corresponding reduction relation.

1.2.1. DEFINITION. A finite or infinite sequence
My —>r My =g ...

is called an R-reduction path from My. We say that My has this R-reduction
path. If the sequence is finite it ends in the last term M,, and has length n,
and then we write My —, M,,. If the sequence is infinite, it has length oo.

1.2.2. DEFINITION.

oor = {M | M has an infinite R-reduction path}.

ng = {M | M has an R-reduction path of length n}.

NFp = {M | M has no R-reduction path of length 1 or more}.

SNr = {M | M has no infinite R-reduction path}.

WNpr = {M | M has a finite R-reduction path ending in an N € NFp}.

In the notation ng, we require n € N.

1.2. Classification of strategies and redexes 15

1.2.3. DEFINITION.

CRgr = {M | for all L, N, if L p¢— M—»r N then L—»r K p¢— N for a K}
FBr = {M | M —p N for only finitely many different N}.

1.2.4. TERMINOLOGY.

(i) M € NFr < M is an R-normal form.

(il) M € SN & M is R-strongly normalizing.
(iii) M € WNi < M is R-weakly normalizing.
M € CRr & M is R-Church-Rosser.
M € FBr & M is R-finitely branching.

(iv)
(v)
We often omit R, relying on the context to resolve the ambiguity. When
R is a notion of reduction on a set S, and M € FBg for all M € S, we
simply write FBr. Similarly with the other sets introduced above.

1.2.5. LEMMA. Assume FBg. Then M € ocop < Vn € N: M € np.
PROOF. “=" is obvious; “«<” is by Konig’s Lemma. ad

We shall denote by sp(M) € N* the length of a shortest finite reduction
path from M to normal form, if a finite reduction path to normal form exists;
otherwise sp(M) = oo. Also, [r(M) € N* denotes the length of a longest
finite reduction path from M to normal form, if there is an upper bound on
the length of these reduction paths; otherwise [gr(M) = co. In symbols:

1.2.6. DEFINITION.

(i) sr(M) =min{n |3IN € NFg : M =}, N}.
(ii) (r(M) = max{n |3IN € NFgr: M =}, N}.
1.2.7. LEMMA. Assume CRg, FBg. Then

(i) M € WNi < sgp(M) < oo.

(ii) M € op & lR(M) = 0.

PROOF.

(i) “=": If M € WNg then M =% N € NFp forann € N, so sgr(M) < oco.
“<: If sp(M) < oo then M —} N € NFp forann € N, so M € WNg.
(ii) “=": Assume M € ocop.
1. M ¢ WNg. Then [r(M) = oo.

16 Chapter 1. Perpetual Reductions in A-Calculus

2. M € WNg. Then M —»r N € NFp for some N. Since M € oop,
for any n € N there is K such that M —}, K. By CRg, K —r N.
Thus, for any m € N there is n > m such that M —% N € NFp.
Then [gr(M) = co.

“<”: Assume [r(M) = oco. There are two ways this can happen.

1. M ¢WNR. Then M € copg.
2. For arbitrarily large n € N there is N € NFg with M —; N. Then
M € cop by Lemma 1.2.5. ad

1.2.8. REMARK. Although seemingly trivial, the above proof uses the rules
min () = max () = maxU = oo (U unbounded) in subtle ways. For instance,
as shown in (ii) “=7", if m € oog, then {n|3IN € NFr : M =}, N} is either
empty (if M ¢ WNp) or unbounded (if M € WNg). In either event, the two
latter conventions imply (r(M) = occ.

1.2.9. REMARK. The statement formulated in Lemma 1.2.7(ii) will be used
at various places later; an equivalent statement is: M € SN < [gr(M) < 0.

1.2.3. Classification of strategies

In this subsection we introduce rigorously the classification of reduction
strategies that was mentioned informally in the introduction. Throughout
the subsection, R denotes a notion of reduction on some set S, and —p
denotes the corresponding reduction relation.

1.2.10. DEFINITION (Barendregt et al. [3, 5]).

(1) An R-reduction strategy is a map F : S — S such that M —r F(M) if
M & NFg, and F(M) = M otherwise.

(ii) Let F' be an R-reduction strategy. Define
Lp(M) = min{n | F"(M) € NFg}.
The F-reduction path from M is the reduction path
M =g F(M) =g F?(N) =g -
of length Lr(M).

1.2.11. REMARK. Reduction strategies are history insensitive; that is, given
some M € Ak, the act of a reduction strategy on M is independent on
how we might have arrived at M. For instance, “for any M € Ak, reduce
alternately the left-most and right-most (-redex, beginning with the left-
most one” does not specify a reduction strategy; a reduction strategy receives
a term as input and must return as output another term that arises from
the former by one reduction step.

1.2. Classification of strategies and redexes 17

Barendregt et al. [3, 5] use the terminology one-step reduction strategy
for what we call reduction strategy. In the following definition, (ii)-(iv) are
also taken from [3, 5], but what we call minimal is there called L-1-optimal.

1.2.12. DEFINITION. Let F' be an R-reduction strategy.

(i) Fis R-mazimal iff Lp(M) = lr(M).

(ii) F is R-minimal iff Lp(M) = sr(M).
(iii) F is R-perpetual iff M € cop = Lp(M) = oo.
(iv) F is R-normalizing iff M € WNr = Lp(M) < oo.

This classification of strategies is “global” in that it is formulated in

terms of the whole reduction path of the strategy. The following formula-
tions of minimality and maximality are “local” in that they are formulated

in terms of one step of the strategy. The local classifications have the ad-
vantage that they give rise to analogous classifications of redexes.

1.2.13. LEMMA. Assume CRg, FBr. Let F' be an R-reduction strategy.
(i) F is R-minimal iff for all M & NFgr: sg(M) = sgp(F(M)) + 1.
(i1) F is R-mazimal iff for all M & NFg: lgp(M) = lgr(F(M)) + 1.
PROOF.

(i) “=": Assume F' is R-minimal. Then, for any M ¢ NFp,

sp(M) = Lp(M)
= min{n | F"(M) € NFg}

min{n | F"(F(M)) € NFr} +1

Lp(F(M)) +1
= sp(F(M))+1.

“<”: Assume for all M ¢ NFp that sp(M) = sg(F(M)) +1. If
sr(M) = oo, then also Lp(M) = co. Now assume sp(M) < oo. We
show by induction on sp(M) that sgp(M) = Lr(M).

1. sg(M) =0. Then M € NFg, so Lp(M) = 0.

2. 0 < sp(M) < co. Then M ¢ NFg. By the induction hypothesis,

sp(M) = sp(F(M)) +1

= Lp(F(M))+1
= Lyp(M).

(ii) “=": Assume F' is maximal. Then, for any M & NFp,

Lp(M)
L (F(M)) -|—1
= Ir(F(M)) +

lrR(M) =

18 Chapter 1. Perpetual Reductions in A-Calculus

“<”: Assume for all M ¢ NFp that (p(M) = Ig(F(M)) + 1. If
Lp(M) = oo, then, by Lemma 1.2.7, also Ig(M) = oo. Now assume
Lp(M) < oco. We show (M) = Lp(M) by induction on Ly (M).

1. Lp(M) =0. Then M € NFg, so [r(M) = 0.

2. 0 < Lp(M) < co. Then N ¢ NFp. By the induction hypothesis,

Lp(M) = LF(F(M))+1
= Ir(F(M)) +
= Ir(M).

o~

Note that we need Lemma 1.2.7 in (ii), but not in (i).]

The following gives another local formulation of perpetuality and maxi-
mality, due to Bergstra and Klop [18] and Regnier [108], respectively.

1.2.14. LEMMA. Assume CRpg, FBgr. Let F be an R-reduction strategy.

(i) F is R-perpetual iff for all M: M € cop = F(M) € cop.
(ii) F is R-maximal iff for all M andn >1: M € ng = F(M) € (n—1)g.

PROOF.

(i) “=": Assume M € ocop. By assumption, Ly (M) = oo, i.e., the path
M —p F(M) —r F?(M) —g ... is infinite, so F(M) € oop.
“<”: Assume M € ocop. By induction on n show that F™(M) € ocop,
in particular F"(M) & NFg, so Lrp(M) = oo.
(ii) “=": Assume that M € ng. By CRg, n < Igr(M) = Lp(M), ie.,
F" (M) & NFg, so F(M) € (n—1)g.
“<”. If Lp(M) = oo, then, by Lemma 1.2.7, [p(M) = oo. Assume
Lp(M) < co. We show Lp(M) = Ir(M) by induction on Lg(M).
1. Lp(M) =0. Then M € NFg, so [r(M) = 0.
2. 0 < Lp(M) < oo. Then M ¢ NFp. By the induction hypothesis
and Lemma 1.2.13,

Lp(M) = Lp(F(M)) + 1
lrR(F(M)) +
r(M). O

o~

1.2.15. PROPOSITION. Assume CRg,FBg. Let F be an R-reduction strategy.

(i) If F is R-mazimal then F is R-perpetual.
(ii) If F is R-minimal then F' is R-normalizing.

PROOF.

1.2. Classification of strategies and redexes 19

(i) If M € cop then, by Lemma 1.2.7, Lp(M) = [gr(M) = oo.
(ii) If M € WNg then, by Lemma 1.2.7, Lp(M) = sg(M) < 0. a

1.2.16. REMARK. No other general containment exists between our four
types of strategies than the two mentioned above.

Perpetual reduction strategies are often useful to prove properties about
infinite reduction paths. In these cases we are usually not interested in how
the strategy behaves on strongly normalizing terms. This motivates the
following.

1.2.17. DEFINITION. A partial, perpetual R-reduction strategy is a mapping
F : cop — oop such that for all M € cop: M —p F(M).

1.2.4. Classification of redexes

In this subsection we introduce rigorously the classification of redexes from
the introduction. Throughout the subsection, R denotes a notion of reduc-
tion on Ak, and —p denotes the corresponding reduction relation.

In the following definition, (i) is taken from [18].

1.2.18. DEFINITION. Let A be an R-redex with contractum A’.

(i) A is R-perpetual iff, for all C: C[A] € oo = C[A'] € oop.
(ii) Ais R-mazimal iff, for alln > 1 and C: C[A] € ng = C[A'] € (n—1)g.

1.2.19. REMARK. As was the case for strategies, one can vary the formula-
tion of perpetual and maximal redexes; we shall not study such equivalent
formulations.

1.2.20. DEFINITION. Let A be an R-redex with contractum A’. Then A is
R-minimal iff for all C: sp(C[A]) = sg(C[A']) + 1.

1.2.21. D1SCUSSION. A strategy that always contracts perpetual redexes is
perpetual. Similarly, strategies that always contract maximal and minimal
redexes are maximal and minimal, respectively. This is easy to verify simply
by noting the analogy between on the one hand the local formulations of
perpetual, maximal, and minimal strategies in Lemmas 1.2.13 and 1.2.14,
and on the other hand the formulations of perpetual, maximal, and minimal
redexes in Definitions 1.2.18 and 1.2.20.

Perpetual strategies may also contract non-perpetual redexes. The rea-
son is that a strategy is confronted with a redex in a given context, and needs
only to make sure that contracting the redex in this particular context pre-
serves the possibility, if present, of an infinite reduction. A perpetual reder,

20 Chapter 1. Perpetual Reductions in A-Calculus

on the other hand, must preserve the existence of infinite reduction paths
in all contexts. Similar remarks apply to maximal and minimal strategies.

We do not know how to give a formulation of the notion of a normalizing
redex which satisfies the property that a strategy contracting only normaliz-
ing redexes is itself normalizing. This problem stems from the fact that the
above classifications of redexes were derived from local formulations of the
notions of a perpetual, maximal, and minimal strategy, whereas we have no
local formulation of the notion of a normalizing strategy.

1.2.22. PROPOSITION. Assume FBgr. A redex which is R-maxzimal is also
R-perpetual.

PRrROOF. Given R-maximal redex A with contractum A’ and a context C,
assume C[A] € oog. To prove C[A'] € ocop it suffices by Lemma 1.2.5
to show that C[A’] € ng for all n € N. Since C[A] € ocog we have by
Lemma 1.2.5 for all n € N, C[A] € ngr and thereby C[A] € (n+ 1)g. Thus
C[A'] € ng for all n € N by maximality. 0

1.2.23. REMARK. The converse of the preceding proposition does not hold.

1.3. Perpetual and maximal strategies

In this section we study perpetual and maximal g-reduction strategies. The
first subsection presents the fundamental lemma of perpetuality. The sec-
ond subsection presents two recent characterizations of strongly normalizing
terms due to van Raamsdonk and Severi and to Xi, respectively, and shows
that the core of these characterizations is made up of the fundamental lemma,
of perpetuality and a certain lexicographic induction principle. The third
subsection presents two (partial) perpetual S-reduction strategies; the proof
of perpetuality in each case uses the fundamental lemma of perpetuality.

The fourth subsection presents the fundamental lemma of mazimality,
analogous to the fundamental lemma of perpetuality. The fifth subsection
presents an effective, maximal 8-reduction strategy; the proof of maximality
uses the fundamental lemma of maximality. The sixth subsection shows that
to compute an upper bound on the length of a longest S-reduction path for
some term, one cannot do better, in a certain sense, than try to reduce the
term to normal form and count the number of steps along the way.

The property CRg is used freely in this and the following sections.

1.3.1. The fundamental lemma of perpetuality

The following lemma is used in many strong normalization proofs in the
literature—see Section 1.5. As will be seen below, the lemma is also useful
to show that reduction strategies are perpetual.

1.3. Perpetual and maximal strategies 21

1.3.1. LEMMA (Fundamental lemma of perpetuality). Assume that M, € SNg
if © € FV(My). For alln > 1:

Mg{l‘ = Ml} M ... M, € SNg = ()\CCM()) My...M, € SN/[;.

PROOF. Let Mo{CC = Ml} Ms...M, € SNﬂ. Then My, Ms, ... ,M, € SNﬂ.
If ¢ FV(M)), then, by assumption, M; € SNg. If x € FV(Mj), then also
M; C Mo{CC = Ml} My ... M,, so M; € SN/B. If ()\CCM()) My...M, € 00g,
then any infinite reduction must therefore have the form

(e Mo) M. My =5 (M. MO) MM,
-3 .

Since
M%}ﬂ M & N—»,g N' = M{.%‘ = N}—»ﬁ M’{.%‘ = N’},
there is an infinite reduction sequence

Mo{z := My} My... M, —3 Mo{x = M|} M}... M,
B e,

contradicting Mo{z := M} M, ... M, € SNg. 0
1.3.2. COROLLARY. If M, € SNg, then for all n > 1:

Mo{x := My} My ... M, € SNg = (Ax.My) M ... M, € SNg.
ProoFr. By the fundamental lemma of perpetuality. O

1.3.3. REMARK. The fundamental lemma of perpetuality gives a condition
ensuring that a contraction (Ax.My) M ... M, —g Mo{x := M} My ... M,
preserves the possibility, if present, of an infinite reduction. The corollary
requires a slightly simpler condition.

1.3.2. Two characterizations of strongly normalizing terms

Next we introduce two characterizations of SNg due to van Raamsdonk and
Severi [106] (also [105, 117]) and to Xi [140], respectively.

1.3.4. DEFINITION. Let X C Ag be the smallest set closed under:
(i) My,... , M, € X = xM;...M, € X.
(i) Me X = \z.M e X.
(111) M eX & Mg{l‘ = Ml}MgMn eX = ()\CCM()) My...M, € X.

22 Chapter 1. Perpetual Reductions in A-Calculus

1.3.5. PROPOSITION. SNg = X.

Proor. We first prove M € SNg=-M € X by induction on lexicographically
ordered pairs (lg(M), |M]).

1. M=z P...P,. Then P,...,P, € SNg. By the induction hypothesis
P,...,P,eX, soMelX.

2. M = A\z.P. Similar to Case 1.

3. M = ()\CCP()) P,...P,. Then P, € SN/B, P[]{l‘ = Pl} b...P, € SN/B,
so by the induction hypothesis, P, € X, Py{x := Pi} P»... P, € X, so
M e X.

It remains to prove M € X = M € SNg. We proceed by induction on the
derivation of M € X.

1. M =xP,...P, where P,... ,P, € X. By the induction hypothesis
Py,...,P, € SNg, so M € SNg.

2. M = \x.P. Similar to Case 1.

3. M = (\x.Py) Py...P, where P, € X, Pp{x := P} P,...P, € X. By
the induction hypothesis, P, € SNg, Po{z := P1} P»... P, € SNg, so by
the fundamental lemma of perpetuality, M € SNg. O

1.3.6. REMARK. Given an assertion of form M € SNg=-P (M), we may prove
instead M € X=P(M) by induction on the derivation of M € X; this is very
similar to proving the original assertion by induction on lexicographically
ordered pairs (I3(M), |M]). Given an assertion of form P(M) = M € SNg,
we may prove instead P(M) = M € X; this is very similar to proving the
original assertion and using the fundamental lemma of perpetuality in the
case M = (Ax.P) Py ...P,. Thus, the two main ingredients in the proof
of Proposition 1.3.5—lexicographic induction on ([3(M), |M|) and the fun-
damental lemma of perpetuality—are used implicitly when one uses X to
reason about SNg. Van Raamsdonk and Severi [106] prove strong normal-
ization results in A-calculus using this characterization—see Sections 1.5
and 1.6.

1.3.7. DEFINITION. Define F; : Ax — Ag as follows. If M € NFg then
F;(M) = M; otherwise,

F(z PQR) = zPF(QR if PENF,Q ¢&NFg
F(\e.P) = MF(P)
F((Az.P)QR) = Plz:=Q}R.

Write M —; N if M ¢ NFg and Fi(M) = N, and M € ooy if Ly, (M) = oc.

1.3. Perpetual and maximal strategies 23

1.3.8. DEFINITION. Define the relation > by:
> =1 U —¥
where T denotes the smallest relation closed under the rules:
Ae. M M My My;dM, M My Ms.

Define
H(MO) :max{n|M0>M1>...>Mn} e N*.

1.3.9. PROPOSITION. SNg = {M € Ag | H(M) < oo}.

PROOF. We first prove M € SNy = H(M) < oo by induction on lexico-
graphically ordered pairs ([3g(M), |M]). First note that if #(My) = oo then
by Konig’s lemma there is an infinite sequence My > M; > ..., and so there
is an M1 with MO > M1 and H(Ml) = OQ.

1. M =x. Then H(M) =0 < 0.

2. M =P Q. Then P,Q € SNg. Moreover, if M —; M’ then M’ € SNg.
By the induction hypothesis H(P) < oo, H(Q) < 0o, and H(M') < oco.
Thus, for all N with M > N, H(N) < co. Thus, H(M) < oo.

3. M = A\z.P. Similar to Case 2.
Next we prove H(M) < oo = M € SNg by induction on H(M).

. M=xzP,...P,. Then H(P1) < o0,...,H(P,) < co. By the induction
hypothesis P,... , P, € SNg, so M € SNg.

2. M = Ax.P. Similar to Case 1.

3. M = ()\l‘P[)) P, ...P,. Then H(P[]{CC = Pl} Pan) < oo and
H(P1) < co. By the induction hypothesis, Po{z := P1} P, ... P, € SNg
and Py € SNg. By the fundamental lemma of perpetuality it then
follows that M € SNg. ad

1.3.10. REMARK. The point in Remark 1.3.6 may be repeated with “M &
X7 replaced by “H(M) < oco.” Xi [140] proves strong normalization results
in A-calculus using this characterization—see Sections 1.5 and 1.6.

1.3.11. REMARK. The above characterizations of SNg, especially the second
one, are similar to the successor relation, defined by Terlouw [128], who
proves this relation to be well-founded and who uses it to show a connection
between higher type levels and transfinite recursion (see also [130]).

Whether one should prove results in A-calculus using the fundamental
lemma of perpetuality and lexicographic induction, or one should use one of
the characterizations by van Raamsdonk and Severi and by Xi, seems to be
a matter of taste.

24 Chapter 1. Perpetual Reductions in A-Calculus

1.3.3. Some perpetual f-reduction strategies

The following strategy is due to Bergstra and Klop [18].

1.3.12. DEFINITION. Define Fj : cog — A by:

Fi(z PQR) = zPF(QYR if PcSNgQ &SNy
Fy(\z.P) = \a.Fy(P)

Fi(M.P)QR) = P{z:=Q}R ifQeSNg
Fi(Az.P)QR) = (\z.P)Fi(Q)R if Q¢ SNg.

1.3.13. REMARK. For every M € oog either M = x Py ... P, where n > 1
and P; € oog for some i, or M = \z.P, or M = (Ax.F) P, ... P, where
n > 1. It follows that F} is defined on all elements of oog.

1.3.14. PROPOSITION. F} is o partial, perpetual B-reduction strategy.

PROOF. By induction on the size of M prove that M € ocog = F1 (M) € cog;
the only non-trivial case is when M = (Az.P) @ R and Q € SNg, in which
case use Corollary 1.3.2. ad

The following strategy is a variant of a strategy in [120].
1.3.15. DEFINITION. Define Fy : cog — A by:

Fy(z PQR) = zPFR(Q)R if Pc SN, Q &SNy
Ae.P)QR) = P{z:=Q}R if P €SN, Q €SNy
(A\z.Fo(P)) QR if P ¢ SNg

Fp((A\z.P)QR) = (\z.P) Fy(Q) R if P € SNg, Q ¢ SNg.

5
>
8

=
|

A/;A
§
=3
Q
=3
[

1.3.16. PROPOSITION. F5 is partial, perpetual B-reduction strategy.

Proor. By induction on the size of M prove that M € cog = F5(M) € ocog;
the only non-trivial case is when M = (A\z.P) QR and P, @Q € SNg, in which
case use Corollary 1.3.2. ad

1.3.4. The fundamental lemma of maximality

The following lemma, is used in some of the strong normalization proofs in
the literature which, in addition to proving strong normalization, establish
upper bounds for the length of reduction paths—see Section 1.5.

1.3.17. DEFINITION. Define for any variable x the map &,: Ax — {0,1} by:

[1 ifz €FV(M)
Qx(M)_{ 0 ifz € FV(M).

1.3. Perpetual and maximal strategies 25

1.3.18. LEMMA (Fundamental lemma of maximality). For alln > 1,

Proor. If [g((Ax.My) My ... M,) = oo, then by Lemma 1.2.7 and the fun-
damental lemma of perpetuality, also lg(Mo{z := M} My ... M,) = oo or
Zo(My) - 1g(My) = oo. Thus, in this case the equality holds.

Iflg((Ax.Mo)Mi My ... M,) < oo, then My, ... , M, € SNg by Lemma 1.2.7.
We consider two cases.

1. x & FV(My). A longest reduction from (Az.My) M ... M, has the

form
Ax.My) My ... M, —¥% AmM M ...M]
3 0 1-

- K¢ NFﬂ,
where M ,30 Mg, ... M, —»Tﬁn" M), and where mg + ...+ m, =m,
lﬂ(Ml) =mi, and l/[;(()\l‘Mg) M1 . Mn) =m-+k+ 1. Then

-3 My M,y ... M,
—»Z%ml My M, ... M)
— K € NFg

is another longest reduction path from (Ax.Mjy) My ... M,. Thus,
My My ... M, —7"™% K is also a longest reduction path from
Moy M, ... M,, i.e., l,B(MO M. .. Mn) =m —my + k. Thus,

m+k+1
= (m—m1+k)+m1+1
= l/g(M[] Mg...Mn)—i-lg(Ml)-i-l.

2. x € FV(Mp). A longest reduction from (Ax.My) M ... M, has the

form
(A\x.My) My ... M, —»Z1 (Az.Mg) M7 ... M],
_)5 Mo{x = MI} MQ"'M’I{L
where My—»5° Mg, ... , M, —»’Bn" M), and where mo+ ... +m, =m

and lg((Az.Moy) My ... My) = m+ k+ 1. Since
M~ M' & N4 N' = M{z = N} M 0z = N7y,
also
()\J,‘Mg) M ... M, -3 Mg{l‘ = Ml}MgMn
—ppotmeIMole = MUY My L M,
—g2 et My{w = M{} My ... M,
— K € NFg.

26 Chapter 1. Perpetual Reductions in A-Calculus

Since |My|y > 1, mo+my - |[Molle +mo...+mp+k+1>m+Ek+1,
so this is, in fact, another longest reduction from (Az.My) My ... M,,
SO lﬂ(Mg{.%‘ = Ml} M. .. Mn) =mgy+mq - ”Mg”x +mo...+my, + k.
Thus,

lg((Ax.My) My ... My) mo+mi+...+m, +k+1

< m0+m1-||M0||x+m2+. ctFmy k41
The converse inequality is trivial. ad

1.3.19. COROLLARY. For alln > 1,
ProOOF. By the fundamental lemma of maximality. O

1.3.20. REMARK. The fundamental lemma of perpetuality and its corollary
are special cases of the fundamental lemma of maximality and its corollary,
respectively.

1.3.5. An effective maximal strategy

The following strategy is due to Barendregt et al. [3, 5].

1.3.21. DEFINITION. Define Fi, : Ax — Ag as follows. If M € NFg then
Fo (M) = M; otherwise

Fy(z PQR) = 2zPFo(QYR if P& NFg,Q ¢NFg
Foo(Az.P) = Az.Fy(P)

Fyo((Az.P)QR) = P{z:=Q}R if 2 € FV(P) or Q € NFp
Fo((AM.P)QR) = (A.P) Fo(Q) R if x ¢ FV(P) and Q ¢ NFg.

The following theorem has been folklore for some time. De Vrijer [136,
138] uses Fiy, to calculate the maximal length of a reduction path of a sim-
ply typed A-term. In fact, the proof of [136, Thm 4.9] shows that Fi, is
maximal—see also [136, 2.3.3 and 4.9.2], and the discussion of related work
in Section 5. Later, the theorem was proved independently by Regnier [108],
Khasidashvili [71], van Raamsdonk and Severi [106] and the author [119].
The proof below is a simplification of the two latter proofs.

1.3.22. THEOREM. F, is an effective, mazimal (-reduction strategy.

PRrROOF. It is clear that F is an effective 3-reduction strategy. To prove
maximality we use the formulation from Lemma 1.2.14. Given M € Ag and
m > 1, we must show that M € mg = Foo(M) € (m —1)3. We proceed by
induction on M.

1.3. Perpetual and maximal strategies 27

1. M =2 P QR where P € NFs, Q ¢ NFs. Let R = Ry,... ,R,. Then
Q € m%,Rl € m%, , Ry € mj, where m = m® +m! + ...+ m,
and m® > 1. By the induction hypothesis, Fio (Q) € (m® — 1)5. Then
Foo(M) =2 P Fy(Q) R € (m—1)5.

2. M = Az.P. Similar to Case 1.

3. M = (Az.P) Q R where z € FV(P) or Q € NFg. By the fundamental
lemma of maximality,

I5(P{z = Q} R) + 1 =15(M) >m.

Therefore, lg(P{z := Q} R)>m—1, ie., Fyo(M) € (m — 1)s.
4. M = (M\x.P)Q R where z ¢ FV(P) and Q € NFg. By the fundamental

lemma of maximality,
I5(P R) +15(Q) + 1 = l3(M) > m.

We consider two cases.

4.1. @ € oog. Then, for any n > 1, Q € ng. By the induction
hypothesis, for any n > 1, Fo(Q) € (n — 1)g. In particular,
Foo(Q) € (m — 1), and then Fo(M) € (m — 1)g.

4.2. Q & oog. Then Ig(Q) < oo by Lemma 1.2.7. By the induction
hypothesis, Ig(F'(Q)) > 15(Q) — 1. Then

s(Fx (M) = 15((Aa.P) Fo(Q) R)

(
= (P R) +15(Fx(Q)) + 1
> 1lg(P R)+15(Q)
= lp(M) =1
> m—1.
Thus, Foo (M) € (m —1)g. 0

1.3.23. COROLLARY (Barendregt et al. [3, 5]). Fuo is perpetual.

1.3.24. REMARK. As pointed out by van Raamsdonk and Severi [106], the
proof in [3, 5] of this corollary can be simplified by using the fundamental
lemma of perpetuality or one of the related characterizations.

Khasidashvili [71] studies so-called limit reduction strategies in ortho-
gonal expression reduction systems (of which S-reduction on A is a special
case), and shows that any limit reduction strategy is maximal and that
F is a limit reduction strategy in A-calculus. the author [119] presents
a fn-reduction strategy H,, and shows that it is On-maximal and thereby

On-perpetual.

28 Chapter 1. Perpetual Reductions in A-Calculus

1.3.6. On upper bounds for length of reductions

One can effectively compute upper bounds for the length of longest develop-
ments and longest reduction paths in several typed A-calculi (see Sections 1.5
and 1.6). This raises the question whether there is some formula for upper
bounds for lengths of reduction paths in type-free A-calculus. In this sub-
section we give a positive and a negative answer to this question.

The following definition gives the most obvious way of counting the num-
ber of steps in a longest reduction to normal form.

1.3.25. DEFINITION. Define h: SNg — N by:

hMaPr...Py) = h(P)+...+h(F)

h(Az. P) = h(P)
h((A\z.P) Q R) = h(P{e:=Q}R)+1 ifzeFV(P)orQe NFg
MOz P)QR) = h(PR)+h(Q)+1 ifz¢gFV(P)and Q¢ NFg.

1.3.26. PROPOSITION. For any M € SNg:h(M) = l3(M).

ProoOF. By induction on l3(M) using the fundamental lemma of maximal-
ity. a

The map h is defined only for elements in SNg. It is natural to ask
whether there is a “simple formula” f such that f(M) is the length of a
longest (-reduction from M when M € SNg, and f(M) is some unpre-
dictable number when M € ocog. One could hope that the freedom to return
arbitrary values on terms with infinite reductions could give a simple for-
mula on strongly normalizing terms. A reasonable formalization of “simple
formula” is the notion of a primitive recursive function. The following propo-
sition, which answers a more general question, shows that our hopes are in
vain.

1.3.27. PROPOSITION. There is no total effective | : Ag — N such that, for
all M € SNg,
(M) > 13(M).

PROOF. Suppose such an [existed and consider ¢: A — N:

e (M)
C(M)_{ 0 if FXM (M) € NFy.

| 1t () ¢ NE.
Here c is total and effective. Consider the following two cases.

1. ¢«(M) = 0. Then FIM™ (M) € NFy, ie., L (M) < I(M) < o0, so
M € SNg by perpetuality of F,.

1.4. The Q-theorem 29

2. ¢(M) = 1. Then F.™) (M) ¢ NF4. By maximality of Fi, it follows
that [3(M) = Ly, (M) > [(M). By definition of [, M ¢ SNg.

Thus, ¢ gives a procedure to decide for any M whether M € SNg, which is
known to be impossible, a contradiction. O

1.4. The Q-theorem

In the type-free A\-calculus some terms have an infinite reduction path. The
simplest example is the term €2 = w w, where w = Ax.z z. It has an infinite
reduction path where the term reduces to itself in every step:

Q—)/gQ—)/g....

There are terms that do have an infinite reduction path, but where the
path does not have this simple form.2 For instance, the term ¥ = 1)),
where ¢ = Az.z x y, has the infinite reduction path:

\Il—>ﬂ\11y—>ﬂ\11yy—)ﬁ‘” .

In every step the redex W appears as a subterm, and the context of the redex
is extended with an application ey. As a more complicated example consider
the term vy v, where v = Aa.\z.x (ay) z. It has the infinite reduction path

vyv =g (Az.z(yy)z)v =g v(yy)v =g (Az.xz(yyy)r)v =g v(yyy)v =5

This path is similar to the preceding one, but the extra application e y is
added inside the redex.

Although these three reduction paths have their differences they have a
common property: in all three paths every term has 2 as a substring. It
is natural to ask whether this property is shared by all infinite reduction
paths. In this section we present the €2-theorem, taken from [120], which
states that this is indeed the case. The proof exploits perpetuality of the
strategy F5 from Section 1.3.3.

The first subsection introduces the set of all terms that do not have Q
as substring, and the second subsection shows that the elements of this set
are strongly normalizing. The third subsection studies applications.

1.4.1. The set A

We first formalize what it means that one term is a substring of another.

®Lercher [82] shows that M —3 M iff M = C[Q)] for some context C.

30 Chapter 1. Perpetual Reductions in A-Calculus

1.4.1. DEFINITION. Define the relation < (“substring”) on Agx by:

z<x

P<Q = PdXz.Q if £ Z FV(P)
P4Q = PJQZ

P<Q = P<QZQ

P<Q = Ax.P<dlx.Q

P dQ1 & 2@ = P P20Q1Q.

1.4.2. EXAMPLE.

(i) wdAzzz Z.

(i) Q< (M\exx Z) (\e.x x Z).

(iii) w<dAaAz.x Z x.

(iv) Q< Na vz Z x) Z (NaAv.x Z).

(v) wdAz.x (Ay.z).

(vi) Ar.zy A(A\z.x) y.
(vii) Ay Ae.) y.
(viii) Az.zy A(Az.z) y.
(ix) w Alz.x (A\z.x).
(x) Q AXz.(z 2) w.

It is convenient to introduce an inductively defined set Ag of all terms

that do not contain 2 as a substring, and show that all elements of this
set are strongly normalizing. The following auxiliary set A, studied by

Komori [79], Hindley [49], and Jacobs [56], is the set of all terms that do
not contain w as a substring.

1.4.3. DEFINITION.

(i) Define A, by:

r € A,
PeA,,|P|l. <1 = JAz.PeA,
PQeA, = PQeA,.

(ii) Define, for M € Ak, |M|, € N by:

-

P|| if||P|| <1
. P = ” w] =
x-Ple {1+||P||w if 1Pl > 1
POl = |Pl+]Ql.

(iii) An abstraction Ax.P is duplicating if |P|, > 1.

1.4. The Q-theorem 31

1.4.4. REMARK. The following equivalences are easily established:
M|, =0 < MeA, & wdM.

Each of these equivalent conditions state that M does not contain a subterm
which is a duplicating abstraction.

One easily shows that A, is closed under reduction. The intuition is that
if M € A, and N ¢ A, then M has no duplicating abstractions while NV has
at least one. Thus, the reduction M — 3 N must duplicate a variable in the
body of some abstraction, but this would require a duplicating abstraction
in M. It is also easy to prove that reduction in A, decreases term size, since
every step removes an application and an abstraction. With the preceding
property this implies that every term in A, is strongly normalizing.

1.4.5. DEFINITION. Define the set Aq as follows.

(1) T € Ag

(2) M € Ag = Ar.M € Aq
(3) M e Ag,N €A, = MN € Aq
(4) MEAW,NEAQ = M N € Aq.

1.4.6. REMARK. It is easy to show A, C Ag and the following equivalence:
MelAg & QLM.

Informally, these two equivalent conditions state that M does not contain
two disjoint subterms that are both duplicating abstractions.

Next we show that Agq is closed under reduction. The intuition is as fol-
lows. If M € Ag and N ¢ Ag, then M has no disjoint duplicating abstrac-
tions, while IV has at least two. If M —3 N then non-disjoint duplicating
abstractions in M are also non-disjoint in N. Therefore, the two disjoint
duplicating abstractions in N must arise from M either by duplication into
disjoint positions of a single duplicating abstraction, or by duplication of a
variable in the body of a non-duplicating abstraction which is disjoint with a
duplicating abstraction. Both cases are impossible because they entail that
M has two disjoint duplicating abstractions.

1.4.7. LEMMA. M € Aqg & M —3 N = N € Aq.
Proor. First prove by induction on the derivation of M € A, that
MeA, & NeA, = M{z:=N} e, (1.1)
and
MeA, & M|, <1 & Ne€Aqg = M{z:=N} € Aq. (1.2)
Show by induction on the derivation of M € Agq, using (1.1) and A, C Aq,
M e Aq,N € A, = M{z:=N} € Aq. (1.3)
Now proceed by induction on the derivation of M —3 N using (1.2-1.3). O

32 Chapter 1. Perpetual Reductions in A-Calculus

1.4.2. Strong normalization of terms in Ag

As for A, the idea for proving that all terms in Aq are strongly normalizing
is to find a decreasing measure, but term size | ® | does not work. Instead
we consider the lexicographically ordered measure (| ® |, | ® |).

Suppose M —g N by contraction of the redex A = (Az.P) Q. If Ax.P is
non-duplicating, contraction of A creates no new duplicating abstractions.
Moreover, the size of N is strictly smaller than the size of M, so the reduction
step decreases the measure.

If Az.P is duplicating, the reduction step removes one duplicating ab-
straction, and any new duplicating abstractions have to come either from
proliferation of duplicating abstractions in @) or from duplication of variables
in the body of some abstraction. The first case is impossible, since it implies
that M has two disjoint duplicating abstractions. In the second case, new
duplicating abstractions may be created, but they must have their A to the
left of A.

Recall that a standard reduction path My —g M; —g ... is such that
whenever a redex A is contracted in M; all abstractions to the left of A are
marked, and a redex with marked abstraction is not allowed to be contracted
in M; for any j > 4. If a term has an infinite reduction path, then it has a
standard infinite reduction path [18].

The idea then is as follows. Suppose some M € Aq has an infinite
reduction path and hence a standard infinite reduction path. Then the
measure (|e], |®]) is decreasing on this reduction path if we insist that |e|,
count only non-marked abstractions, and thus we arrive at a contradiction.

To formalize this reasoning we use the strategy Fj from Section 1.3.3,
which computes standard infinite reductions. The following map V isolates
the part of a term in which F, contracts a redex. This part of the term
contains all the abstractions to be counted by our measure.

1.4.8. DEFINITION. Define V' : cog — Ag by:

V(z PQR) = V(Q) if P € SNg,Q ¢ SNp
V(\z.P) = V(P)

V(Az.P)QR) = (Ax.P)QR if P €SNg,Q € SNg
V(Az.P)QR) = V(P) if P ¢ SNg
V(Az.P)QR) = V(Q) if P € SNg, Q ¢ SNp.

1.4.9. LEMMA. For all M € cog: V(M) C M.
PRrROOF. By induction on M. ad
1.4.10. LEMMA. For all M € oog,

V(M) = (\y.K) LN

1.4. The Q-theorem 33

for some K,L,]_f € Ag with
V(Fy(M)) C K{x:= L} N.
Proo¥F. Induction on M using perpetuality of F.
1. M=z P Qﬁ where P € SNg, Q € SNg. By the induction hypothesis,
V(M) =V(Q) = (\y.K)LN
for some K, L, N. By the induction hypothesis and perpetuality of £,
V(R(M)) = V(z P F(Q) R) = V(F(Q) € K{y = L} N.
2. M = Ax.P. Similar to Case 1.
3. M = (\y.P) QR where P € SNg and @ € SNg. Then
V(M) = (\z.P) Q R,
and by Lemma 1.4.9,
V(Fy(M)) =V (P{z:= Q} R) C P{z:=Q} R.
The remaining two cases are similar to Case 1. O
1411, Loavia, |P{z = QM = [Plo + [Pl - 1@l
Proor. By induction on P. a
1.4.12. PROPOSITION. M € Aq = M € SNg.

PRroor. Suppose M € Aq and M € oog. By perpetuality of F», there is an
infinite reduction path
My —3 M,y B .-

such that for all ¢, F5(M;) = M; 41 and, by Lemma 1.4.7, M; € Aq. We now
claim that for all ¢

V(M) o, [V (M)) > ([V (Mis1) oo, [V (Mig1)])- (1.4)
This implies that we have an infinite sequence

IV (Mo)llw, [V (Mo)]) > (IV (M), [V (MD)]) > ..,

which is clearly a contradiction. Thus M € SNg, provided we can prove
(1.4).
To prove this, first note that by Lemma 1.4.10 and 1.4.9:

V(M) = (MK)LN CM; (1.5)
V(M) C K{y:=L}N

for some K, L, N. Since (Ay.K) L C M; € Aq, also (A\y.K) L € Ag. We now
prove (1.4) splitting into the following two cases. Let N = Ny,... , N,.

34 Chapter 1. Perpetual Reductions in A-Calculus

1. |K|y, > 1. Then A\y.K € Ag\Ay, so L € A,, and hence |L|, = 0. By
(1.6), Lemma 1.4.11, and (1.5):

V(Mo < |E£{y:= L} Nl
= IK]o+ Ky Lo + INtlo + - - - + [Nale
= Ko +[Nlo + -+ [Nalo
< [Ay-Klo + [N + - -+ [Nalo
= |(y.K) L N|,
= [V(Mi)]e-

2. |K|y < 1. Then by (1.6), Lemma 1.4.11, and (1.5):

IV(Mis1)lo < |K{y:= L} N,
= IK]o+ Ky Lo +INt]o + - - - + [Nae
< Ko + 140w + [Nw + - -+ [Nafw
= |(w.K) L N|,
= [V(Mi)]e-

Moreover, by (1.6) and (1.5):

|[V(Mip)] < |[Kf{y:= L} N|
= K|+ K]y - (IL] = 1) + [No | + ... + [No] + 1
< KT+ IL+ 24 [N + oo+ [Na] + 0
= [(Ay.K) L N|
= V().
as required. a

We finally have the (2-theorem, from [120]:
1.4.13. THEOREM. If M € oog then 2 J M.

Proor. By Remark 1.4.6 and Proposition 1.4.12. a

1.4.14. REMARK. The term M = (Az.yzz) (Azx.yxx) shows that Q<M does
not generally imply M € oog. This should come as no surprise: if 2 < M
had been equivalent to M € oog, we would have had a simple syntactic (in
particular effective) algorithm for deciding whether M &€ SNg, which is an
undecidable problem.

Following Gramlich [43] (see also Plaisted [99]) we call an infinite reduc-
tion path constricting if it has the form

C1[My] —p C1[Co[Mz]] =5 C1[Co[Cs[M3]]] . ..,

where M; is the minimal superterm with an infinite reduction path of the
redex contracted in the step C1[... Ci[M;]...] =g Ci[... Ci[Cip1[Mit1]] - ..].

1.4. The Q-theorem 35

Van Oostrom [95] sketches a variant of the above proof which, instead of
using the perpetual strategy Fb to obtain standard infinite reductions, uses
a so-called zoom-in strategy (see Mellies [86]). This is a constricting stra-
tegy which in each term contracts the leftmost redex of a minimal subterm
with an infinite reduction path. The proof presented above is very similar,
since F» is also constricting—indeed, Lemma 1.4.10 expresses a very similar
property. However, in (Az.x) z , Fy contracts the left-most redex, so Fb
is not a zoom-in strategy in the above sense. The following variation F3,
studied by the author [120], is a zoom-in strategy:

1.4.15. DEFINITION. Define F3 : cog — A by:

Fs(z PQ R) = zPFQ) R if P € SNg,Q ¢ SNp
F3(\z.P) = \a.F3(P)

F3(Az.P)QR) = P{z:=Q}R if P,Q, R € SNg
F3((\e.P)QR) = (\.F3(P))QR if P ZSNg

F3(\z.P)RQS) = (\z.P)R F3(Q)S if P,R € SNy, Q ¢ SNp.

Khasidashvili and Ogawa [74] study strategies which in a term contract a
so-called external redex of a minimal subterm of M with an infinite reduction
path; in particular, in A-terms the leftmost redex of a minimal subterm
with an infinite reduction is external. They show that any such strategy is
perpetual. They also show that the strategy which in each step contracts
the leftmost among all such redexes is constricting.

Xi [142] calls a reduction path My —g My —3 ... canonical if, when-
ever a redex A is contracted in M; all redexes containing A as a subterm
have their abstractions marked, and a redex with marked abstraction is not
allowed to be contracted in M; for any j > i. Any standard reduction is
also canonical, but the converse is not true, since a canonical path may
contract disjoint redexes from right to left. However, whenever a term M
has a canonical reduction which is infinite (or ends in N) then M also has a
standard reduction which is infinite (or ends in V). Xi uses canonical reduc-
tions to give proofs of the finite developments theorem, the standardization
theorem, the conservation theorem for A;, and the normalization theorem.

Bohm et al. [21] and Bohm and Dezani-Ciancaglini [22] give, for any
B-normal form M, a constructive definition of a set of S-normal forms N for
which M N has a B-normal form. Since any A-term can be transformed to an
equivalent term which is an applicative combination of -normal forms, this
can be used to generally approximate whether a term has a $-normal form
or not. On the other hand, Aq directly characterizes a class of terms with
arbitrary nesting of A’s and application which are all 5-strongly normalizing.

1.4.3. Applications

An S-term in combinatory logic is a term built of only the S-combinator and
application, e.g., S(55)SSSS and SSS(SS)SS. Barendregt et al. [5] show

36 Chapter 1. Perpetual Reductions in A-Calculus

that these two S-terms have infinite reduction paths. Duboué has verified by
computer that the remaining 130 other S-terms with 7 or fewer occurrences
of S are strongly normalizing. The following shows that only one among the
2622 closed A-terms of size 9 or less has an infinite reduction path.?

1.4.16. COROLLARY. Let M € oog. Then

) 190 < 1],

(i) M <9 = M=Q.

PrOOF. (i): By the Q-theorem, since O <9 M clearly implies |O| < |M].

(ii): By the Q-theorem and (i) using the fact that O < M and |M| < |O]
implies M = O. ad

The next application gives a technique to reduce proofs that some term
is strongly normalizing to proofs that terms are weakly normalizing. The
latter is usually easier.

1.4.17. COROLLARY. If N € WNg for all N I M, then M € SNg.
Proor. If M € oog then, by the 2-theorem, 2 < M, and Q2 € WNg. O

The following shows how this corollary may be used to prove strong
normalization of a set of terms.

1.4.18. PROPOSITION. Let S C Ak and let < be a relation on Ag with

(i) If N € WNg for all N < M, then M € SNg.
(i) If M €S and N < M then N € S.

Then S C WNg = S C SNg.

PROOF. Assume that < satisfies (i)-(ii) and assume S C WNg. Given an
M € S. By (ii), N € S for all N < M. Then, by assumption, N € WNy for
all N < M. Then by (i), M € SNg, as required. O

1.4.19. REMARK. The previous result has motivated the search for relations
satisfying (i)-(ii) for various sets S, notably the set A™ of terms typable in
simply typed A-calculus & la Curry (see Section 1.5). With such a relation
at hand, one can show that all elements of A~ are strongly normalizing by
demonstrating that they are all weakly normalizing.

3T. Mogensen gives a formula f(n,m) for the number of A-terms of size n > 1 with at
most m > 0 free variables:

f(1,m)
f(n+1,m)

m

1.5. Strong normalization in type theory 37

As Corollary 1.4.17 shows, < satisfies (i). In fact, the proof of the corol-
lary shows that any relation < satisfying M € oog = Q < M also satisfies
(i). However, < does not satisfy (ii) for A~. For instance, Az.z (x Ay.y) has
type (@ - a) - (o = a)) - (@ — «) in simply typed A-calculus, but
Ar.z x < Ax.x (x \y.y) has no type.

The author [121] and Xi [141, 144] study relations < satisfying (i) and
(ii) for A~ which are defined by translations, i.e., M < N iff ¢(N) = M for
certain translations ¢t : Agx — Aj—see Chapter 2.

1.4.20. ProBLEM. Hindley [49] shows that M € A, = M € A7, i.e., every
M € A, can be typed in simply typed A-calculus & la Curry. Can every M
in Aq be typed in second-order typed A-calculus a la Curry?

1.5. Strong normalization in type theory

As mentioned in Section 1.3, many strong normalization proofs in the lit-
erature make use of the fundamental lemma of perpetuality or the funda-
mental lemma of maximality (see also Remark 1.3.6 and 1.3.10). In this
section we study such proofs in more detail in the context of the simply
typed A-calculus.

The first subsection presents the version of simply typed A-calculus with
which we shall be concerned. The second subsection presents a new proof of
strong normalization of simply typed A-calculus due to van Raamsdonk and
Severi [106]. While their original proof uses their characterization of SN, the
present version uses the fundamental lemma of perpetuality. Other proofs
are reviewed in less detail.

1.5.1. Simply typed A-calculus

1.5.1. DEFINITION. Let T be a set of constants, called base types. The set
T of simple types is the smallest set such that

(i) ThCT.
(i) ABeT = A~ BeT.

For A € T, |A| denotes the number of arrows in A.
We use association to the right, so A -+ B — C means A — (B — ().

1.5.2. CONVENTION. It is convenient to assume that the set V' (the set of
variables of Ak) is divided into mutually exclusive and together exhaustive
non-empty classes V4 where A € T, i.e.,

V=JVa & A#B=Wa#Vs & Vai#0
AEeT

38 Chapter 1. Perpetual Reductions in A-Calculus

1.5.3. DEFINITION. For every A € T, the set of simply typed A-terms of type
A, written A7, is the smallest set such that

(i) zeVa = 2xeA].
(i) s eVa & MeAy = M. Mc A} 5
(iii) MeAg ,, & NeAy = MNecAj.

The set of simply typed A-terms, written A~ is defined by:

A7 =AY
AeT

The following two properties, known as the substitution lemma and the
uniqueness of types property, will be used in the next subsection.

1.5.4. LEMMA.
(i) PeAg’&xeAX &NEAX :>P{:c::N}€A§’.
(ii) PGAX&PGAB? = A=DB.

PROOF. (i)-(ii): by induction on the derivation of P € A5 . a

1.5.2. Strong normalization of simply typed A-calculus

An attempt to prove directly, by induction on the derivation of M € A7/,
that M € SNg breaks down in the application case: P € SNg and) € SNg
does not imply P Q € SNg. One way of overcoming this difficulty is to
introduce the set SN of strongly normalizing terms of type A and show
that M € A} implies M € SN/. The crucial step then is to show for any
M € SN} 5 and N € SN/ that M N € SNy. This idea is carried out
below, following [106].

1.5.5. DEFINITION. For A € T define SN, = SNg N A7}, and

SN” = |] sNy.

1.5.6. REMARK. For every type A:) G Vi C SN C A,

1.5.7. DEFINITION. For X,Y C Ak define
X—>Y={MecAg|VNeX:MNeY}

1.5.8. LEMMA. A}, =A7 = Ay

1.5. Strong normalization in type theory 39

PROOF. Let M € A} 5. Forall N e Ay, M N e€Ay,s0o MeAy —Ay.
Hence A} .5 € A}y — Ap. Conversely, let M € A} — A7 . Pick some
N € A}y. Then M N € Ay. Therefore, M € A7, 5 for some C € T
with N € AZ. By uniqueness of types, A = C, so M € A}, ;. Hence
ANy = A7 CAY 5. |

1.5.9. LEMMA. SN/, » D SN — SN

PRrRoOOF. Let M € SN — SN . Pick some N € SN7. Then M N € SNj.
In particular, M N € SNg, and then M € SNg. Moreover, since M N € A7
and N € A}, also M € A}, ; by uniqueness of types. In conclusion,
M €SN} 5. a

The converse of the preceding lemma is more difficult to prove. We need
the following lemma.

1.5.10. LEMMA. Let P € SNp,x € A} , 4 ,and N € SN} —...—SN
where A, is a base type. Then P{x := N} € SN .

Proor. We use the abbreviation L* = L{z := N} for any L € A7. By

Lemma 1.5.9, N € SN , _,, . By the substitution lemma, P* € Ay. It

remains to show P* € SNg. We show this by induction on lexicographically
ordered pairs (Ig(P), |P]).

1. P=yP...P,. Then P,... ,P, € SNg. Also, y € Ay

B1—..—»B,—B

and Py € Ap,..., P, € A5 ,ie, P € SNg,...,P, € SNy . By the
induction hypothesis, Pf,... , P, € SNg. Consider two subcases.

1.1. y #x. Then P* =y Py ... P; € SNg.

1.2. y==x. Then B, = Al, ceey B, = An and B = An+1—>...—>Am.

By Lemma 1.5.9, SNXTL+1 — ... = SNy C SNp. Therefore,
SNy, — ... > SNy C SNy — ... —> SNy — SNp. So N €
SN, — ... > SNy — SNp. By the substitution lemma, P €
APy € Ay ,ie, Pf € SN ..., Py € SN . Therefore,
P*=NPf...P; € SNy.

2. P = \y.Py. Then Py € SNg. Also, B = By — By and P € AEO, ie.,
Py € SNE’O. By the induction hypothesis, Py € SNg. Therefore also
P* = \y.Py € SNg.

3. P= ()\yP[]) P P...P, Then Po{y = Pl}Pg ...P, € SN/B, P e SNﬂ.
Also, P € Ap,..., P, €Ay ,yeAg,and Py € Ay , ,p .p By

the induction hypothesis,

(Poly == P} Py ... P)" = Pi{y = P;}P; ... P € SNg

and Py € SNg. Then P* = (\y.Fy) PPy ... P; € SNg, by the funda-
mental lemma of perpetuality. O

40 Chapter 1. Perpetual Reductions in A-Calculus

The following crucial lemma states that A/ € SN, and N € SN
implies M N € SNy

1.5.11. LEMMA. SN, C SN — SNy

Proor. We prove that M € SN, 5 implies M € SN — SNZ'. The proof
is by induction on lexicographically ordered pairs (|A|,l3(M)). For each
N € SN/ we must prove that M N € SN . Since obviously M N € Ay, it
suffices to show in each case that M N € SNg.

1. M=yP...P,. Then P,...,P, € SNg. Since N € SNy, it follows
that M N =y P, ... P,N € SNg.

2. M = Axz.P. Then P € SNg. Since A = A; — ... — A, for some base
type A, the induction hypothesis yields N € SN/ — ... — SN .
Since P € SN, Lemma 1.5.10 implies that P{x := N} € SNg. Then
M N = (Ax.P) N € SNg by the fundamental lemma of perpetuality.

3. M = ()\yP()) PP...P,. Then Po{y = PI}PQ ...P, € SNﬂ and also
Py € SNg. Since Po{y := Pi}P»...P, € A} 5, the induction hy-
pothesis yields Py{y := Pi}P>... P,N € SNg. Since P; € SNg, also
M N = (A\y.Py) P\P>...P,N € SNg by the fundamental lemma of per-
petuality. ad

1.5.12. THEOREM. Let A be a simple type. If M € A} then M € SNg.

PRroOOF. By induction on the derivation of M € A7 .

1. M =2 € Vy. Then x € SNg.

2. M = Az.P, where A = Ay — A; and P € A} . By the induction
hypothesis, P € SNg, and therefore A\x.P € SNg.

3. M = PQ, where P € A7, , and Q) € A7 . By the induction hypothesis,
P €SNy, ,and Q € SN . By Lemma 1.5.11, P € SN — SN/. Then
PQe SNX C SNg. O

1.5.13. REMARK. A similar technique for handling the difficult application
case is due to Xi [140].

There are many other proofs of strong normalization of simply typed
A-calculus. The following is an incomplete list. Tait [125] proves weak
normalization of several systems, but the method can be adapted to prove
strong normalization. The resulting classical proof makes use of the notion
of strong computability and is quite short but complex. The proof uses
the fundamental lemma of perpetuality to show that the set of strongly
computable terms is closed under certain expansions—see, e.g., [50, App. 2,
Lem. 2] .

1.5. Strong normalization in type theory 41

Girard [41] introduces the notion of candidate of reducibility. He extends
Tait’s method in order to prove strong normalization of second- and higher-
order A-calculus. In the version of this proof technique expressed in terms
of saturated sets, the fundamental lemma of perpetuality is used to show
that SNg is a saturated set—see, e.g., [4, Lem. 4.3.3].

Terlouw [129] interprets Tait’s proof of strong normalization of simply
typed lambda calculus in a general model-theoretic framework. This yields
a proof of strong normalization of the Calculus of Constructions and other
advanced type systems.

Gandy [36] interprets a term in a typed A-calculus by a strict mono-
tonic functional whose value is an upper bound for the length of reductions
from the term—the form of the upper bound is elaborated by Schwichten-
berg [114]. Gandy’s technique uses implicitly the weak form of the funda-
mental lemma of maximality (Corollary 1.3.19). The technique is general-
ized to higher-order rewrite systems by van de Pol [101] and applied to a
variety of systems by van de Pol and Schwichtenberg [103]. Van de Pol [102]
discusses the relationship between the proof by Gandy and the proof by
Tait.

De Vrijer [138, 136] proves strong normalization of simply typed A-
calculus by translating terms into functionals computing the exact length
of the longest reduction path to normal form, and shows that F,, computes
this path. De Vrijer’s proof uses the fundamental lemma of maximality—see
the proof of [136, Thm. 4.9], and also [136, 2.3.3 and 4.9.2].

Another technique for computing upper bounds on lengths of reductions
is due to Howard [53] which is used by Schwichtenberg [115] to give upper
bounds for the length of reductions in simply typed A-calculus. Whereas
the bound h from Definition 1.3.25 implicitly reduces the term to normal
form, i.e., h((Az.P) Q) is expressed in terms of h(P{z := Q}), the bounds
for reductions of simply typed terms can be expressed in such a way that
the bound for (Ax.P) @ is expressed in terms of the bounds for P and
(). This technique uses implicitly a version of the fundamental lemma
of maximality—see the proof of the main lemma [115, p.407]. Spring-
intveld [123] applies the technique to the dependent system AP and to the
weak version Aw of higher-order typed A-calculus.

Xi [143] gives a proof of the standardization theorem which provides an
upper bound on the length of the standard reduction path obtained from
any given reduction path, and Xi uses this to provide upper bounds for the
length of reduction paths in simply typed A-calculus.

Van Daalen proves strong normalization of simply typed A-calculus using
induction on a certain triple—see [93, p.507]. Lévy [83] uses the technique to
prove strong normalization of a labeled A-calculus with a bounded predicate.
This proof yields also that all developments are finite, and standardization,
as reported in [28].

42 Chapter 1. Perpetual Reductions in A-Calculus

Capretta and Valentini [23] prove strong normalization of simply typed
A-calculus by showing strong normalization of an alternative formulation of
simply typed A-calculus which they prove is equivalent to the usual formu-
lation; this latter part is the difficult part of the proof.

Klop [76] shows strong normalization of a labeled A-calculus by an inter-
pretation in Aj. Several of the above techniques also use translations from
Ak to A;. The technique by Klop was discovered independently from a sim-
ilar technique by Nederpelt [92] and has been reinvented and extended by
many researchers, e.g., Khasidashvili [69], Karr [62], de Groote [31], Kfoury
and Wells [66], Xi [141, 144], and the author [121]—see Chapter 2.

1.6. Developments

The preceding section analyzed approaches based on the fundamental lemma,
of perpetuality, etc., to proving that all reductions of typed terms terminate.
In the present section we give a similar analysis for reduction of labeled terms,
i.e., for so-called developments.

The first subsection presents the fundamental lemma of perpetuality for
developments along with two related characterizations due to van Raams-
donk and Severi and to Xi, respectively. The second subsection presents a
new proof, due independently to van Raamsdonk and Severi and to Xi, of
the finite developments theorem. Whereas the proof by van Raamsdonk and
Severi and by Xi use their respective characterizations, the proof presented
here uses the fundamental lemma of perpetuality for developments. Other
proofs of the theorem are reviewed in less detail.

1.6.1. Developments

This subsection introduces developments in terms of labeled terms; we follow
Barendregt [3, 11.1-2], with some insignificant deviations.

1.6.1. DEFINITION.

(i) The set Ag (A-terms or labeled A-terms) is defined as follows.

r €Ay

PeAg = Az.PeAy
PQeAy = PQEeAg
PQelAr = (Az.P)QEA,.

In the last clause (Az.P)Q is a labeled redex.
(ii) The notions of reduction 3,3 on A are defined by:

Az.P)Q [Plz:=Q}

(Ae.P)Q B Plz:=Q}.

1.6. Developments 43

(iii) The notion of reduction §* is defined by:
B*=puUg.

1.6.2. REMARK. As done for A-terms in Section 1.2.1 we briefly fix the ter-
minology and notation for some well-known concepts—see [3]. We assume
familiarity with conventions for omitting parentheses, with the notions of
free and bound variables, with the variable convention, and with substitu-
tion. Also, C denotes the subterm relation,* = denotes syntactic equality
up to renaming of bound variables. FV (M) denotes the set of variables that
occur free in M. A A-context C' is a A\-term with a single occurrence of [J;
C[M] denotes the result of replacing the occurrence of [| in C' by M. |M]|
denotes the number of occurrences of abstractions (labeled and unlabeled),
applications, and variables in M. The set A; is the subset of Ay where, for
every M € A; and every A\z.P C M and (Ax.P) Q C M, x € FV(P).5

1.6.3. LEMMA.

(i) M\,N €A = M{x:=N} € Ag.
(i) MeAg & M —3- N = N € Ag.

PROOF.

(i) By induction on M.
ii) By induction on the derivation of M — g« N, using (i). ad
B g

1.6.4. DEFINITION.

(i) A development of M € Ay is B-reduction path from M.
(ii) A complete development of M € A is one which ends in an N € NFg.

The finiteness of developments theorem states that all developments
eventually terminate, i.e., that M € SNg for all M € Ag. A stronger
form asserts in addition that the S-normal form of M € Ay is unique.

1.6.2. Fundamental lemma of perpetuality and developments

The following is an analog of the fundamental lemma of perpetuality for
developments. It is used implicitly in several proofs in the literature of
finite developments.

“Recall that the subterms of (Az.P) Q are the subterms of P and @ and the term
(Az.P) Q itself; that is, Az.P is not a subterm.

°In other words, A; is the set of all M € A, such that replacing every A by A yields
an element of As.

44 Chapter 1. Perpetual Reductions in A-Calculus

1.6.5. LEMMA. Assume N € SNg if v € FV(M). Then
M{z := N} € SNg = (Az.M) N € SNp.

Proor. Suppose M{z := N} € SNg. If o € FV(M), then, by assumption,
N € SNg. If € FV(M), then N C M{z := N}, so again N € SNg. Also
M e SNE. If (Az.M) N € oo, then any infinite reduction must have form

Az.M)N —»3 (Az.M') N’

—g M'{z:=N'"}
8
Since
M- M' & N-—»3 N' = M{z:= N}— M'{z:=N'},

there is an infinite reduction sequence

M{z =N} —» M'{z:=N'}
_>ﬁ ey

contradicting M{z := N} € SNg. O
1.6.6. COROLLARY. If N € SNg, then

M{z := N} € SNg = (Az.M) N € SNp.
Proor. By Lemma 1.6.5. ad

1.6.7. REMARK. Following van Raamsdonk and Severi [106] one can show
that SNg is the smallest set closed under the rules:

(i) z € X.

(ii) Pe X = \z.P e X.

(iii) Pe X & Qe X = PQeX.

(iv) Plr:=Q}e X & Qe X = Az.P)Q e X.

The proof of this uses two principles: induction on lexicographically ordered
pairs (lﬁ (e),] ®|) and the fundamental lemma of perpetuality for develop-

ments. Proofs using the characterization correspond to direct proofs using
the two principles, as was the case for g-reduction—see Remark 1.3.6.

1.6.8. REMARK. Another characterization of SNg is due to Xi [140], who
considers a relation > on A, defined by B

E:gu_}b

1.6. Developments 45

where —; denotes left-most S-reduction and where 1 is the smallest relation
closed under the rules:

MeMJIM MNIM MNIN (Qe.M)NIM (Ae.M)N 3 N.
Let H(My) = max{n | My> My >...> M,} € N*. Then, for all M € Ay,
SNg = {M € Ak [H(M) < oo}.

The proof and uses of this characterization are very similar to those of the
characterization in [106].

1.6.3. A new proof of the finite developments theorem

The following proof of the finite developments theorem is due to van Raams-
donk and Severi [106]; their proof uses their characterization of SNz whereas
the following proof uses lexicographic induction and the fundamental lemma
of perpetuality—see Remark 1.6.7.

1.6.9. LEMMA. M,N € SNg = M{z := N} € SNg.
Proor. By induction on (lg(M), |M]). Let L* = L{z := N}.

1. M = 2. Then M* = N € SNg.
2. M =y. Then M* =y € SNg.

3. M = Az.P. By the induction hypothesis, P* € SNg. It follows that
M* = \x.P* € SNg. B

4. M = P Q. Similar to the preceding case.

5. M = (Ay.P)Q. Then P{y := Q} € SNg and () € SNg. By the induction
hypothesis (P{y := Q})* = P*{y := Q*} € SNj and Q* € SNsz. By
the fundamental lemma of perpetuality for developments it follows that
(Ay-P) Q)* = (Ay.P*) Q" € SN;. 0

1.6.10. THEOREM (Finite Developments). For all M € Ay, M € SNg.

Proor. By induction on M.

1. M = 2. Then M € SNg.

2. M = Ax.P. By the induction hypothesis, P € SNg, and therefore
M € SNE' B
3. M = P Q. Similar to Case 2.

4. M = (Az.P)Q. By the induction hypothesis P,) € SNg. By Lemma 1.6.9
also P{z := Q} € SNg. By the fundamental lemma of perpetuality for
developments, M € SNg. ad

46 Chapter 1. Perpetual Reductions in A-Calculus

There are many proofs of the finite developments theorem in the lit-
erature; the following is an incomplete list. The theorem was first proved
by Church and Rosser [24, 25] for Aj; they also sketch a proof for Ay.°
Curry and Feys [29] and Schroer [113] give full proofs of the theorem for
A k. Other proofs were later given independently by Hyland [55] and Hind-
ley [48]. Barendregt et al. [5] subsequently simplified Hyland’s proof—see
also [3].

Xi [140] gives a proof similar to the above using instead of the fun-
damental lemma of perpetuality for developments his characterization of
SNg—see Remark 1.6.8. Van Oostrom [95, 96] shows that Lemma 1.6.9 can
be eliminated by proving in Theorem 1.6.10 the stronger assertion: for all
substitutions o with o(z) € SNj for all z, it holds that Mo € SNg.

Another proof due to van Oostrom [95] uses Klop’s [76] technique for
reducing strong normalization to weak normalization. Other proofs that
work by translation into strongly normalizing typed A-calculi are due to
Parigot [98] (see also [80]), van Oostrom and van Raamsdonk [97], van
Raamsdonk and Severi [106], Ghilezan [40], and Statman [124].

The theorem has also been proved in several ways for various notions of
higher-order rewrite systems. Klop [76] proves it for orthogonal combina-
tory reduction systems by means of his technique to reduce weak normal-
ization to strong normalization. Van Oostrom [94, 96] proves finiteness of
developments for orthogonal higher-order rewriting systems and for pattern
rewriting systems. FEach of these two results implies finite developments
for orthogonal combinatory reduction systems. Mellies [86] gives an ax-
iomatic formulation of developments and shows finite developments for this
formulation, which includes orthogonal combinatory reduction systems, but
apparently not pattern rewriting systems—see [96]. Khasidashvili [69, 71]
gives algorithms to compute longest developments and length of such devel-
opments in orthogonal expression reduction systems; these algorithms are
special cases of methods to compute longest reductions and the length of
such reductions in certain restricted orthogonal expression reduction sys-
tems.

One can formulate a version of the fundamental lemma of maximality
for developments and use this to give a corresponding effective strategy
F, computing longest developments and a map h : SNg — N comput-
ing the length of longest developments, similarly to the development in
Sections 1.3.5-1.3.6. However, de Vrijer [135] shows that in the case of
developments one can do better; he gives a map f : Ag — N (called h
in [135]) computing the length of longest developments where f((Az.P) Q)
is expressed in terms of f(P) and f(Q); this of course implies finiteness of
developments. He also shows that F', computes longest developments. In
the last section of this chapter we apply to de Vrijer’s technique a principle

5See the end of [25], or the beginning of Chapter V of [24].

1.7. Maximal and perpetual redexes 47

of duality thereby arriving at a technique to compute shortest development
as well as the length of such developments.

1.7. Maximal and perpetual redexes

Having applied the techniques related to perpetual and maximal S-reduction
strategies from Section 1.3 to various strong normalization problems in Sec-
tions 1.4-1.6, we now return to study perpetual and maximal [-redexes.
This leads to some conservation theorems.

The first subsection reviews some fundamental results relating reduction
on terms with and without labels, which will be used in the rest of the
section. In particular, a scheme employed in several proofs of conservation
theorems in the literature is made explicit. The next three subsections
prove the conservation theorem for Aj, the conservation theorem for A,
and a related conservation theorem due to Bergstra and Klop, using this
proof scheme. These results are used in the fifth subsection to characterize
perpetual G-redexes (the notion of maximal (-redex turns out to be trivial).
The sixth subsection gives a proof of the normalization theorem similar to
the proofs of the conservation theorems, and the last subsection gives a
very short proof of the conservation theorem for A; using the normalization
theorem.

1.7.1. Reduction on terms with and without labels

There are two important ways to move from a term with labels to one
without: one can either erase all labels or reduce all labeled redexes. This is
done by the two maps |e |, p(e) : A — A, respectively, introduced below.

1.7.1. DEFINITION. For M € Ay define |M| € Ak as follows.

|| = x

|Az.P| = A\z.|P|

1P Q| = |P[Q)]
(Qe.P)Q = (Az.|P])|Q].

1.7.2. LEMMA. Let M,N € Aj.

(i) [M{z:=|N[} = [M{z:= N}|.
(ii) (Projection.) M —g« N = |[M| =gz |N|.
(iii) (Lifting.) |[M| =5 K = IN € Ag: M =4 N & [N|= K.

PROOF. (i): By induction on M. (ii): By induction on the derivation of
M — < N. (iii): By induction on the derivation of |M| =4 K. a

1.7.3. COROLLARY. Let M € Ay.

48 Chapter 1. Perpetual Reductions in A-Calculus

(i) M e SN/[;* = |M| S SNﬂ.
(ii) M e NFp & |M| € NFg.
The following map ¢(M) computes a complete inside-out development
of M € Ay, whereas M —»3 N € NFg means that IV is the result of an

arbitrary complete development of M. In the last clause of the definition it
is implicit that no previous clause applies.

1.7.4. DEFINITION. Define ¢ : A — Ak as follows.

p(z) = x
p(Az.Q) = Ar.p(Q)
o((Az.P)Q) = @(P){z:=p(Q)}
(P Q) = o(P)p(Q).
1.7.5. LEMMA. For all M,N € Ay:
(i) p(M{z:=N}) = p(M){z :=p(N)}.
(ii)
M =N
DN
K

(iii)

M — N
d
KT\L

PROOF. (i): By induction on M. (ii): By induction on the derivation of
M —p N using (i). (iii): By induction on the derivation of M —3 N using

(i). a
The following expresses a relation between | o | and ¢(e).

1.7.6. LEMMA. Let M = C[(Ax.P) Q] € Ag, N = C[P{z :=Q}] € Ak, and
L=C[(Az.P) Q] € Ai. Then

1.7. Maximal and perpetual redexes 49

PROOF. By induction on the derivation of M —5 N. ad

The following proposition expresses the core idea of several proofs of
conservation theorems in the literature.

1.7.7. PROPOSITION. Let M € A and M —g N. Then
M e o0 = N e 008
if there is an S C Ay and F* : oog« — oog= with

(i) M=C[(Az.P)Q], C[P{z := Q}]=N, C[(Az.P)Q] €S for some C, P, Q.
(il) Le S = F*(L) € S.
(iii) For all L€ S: L =5 F*(L) = ¢(L)—§ ¢(F*(L)).
PROOF. Let M —5 N where M € oog, and let C, P, (@, S, and F* be as
required in (i)-(iii).
Let Ly = C[(Az.P) Q], No = N, and My = M. By Corollary 1.7.3,
Ly € oog-. Since F'* is perpetual,

Ly — B Ly — B Ly...

with L; = F*(L;_1) is infinite.

By Lemma 1.7.5-1.7.6, and the assumptions we can erect the diagram:”
MU —3 Ml —g i M2 -3
-8 L() — > L1 — > L2 -y
7 7 _7
Y N ———— N, -
0 o 1 = 2 o

Here
Li =g Liy1 = Ni—=5 Nipa
L; _>£ Li+1 = N; = Ni+1-

By finiteness of developments L; —3 L;y1 for infinitely many i, giving an
infinite G-reduction path from Nj. O

1.7.8. REMARK. The diagram used in the above proof is an infinite version
of the diagram used by Barendregt [3, 11.1] to prove the strip lemma, the
main lemma in his proof of the Church-Rosser property.

"The reduction My — M1 —4 ... is constructed by projection of Lo, L1, ..., but the
former reduction path is not essential.

50 Chapter 1. Perpetual Reductions in A-Calculus

1.7.2. The conservation theorem for Ay
We now use Proposition 1.7.7 to prove the conservation theorem for A;.
1.7.9. LEMMA. For any M € Aj: M —g- N = N € A8
ProOOF. Show by induction on M that
M,N e€A; = M{z:=N}e€ A (%)
and by induction on the derivation of M — g« N that
FV(M) CFV(N). (+)

Using (x) and (+) proceed by induction on the derivation of M —g« N. 0O
1.7.10. LEMMA. For any M € Ap: M =5 N = (M) =5 ¢(N)
Proor. Show by induction on M that for all M € A;:

FV(M) CFV(p(M)).

Using this property and Lemma 1.7.5(i), proceed by induction on the deriva-
tion of M —43 N. O

1.7.11. THEOREM (Conservation for Ar). If M € Ar and M —3 N, then
M e o0 = N e 004

PrOOF. By the preceding two lemmas we can use Proposition 1.7.7 with
S = A; and any partial, perpetual G*-reduction strategy in the role of F™*.
O

1.7.12. REMARK. Since Ay is closed under S-reduction, we can view (3 as a
notion of reduction on A7, and we can view any S-reduction strategy on Ag
as a (-reduction strategy on A;. The conservation theorem for Ay states
that in Ay, all B-redexes and (-reduction strategies are perpetual.

1.7.13. COROLLARY. Let M € Aj.

(i) M € WNg = M € SNg.

(ii) MEWNB & NCM = NEWNB.
PROOF.

(i) If M € WNg, then M —3 N € NFg, for some N. If M € oog, then by
the conservation theorem, N € ocog, a contradiction.

8A, is defined in Remark 1.6.2.

1.7. Maximal and perpetual redexes 51

(ii) If M € WNg and N C M, then M € SNg, and therefore N € SNg, in
particular N € WNg. O

As mentioned in Remark 1.4.19 and at the end of Section 1.5, a number
of techniques to prove strong normalization of typed A-calculi use transla-
tions from Ax to Ay. Most of these techniques also use some variant of
Corollary 1.7.13(i). For instance, the techniques by the author [121] and
Xi [141, 144] use a translation ¢ : Ag — Ay such that ¢(M) € SNg = M €
SNg. By the corollary, it then suffices to show ¢(M) € WNg to infer
M e SN/[;.

The conservation theorem for A; is due to Church and Rosser [24, 25],
and was later proved by Curry and Feys [29]. A proof in the spirit of the
former proof is given by Barendregt et al. [3, 5]. These proofs are all by
syntactic methods; a semantic proof appears in [51]. Klop [76] proves a gen-
eralization of the theorem for orthogonal non-erasing combinatory reduction
systems.

The above proof is a slight simplification of the proof by Barendregt
et al.; our proof uses inside-out developments rather than arbitrary devel-
opments and avoids the explicit notions of redex occurrence and residual
(similarly, Takahashi [127] proves Curry and Feys’ standardization theorem
using parallel reductions, arguing that these are more convenient than the
arbitrary developments used in, e.g., Mitschke’s proof [89]—see also [3]). A
very short proof will be given in the last subsection.

1.7.3. The conservation theorem for Ay

We now use Proposition 1.7.7 to prove the conservation theorem for Ag.

1.7.14. DEFINITION.
(i) An I-redez is a term (Azx.P) Q € Ag where x € FV(P). A K-redez is a
term (Az.P) Q) € Ag where x ¢ FV(P).

(ii) We write K P @ for (Az.P) @ and K P @ for (Az.P) @ when = ¢ FV(P)
and call P and () the body and argument, respectively, of the redex.

(iii) A’ is the subset of A, where for each M € A! and each (\z.P)Q C M,
it holds that x € FV(P).

(iv) We write M = (Xz.P) Q if M = (A\z.P) Q or M = (A\x.P) Q.

1.7.15. DEFINITION. Define F}' : cog- — Aj by:

F¥*(z PQR) = zPF Q)R if P e SNg-,Q &SNy
F¥(\z.P) = \z.F}(P)

F*((Xz.P) Q }E) = P{z:=Q}R | ifQ e sNg
Ff(Xz.P)QR) = (Xz.P)F}(Q)R if Q¢ SNg-.

52 Chapter 1. Perpetual Reductions in A-Calculus

1.7.16. LEMMA. For all M € oog~: Fy'(M) € oogs.
PRroor. First show that, for all M € oog-:
|FT (M)] = Fi(|M])) (%)

by induction on M using Corollary 1.7.3. Since M € oog«, |[M| € cog by
Corollary 1.7.3. By (*) and perpetuality of Fy, |F}'(M)| = Fi(|M]) € ocog.
Then by Corollary 1.7.3, F'(M) € cog-. a

1.7.17. LEMMA. For all M € AT: F¥(M) € AL
PROOF. First prove by induction on M that
M,N e A" = M{z:=N}e Al
Using this show F}(M) € A by induction on M. a
1.7.18. LEMMA. For all M € A': M —4 Ff (M) = (M) —»E o(F)(M)).

Proor. By induction on M show that for all M € AL: FV(M) C FV(p(M)).
Using this and Lemma 1.7.5 proceed by induction on M. ad

1.7.19. THEOREM (Conservation for Ag). If M = C[A] =3 C[A'] = N
where M € Ag and A is an I-redez, then

MEOO/3:>NEOOg.

PRrOOF. By the preceding three lemmas we can use Proposition 1.7.7 with
S = Al and F* = F}. 0

1.7.20. COROLLARY. Any I[-redex is perpetual.

1.7.21. DiscussION (Barendregt et al. [3, 5]). The proof of the conservation
theorem for A; does not carry over to Ak, i.e., we cannot use Proposi-
tion 1.7.7 with § = Ax and F* any partial, perpetual 3*-reduction strat-
egy. For instance, (Ax. K Iz) is an I-redex, but the diagram in the proof
of Proposition 1.7.7 is:

(A KIz) (Az.I) Q@ — (Az.I) Q

\ el ol

Az KIz)Q (Az.I)Q

/ A

1.7. Maximal and perpetual redexes 23

After one step, no reductions occur in the lower sequence. The problem is
that property (iii) in Proposition 1.7.7 fails for S = A, if F* is arbitrary.
This is because in M — 3 N the reduction may take place in the argument
Q of a labeled K-redex K P @, and then ¢(M) = p(N).

However, (iii) does hold for § = A’, i.e., when only I-redexes are labeled.
The rescue then is that labeling an I-redex yields a term in A, so (i) also
holds. Moreover, to turn a A! term into a term outside A’ would require a
reduction step inside P of (Az.P)@Q which erased all occurrences of z, but
F} never reduces a redex inside P of a redex (Az.P) @, so (ii) holds too.

The conservation theorem for Ag is due to Barendregt et al. [3, 5].
Khasidashvili [71] shows a version for orthogonal expression reduction sys-
tems, using perpetuality of his limit strategies mentioned earlier (see the
end of Section 1.3.5). Our proof is a slight simplification of the proof by
Barendregt et al.; apart from the simplifications mentioned in the preceding
subsection, our proof uses a simpler perpetual reduction strategy than the
proof by Barendregt et al.

1.7.4. Conservation under K-reduction

The preceding two subsections characterized perpetual I-redexes in A; and
Ax. Now we characterize perpetual K-redexes in Ag.

1.7.22. DEFINITION.
(i) AK is the subset of A such that for all M € A and all (\z.P)Q C M,
it holds that x € FV(P).

(ii) For (L,R) = (Ak, () and (L, R) = (A, %), an SNg-substitution is a
substitution ¢ such that zo € SNp for every variable z. For P,Q € L,
we write P >2 @ iff for all SN p-substitutions o:

Po € o <= Qo € cop.

For @Q € SNg, 0 + {z := @} maps x to @ and acts as o on any other
variable. By projection and lifting P >0 Q & P > Q for any
P,Q € Ak.

1.7.23. DEFINITION. Define Fy : cog« — Ay by:

I

—

v PF(Q) R
Ax.F5(P)
P{zr:=Q}R if P,Q € SNg-
(Xz.F3(P)) QR if P ¢ SNg-

(Xz.P) Ff(Q) R if P € SNg-,Q ¢ SNp-.

3

Q

=
I

if P € SNg-,Q ¢ SNg-

PR
SEE W
5353
QOO

I

o3 03 3 Tl
N N N SN
~—
~—

I

T T T
I

&

54 Chapter 1. Perpetual Reductions in A-Calculus

1.7.24. LEMMA. For all M € oog~: F5(M) € oogs.
PROOF. First show that, for all M € oog-:
|E5 (M)| = Fy(|M])) (%)

by induction on M using Corollary 1.7.3. Since M € oog-, |M| € cog by
Corollary 1.7.3. By () and perpetuality of Fy, [F5(M)| = Fa2(|M]) € oog.
Then by Corollary 1.7.3, F5(M) € cog-. O

1.7.25. LEMMA. For all M € AX, Fj (M) € AX.
PRrooF. First prove by induction on M that
M,N € A® = M{z:= N} e AK.
Using this property proceed by induction on M. O

1.7.26. DEFINITION. Let X be a set of variables.

(i) An SNg--substitution o is X -neutral, if xo =« for all z € X.
(ii) M is X-good if, for all KAB C M and X-neutral o, Ao € cog- <= Bo € 003+

(iii) X respects M if FV(M) C X and X NBV(M) ={}.

1.7.27. DEFINITION. For M € oog-«, define the set of variables V(M) by:

V(z PQR) = V(Q) if P eSNg-,Q & SNg-
V(\z.P) = {z}UV(P)

V((Xz.P)QR) = {} if P,Q € SNg-
V((Xz.P)QR) = {z}UV(P) if P¢SNg
V(Xz.P)QR) = V(Q) if P € SNg-,Q & SNp-.

1.7.28. LEMMA. For all M € oog«: V(M) C V(F5(M)).
ProOF. By induction on M using perpetuality of F5. a

1.7.29. LEMMA. Let M € cog- NAX, M be X UV (M)-good, X respect M.

(i) F5(M) is X UV (F5(M))-good, and X respects Fi(M).
(i) M —g F3 (M) = o(M) -5 o(F; (M)).

PROOF. Let M € oog- NAX, M be X UV (M)-good, X respect M.

(i): Since reduction does not invent new free variables, and new bound
variables are chosen fresh, X respects Fi(M).

We show that Fj(M) is X UV (Fy(M))-good by induction on M. Let
K ABC F;(M) and let 0 be an X UV (F5(M))-neutral SNg--substitution.
We are to show that Ao € oog- <= Bo € 0og-.

1.7. Maximal and perpetual redexes 25

1. M=2PQR, and P € SNg-,Q & SNg-. Then Fj(M) =z P F}(Q) R.

11. KAB C S, where P = P,S,P, or B = R1,S,R,. Then, by
Lemma 1.7.28, V(M) C V(F;(M)). Therefore, o is X U V(M)-
neutral. Since M is X U V(M)-good, Ao € oog <= Bo € 0og-=.

1.2. KAB C Fy(Q). Since V(M) =V (Q), Q is X UV (Q)-good. By
the induction hypothesis, F5(Q) is X UV (F5(Q))-good. Since F
is perpetual, V(F5(M)) = V(F5(Q)), so F5(Q) is X UV (F5(M))-
good. Therefore, Ao € cog« <= Bo € 0og-.

2. M = \z.P. Then F5(M) = Az.F5(P). Then K A B C Fy(P). Since
V(M) ={z}UV(P), Pis XU{z}UV(P)-good. Here X U{z} respects
P, so by the induction hypothesis, Fy (P) is X U{z} UV (F5(P))-good.
Since V(F5(M)) = {x} UV(F;(P)), F5(P) is X UV (Fy(M))-good.
Then Ao € cog- <= Bo € 0og-.

3. M = (Xz.P) Q R. We consider three subcases.

3.1. P € cog«. Then Fy(M) = (Xz.F5(P)) Q R. There are, in turn,
three cases to consider.

3.1.1. KAB C S, where § = Q@ or R = ﬁl,S,ﬁQ. Similar to
Case 1.1.

3.1.2. KA B C Fy(P). Similar to Case 2.

3.1.3. KAB = (Xz.F;(P)) Q. Since Fy is perpetual, F5 (P) € oog-,
i.e., A € oog«. Thus Ao € oog«, so Ao € cog+ <= Bo € oogs
trivially.

3.2. P € SNg-, @Q € SNg-. As in Case 3.1, there are three subcases.

321. KAB C S, where S = P or R = R,,S,R,. Similar to
Case 1.1.

3.2.2. KA B C Fy(Q). Similar to Case 1.2.

3.2.3. KAB = (Xz.P) F5(Q). This case is impossible. Indeed, sup-
pose that KAB = (Xx.P) F5(Q),so KAB' = (X2.P)Q C M.
The identity substitution ¢ is clearly X U V' (M)-neutral, but
according to the above, Av ¢ cog- and B’ € cog-, contradict-
ing the assumption that M is X UV (M)-good.

3.3. P,Q € SNg-. Then Fj(M) = P{z := Q} R.
3.3.1. KABCJS, where S € R. Similar to Case 1.1.
3.3.2. KA B C P{z :=Q}. We consider three subcases.
(a) KA B C Q. Similar to Case 1.1.
(b) KA B C P. Similar to Case 1.1.
(c) KAB =K (I{zx :=Q}) (J{z := Q}), where KT J C P.
Since FV(Q) C FV(M) C X, yo =y, for all y € FV(Q).
Therefore, KAoBo = KIo'Jo', where o' = o+{z := Q}.

56 Chapter 1. Perpetual Reductions in A-Calculus

Since V(M) C V(F5(M)), o is X U V(M)-neutral. Now
x & V(M), and z € BV(M) so x ¢ X. Therefore o is
X U V(M)-neutral. Thus, since M is X U V(M)-good,
Ao = Io' € cog- <= Bo = Jo' € cog-.

(ii): By induction on M. O

1.7.30. THEOREM (Conservation of K-redexes). Assume that P zé’o Q and
M =CKPQ|—3C[P]|=N where M € Ag. Then

MEOO/3:>NEOOﬂ.

PROOF. Suppose M € oog and M = C[K P Q] =3 C[P] = N, where
P >5, Q. Let F* = F} and

S={JeAX Noog | Jis FV(M)UV(J)—good & FV(M) respects J}.

Then condition (i) of Proposition 1.7.7 is clearly satisfied, and by Lem-
mas 1.7.24, 1.7.25, and 1.7.29, conditions (ii) and (iii) are also satisfied. O

1.7.31. COROLLARY. A K-redex K P @) is perpetual if P z@o Q.

1.7.32. COROLLARY. A K-redex K P Q) is perpetual if one of the following
conditions are satisfied:

(i) Pc 008
(i) @ € SNg and FV(Q) = 0.

1.7.33. COROLLARY. A redex (A\z.P) Q is perpetual if
Po{x:=Qo} € cog <= Qo € ocog
for all SNg-substitutions o.

PRrOOF. If z € FV(P) then the redex is perpetual by the conservation the-
orem for Ag. If x ¢ FV(P), then the condition of the theorem is equivalent
to P Zgo @, so the redex is again perpetual by the preceding Corollary. O

1.7.34. DiscUSSION. It is not true that M € Ax and M —43 N by contrac-
tion of any K-redex implies

M € oog = N € oog.

1.7. Maximal and perpetual redexes o7

For instance, for the term M = K I and the reduction step K1 —5 I
the assertion is wrong. The diagram from the proof of Proposition 1.7.7 is:

KIQ ~KIQ ~KIQ————

\\\

KIQ ~-KIQ ~KIQ)——

/ Ay

In the lower sequence every term is identical to its successor, and the problem
evidently is the same as earlier: (ii) of Proposition 1.7.7 fails for § = A;
that is, in M —g N the reduction step may occur in the argument of a
labeled K-redex, and then (M) = ¢(N).

However, (ii) holds if the reduction step is not inside an argument of
a labeled K-redex.? If the initial K-redex K P Q is such that P >2 Q
and we use F; to compute the middle reduction path, then no reduction
will be inside the argument of labeled K-redex. Indeed, when Fj contracts
(Xz.K) L, L € SNg«. Since Fy computes standard reduction paths, this
means, roughly, that every residual of the initial labeled K-redex K P)
has form K Po Qo where o is an SNg«-substitution. Since P Zg; Q, also
Po € cog« <= Qo € oog-. Therefore, Fy does not contract a redex inside
Qo. It may happen that F} contracts a redex inside Po. In this case, all
the following reductions will also be inside Po.

Theorem 1.7.30 is due to Bergstra and Klop [18]. Our proof above is
a simplification of the proof of Bergstra and Klop. Xi [140] proves Corol-
lary 1.7.33 directly, instead of proving conservation for Ax and the Bergstra-
Klop theorem separately. Khasidashvili and Ogawa [74] independently prove
Corollary 1.7.33, using a variant of the strategy F>, and study applications
to various restricted A-calculi. Corollary 1.7.32(ii) is also taken from Khasi-
dashvili and Ogawa [74].

1.7.5. Perpetual and maximal redexes

The following proposition shows that the converse of Theorem 1.7.30 also
holds. The idea of the proof is that one can simulate the effect of substitu-
tions by means of contexts and reductions.

1.7.35. PROPOSITION (Bergstra and Klop [18]). Assume

CIK P Q] € oog = C[P] € oog

®This observation generalizes the earlier observation that (ii) holds in A if all labeled
redexes are I-redexes. In that case no reduction can take place inside the argument of a
labeled K-redex.

58 Chapter 1. Perpetual Reductions in A-Calculus

for all contexts C. Then P Zgo Q.
Proor. To show P z@o Q, let Re SN, and suppose
Q{7 := R} € cop.
Put C = (AZ.[]) R. Since
(AZ.(K P Q) R K (P{7 = R}) (Q{@ := F)),

also
C[K P Q] € 00g.
By our assumptions, this implies C[P] € oog, i.e., (AZ.P) R e oog. Since
Re SNg, for some n
FI'(\Z.P) R) = P{Z := R},

and by perpetuality of Fy, P{Z := R} € 0og as required. O

The following corollary, in which (i) is due to Barendregt et al. [3, 5] and
(ii) is due to Bergstra and Klop [18], sums up the situation.

1.7.36. COROLLARY. A redex (Az.P) Q is perpetual iff

(A\x.P) Q is an I-redex; or
(Az.P) Q is a K-redex with P >2, Q.

Proor. By Corollary 1.7.20, Corollary 1.7.31 and Proposition 1.7.35. ad

We now proceed to characterize maximal redexes. The intuition is as
follows. Given a redex A with contractum A’, we can conceive a context C
which is such that C[A] can duplicate A. Therefore the longest reduction
path from C[A] is obtained only if we do not contract A until it has been
duplicated. But then A is not maximal. The only escape is when the
contractum of A has an infinite reduction path. Then C[A'] has arbitrarily
long reduction paths, so A is maximal.

1.7.37. PROPOSITION. Redex A with contractum A’ is mazimal iff A" € cog.

PROOF.

<: If A" € cog then for any n > 0 and context C, C[A'] € (n —1)g.

1.7. Maximal and perpetual redexes 29

=: We assume A’ € SNg and prove that A is not maximal by finding an
n such that C[A] € ng but not C[A] € (n —1)g.

Since A’ € SNg there is by Ko6nig’s Lemma an m € N such that
A’ e (m—1)gand A" € mg. Then A € mg. So for C' = (A\z.\y.y = z)]]
we have for some @)

CIA] =5 Ay.y A A" Myy Q Q;
that is, C[A] € (2m + 1)g.
On the other hand, any reduction of C[A’] has form
CIAT= ClQ] =5 Myy Q' Q' =3 dy.y Q" Q"
for some @', Q", where k +1 < m — 1, and therefore k + 1 + 2] < 2m.
So, C[A"] & (2m)g. a
1.7.6. The normalization theorem

In this subsection we prove the normalization theorem for Ax which states
that repeated contraction of the left-most redex in a weakly normalizing
term eventually leads to a normal-form. We use a technique very similar to
that used to prove conservation theorems in the preceding subsections.

1.7.38. DEFINITION. Define F}* : Ap — Ag a follows. If M € NFg- then
F}(M) = M; otherwise,

Ff(z PQR) = zPF(Q)R if P€NFs-,Q ¢ NFg-
Ff(Ax.P) B e (P) B
Fi((Xz.P)QR) = P{z:=Q}R.

We write M —- N if M ¢ NFg- and F*(M) = N. More specifically,
it M = C[(Az.P) Q] and C[P{z := Q}] = N we write M —; N, and if
M = C[(Az.P) Q] and C[P{z := Q}] = N we write M —; N.

1.7.39. LEMMA. For all M € Ay |F'(M)| = Fi(|M]).

Proor. By induction on M. O

1.7.40. LEMMA. Let M € Ay.

ProoFr. By induction on M. O

60 Chapter 1. Perpetual Reductions in A-Calculus

We prove the contrapositive of the normalization theorem: if the left-
most reduction path from M does not terminate, then no reduction path
does. For this it suffices to show the following result, very similar to the
conservation theorems seen earlier—this explains why the technique of the
previous subsections is useful.

1.7.41. THEOREM. If M € Ag and M —g N, then
M € oo = N € 0.

Proor. Let M = C[(A\z.P) Q] =3 C[P{z := Q}] = N. Suppose M € oo,
ie.

M=My—; My —; My —;....
Let Ly = C[(Az.P) Q], and Ny = N. By Lemma 1.7.5, 1.7.6, 1.7.39,
and 1.7.40, we can erect the diagram:

IO
A aa

Li =y Liyn = N;—; Nipa
Li = Liyan = N; = Nijja.

where

By finiteness of developments, L; —; L;+1, for infinitely many ¢, giving an
infinite left-most reduction path from Nj. O

1.7.42. COROLLARY (Normalization theorem). Fj is normalizing.

Proor. Suppose M € WNg, i.e., M —»g N € NFg. If M had an infinite
leftmost reduction, then by Theorem 1.7.41, so did N, a contradiction. O

1.7.43. DEFINITION. Let M € Ag. A finite or infinite reduction path
My -3 My -3 M, B .-
is quasi-leftmost if it is finite or for all ¢ € N there is j > ¢ with M; —; M.

1.7.44. COROLLARY. If M € WNg, then any quasi-leftmost reduction from
M s finite.

Proor. First show as in Theorem 1.7.41 that if M —3 N and M has
an infinite quasi-leftmost reduction, then so does N. Then proceed as in
Corollary 1.7.42. O

1.7. Maximal and perpetual redexes 61

The normalization theorem is due to Curry and Feys [29]. Barendregt [3]
infers the normalization theorem from the standardization theorem, and uses
both of these theorems to prove normalization of quasi-leftmost reductions.

Barendregt et al. [6] define a B-redex A to be needed in a term M, if A
(or a residual of A) is contracted in every reduction of M to normal form.
They then show that every term not in normal-form has at least one needed
redex, and that a reduction strategy that contracts only needed redexes is
normalizing. They also show that it is undecidable, in general, whether a
redex is needed in a term; however, the left-most redex is always needed,
and this yields another proof of the normalization theorem. Similar results
were shown by Huet and Lévy [54] in their early study of neededness in the
context of orthogonal term rewriting systems, and much has been done since
in various contexts—see [73] for references to some paper‘s. Similar results
were discovered independently by Khasidashvili [68] (see also [70, 72]); in
particular, the proof of Theorem 1.7.41 can be viewed as a special case of a
proof due to Khasidashvili [68].

For more on normalization, see [76, 105].

1.7.7. Conservation from normalization

In this last subsection we give a very short proof of the conservation theorem
for Ay, using the fact that F is perpetual and Fj is normalizing.

1.7.45. LEMMA (Regnier [108]). For all M € Ay, Fy(M) = Fao(M).
Proor. If \e.P C M € Ay, then z € FV(P). a

1.7.46. COROLLARY.

(i) For all M € Af, M € WNg < M € SNg.

(ii) For all M € Af, M € cog & M —3 N = N € oog.
PROOF.

(i) Since F is perpetual and Fj is normalizing, Lemma 1.7.45 implies:
M € WNg < dn: F'(M) € NFg < dn: F3 (M) € NFg & M € SNg.

(ii) Suppose M —g N. If M € oog, then by (i), M ¢ WNgz. Hence
N ¢ WNg, in particular N € cog. O

1.7.47. REMARK. The same technique can be used to prove that in A, (see
Definition 1.4.3) all reduction paths have the same length: one proves di-
rectly that in A, Fly, is minimal. Since F, is also maximal, the longest and
shortest reduction path have the same length, and so all reduction paths
have the same length.

62 Chapter 1. Perpetual Reductions in A-Calculus

1.7.48. REMARK. Not all strategies are maximal in Ay; for instance the strat-
egy which always contracts the right-most redex is not maximal, as the
example (Az.\y.y = z) (IT)—} Ay.y IT shows.

1.7.49. REMARK. A simpler proof of the above corollary, which does not use
F, can be obtained by proving directly that Fj is perpetual in A; using the
fundamental lemma of perpetuality, rather than inferring this from F; = Fi
and perpetuality of Fi,. Slight variations of this technique are due to Curry
and Feys [29] and to van Raamsdonk [105].

Barendregt et al. [6] show that leftmost reduction paths have maximal
length among all reduction paths in which only needed redexes are con-
tracted, and that in A; all redexes are needed. This gives another proof
that in A7, F; is maximal and thereby perpetual.

1.8. A note on shortest developments

As mentioned above, de Vrijer [135] presents a proof of the finite devel-
opments theorem which, in addition to showing that all developments are
finite, gives an effective reduction strategy computing longest developments
as well as a simple formula computing the length of such longest develop-
ments.

We now show that by applying a rather simple and intuitive principle of
duality to de Vrijer’s approach one arrives at a proof that some developments
are finite which in addition yields an effective reduction strategy computing
shortest developments as well as a simple formula computing the length of
such shortest developments. The duality fails for general S-reduction.

Our results simplify previous work by Khasidashvili [68].

1.8.1. Shortest developments

We first present our technique for computing shortest developments and
then explain the relation to de Vrijer’s [135] technique afterwards.

1.8.1. DEFINITION.

(i) For all x € V define my : Aj — N by:1?

mg(x) =1

my(y) = ifzZy
mg((Ay.P) Q) = mg(P) +my(Q)my(P),1]

mg(P Q) = mg(P) +m,(Q) if P# M\y.R
my(Ay.P) = mg(P).

01m,n) and [m, n] denote the minimum and maximum of m and n, respectively.

1.8. A note on shortest developments 63

(ii) Define h: A — N by:

h(x) =0

hMQAy-P) Q) = h(P)+h(@Q)[my(P),1] +1

h(P Q) = h(P)+h(Q) it P# \y.R
hOw.P) = h(P).

(iii) Define the strategy H : A — Ay by:

H(x) =z
_ WP H@Q) if [my(P),1] =1 & Q & NFp
H(QQy-P) Q) = { P{y:=Q} otherg\jzvise -
B H(P)Q if P#ZAy.R & PQNFQ
H(PQ) = {PH(Q) if P#£\y.R & P € NFy

H(\y.P) = M\y.H(P).

As will be seen below, M —3 H(M) =5 H(H(M)) —3 ... is a shortest
complete development from M, and k(M) is the length of this development.
Corollary 1.8.8 expresses this succinctly as: Ly (M) = sg(M) = h(M).

1.8.2. REMARK.
(i) z €FV(M) = my(M) =0.
(i) M € NFs & h(M) =0.
(iii) [my(P),1] #1 = [my(P),1] = my(P).
1.8.3. LEMMA. Let x #vy. Then:
(i) my(M{z = N}) = my (M) + my (N)mg (M).
(ii) h(M{z := N}) = h(M) + h(N)mg(M).
PRrROOF. (i) is by induction on M. Let L* = L{z := N}.

1. M = z.
1.1. z=x. Then

1.2. z # z. Then

64 Chapter 1. Perpetual Reductions in A-Calculus

2. M = (Az.P) Q. Since z ¢ FV(N), also m,(N) = 0. Therefore, by the
induction hypothesis,

my((Az.P%) Q%)

my (P*) +my, (Q) m. (P*), 1]

my(P) + my (N)mg(P) + (my (Q) + my (N)me(Q)) [m.(P), 1

1y (P) 4 my (N)mg (P) +my(Q)[m=(P), 1] +my(N)m(Q)|m.(P),1]
my(P) + my(Q)[m.(P), 1] + my (N)(my(P) +ma(Q) m.(P), 1])
my((A2.P) Q) + my(N)m.((Az.P) Q).

3. M = P @ where P # Ay.R. Then, by the induction hypothesis,

my (P* Q%) my (P*) + my(Q7)
my(P) + my(N)mI(P) + my(Q) + my(N)mI(Q)
my (P Q) + my(N)mg(P Q).

4. M = Ay.P. Similar to Case 3.

This concludes the proof of (i); (ii) is also by induction on M.

1. M = 2.
1.1. z=xz. Then

h(z*) = h(N)
= h(z) +h(N)me(z)
1.2. z# z. Then
h(z") h(z)

h(z) + h(N)my(z).

2. M = (Az.P) Q. Since z ¢ FV(N), also m,(N) = 0. Therefore, by the
induction hypothesis and (i),

(Az.P") Q)

=

3. M = P @ where P # Ay.R. Then, by the induction hypothesis,

h(P* Q") h(P") + h(Q")
h(P) + h(N)mg(P) + h(Q) + h(N)ms(Q)
h(P Q) + h(N)my (P Q).

4. M = My.P. Similar to Case 3. O

1.8. A note on shortest developments 65

1.8.4. LEMMA. Suppose that M — N. Then
(i) mg(M) < mg(N).

(ii) (M) < h(N) + 1.

Proor. (i) is by induction on M —g N.

1. M =(Qy.P)Q —p P{y == Q} = N. By Lemma 1.8.3,

mg(P) +mg(Q)[my(P), 1]
my(P) +mg(Q)my (P)
mg(P{y == Q}).

2. M = (Ay.P) Q —p (Ay.P') Q' = N, where P —5 P' and Q = Q', or
vice versa. By the induction hypothesis,

me((Ay.P) Q) g (P) +ma(Q) my (P), 1]

me((Ay.P) Q)

A Il

< mg(P') +mg(Q') [my(P'), 1]
= ma((Ay.P") Q).
3. M=PQ —p P'Q =N, where P # \y.R, and where P —3 P' and

Q = @', or vice versa. Slmllar to Case 2.

4. M = \y.P —p \y.P' = N, where P —3 P'. Similar to Case 2.
This concludes (i); (ii) is also by induction on M —4 N.

1. M =(Ay.P)Q —p P{y:=Q} = N. By Lemma 1.8.3

h((Ay.P) Q) h(P) + h(Q)[my(P),1] + 1
1

h(P) + h(Q)m, (P) +
h(Ply == Q}) + 1.

2. M = (Ay.P)Q —p (Ay.P') Q' = N, where P -5 P' and Q = Q', or
vice versa. By the induction hypothesis and (i),

h((Ay-P) Q)

A Il

h(P) + h(Q)[my(P), 1] +1
h(P') + h(Q")[my (P'), 1] +2
h((Ay.P') @) + 1.

Al

3. M =PQ —3 P'Q =N, where P # \y.R, and where P —5 P' and
Q = @', or vice versa. Similar to Case 2.

4. M = My.P =3 A\y.P' = N, where P —4 P’. Similar to Case 2. a

1.8.5. COROLLARY. For all M € Ay : h(M) < sg(M).

PrOOF. By induction on h(M).

66 Chapter 1. Perpetual Reductions in A-Calculus
1. h(M) =0. Then M € NFg, and then sg(M) = 0.
2. h(M) # 0. Then M ¢ NFg. Let M —3 N be such that sg(M) =

s3(IN) + 1. By Lemma 1.8.4(ii)

h(M)

1.8.6. LEMMA. If h(M) # 0 then M

and the induction hypothesis,

[INVANVAN

a

—g H(M) and h(M) = h(H(M)) + L.

PRrROOF. By induction on M. Assume h(M) # 0.

1. M = z. This case is impossible

2. M = (\y.P) Q.

since h(x) = 0.

2.1. [my(P),1] =1 and Q & NFg. By the induction hypothesis,

h((Ay.P) Q)

2.2. [my(P),1] #1 or Q € NFg. By Lemma 1.8.3

h((Ay-P) Q)

h(P) + h(Q)[my(P),1] +1
h(P) + h(Q)my(P) +1
h(P{y:=Q}) + 1.

3. M = M\y.P. Then, by the induction hypothesis,

h(Ay.P)

4. M = P Q. Similar to Case 3.

1.8.7. COROLLARY. For all M € Ay:

PRrOOF. By induction on h(

1. h(M) =0. Then M € NF3, and

then Ly (M) =0.

1.8. A note on shortest developments 67

2. h(M) # 0. Then M ¢ NF3, and then by Lemma 1.8.6 and the induction
hypothesis, B
h(M) = h(H(M))+1
= Lg(H(M))+1
Lp(M).

1.8.8. COROLLARY. For all M € Ay : h(M) = sg(M) = Ly (M).

PRrROOF. Let M € Ag. Obviously, sg(M) < Lg(M). By Corollary 1.8.5
and 1.8.7, B
sg(M) < Lpy(M) = h(M) < sg(M). O

1.8.2. Relation to Khasidashvili’s technique

Khasidashvili [68] calls a redex A in M essential, notation E(A, M), if every
complete development of M must reduce A (or a residual of A). He shows
that any strategy which reduces in each step an inner-most essential redex
yields shortest complete developments, and he gives a formula for the length
of such developments: the number of essential redexes in the initial term.
He also gives an algorithm to decide whether a redex in a term is essential;
this makes the above strategy and formula effective, but the algorithm is—in
our opinion—somewhat involved. The algorithm can be simpler formulated
in terms of the map m, as follows:

E(A,(Ay.P)Q) & A= (\y.P)Qor E(A,P) or [E(A,Q) & my(P) > 0]
E(A,P Q) & E(A,P) or E(A,Q)
E(AM.P) & E(A,P).

In this terminology, the map h counts the number of essential redexes in a

term, and H reduces an essential redex that is not contained in the argument
of another essential redex.

1.8.3. Relation to de Vrijer’s technique

De Vrijer [135] studies the following maps ns, g, and G, which arise from m,;,
h, and H by replacing all minimum operators |e, ®| by maximum operators
[e,e]; intuitively this makes sense since we now consider longest instead of
shortest developments.

(i) For all z € V define ng : Ay — N by:

na:(x) 1

g (y) = ifzZy
ng((Ay-P) Q) = ng(P) +ng(Q)ny(P),1]

n. (P Q) = ng(P) +n,(Q) if P# My.R
ng(Ay.P) = ng(P).

68 Chapter 1. Perpetual Reductions in A-Calculus

(ii) Define g : A — N by:

g(z) =0
9(Qy.P) Q) = g(P)+9g(Q)Iny(P), 1] +1
9(P Q) = g(P) +9(Q) if P# \y.R
g(\y.P) = g(P).
(iii) Define the strategy G : A — Ay by:
G(z) = "
Glanr) @) = { PEEIGRN T LR QERE
[GP)Q if P# \y.R & P & NF
arQ) = { PG(Q) £ P2\ & P ENF,
G(\y.P) = \y.G(P). a

De Vrijer proves that M —g G(M) =g G(G(M)) —p ... is a longest
complete development from M, and that g(M) is the length of this devel-
opment. This is expressed by the equations: Lg(M) = l3(M) = g(M). The
finite developments theorem is an immediate corollary.

The proof of these equations can be carried out ezactly as in 1.8.2—
1.8.8 by replacing sg, |e,e|, <, my, h, and Ly by lg, [e,e], >, ng, g,
and L¢, respectively! This works because the properties used in 1.8.2-1.8.8
involving sg,my, etc. are invariant under the transformation, as the reader
is encouraged to check.'! For instance, the property |m,n| < m becomes
[m,n]| > m.

1.8.4. Discussion

Although the general notions of longest and shortest complete S-reduction
sequences are intuitively “opposite,” they are, technically speaking, very
different. For instance, there is an effective reduction strategy that computes
longest complete [-reduction sequences (see [119] among others), but no
effective reduction strategy that computes shortest complete [-reduction
sequences [3]. In contrast, the above shows that one can effectively compute
both shortest and longest complete developments, and the proofs reveal an
amazing duality between the two concepts. It is natural to ask why the
duality does not carry over to the general case of 3-reduction.

The difference between the minimal strategy H and the maximal strategy
G is revealed on terms of form (Ay.P)) where) € NF3. The rationale
behind the minimal strategy is that if any reduction of (Ay.P) Q to 3-
normal form must reduce inside at least one residual of @), then it is best to

1T obtain this result, a small change has been made to G as compared to de Vrijer’s
formulation; in his formulation the condition [ny(P),1] = 1 is ny(P) = 0—see the last
subsection.

1.8. A note on shortest developments 69

perform reductions in () first, to avoid proliferation. This is decidable for
developments, but undecidable for g-reduction [6].

The rationale behind the maximal strategy is that if any reduction of
(Ay.P)Q to S-normal form may reduce inside at most one residual of), then
it is best to perform reductions in Q first, to avoid erasing. An equivalent
technique, used by de Vrijer [135], is to test whether reducing (Ay.P) Q
one step would delete @), and if so reduce () to normal form first. This is
decidable for developments as well as for G-reduction.

From the point of view of efficiency, a minimal strategy is clearly better
than a maximal strategy. It is a remarkable fact that in general S-reductions
we can effectively do the worst possible job, but not the best possible job.

70

Chapter 1. Perpetual Reductions in A-Calculus

CHAPTER 2

Weak and Strong Normalization in Type Theory

For some typed A-calculi it is easier to prove weak normalization than strong
normalization. Techniques to infer the latter from the former have been
invented over the last twenty years by Nederpelt, Klop, Khasidashvili, Karr,
de Groote, and Kfoury and Wells. However, these techniques infer strong
normalization of one notion of reduction from weak normalization of a more
complicated notion of reduction. This chapter presents a new technique to
infer strong normalization of a notion of reduction in a typed A-calculus
from weak normalization of the same notion of reduction. The technique
not only simplifies the task of proving strong normalization as compared to
previous approaches, but also suggests an approach to an open problem in
type theory, pursued in the next chapter.

2.1. Introduction

As mentioned in the Introduction, one of the most important questions
concerning a notion of reduction in a typed A-calculus is whether it satisfies
weak and strong normalization.! The former means that from every term
there is at least one finite reduction sequence ending in a normal form; the
latter means that there is no term with an infinite reduction sequence. The
latter property trivially implies the former, but the converse is not obvious
even when known to be true.

The classical proof of strong normalization for [-reduction in simply
typed A-calculus is by a method due to Tait [125]. It was generalized to
second-order typed A-calculus by Girard [41], and subsequently simplified
by Tait [126]. It has since been generalized to a variety of A-calculi—see [4,
34, 42, 50, 80, 132]. A version of the proof is also presented in Section 1.5.

!Reduction on terms in typed A-calculi is closely related to reduction on derivations in
natural deduction logics via the Curry-Howard isomorphism [29, 52]. This will be implicit
in the rest of the chapter.

71

72 Chapter 2. Weak and Strong Normalization in Type Theory

For notions of reduction in some typed A-calculi there is a technique to
prove weak normalization that is simpler than the Tait & Girard technique
to prove strong normalization. For instance, Turing [35] proves weak nor-
malization for g-reduction in simply typed A-calculus by giving an explicit
measure which decreases in every step of a certain [-reduction sequence.
Prawitz [104] independently uses the same technique to prove weak normal-
ization for reduction of natural deduction derivations in predicate logic.

Nederpelt [92], Klop [76], Khasidashvili [69], Karr [62], de Groote [31],
and Kfoury and Wells [66] have invented techniques to infer strong normal-
ization from weak normalization. However, these techniques all infer strong
normalization of one notion of reduction from weak normalization of a more
complicated notion of reduction.

This has the undesirable consequence that, even if one knows that a
notion of reduction is weakly normalizing, one has to redo the weak nor-
malization proof for the complicated notion of reduction to conclude strong
normalization for the original notion of reduction. This is a non-trivial
process—see [67] for comments on two such proofs—which involves very dif-
ferent techniques for different calculi. For instance, for -reduction in simply
typed A-calculus one can extend the Turing & Prawitz weak normalization
proof to the complicated notion of reduction, but for second-order typed
A-calculus one must use some kind of reducibility predicate. A technique to
uniformly infer strong normalization for one notion of reduction from weak
normalization of the same notion of reduction would be better.

Another interest in such a technique stems from a conjecture, presented
by Barendregt at Typed Lambda-Calculus and Applications, Edinburgh 1995,
stating that for every pure type system [4] weak normalization of G-reduction
implies strong normalization of (-reduction. The conjecture has also been
mentioned by Geuvers [38], and, in a less concrete form, by Klop.

This chapter extends Klop’s technique to infer strong normalization of
one notion of reduction from weak normalization of the same notion of re-
duction. The chapter does not give an answer to the conjecture, but it does
suggest one possible approach to an affirmative answer, pursued in the next
chapter.

Section 2.2 presents Klop’s technique, which is based on the conservation
theorem for AI and an interpretation of AK in AI. Section 2.3 analyzes the
relationship to the similar techniques by Nederpelt and others. Section 2.4
presents our extension of Klop’s technique, which is based on a continuation
passing style translation. Section 2.5 shows that the continuation passing
style translation is a special case of a class of translations, which we call
permutative inner interpretations, each of which give rise to a similar exten-
sion of Klop’s technique. The versatility of our approach is demonstrated by
application to some typed A-calculi in Section 2.6 and 2.7. These systems
include second-order A-calculus and the system of positive, recursive types.
Section 2.8 concludes and reviews directions for further work.

2.1. Introduction 73

2.1.1. Preliminaries

The following is explained in more detail in [3].

2.1.1. NOTATION. Ag is the set of type-free A-terms. Some example terms
are K = Azy.x, | = Ar.z, w= Az.xx, and Q =ww. M C N means that M
is a subterm of N. FV (M) is the set of free variables in M. Ay is the set of all
A-terms where for every subterm \z.M, € FV(M). Familiarity is assumed
with the variable convention, substitution, and notions of reduction. By
R Ry we denote the union of two notions of reduction R; and R,. For a
notion of reduction R, —p is the compatible closure, —»g is the compatible,
reflexive, transitive closure, —»E is the compatible, transitive closure, and
=p is the transitive, reflexive, symmetric, compatible closure. We use =,
<, and & to denote the obvious connectives in the meta-language.

In the remainder of this section R denotes an arbitrary notion of reduc-
tion on Ag.

2.1.2. DEFINITION. A finite or infinite sequence
My —r My —>gr ...

is called an R-reduction path from M. We say that My has this R-reduction
path. If the sequence is finite it ends in the last term M,, and has length n.

2.1.3. DEFINITION. Define the following subsets of Ax:

oop = {M | M has an infinite R-reduction path}.

NFp = {M | M has no R-reduction path of length 1 or more}.

SNr = {M | M has no infinite R-reduction path}.

WNp = {M | M has a finite R-reduction path ending in an N € NFp}.
CRp = {M | for all L, N, if L p¢&— M—»r N then L —»r K p¢— N for a K}

2.1.4. TERMINOLOGY. The elements of NFg, SNr, and WNg are R-normal
forms, R-strongly normalizing, and R-weakly normalizing, respectively. We
sometimes write, e.g., SNr(M) instead of M € SNr. We also write, e.g.,
SN to state that, for all M € Ag, M € SNr. We also use the above sets
for notions of reduction on other sets than Ax with the necessary changes.

2.1.5. DEFINITION. For M € SNi N CRg, nfg(M) is the unique N € NFp
satisfying M —r N.

74 Chapter 2. Weak and Strong Normalization in Type Theory

2.2. Klop’s technique

This section presents Klop’s technique [76, 1.8] to infer strong normalization
from weak normalization. Klop uses it to prove strong normalization of -
reduction in simply typed A-calculus and in Levy’s and Hyland-Wadsworth’s
labeled calculi; finiteness of developments follows as a special case. We
present the technique in an untyped, unlabeled setting.

The first subsection sketches the technique in a style which will also be
used for the related techniques in Section 2.3. The second subsection proves
a result that will be used in our extension in Section 2.4.

2.2.1. The idea: non-erasing reductions
2.2.1. DEFINITION.

(i) Let A% be the set defined by: M =z | A\e.M | My My | [My, Ms].
(ii) Let AT be the set {M € A% | \e.P C M = z € FV(P)}.

(iii) Define notions of reduction 7, 3,k on A% by:

[P,QIR 7 [PR,Q]

(A.P)Q [P{zx:=Q}
[P, Q)] k P

(iv) Define ¢ : Ag — AT by:

() =z
t(Az.P) = Az.[(P),]
(P Q) = «P)uQ)

The conservation theorem for A; states for M € A; that M € WNg
implies M € SNg. This fails for terms in Ag, as the term K I shows,
because reduction in Ax can erase terms, and parts of terms, with infinite
reductions. To obtain a similar result for Ag, Klop considers ¢(M) from
which every fB-reduction (Az.[P,z]) Q —3 [P{z := Q}, Q] makes a copy of
the argument. Indeed, one can show that +(//) € WNg implies +(M) € SNg.
The hope is that (M) € SNg, in turn, implies M € SNg. However, this does
not hold. For example, ¢(I ww) € SNg, since the only reduction path from
this term is

Tww) = (Az.[z, z]) (w) t(w) =4 [t(w), (w)] t(w) € NFg.
However, Iww & SNg, since
[lww—=gww—ogww—g....

The problem is that the pairing operator may block reductions in (M)
which take place in M. Therefore Klop adopts the m-rule which moves a
term across a copy.

2.2. Klop’s technique 75

2.2.2. THEOREM (Klop [76]). For all M € Ak,
t(M)EeWNg, = M €SNg.
2.2.3. REMARK. Klop’s proof of Theorem 2.2.2 is in two steps:
t(M) € WNgr = (M) € SNg = M € SNg. (2.1)

The first implication is a special case of Klop’s conservation theorem [76] for
definable extensions of Ay, and the second one is proved by the implications:

L(M) € SNgx = L(M) € SNgrx = L(M) € SNg, = M e SNg. (2.2)

Here the first implication follows from the fact that in an infinite Srn-
reduction one can postpone rk-reductions to get an infinite Sm-reduction.
The second implication is obvious, and the third follows from (M) —», M.

2.2.2. Proof of part of Klop’s result

In Section 2.4 our extension uses the second implication of (2.1), which we
therefore prove now. The proof follows the structure of (2.2).

2.2.4. LEMMA (Postponement of k across gm). For all M,N,O € A% :

M N
—»ﬁrr\;/ ‘/ Bm
T

Proor. First show that, if M —, N then

M{z:=L} —, N{z:= L} (2.3)
and

L{z:= M}—», L{z := N} (2.4)

by induction on M —, N and L, respectively. Then proceed by induction
on M —, N, splitting into cases according to how M —, N —4, O:

1. M=xPFy...P,, wheren>0. Then N =xQyq...Q,, where P, —, Q;
for one ¢, and P; = @Q; for all j # 7. Then O = x Ry... R,, where
Qi —px Ry for one [, and Q,,, = R, for all m # [.

1.1. s =1[. Then P, —, Q; —gx R;. Then, by the induction hypothesis,
Pi—»;ﬂ K —»; R;, for some K. Then

zP... P, —»;W :CQO...Qz',lKQZ'Jrl...Qn
—k .%‘Ro...Rn.

76

Chapter 2. Weak and Strong Normalization in Type Theory

1.2. i #1. Then P, =, Q; = R; and P, = Q; =5 R;. Then

zhPy...P, —Br mQO---Ql—lRlQH—l---Qn
—K ng...Rn.

2. M = (\x.Py) Py...P,, where n > 0. Then N = (Az.Qo) Q1...Qn,

where P; —, @; for one ¢, and P; = Q; for all j # 1.

2.1. O = (Az.Ry) Ry ... Ry, where Q; —, R; for one [, and P,, = Qy,
for all m # [. Then proceed as in Case 1.

22. O=Qo{z:=Q1} Q2...Qy. Then, by (2.3)-(2.4),

(A.%‘Po)Plpn — BT Po{.%‘ :Pl}PQPn
— Qofr:=Q1} Q2...Qn.

3. M= [Pl,Po] P,...P,, where n > 0.

3.1. N =[Q1,Q0] Q2...Qy, where P; =, Q; for one i, and P;
for all j # 4. Then proceed as follows.

e O=[Ri,Ry]Ry...R,, where Q; =, R; for one [, and where
Qm = Ry, for all m # [. Then proceed as in Case 1.

e 0=1[Q10Q2,Q]«s...Qn. Then

[Pl,Po]Pg...Pn —r [P1P2,P0]P3...Pn
= [Q1Q2,Q0] Q3. Qn.

32. N=P P...P,. Since N —3, O,

Qj

[Pl,Po] P...P, —» [Plpn,Pg]
_)ﬂﬂ [aPU]
—. O.

This exhausts all possibilities. O

2.2.5. LEMMA. For all M € A7,

M e SNﬂ7r = M € SN/gmg.

PROOF. Assume cogq,(M). We must prove cog.(M).

We first show by induction on n that, for all n > 0, there is an n-tuple

Op = (M[],Ml, . ,Mnfl) and Lo,Ll, ... such that

Mg _>ﬂ7r M1 _>,87r .. _>ﬂ7r Mn,1 _>,87m Lg _>ﬂ7m L1 _>ﬂ7m e

Put og = (M). For n = m + 1 we assume:

MO —)BW M1 _>ﬂ7r e —)BW Mm_1 _>ﬂ7m Lg —)Bﬁﬁ L1 —)Bﬁﬁ e

2.3. Variations on Klop’s technique 7

Since k-reductions strictly decrease term size, there is a smallest £k > m — 1
such that My — g Mjy1. Now use Lemma 2.2.4 k£ — (m — 1) times to arrive
at a sequence in which the n first elements constitute o,.

Now let IV; be the ’th element of o;. Then clearly

M = Ny =gz N1 =gz No —pq ...
as required. ad
2.2.6. LEMMA. For all M € A%,
t(M) € SNg,, = M € SNg.
PROOF. By induction on M prove (M) —», M. This gives the lemma. 0O

2.2.7. MAIN LEMMA (Klop [76]). For all M € Ak,
L(M) S SNg7r = M e SNﬂ.

Proor. By Lemmas 2.2.5 and 2.2.6. ad

2.3. Variations on Klop’s technique

Klop’s technique [76] was inspired by Nederpelt’s [92] technique, and is
also related to the later techniques by Khasidashvili [69], Karr [62], de
Groote [31], and Kfoury and Wells [66]. The similarity between the dif-
ferent approaches is sometimes blurred because each technique is described
in a particular context in terms of labeled or typed terms.

This section reviews these techniques in an untyped, unlabeled setting.
We begin with de Groote’s technique since it resembles Klop’s the most.
The remaining techniques are then described in less detail. For more on
the relationship between Klop’s and Nederpelt’s technique, see [76, I1.4].
For more on the relationship between de Groote’s and Kfoury and Wells’
technique, see [67]. The notions of reduction discussed in this section have
been considered in a number of other contexts [2, 63, 64, 65, 90, 108, 112,
134]—see [67] for a survey.

2.3.1. The technique by de Groote

This subsection presents de Groote’s [31] technique to reduce strong normal-
ization for the systems in the A-cube [4] to weak normalization of related
systems. In particular, adopting a version of the Turing & Prawitz proof, he
proves strong normalization of S-reduction in the simply typed A-calculus.

78 Chapter 2. Weak and Strong Normalization in Type Theory

2.3.1. DEFINITION. Let 85, 8k, Bs be the notions of reduction on Ag:

(Ax.P) Q Br P{r:=Q} ifxzecFV(P)
(A\y-P)Q Bk P ify FV(P)
(A\.P)QR fBs (Ay.PR)Q ify&FV(P).

A generalization of the conservation theorem for Aj states for M € Ak
that M € WNg, implies M € SNg,. If Bx-redexes could be postponed across
Br-redexes, M € SNg, would, in turn, imply M € SNg,g,., i.e. M € SNg.
This would give a technique to infer (-strong normalization from [r-weak
normalization. Unfortunately, postponement of Sx-redexes is not in general
possible; a Bx-reduction may create a [r-redex:

Ay e.P)Q R =g, (Me.P)R y &FV(P),z € FV(P).
The notion of reduction Bg is used to sidestep this problem.
2.3.2. THEOREM (de Groote [31]). For all M € Ak,
M € WNgg3, = M € SNg.
2.3.3. REMARK. The proof of Theorem 2.3.2 by de Groote is in two parts:
M € WNg, 3, = M € SNg, 3, = M € SNg. (2.5)

The first part of (2.5) is proved by a technique originally due to Ned-
erpelt. One shows that CRg,g, and that a certain measure | o | is strictly
increased by [rBs-reductions (INCg, g4 for short). If M € WNg, 5, i.e.,

M —i5,55 N € NFg, 5
and M also had an infinite 8;8g-reduction
M = M, —B1Bs M, —BiBs + - s

then |N| < |Mj| for some k, by INCg,55- By CRg,55, My —#5,5; N and
hence by INCg, 5, also |[M| < |N|, a contradiction. In short:

INCg, 45 and CRg,5, and M € WNg, 53, = M € SNg, 5. (2.6)
The second part of (2.5) is proved by the implications:
M e SNﬂIﬂS = M € SN/BIﬂSﬂK = M € SNﬂI/BK = M € SN/B. (27)

Here the first implication follows from the fact that Sx-reductions can be
postponed across (;(s-reductions, and the two others are trivial.

2.3. Variations on Klop’s technique 79

2.3.2. Klop versus de Groote

The reductions x and Bg adopted by Klop and de Groote, respectively, are
very similar. Whereas Klop considers reductions

[P,Q] R — [P R,qQ),
de Groote considers
(A\y.P) Q@ R — (\y.P R) Q.

Reading [P, Q] as (Ay.P) Q with y € P, they are the same!
Indeed, let ¢ : AT — Ak be the map which replaces s-redex [M, N] by
(Ay.M) N,y € FV(M). Then, for all M € AT, N € AF,

M—=gN & ¢(M) =g ¢(N)
M—=.N & M) —=p, ¢(N)
M —N & ¢(M)—s, ¢(N).

This explains the similarity between the proof of Klop’s Theorem 2.2.2
and the proof of de Groote’s Theorem 2.3.2. In both cases, the overall proof
consists of two implications—(2.1) and (2.5)—see Remarks 2.2.3 and 2.3.3.
Klop and de Groote prove the first implication in (2.1) and (2.5) differently,
but de Groote’s proof can be adapted to Klop’s setting. As for the sec-
ond implication in (2.1) and (2.5), the proof consists in both cases of three
implications—(2.2) and (2.7). The first two implications in (2.2) and (2.7)
are proved the same way. The techniques only differ in the last implication:
in Klop’s technique one has to use the details of ¢, while in de Groote’s
technique one uses 8 = 070k

2.3.3. Nederpelt’s technique

Nederpelt [92] proves (-strong normalization of all terms in a typed A-
calculus from the Automath family [30], using a reduction to the problem of
proving weak normalization. Nederpelt uses a somewhat unorthodox nota-
tion for A-terms. For instance, (Az.P) @ is written {Q }[z]P. This notation
has its advantages, but we present here the technique in more familiar terms.

Recently there has been new interest in Nederpelt’s reductions [20, 58,
59, 60], and their relevance to explicit substitution calculi [57, 61].

2.3.4. DEFINITION. Let C, D range over contexts, and C[D] denote the result
of substituting D for [] in C. The set of 3-chains C is defined by:?

jecC
CeC,NeAgk = C(CzfJ]NecC
C,DecC = C([D]eC.

20One may think of abstraction and application in 3-chains as left and right parenthe-
sis. Counting inside-out the number of abstractions is never smaller than the number of
applications, and the total number of abstractions equals the total number of applications.

80 Chapter 2. Weak and Strong Normalization in Type Theory

Define the notions of reduction (1, G2 by:

CAx.PIR (1 C[hz.P{x:=R}|R ifzcFV(P)and CeC
C\w.PIR f C[P] ity ¢ FV(P) and C € C.

The motivation for 3; is that it allows postponement of (Gs-reductions,
just like Bg-reductions allow postponement of Sx-reductions. For example,
if x € FV(P) and y € FV(P), then

(Ay.Az.P) Q R =3, (A\y.Az.P{z :=R}) Q R —3, (A\y.P{z:=R}) Q.
In de Groote’s setting this would be
(Ay.Az.P) Q R =3, (A\y.(Az.P) R) Q =3, (\y.P{z:=R})Q.

None of Bg and (; is contained in the other: (g is more general in that it
does not require the object under Ay to be an abstraction, and (; is more
general in that it does not require the $-chain to have form (A\y.[]) Q.

2.3.5. THEOREM (Nederpelt [92]). For all M € Ak,
M €WNg, = M €ESNg.

2.3.6. REMARK. The proof structure is as (2.5)-(2.7) in Remark 2.3.3 with
(1 in place of 8;8s and (3o in place of (k.

2.3.4. Karr’s technique

Karr [62] studies general conditions under which additions to the simply
typed A-calculus remain strongly normalizing, and obtains as a special case
strong normalization of 8n-reduction and surjective pairs.

This in general works by reducing [rR-strong normalization to BrR.,-
strong normalization, where R, is a certain conjugate rule, derived mechan-
ically from R.

2.3.7. DEFINITION. Define the notion of reduction 3, by:
C{z:=Xx M} R (B, C{z:=M{zx:=R}} ifx cFV(M)and C—g, 2.

The motivation for 3, is that it allows postponement of 8. For example,
if v € FV(P) and y € FV(P) then

(\y.Az.P) Q R =5, (\y.P{z := R}) Q.

This shows that Karr’s reduction (3, obtains the effect of Nederpelt’s 3;
(composed with 2). Whereas Nederpelt requires that the C' in C[\z.P] R,
be a (-chain, Karr requires that C[z] —#3, 2.

2.3.8. THEOREM (Karr [62]). For all M € Ak,
MESNﬂIB-y = MESNﬂ.
2.3.9. REMARK. The proofis as (2.7) in Remark 2.3.3 with 3, in place of 3s.

2.3. Variations on Klop’s technique 81

2.3.5. Kfoury and Wells’ technique

Kfoury and Wells [66] reduce the strong normalization problem of S-reduction
in simply typed A-calculus and the intersection type system to the weak nor-
malization problem for related systems as follows.

2.3.10. DEFINITION. Define the notion of reduction ~ by:

Ay z.P)Q ~ Az.(A\y.P) Q,

and let M —, N & M —3, M'—, N € NF,.

The idea behind v again is that it facilitates postponement of [g-
reductions. For example,

(Ay.Az.P) Q R =, (Az.(A\y.P) Q) R.

Thus, whereas de Groote’s g moves R to its matching Az, Kfoury and
Wells’ v moves Az to its matching R.

2.3.11. THEOREM (Kfoury and Wells [66]). For all M € Ak,
nf,(M)€WN, = M eSNg.

2.3.12. REMARK. Instead of proceeding as in (2.5)-(2.7) with ~ in place of
Bs, Kfoury and Wells approach the problem differently. Their proof shows
that *-normal forms are 3-strongly normalizing. Since x-reductions preserve
the possibility of infinite S-reductions, any x-weakly normalizing term is (-
strongly normalizing. The result then follows from the fact that y-reductions
preserve the possibility of infinite g-reductions.

2.3.6. More general techniques by Klop and Khasidashvili

Klop [76, I1.4] generalizes the technique from Section 2.2 to regular combi-
natory reduction systems (such systems are described in the survey [78]).
For any regular combinatory reduction system 3, Klop introduces another
one Y, such that if all terms are weakly normalizing in >, then all terms
are strongly normalizing in 3. The proof is a generalization of Nederpelt’s
technique (2.5)-(2.7) in Remark 2.3.3 with X, for ;85 and ¥ for 8. As a
corollary Klop obtains finiteness of developments for regular combinatory
systems.

Khasidashvili [69] studies so-called S-reductions, which are equivalent
to developments. He independently develops a technique similar to Klop’s,
and uses it to prove strong normalization of S-reductions (i.e., finiteness of
developments), to effectively compute longest S-reductions, and to effectively
compute the length of such reductions. He obtains similar results for other
notions of reduction too.

82 Chapter 2. Weak and Strong Normalization in Type Theory

In a more recent paper, Khasidashvili formulates his technique for so-
called orthogonal expression reduction system [71]. The proof of the result
is similar to Nederpelt’s. As applications he obtains several theorems in the
theory of perpetual reductions—see Chapter 1.

2.4. Extensions of Klop’s technique

This section presents the main contribution of the chapter: an extension of
Klop’s technique yielding a translation [e] : Ax — A; such that [M] € WNg
implies M € SNg. This result was independently discovered by Xi [141].

The first subsection gives the idea and the second subsection develops
the details.

2.4.1. The idea: simulation of 7

Theorem 2.2.2 shows for M € Ak that M € SNg follows from ¢«(M) € WNg,.
We aim at a condition involving only [-weak normalization. The following
definition and proposition suggest a natural approach.

2.4.1. DEFINITION. A translation ¢ : AT — A simulates m if

L—=s K = ¢(L)—; ¢(K) (2.8)
L—=zK = &) oK)

2.4.2. PROPOSITION. Assume ¢ : AT — A1 simulates w. For all M € Ak,
¢(L(M)) € WNg = M € SNg.

Proor. We first show that, for all M € A%, SN (M). Define w : A}, = N:

w(z) =1

w(Az.P) = w(P)

w(PQ) = w(P)+w(Q)
w(PQ) = 2u(P)+u(Q).

Then prove, by induction on M —, N, that M —,; N = w(M) > w(N).
Now, assume ¢(c(M)) € WNg. By the conservation theorem for Ay,
¢(t(M)) € SNg. If «(M) had an infinite Sr-reduction path, then infinitely
many of these steps were 3-reductions, but then ¢(¢(M)) also had an infinite
f-reduction path, a contradiction. Hence ¢(M) € SNgr. Then, by Main
Lemma 2.2.7, M € SNg. O

So, the problem is to find ¢. One approach, mentioned by Klop [76,
1.7], is to map pairs [M, N] € A7 into terms P M N € Ay where P is a
fixed point combinator such that P M N L —5 P (M L) N. For the present

2.4. Extensions of Klop’s technique 83

purposes this approach has the problem that, for the obvious choices of P,
¢(L(M)) & WNg. Moreover, ¢oy fails to map typable terms to typable terms
(see Section 2.6).

Fortunately another technique is available. It is well-known [26, 112]
that one can simulate reductions like 7 by means of a continuation passing
style (CPS) translation [109, 100]. More precisely, there is a CPS translation
Y : AT — AT and an “optimizing” CPS translation ¢ : AT — AT such that
(M) —»g ¢(M) and ¢ simulates m. Since a pair [M, N] in the translated
world has no notion of reduction associated, it is equivalent to y M N where y
is some fresh variable. Using this idea one gets a translation into A; instead
of A7.

This suggests the following principle.

2.4.3. PROPOSITION. Suppose 1, ¢ : AT — Ar are such that ¢ simulates
and (M) —z (M) for all M € A7. Then

(u(M)) € WNy = M € SNp.

PRroOOF. Assume that ¢(c(M)) € WNg. By the Church-Rosser property,
¢(t(M)) € WNg. Then, by Proposition 2.4.2, M € SNg. a
2.4.2. Simulation by CPS translation

We now show how to simulate 7 by means of CPS translation.
The restrictions to Ag of the following two maps were first studied sys-
tematically by Plotkin [100]; see also [109].

2.4.4. DEFINITION. Let y be a variable, not occurring in any other term.

(i) Define o : A7. — Ak by:

x = Mexk
M.P = M\k.kAx.P
PQ = M.PAmmQFk
[P,Q] = ey (Pk)Q.
(ii) Define @:e : A7 x Ax — Ak by:
T tH = xH
(A\e.P) :H = HAz.P
(PQ) :H = P:(AmmQH)
[P,Q] :H = y(P:H)Q.

where M = Ah.(M:h), for all M € A%

The idea is to use Proposition 2.4.3 with /(M) = M and ¢(M) = M.

84 Chapter 2. Weak and Strong Normalization in Type Theory

2.4.5. LEMMA. For all M,N € A%, and K,L € Ag:

(i) k¢FV(M) = (M : K){k:=L} =M : (K{k:=L}).

(i) K=y L = M:K-—»; M:L.
Proor. By induction on M. a
2.4.6. LEMMA. For all M,N € A% and K € Ag:

(M:K){z =N} (M{z:=N}): (K{z:=N}).

PROOF. By induction on M. Let, for any L € A, L* = L{z := N}.

1. M = z. Then, by Lemma 2.4.5(i),

N K~
—g (N:h){h:=K*}
N:K*
(x{x :=N}):K*.

2. M =y # x. Then

(y: K)* (y K)*
y{z:=N} K*
(y{z := N}): K*.

3. M = M\y.P. Then, by the induction hypothesis,
(\y.P):K)* = (K)\yg)*
—g K* \y.P{z := N}
(Ay.P{z:=N}):K*
(A\y.P){z :=N}):K*.

4. M = P @. Then, by the induction hypothesis and Lemma 2.4.5(ii),

(PQ):K)" = (P(/\mmgK))*
—#g (P{z:=N}):dm.m Q{z := N}K*
= (P{x:=N}Q{z:=N}):K*
= ((PQ){z:=N}):K*.
The remaining case is similar to Case 3. ad

2.4.7. LEMMA. For all M,N € A}, and K € Ag:
(i) M—3 M

(i) M =g N = M: K- N: K.

2.4. Extensions of Klop’s technique 85

(iii)) M > N = M:K = N: K.
PROOF.

(i) Induction on M.
1. M = P(@. Then, by the induction hypothesis and Lemma 2.4.5(i),

PQ Ak.P Am.m Q k

5 AP Am.m Qk

Nk.(P:Xm.m Q k)

Me.((P Q):k)

P Q.

2. M =[P, Q]. Then, by the induction hypothesis and Lemma 2.4.5(i),

[P, Q]

Q¢¢|||

L4

Q
s Ay (Bh)Q
3)\k.y(P:k)g

The remaining two cases are straight-forward.
(ii) Induction on M —3 N.

1. M = (Ax.P) Q =3 P{z := Q} = N. Then, by Lemma 2.4.5(i)
and 2.4.6,
M:K = (AmmQK)Az.P
—5 (\.P)QK
5 Plr:=Q}K
— (P{r:=Q}):K.
2. M=PQ —3 PQ =N, where Q —3 Q. Then, by the induction
hypothesis and Lemma 2.4.5(ii),
M:K = P:(dmmQK)
—»; P:(Am.mQK)
= N:K.
The remaining cases are similar to Case 2.
(iii) Induction on M —, N.

1. M =[P,Q] R —, [P,R] Q@ = N. Then, by the induction hypothe-
sis,

M:K = y(P:()\m.mﬁK))g
y(PR):K)Q
N:K.

86 Chapter 2. Weak and Strong Normalization in Type Theory

2. M=PQ —, PQ =N, where Q —, @Q'. Then, by the induction

hypothesis,
M:K = P:(Am.mQK)
= P:(Am.m Q K)
N:K.
The remaining cases are similar to Case 2. O

2.4.8. THEOREM. For all M € Ak
W(M) € WNg = M € SN.
PROOF. By Proposition 2.4.3 and Lemma 2.4.7, since e, e : AT — Ajp. O

The following corollary states this more explicitly. For comparison with
a later construction the translation in the corollary omits some 7-redexes.

2.4.9. COROLLARY. Define [o] : Ax — Ag by:

[x] = Mok
[Az.P] = M.k (Azx.\h.y ([P]h) z)
[PQ] = Mk.[P](Am.m[Q]k).

For all M € Ak,
[M] € WN3 = M € SNg.

PROOF. Assume [M] € WNg, i.e., [M] € WNg,. By induction on M, show
that
L(M) = [M].

Therefore, 1(M) € WNg,,. Hence (M) € WNg. Now use Theorem 2.4.8. 0O

Xi [141] independently discovers Corollary 2.4.9 and uses it to prove that
weak normalization implies strong normalization in simply and second-order
typed A-calculus, and mentions that the technique extends to higher-order
typed A-calculus. Whereas the present chapter obtains the translation [e] as
the composition of Klop’s translation with a CPS translation, Xi studies the
composition directly. The resulting proof of Corollary 2.4.9 is very short,
but—in our opinion—Iess transparent.

2.4.10. REMARK. Recall from Chapter 1 that a perpetual reduction strategy
F computes for a type-free term an infinite reduction path, if one exists, and
otherwise a finite reduction path to normal form. To prove that all reduction
paths end in a normal form it thus suffices to prove that the one computed
by F' does so. This is similar to the technique expressed by Corollary 2.4.9:
instead of proving that all reduction paths are finite, one only needs to show
that one reduction path is finite. The difference is that in the technique in
the corollary, one may choose freely which path to prove finite, whereas in
the technique based on perpetual reductions, one must prove that the path
computed by F' is finite.

2.5. Simulation by permutative inner interpretation 87

2.4.11. REMARK. One might wonder whether the assumption [M] € WNg
can be replaced by a weaker condition, e.g., that [M] has a head normal
form or weak head normal form. None of these two weaker conditions are
sufficient as the example M = Az.{2 shows.

2.4.12. REMARK. It is natural to wonder whether our extension of Klop’s
technique has analogous extensions of the techniques by Nederpelt, de Groote,
etc. Indeed, the rule &7 in [112] which generalizes g can be simulated by
a CPS translation [112], as was also noted in [67]. However, this yields the
property

M € WNg, = M € SNg,

as opposed to our
t(M) € WNg = M € SNg.

In the former case one has to prove that M € WNg,. This is not the
same as t(M) € WNg (neither set is contained in the other). Thus, with the
former technique one does not infer strong normalization of one notion of
reduction from weak normalization of the same notion of reduction

2.5. Simulation by permutative inner interpretation

In this section we show that simulation by CPS translation is a special case
of simulation by a general model-like construction. To do so we replace the
specific CPS translation by a generic translation, and replace the specific
colon translation by a generalization of Sabry and Felleisen’s [112] compact-
ing CPS translation. The colon translation cannot be generalized directly
because it exploits the fact that an explicit translation is given.

The first subsection introduces permutative interpretations. The second
subsection shows how to derive simulations of 7 from permutative inner
interpretations. The third subsection shows that the technique based on
CPS translations from Section 2.4 is a special case. The fourth subsection
gives another special case due to Loader [85]. The last subsection explains
the relation to the notion of an inner model.

2.5.1. Permutative inner interpretations

2.5.1. DEFINITION.

(i) An inner interpretation is a tuple I = (E, F, G, H) of terms from Af.
(ii) The map [o]; : Ax — Ax determined by I is defined by:

[=]r = FEx

[PQL = F[PLIQ
Dy.Plr = G (\y.H[P] (Ey)).

88 Chapter 2. Weak and Strong Normalization in Type Theory

2.5.2. NOTATION. Given an inner interpretation I = (E, F, G, H), the term
[M]r has a number of occurrences of the terms F, F, G, H introduced by the
translation. However, there may be subterm occurrences in [M]; identical
to one of E,F,G,H which were not introduced by the translation. For
instance, if £ and M are both the free variable y, then [M]; = y y has two
occurrences of £, but only one were introduced by the translation.

We assume that the set V' of variables in Ag is divided into two denu-
merable, disjoint sets Vy and Vi. In implicit a-conversions, variables are
renamed by other variables in the same set. All terms are assumed to use
variables from Vj, except the terms E, F,G, H in an inner interpretation,
which always use variables from V. Define the notions of reduction 3y and

By by:?
(\.P)Q B Plz:=Q)} ifzeVi

Then 3 = Gy U B.

2.5.3. DEFINITION. Let I = (E, F,G, H) be a permutative inner interpreta-
tion.

(i) The language L(I) C Ak determined by I is defined by:
M:E.%‘|FM1M2|GAQM|HM1M2

(ii) I is permutative if, for all X,Y, Z € L(I),
1. EX =5, X.
2. F(GA.X)Y =4, E ((\.X)Y).
3. F(HXY)Z =4 H(FXZ)Y.
(iii) I is sound if, for all XY, Z € L(I), 1-2 hold, and
4. HXY =4, X.

2.5.4. REMARK. Any inner interpretation which is sound is also permuta-
tive, but the converse is not generally true.

Given any permutative inner interpretation I = (E, F,G, H), we shall
show that, if E, F,G, H are linear terms, then [M]; € WNg implies that
M € SNg, for all M € Ak.

2.5.2. Simulations from permutative inner interpretations

The following is a convenient auxiliary notion.

3No connection with Nederpelt’s 8; is intended.

2.5. Simulation by permutative inner interpretation 89

2.5.5. DEFINITION. Given an inner interpretation I = (E, F,G, H), define
the map {[o]l; : A — Ag by:

{{=] = Eu

{Pelr = F{P}{Qk
{My-Plr = Gy A{lPh
{lrPQr = HA{P{Cl

2.5.6. REMARK. {t(M)]}; = [M]; and {{N]}; € L(I) for all N € A% and
M e Ag.

2.5.7. LEMMA. Let I = (E,F,G,H) be a permutative inner interpretation.
For all M,N € A%,

{{MJ{z = {NJ} =p, {M{z = N}l
PRrROOF. By induction on M.

1. M = x. Then

{zlifz ={Ni} = E{Nk
=5 Nz
= {z{x:= N}
2. M =y # x. Then
{whi{z :={Nlt} = Ey
= {vlk
= {y{z:= N}
In the remaining cases, apply the induction hypothesis. O
2.5.8. LEMMA. For all M,N € A%,
i) M 5 N (i) M — N
{o: (o] | RG (o] |
My S Loy, I . N My e S N
PRroor.
(i) Induction on M —3 N. If M = (Az.P) Q =g, P{z := Q} = N, then
G Az AlPlr) Q)

My = F(
=s E (A A{Ph) Q)
E({{Ph{z = {Q})
=5 B {P{z:=Q}})
= AP{z:=Q}}
= {N}.

In the remaining cases, apply the induction hypothesis.

90 Chapter 2. Weak and Strong Normalization in Type Theory

(i) Induction on M —, N. If M = [P,Q] R = [P R,Q] = N, then

Ml = F(HA{PHAQKH) {RK
=s H (F{P} {R]) {Q}
= {Nk.

In the remaining cases, use the induction hypothesis. ad

2.5.9. DEFINITION.

(i) Define for M € Ak and variable z, |M| and |M]|, by:

| =1 |z - =1 if z=x, else 0
|Az. M|=1+ | M] IAe. M|, =|M|, ifz#z, else0
|M N| =1+ |M]+[N]| |M N|; =[M]; +[N].-

(ii) A = {M € Ag | A.PCMandzxeV, = ||P||$ = 1}.
The following lemma shows that nfg (M) is well-defined for M € Aj.
2.5.10. LEMMA.

(i) For all M € A, : M —g, N = N € Ar.
(ii) For all M € Ay, : SNg, (M).
(iii) For all M € Ak : CRg, (M).
PROOF.
(i) Prove by induction on P that for all P,Q € Ay and k # I:
|P{k = Qe = I1Ple + Q1 - [Pl
Using this prove by induction on M — g, N that for all M € Ap:
M —=p N = [M]; =[N (2.10)
Then prove by induction on P that for all P,Q € Ap, and k € Vi:
P{k:=Q} € Ap. (2.11)

Finally prove (i) by induction on M —3, N using (2.10)-(2.11):

1. M = (Me.P) Q =4, P{k:=Q} = N. Then, by (2.11), N € A,

2. M = Xk.P —p, Ak.QQ = N, where P —3, (). Since M € Ay, also
P € Ap and |P| = 1. By the induction hypothesis @ € Az, and
by (2.10), |Q|x = 1. Therefore, N € Ay,.

In the remaining cases, apply the induction hypothesis directly.

2.5. Simulation by permutative inner interpretation 91

(ii) Prove by induction on P that for all P,Q, € Ap:
|1P{k = Q =[Pl + (IQ] = 1) - [Pl
Use this to prove by induction on M — 3, N that for all M € Ap:
M —3, N = |M| > |N]|. (2.12)

Now (ii) follows by (i) and (2.12).
(iii) By the technique due to Tait and Martin-Lof—see [3]. 0

2.5.11. LEMMA. For all M,M' € A, N € Ak :

M N
81 _»ﬁ1
y v
MI (. Nl
—)50

PRrooOF. It suffices, by Lemma 2.5.10(i) and transitivity, to prove the asser-
tion when M —g, M'.
First show, for any M, N,L, K € Ag with |K|; =1,

If M -5 N then M{x:=L} —5 N{z:=L} (2.13)
If M —5 N then L{x:= M} L{z:=N} (2.14)
If M —5, N then M{k:=L} g N{k:=L} (2.15)
If M —4 N then K{k:=M} s K{k:=N}. (2.16)

Here (2.13),(2.15) are by induction on M —3 N, (2.14),(2.16) by induction
on L.
We now proceed by induction on M —g N using (2.13)-(2.16):

1. M = (A2.P) Q —p, P{z .= Q} = N. Then M —3, (\z.P') Q' = M',
where P =5, P' and @ = @', or vice versa. With N' = P'{z := Q'},
both M’ —g, N" and N —»3, N', by (2.13)-(2.14).

2. M = (Ae.P) Q 3, P{k := Q} = M". Then M —4, (\k.R) S = N
where P —g, R and Q = S, or vice versa. With N' = R{k := S},
N =5, N" and M’ =4, N’, by (2.15)-(2.16).

In the remaining cases, use the induction hypothesis. a

2.5.12. LEMMA. Let I be a permutative inner interpretation of Ay terms.
For all M,N € A%

(i) {{MJ —»p nfs, ({M).
(ii) M —5 N = nfg, ({M]1) —; nfs, ({N).

92 Chapter 2. Weak and Strong Normalization in Type Theory

(iii) M —5 N = nfg ({M]r) = nfs ({N]r)-

PROOF. (i) is obvious and for (ii)-(iii) we have the diagrams

M = N M————N
M T Ty Mo N
nfﬂl _»ﬂl —»Bl nfﬂl nfﬂl L Lnfﬁl
- Y. / !
Ml _}B()). O _»ﬂl > NI Ml E Nl
by Lemmas 2.5.8, and 2.5.11. ad

2.5.13. THEOREM. Let I be a permutative inner interpretation of Ap terms.
For all M € Ak,
[M]; € WNg = M € SNg.

Proor. By Proposition 2.4.3, Remark 2.5.6, and Lemma 2.5.12. ad

2.5.3. CPS translation as a permutative inner interpretation

2.5.14. PROPOSITION. Let I = (E,F,G,H), where for some fized variable y,

AXMe.X &
AMAN k.M Am.m N k
AM.Nk.k M
AMANAk.y (M k) N

T QN

Then I is a permutative inner interpretation of Ap terms.

PRrROOF. We prove that the terms E, F, G, H satisfy the equations of a per-
mutative inner interpretation.

(i) For all P € L(I), P =g, Al.R for some R and [€ V. Thus,

EP =3 Mc.(ALR)k
=5, Ae.R{k:=1}

AR

P.

(ii) For all P,Q € L(I),

F(GM\t.P)Q =5 Ne.(Ah.hAz.P) Xm.m Q k
=5, Ak.(Am.m Q k) \x.P
=p M.(Az.P)QFk
= E((Az.P)Q).

2.5. Simulation by permutative inner interpretation 93

(ili) For all P,Q, R € L(I),

FHPQ)R = Me.(M.y (P1)Q) \sm.m Rk
=5, Aky(PAm.mRE)Q
=5, Ak.y ((A.PAm.m Rh) k) Q
—s, H(FPR)Q.
This concludes the proof. ad

2.5.4. Loader’s permutative inner interpretation

Loader [85] uses a translation (e[mapping a typed term in simply and
second-order typed A-calculus into constructive evidence for the statement
that the term is strongly normalizing. He uses the translation to prove
that weak normalization implies strong normalization in these calculi, and
mentions that the technique extends to higher-order typed A-calculus.

More specifically, in the case of simply typed A-calculus, Loader’s trans-
lation (je]) can be viewed as follows:

(x) =z
(PQ) = (P)(Q)
(Ay.P) Ay-Hyr (P) y.

where H, is a family of simply typed A terms satisfying, for X, Y, Z € A,
(Hosr XY)Z =3, Hys7 (X Z) Y.

and where the choice of ¢ — 7 in the third clause is made on the basis of the
type of Ay.P. Thus, his translation can be viewed as the permutative inner
interpretation (I,I,I, H;) of Aj terms, where we allow a family of H’s.

2.5.5. Inner models versus sound inner interpretations

We end the section by explaining the relation between sound inner interpre-
tations and inner models, as presented in, e.g., [7].

2.5.15. DEFINITION.
(i) A pair I = (F,G) of Ak terms is an inner model if \x.F (G z) =5 L.
(ii) The map [o]; : Ax — Ak determined by I is defined by:
[« =

[PQl; = F[PIQl
[y-Plp = G (Ow[P]) -

2.5.16. PROPOSITION. If (F,G) is an inner model, then (I F,G,K) is a
sound inner interpretation.

94 Chapter 2. Weak and Strong Normalization in Type Theory

Proor. If (F,G) is an inner model, then, by the Church-Rosser property,
F (G x)—»g, « for any variable z, and hence F(GX)Y =3, XY =5 I(XY)
for any X,Y € Ax. The remaining two axioms of sound interpretations are
clearly satisfied. ad

The converse is not generally true. However, the main property of inner
models is that M =g N implies [M]; =g [M]; for all M, N € Ag. The same
holds for sound inner interpretations. Thus, the notion of a sound inner
interpretation is weaker than that of an inner model, but strong enough to
entail the main property of an inner model.

2.5.17. REMARK. Inner models are related to term models of the untyped
A-calculus—see [3].

2.6. Application to typed A-calculi a la Curry

In this section we use the CPS translation from Section 2.4 to prove that
weak normalization implies strong normalization in some typed A-calculi a
la Curry.

The first subsection introduces such calculi in general. The three next
subsections consider simple types A —, positive recursive types AuT, and
subtypes AC; see, e.g., [4, 133, 88], respectively. The last subsection studies
the use of permutative inner interpretations, in general, to prove that weak
normalization implies strong normalization; for simplicity we consider only
simply typed A-calculus.

2.6.1. Typed A-calculi a la Curry

2.6.1. DEFINITION.

(i) The set Context(O) of contexts over a set O is the set of all

{z1, 71, o yxy t Th b
where 7,...,7, € O, z1,... ,x, € V (variables of Ag) and where
x; £ xj for i # 3.
(ii) For context I’ = {z1: 71,... ,2, : 7}, we write dom(T") = {z1,... ,x,}.

(iii)) We write z : 7 for {z : 7} and I',\T' for TUT" if z : 0 €T and z : 7 € T
implies 0 = 7.

(iv) A typed \-calculus a la Curry AS is a pair (O, F), where

F C Context(©) x Ag x O.

(v) M € Ak is typable in AS if T' = M : 7 for some I' € Context(0), 7 € O.

2.6. Application to typed A-calculi a la Curry 95

(vi) We write A\S |= WNg if M € WNg for all M typable in AS. Similarly,
we write AS |= SNp.

To prove that weak normalization implies strong normalization in AS it
suffices to show that [e] preserves typability.

2.6.2. PROPOSITION. Let AS be a typed A-calculus @ la Curry. If, for all
M € Ag,

M typable = [M] typable ,

then
AS = WNj = AS = SNg.

PRroOOF. Assume A== WNp3 and let M be a typable term. By assumption,
[M] is typable, so [M] € WNg. By Corollary 2.4.9, M € SNg. O

It is well-known that various CPS translations preserve typability in
various typed A-calculi—see, e.g., [27, 44, 46, 81, 87].

2.6.2. Simple types
2.6.3. DEFINITION. The simply typed A-calculus A—= (Type(A—),F) is:
(i) Type(A—) is defined by the grammar:
T,oun=a|T = o,

where U is a set of type variables ranged over by «.

(ii) The relation I is defined by:

x:okF P:7 r-P:o—>7 I'FQ:0

Fx:rkax:7 ''Xe.P:o—r71 r-pPQ:r
2.6.4. DEFINITION. Let | be a fixed type, and =0 = ¢ — L. Define maps

(o], [o]' : Type(A—) — Type(A—)

by:
[o] = o]
af = «
[0 =7 = [o] =[]

96 Chapter 2. Weak and Strong Normalization in Type Theory

2.6.5. CONVENTION. From now on we assume that the translation [e] from
Section 2.4 does not introduce several occurrences of the free variable y,
but rather a single occurrence of each of a number of distinct free variables.
Thus, instead of

[Ax.Az.x] = Ak.k Az Ah.y (AL Az Am.y (x m) z] h) z,
we shall now have
[Ax.Az.x] = Ak.k Az Ah.yy (AL Az dm.ys (xm) z] h) .

This clearly has no influence on the normalization properties of [M], but
will be important for typing properties.

2.6.6. LEMMA. For all M € Ak, o € Type(A—), T' € Context(Type(A\—)),
'-M:0 = A+ [M]:][o],
for some A with dom(A) = FV([M])\FV(M).
Proor. Induction on I' = M : o using Convention 2.6.5. O
2.6.7. COROLLARY. A== WNj = A—}= SNg.
2.6.3. Positive, recursive types
2.6.8. DEFINITION. Au™ is as A— but with extra types of form:
T,0 n=... | pa.o,
where « occurs only positively in c—see, e.g., [133]—and with the extra rule:

'-M:0 o~T
' M:r

where ~ is the least congruence on Type(Au™) with pa.o ~ o{a := pa.o}.

2.6.9. DEFINITION. Define [o], [¢]' : Type(Aut) — Type(Au™) as for A —
and:

pa.o] = paol.
That [0],[0]" € Type(Au™) is easily established by induction on o.
2.6.10. LEMMA.

(i) [o]{a:=[r]} = [ofa = T}]"

(ii) o ~7 = [0] ~[7].

2.6. Application to typed A-calculi a la Curry 97

(iii) If ' = M : o then A/[I'l] + [M] : [o], for some context A with
dom(A) = FV([M])\FV(M).

PROOF.

(i) Induction on o.

(ii) Since ~ is a congruence, o ~ 7 implies =—o ~ ——7. Now prove by
induction on o ~ 7 that o ~ 7 implies [o] ~ [7], using (i).

(iii) Induction on I' = M : o using (ii). O
2.6.11. COROLLARY. Ayt = WN = Aut |=SN.

2.6.4. Subtypes

2.6.12. DEFINITION. AC is as A— but with some extra base types:

and with the extra rule:

'-M:0 oCr7
'-M:7 ,

where C is any relation on Type(AC) closed under the following rules:

o CorCT cCr,TCp
c0Co o—=17Co =17 ocCp

2.6.13. DEFINITION. Define [o],[o]' : Type(AC) — Type(AC) as for A— and:
b = b
2.6.14. LEMMA.

(i) oC7 = [o] C[T]
(i) IfT' v M : o then AJ[I'] = [M] : [o], for some context A with
dom(A) = FV([M])\FV(M).

PROOF.

(i) First note that o C 7 implies =—o C ——7. Now prove by induction on
o C 7 that o C 7 implies [o] C [7].

(ii) Induction on I' = M : o using (i).]

2.6.15. COROLLARY. A\C}= WN = AC|= SN.

98 Chapter 2. Weak and Strong Normalization in Type Theory

2.6.5. Inner type interpretations in A\—

We have shown that a specific permutative inner interpretation preserves
typability in some calculi & la Curry and hence that weak normalization
implies strong normalization in these calculi. In this subsection we present a
condition guaranteeing that the map determined by any permutative inner
interpretation preserves typability in A—. FEach linear permutative inner
interpretation satisfying the condition hence gives a technique to prove that
weak normalization implies strong normalization in A—; similar conditions
can be derived for other systems.

2.6.16. DEFINITION.
(i) T : Type(A—) — Type(A—) is an inner type interpretation of A— if
T(o){a: =71} =T(c{a:=T}).

(ii) The map [eo]r : Type(A—) — Type(A—) determined by T is given by:

[o]r = Tlo]r
[o]7 = a
lo =7l = lolr = [7lr-

Also, [I']r ={z : [o]r |z :0 €T}
(iii) An inner interpretation I = (E, F,G, H) agrees with inner type inter-
pretation 7" if, for all o, 7, p € Type(A—), there is a A such that

E [[T]]T — [[T]]T
F:T([o]lr = [r]r) = (lelr = [7]lr)
G : ([o]r = [7]r) = T([o]r = [7]r)

A F
A F
A F
A+ H:[r]r = [o]r = [7]r-

2.6.17. PROPOSITION. If an inner interpretation I agrees with an inner type
interpretation T', then

P'M:0 = Ay F [M]:][o]r,
for some context A with dom(A) = FV([M];)\FV(M).
Proor. By induction on I' - M : o using Convention 2.6.5. O

2.6.18. REMARK. Inner interpretations agreeing with inner type interpreta-
tions resemble Kleisli triples and monads—see, e.g., [90, 91, 33, 111].

2.7. Application to typed A-calculi a la Church 99

2.7. Application to typed A-calculi a la Church

In this section we consider typed A-calculi & la Church: second-order types
A2 and higher-order types Aw. It is convenient to study so-called domain-
free [14] variants of these calculi in which abstractions have form A\z.M
rather than Ax:o . M. In the next chapter we show how the technique can
be modified to the usual formulations of A2 and A\w.

2.7.1. REMARK. Domain-free systems are not generally Curry systems. In
systems a la Curry the terms are those of the untyped A-calculus; in domain-
free systems the terms are those of systems & la Church with type tags
omitted. For A— the two views are equivalent, but for more powerful systems
the two views diverge. An example term and type in A2 & la Church is

Aok . Az .z Ya.a — a.
In A2 4 la Curry the similar term and type is
Az.z : Ya.a — a.
The similar term and type in the domain-free approach is

Ao x.x : Yoo = a.

2.7.1. Second-order types
2.7.2. DEFINITION. The system A2 is:
(i) A2 has types o, 7 € Type(\2):
o,Ti=a|T = o|Va.o.
(ii) A2 has terms P, Q) € Term(A2):
P,Q:=z| x.P|PQ| P |Po.
(iii) The notion of reduction 3 on Term(A2) is:

(A.P)o [Pla:=o0}
(Az.P)Q [P{x:=Q}.

(iv) A2 has inference rules:

x:okF P:7 r-P:o—>7 I'FQ:0
Fx:rkax:7 ''Xe.P:o—r71 r-pPQ:r
' P:7 agFV(D) ' - P:Va.o

I' - \a.P :Va.1 '+ Pr:o{a:=1}

100 Chapter 2. Weak and Strong Normalization in Type Theory

2.7.3. DEFINITION. Let L be any type, -0 = 0 — L, and define the maps
[¢], [¢]' : Type(A2) — Type(A2) by:

ol = bl
o] = «

Va.o] = Va.o]

o =71 = [o]=]7]

A term M is legal if ' = M : o for some I', 0.

2.7.4. DEFINITION. Define [o] : Term(\2) — Term()\2) by:*

[x] = Mok

[Az.P] = A.Xz.Ah.y ([P]h)zx
[PQ] = M.[P]xm.m|[Q]]
[Aa.P] = M. Xa.Mhy ([P]h)«
[Po] = MAL[P]Am.m o] L.

2.7.5. THEOREM. [M] € WNg = M € SNg.
Proor. Like the proof of Theorem 2.5.13. a

2.7.6. LEMMA.

(i) [of{a:=[r]'} = [o{a:=7}]"
(i) IfI' = M : o then A[I'] F [M] : [o], for some context A with
dom(A) = FV([M])\FV(M).

PROOF.

(i) Induction on o.

(ii) Induction on I' = M : o using (i). a

Writing A2 = WNpg to mean that all legal terms in A2 are weakly nor-
malizing, and similarly with SN, we have the following.

2.7.7. COROLLARY. A2 = WNy = A2 |= SNg.

4A small technical difficulty appears in 2.7.4 and 2.7.10. Suppose M is the term to be
translated and Az.P a subterm. Then the second clause should—strictly speaking—read:
[Az.P] = ALl x. Ah.(ya1 ... an) ([P]h) z, where Aaa, . .. , Aa, are all the type abstractions
in M whose scope Az.P is in—see also Discussion 3.4.1.

2.7. Application to typed A-calculi a la Church 101

2.7.2. Higher-order types
2.7.8. DEFINITION. The system Aw is:
(i) Aw has kinds k, k' € Kind(Aw):
[N
(ii) Aw has constructors o, 7 € Con(Aw) of kind k:

o : k for every kind k and o € V, where V is a set of variables.
or:k'ifo:k— Kk and 7 : k.
Mok — K ifo: k.

Mok .o xif o *.

AN S

o—>T1:xifo,7 %

(iii) Aw has terms P, @ € Term(\w):
P,Q:=z| x.P|PQ|X*.P|Po.
(iv) The notion of reduction 5 on Term(Aw) and Con(lw) is:

MF.r)o B T{d* =0}

\eP)Q 5 Plri=Q}
(AF.P)o B P{d* =0}

(v) Aw has inference rules:

x:oF P71 'P:o—-7 I'FQ:0o

Lx:7rhkax:7 ' Xe.P:o—r1 r-pPQ:r
I'-P:o o=3T 'P:7 agFV(D) I P:llofo 7:k
P71 I - \F.P:IloFr I - Pr:o{d’:=71}

(vi) A term M is legal if I' = M : o for some I', 0.

The following is inspired by [38, 2.2.16]; see also [46].

2.7.9. DEFINITION. Let L be a constructor of kind *, - = 0 — L. Define
maps [e], [e]' : Con(Aw) — Con(A\w) by:

[o] = =]
[ak ! oF
o7 = [o] [
MoF.o] = AoF. o)
[loF.0)] = Mok [o]
[

102 Chapter 2. Weak and Strong Normalization in Type Theory

2.7.10. DEFINITION. Define [o] : Term(Aw) — Term(Aw) by:

[x] = Mok

[Az.P] = M.Ax.Mhy ([P]h)z
[PQ] = M.[P]dmm[Q]]
[AF.P] = ALIAFMhy ([P]h) o
[P o] = AL[P] Am.m [o]' L.

2.7.11. THEOREM. [M] € WNg = M € SNg.
ProoF. Like the proof of Theorem 2.5.13. ad

2.7.12. LEMMA.

(iv) If ' = M : o then AJ[I'l + [M] : [o], for some context A with
dom(A) = FV([M))\FV(M).

PROOF.

(i) Note that o : x implies =—0 : * and use induction on o : k.
(ii) By induction on o.

(iii) Note that o =g 7 implies ~—o =g ——7, and prove by induction on
o =g 7 that 0 =g 7 implies [0]' =g [7]', using (ii).

(iv) By induction on I' = M : o using (i),(iii). O

Writing Aw = WNj to mean that all legal terms in Aw are weakly nor-
malizing, and similarly with SN, we have the following.

2.7.13. COROLLARY. A\w = WNg = \w [= SNg.

This shows that weak normalization of all terms implies strong normal-
ization of all terms, but states nothing about constructors. However, the
constructors of Aw are essentially equivalent to the terms of A— and this
can be used to prove that weak normalization of all constructors implies
strong normalization of all constructors.

2.8. Conclusion 103

2.8. Conclusion

We have shown that our extension of Klop’s technique works on the calculi
a la Curry A—, A\u™, and AC. In both A\t and AC, the smoothness of the
proof stems from the fact that ~, C are congruences, and so in particular
apply to types under negations. For other formulations of Ay [133] and for
the Curry systems A2 and AN~ [4] the straight-forward technique fails, be-
cause generalization and intersection introduction do not work under double
negations.

We have also applied our extension to versions of A2 and Aw a la Church.
In the next chapter we generalize the technique to a class of calculi which
includes more traditional formulations of A2 and A\w.

For dependent type systems our technique is limited by the fact that it
is presently not clear how to express CPS translations for dependent type
systems—see, e.g., [27, 139]. Moreover, in such systems terms occur in
types. To preserve typability the translation must map equal terms to equal
terms, which does not hold with our CPS translation. In the terminology of
Section 2.5, the inner interpretation must be sound, not just permutative.

104 Chapter 2. Weak and Strong Normalization in Type Theory

CHAPTER 3

Normalization in Pure Type Systems

The Barendregt-Geuvers-Klop conjecture states that every weakly normal-
izing pure type system is also strongly normalizing—pure type systems are
a general formalism of which specific type theories can be viewed as special
cases. In this chapter, we show that the conjecture is true for the class of
generalized non-dependent pure type systems, a class which includes, e.g.,
the left hand side of Barendregt’s A-cube as well as the system AU studied
in the literature. This seems to be the first result giving a positive answer
to the conjecture not merely for some concrete systems for which strong
normalization is known to hold, but for a uniform class of systems in which
not all systems are strongly normalizing.

3.1. Introduction

In Chapter 2 we reduced strong normalization to weak normalization in sim-
ply and second-order typed A-calculus and in certain systems with subtypes
and recursive types. For a domain-free [14] version of higher-order typed
A-calculus we also showed that strong normalization of all legal objects fol-
lows from weak normalization of all legal objects, but stated nothing about
constructors. As mentioned in Chapter 2, Xi [141] independently uses the
same technique to reduce strong normalization of simply and second-order
typed A-calculus to weak normalization of the same systems extended with
certain pairing operators and type constants.

Each of the systems mentioned above is known to be strongly normal-
izing. Thus, for these systems, weak normalization trivially implies strong
normalization. In this chapter we generalize the technique to the class of
generalized non-dependent pure type systems—including the left hand side
of the A-cube as well as AU—and show that, for any system in the class,
weak normalization implies strong normalization, provided the system sat-
isfies certain technical properties (which are satisfied in the systems men-
tioned above). This seems to be the first result stating that the Barendregt-
Geuvers-Klop conjecture is true for a class of systems. An interesting aspect

105

106 Chapter 3. Normalization in Pure Type Systems

of our class is that it includes both systems that are strongly normalizing
as well as systems that are not. This shows that the technique does not
implicitly use strong normalization of the systems in question. Moreover,
for the specific systems of simply, second-order, and higher-order typed A-
calculus the present results improve those from Chapter 2 and those by Xi
by not relying on any extra pairing operators, by not requiring domain-free
formulations of any of the systems, and by showing that weak normalization
of all legal expressions implies strong normalization of all legal expressions
in the system.

Section 3.2 reviews some fundamental definitions. This includes a gen-
eralization of Coquand and Herbelin’s notion of logical non-dependent pure
type system to what we call generalized non-dependent pure type systems.
The section also presents a classification of legal expressions into terms,
types, and sorts due to Berardi. Section 3.3 and 3.4 present continuation
passing style translations on types and terms, generalizing similar transla-
tions of Coquand and Herbelin. Section 3.5 uses the translations to infer
strong normalization from weak normalization as in the previous chapter.
Section 3.6 assesses the scope of the technique and reviews directions for
further work.

3.2. Pure type systems

This section presents some fundamental definitions. The first subsection re-
views pure type systems, as presented by Barendregt, Geuvers, and Neder-
hof [4, 39, 38]. Throughout the chapter we use implicitly numerous well-
known properties about pure type systems. The second subsection intro-
duces some notation regarding normalization. The third subsection presents
the new class of generalized non-dependent pure type systems, in which types
do not depend on terms, as shown in the fourth subsection.

3.2.1. Pure type systems
In this subsection we introduce pure type systems.

3.2.1. DEFINITION. A pure type system (PTS) is a triple (S, A, R) where

(i) S is a set of sorts.
(i) ACS x S is a set of azioms.
(iii) R €S x 8 x S is a set of rules.

We write (s,s') € R for (s,s',s') € R.
3.2.2. DEFINITION. Let (S,.A,R) be a PTS.

(i) For each s € S, let V, denote a countably infinite set of variables such
that Vs N Vy = 0 when s # s', and let V = UgesVs.

3.2.

Pure type systems 107

(if)

(iii)

(v)

The set £ of expressions is given by the abstract syntax:
E=VIS|EE|IANV:EL|IIV:EE.

We assume familiarity with the subezpression relation C, with the set
FV(M) of free variables of M, and with substitution M{z := N} for
x €V and M,N € £. We write A — B for Ild: A. B when d ¢ FV(B).
We use = to denote syntactic identity modulo a-conversion and adopt
the usual hygiene conventions—see [3].

The relation —5 on £ is the compatible closure of the rule
AA.M)N [M{z:=N}.

Also, —#3 and =g are the transitive, reflexive closure and the transitive,
reflexive, symmetric closure of — g, respectively.

The set C of contexts is the set of all sequences
x1:A1, .. T An,

where z1,...,2, € V, A1,... A, € &, and x; # x; when ¢ # j.
The empty sequence is [|, and the concatenation of I' and A is I', A.
We write x : A € T'if I' = I'j,x : A, Ty, for some I'y, T's, and we
write I' C A if, for every z: A € ', also x : A € A. For I' € C,
dom(T') ={z|z:A €T, for some A}.

The relation = C C x € x £ is defined in Figure 3.1. If I' - M : A, then
[is legal and M, A are legal (in T'). We use the notation ' - A: B : C
meaning that I' - A: Band ' - B: C.

3.2.3. CONVENTION. To save notation we often consider in the remainder a
PTS AS and say, e.g., that s € S or M € £ with the understanding that
AS = (S, A, R) and that V, £, C, =5 and I- are defined as in Definition 3.2.2.

3.2.4. EXAMPLE. The A-cube counsists of the eight PTSs AS, where

(i)
(i)
(iii)

§={+ 0}
A=A{(D)}.
{(x, %)} SR S {(% %), (0,%), (x0), (0,0)}.

The name of each system and its associated set of rules is given by the table:

A— (%, %)

A2 (x,%) | (3, %)

Aw (x, *) (O0,0)

Aw = w2 | (x,%) | (O,%) | (O,0)

AP (%, %) (x,0)
AP2 (x,%) | (O, %) (x,0)
APw (%, %) (O0,0) | (x,0)
AC = APw | (x,%) | (O,%) | (O,0) | (x,0)

108 Chapter 3. Normalization in Pure Type Systems

(axiom) | F s1:s2 if (s1,82) € A

A:s
l_

I+
(start) Fz:AFx: A ifreVs & = ¢ dom(I)

'A:B I'FC:s

(weakening) e:C+- A:B ifreVs & = ¢ dom(I)
' A:s1 Dyz:AF B:sy

(product) ' - (Ilz: A. B) : s3 if (s1,s2,83) € R

' F:(Ilz:A.B) I'Fa:A
(application) '+ Fa:B{z:=a}

e:AFb:B I'F (llz:A.B) :s
(abstraction) 'F XA b: 1l A B

I'-A:B T'FB:s
(conversion) '+ A:B if B=3 B’

Figure 3.1: PURE TYPE SYSTEMS

The A-cube is depicted diagrammatically in Figure 3.2. That traditional
formulations of some of the systems in the A-cube are equivalent with the
formulations in terms of pure type systems is explained in [16, 4, 38], where
more information about following systems may also be found.

3.2.5. EXAMPLE. The following systems extend Aw with sort A, axiom O : A,
and some rules for the new sort. The system AHOL is defined by:

(i) S ={*,0,A}.
(i) A={(x,0),(3A4)}
(iii) R = {(x,%),(0,x),(0,0)}.
The system AU~ is defined by:
(i) S ={*,0,A}.
(ii) A={(x,0),(3,A)}.
(iii) R = {(*,*),(3,%),(3,0),(A,0)}.

3.2. Pure type systems 109

" P
2 A
Aw APw
/ /
A— = \P

Figure 3.2: THE A-CUBE

The system AU is defined by:
(i) S ={*,0,A}.

(ii) A={(x0),([O,A)}

(iii) R = {(x,%),(3,%),(3,0), (A,), (A,0)}.

3.2.6. EXAMPLE. The system Ax is defined by:
(i) & ={*}.

(ii) A= {(x,%)}.

(iii) R ={(x,%)}.

3.2.2. Normalization

In this subsection we introduce some notation pertaining to normalization.

3.2.7. DEFINITION. Let AS be a PTS. A B-reduction path from an expression
My is a (possibly infinite) sequence My —5 M; —3 My —g ... If the
sequence is finite, it ends in the last expression M,, and has length n.

3.2.8. DEFINITION. Let AS be a PTS, and M an expression.

(i) M € cog < there is an infinite F-reduction path from M.
(i

(iii

M € NF3 < there is no -reduction path of length 1 or more from M.
M € SNj < all 3-reduction paths from M are finite.

)
)
)
)

(iv) M € WNg < there is a S-reduction from M ending in N € NFg.

110 Chapter 3. Normalization in Pure Type Systems

Elements of NFg, SNg, WNg are 8-normal forms, 3-strongly normalizing, and
B-weakly normalizing, respectively. We also write, e.g., cog(M) for M € ocog.

3.2.9. DEFINITION. AS is weakly normalizing if all legal expressions are weakly
normalizing, and strongly normalizing if all legal expressions are strongly
normalizing. In this case we write AS = WNg and AS |= SNg, respectively.

3.2.10. EXxAMPLE. All the systems of the A-cube are strongly normalizing—
see, e.g., [16, 4, 39, 38]. The system A« is the simplest PTS which is not
strongly normalizing. The system AU is is a natural extension of Aw which,
surprisingly, is not strongly normalizing. This result shows that, apparently,
the fact that Ax fails to be strongly normalizing is not merely a consequence
of the cyclicity in its axiom.

3.2.11. CONJECTURE (Barendregt, Geuvers, Klop). For every PTS \S:
AS = WNg = AS |= SN

We shall prove the conjecture for a certain class of PT'Ss—see Theorem 3.5.20.

3.2.3. Generalized non-dependent pure type systems

This subsection presents the new notion of a generalized non-dependent PTS
in which types do not depend on terms, as explained in Subsection 3.2.4.
The following notion is from [16, 4, 39, 38].

3.2.12. DEFINITION. A PTS AS is functional iff

(i) For all (s1,s2),(s],sh) € A s1 =8| = s2 = sb,.

(ii) For all (s1,s2,s3), (s],5h,85) € R: s1 =5} & s =55 = s3 = s5.
3.2.13. DEFINITION. Let AS be a functional PTS. AS' is persistent if

(i) For all (s1,s2),(s],sh) € A: sa = s, = s1 = 5.

(ii) For all (s1,s2,53) € R: s2 = s3.

3.2.14. REMARK. Condition (ii) together with functionality ensures that the
legal expressions can be classified into mutually exclusive and together ex-
haustive categories which do not depend on contexts—see Proposition 3.2.26.
Condition (i) is useful for classifying subexpressions—see Proposition 3.2.32.

3.2.15. REMARK. Berardi [16] studies classification in functional systems
satisfying (ii). Geuvers and Nederhof [39] study classification in functional
systems satisfying both (i) and the following condition implied by (ii):

3.2. Pure type systems 111

(ii") For all (s1,s9,53), (s],55,55) € R: s1 =359 & s3 =55 = s9 =5

For the purposes of this chapter, (ii) turns out to be the simplest condition to
work with. Most PTSs in the literature satisfy (i), and most of those which
satisfy (ii’) also satisfy (ii). Hence little generality is lost by our choice.

The following relation is also mentioned by Berardi [16].
3.2.16. DEFINITION. Let AS be a PTS.

(i) The relation <4 is the transitive closure of A.

(ii) The relation <4 is the reflexive closure of < 4.

We often omit A from <4 and <4 to avoid clutter.

3.2.17. DEFINITION. A PTS A\S is stratified if

(i) There is no infinite sequence s, s2,... € § such that s < s9 <....
(ii) For all (s1,s92,83) € R: s1 > $9 > s3.
3.2.18. REMARK. Condition (i) gives rise to a useful induction principle—see

Remark 3.5.19—which is used in the proof of Theorem 3.5.20. Condition (ii)
ensures that types do not depend on terms—see Remark 3.2.37.

3.2.19. ExAMPLE. The systems in the left-hand side of the cube are strati-
fied, those in the right hand side are not. AU and AHOL are stratified, Ax
is not.

3.2.20. LEMMA. Let \S be stratified. Then s < s = s# 5.

PROOF. Assume s < s'. If s = s’ then s, s,... would be an infinite sequence
with s < s < ... which is a contradiction. a

3.2.21. DEFINITION. A PTS is generalized non-dependent if it is both strat-
ified and persistent.

3.2.22. EXAMPLE. The left hand side of the cube as well as A\U and AHOL
are generalized non-dependent.

3.2.23. REMARK. Generalized non-dependent PTSs resemble Coquand and
Herbelin’s logical non-dependent PTSs [27]. A functional PTS AS with
distinguished sorts P,T € § is logical if

(i) (P, T) € A.

(ii) (s,P) ¢ Aforall s € S.
(iii) (P,P) € R.

112 Chapter 3. Normalization in Pure Type Systems

AS is logical non-dependent if, in addition, the only rules concerning P have
form (s, P). With P = % and T' = O, the systems in the left hand side of
the cube are logical non-dependent, but those in the right hand side are not.
Whether or not a PTS is logical non-dependent naturally depends on the
choice of P and T', and the fact that a PTS is logical non-dependent allows
us to conclude something about expressions involving P and 7" only. This
is quite adequate in many situations, but if we wish to reason about all the
legal expression in a PTS we must require a notion of non-dependence that
concerns all sorts. This is what generalized non-dependence attempts.

3.2.4. Classification

Now we divide the set of legal expressions into certain terms, types, and sorts,
and show that in generalized non-dependent PTSs, types do not depend on
terms.

3.2.24. DEFINITION. Let AS be a PTS and s € S.
(i) sis a top-sort if there is no s’ € S with (s, s’) € A.
(i) s is a bot-sort if there is no s € § with (¢',s) € A.
(iii) s is an isolated sort if s is both a bot-sort and a top-sort.

ST, 81, ST are the set of top-sorts, bot-sorts, and isolated sorts, respectively.

The following terminology is from [16].
3.2.25. DEFINITION. Let AS be a PTS, s € §.
(i) Typep ={M € E|T' F M : s}; Type® = UpecTyperp.
(i) Termp ={M € £|FA € E:T = M : A: s} Term® = Upee Termp.
The members of Type® and Term® are s-types and s-terms, respectively.

The following fundamental property is proved by Berardi [16]. A related
result is due to Geuvers and Nederhof [39].

3.2.26. PROPOSITION (Classification). Let \S be persistent, M legal.
(i) M € Term?® for some s € S; or
(ii) M € Type® for some s € St1; or
(iii) M = s for some s € St.
Moreover, (1)-(iii) are mutually exclusive and s is unique in (1)-(iii).
3.2.27. EXAMPLE. The table in Figure 3.3 shows the categories in A\C'. Each
legal expression is an object, a constructor, a kind, or O. Figuratively speak-

ing, the mutually exclusive and together exhaustive categories are obtained
by taking the left-most column and the top-most row in Figure 3.3.

3.2. Pure type systems 113

s-terms s-types | sorts
Term?® Type® s
constructors | kinds O
objects types *

Figure 3.3: CATEGORIES IN AC.

The rest of this subsection is devoted to classification of subexpressions
of a given expression.

3.2.28. REMARK. Let AS be generalized non-dependent. For simplicity, as-
sume S = {sy,...,s,} and A = {(s1, s2), (s2,53),... , (Sn—1,5n)}. Consider
Figure 3.4, which is an abstract version of Figure 3.3. By Proposition 3.2.26,

Term®" | Type®" | s,

Term?®® | Type®! | 51

Figure 3.4: CATEGORIES IN AS.

each legal expression M is in the left-most column or in the top-most row.
In the former case one can show that every subexpression of M is

(i) in the same category as M; or

(ii) in a category higher in the left-most column, or in the category at the
top of the middle column.!

The following notion collects the cases in (ii) in a single set.

'In the case of an arbitrary generalized non-dependent PTS, S consists of a (possibly
infinite) set of disjoint subsets S1,Sa, ... each of which is totally ordered and has a greatest
(but not necessarily a least) element with respect to < 4. That is, the diagram of categories
consists of a (possibly infinite) number of copies of Figure 3.4, each of which may be infinite
downwards, but not upwards. The preceding reasoning then applies to each of the copies.

114 Chapter 3. Normalization in Pure Type Systems

3.2.29. DEFINITION.
Neup = {M € & | M € Terml & s <s' or M € Type}: & s <s' € St}.
Also, Neu® = UpeeNeup.. The members of Neu® are called s-neutral.

All s-types are s-neutral, and s-neutral expressions are not s-terms.

3.2.30. LEMMA. Let A\S be generalized non-dependent, s € S.

(i) M e Type® & s >s = M € Neu®.
(ii) M € Neu® = M & Term?®.

PROOF.

(i) Suppose M € Type®, s’ > s. If s' € S, M € Neu®, trivially. If s’ & S,
then (s',s") € A, for some s”. Then ' = M : s': s", for some T, i.e.,
M € Term{ and s"” > s’ > s, so M € Neu® again.

(ii) We show the contrapositive. Suppose M € Term®. Suppose s’ > s.
By Lemma 3.2.20, s’ # s. Thus, by Proposition 3.2.26, M & Term®'.
Now suppose s’ > s and s' € St. By Propositions 3.2.26, M & Type® .
Hence, M ¢ Neu®. O

3.2.31. LEMMA. Let AS be generalized non-dependent, M € Typep, s€St.
(i) M # .

(i) M=s" = (s,5) € A.

(iii)) M £ M\x: A . B.

(ivy M£#BA

(v) M =Tlz:A. B = A€ Typep & B € Typey ;.-

PROOF. Assume I' = M : s, where s € St.

(i) If M = «, then by generation, z : A € I, for some A with A =5 s
and ' A: s, for some s’. By Church-Rosser and subject reduction,
I' - s:s'. By generation, (s,s’) € A, contradicting s € St.

(ii) By generation.
(iii) If M = Az: A . B, then by generation, s =3 Ilz: E. F', for some E, F.
By Church-Rosser, this is impossible.

(iv) If M = B A, then by generation, I' - B : [lz: E. F and ' - A: E,
where s =3 F{x := A}, for some E and F. By correctness of types,
I' F llz: E. F : s3, for some sort s3. By generation again, I' = E : s;
and Iz : E F F : g9, for some (s1,52,83) € R. By substitution,
I' = F{z := A} : so. By Church-Rosser, F{x := A} —#3 5. By subject
reduction, I' F s: s9. By generation, (s, s2) € A, contradicting s € St.

3.2. Pure type systems 115

(v) If M = 1la: A. B, then by generation I' F A : sy and ', z: A - B : sy for
some (s1,892,8) € R. Since AS is generalized non-dependent, it holds
that s; > s9 = s. Since s € S, $1 = s2 = s. a

3.2.32. PROPOSITION. Let AS be generalized non-dependent, M € Termy.

i) M=z =z €V,

(i) M =5 = (s,§),(s",s) € A.

(iii) M =A2:A.B = B € Term{ ;.4 & A € Neup.
)
)

(iv) M=BA = BeTerm{ & A€ Term{ U Neuy.
(v) M =1lx:A. B = B e Termj ;.4 & A € Termy. U Neuy..

ProOOF. AssumeI' = M : D : s.

(i) If M = x, then by generation, z: B € I" for some B with ' - B : s,
x € Vg, and B =g D. By Church-Rosser, D —#3 E and B —3 E for

some E. By subject reduction and uniqueness of types s = s'.

(ii) If M = ¢, then by generation, (s',s") € A for some s” =g D. By
Church-Rosser, D —»3 s"”. By subject reduction, I' + s" : s. By
generation (s”,s) € A.

(iii) If M = Aa: A. B, by generation, I',2:A F B: Cand T + [Iz:A. C : ¢
for some s" and C' with D =4 Ilz: A. C. By Church-Rosser, D —3 E
and Ilz: A. C' =g E, for some E. By subject reduction and uniqueness
of types, s = s'. By generation, ' H A:syand';z: A F C : s for some
(51,8) € R with s; > s. Then A € Typey! C Neup and B € Termy. . 4.

(iv) If M = B A, then by generation, I' = B : [lz:C. F and T - A: C
for some C, E with D =g E{x := A}. Then, by correctness of types,
I' F Ilx:C. E : s3. By generation, ' - C: sy and [',z:C + E: s3 for
some (s1,s3) € R with s; > s3. By substitution, I' - E{z := A} : s3.
By Church-Rosser, E{zx := A} =3 F and D —3 F, for some F. By
subject reduction and uniqueness of types, s = s3. Hence B € Term{.
and A € Term{!' C Term{: U Neuy..

(v) If M =TIlz: A. B, then, by generation, ' - A:s; and T',z: A F B : s3
for some (s1,s3) € R with s; > s3 and s3 =3 D. By Church-Rosser,
D —»g s3. By subject and predicate reduction, I' = Ilz: A. B : s3 : s,
so B € Term} ;. 4. By generation, (s3,s) € A. Now, either s; = s3 and
then A € Term{, or s; > s3 and then A € Type}!, where by injectivity
of A, s1 > s, so Typej! C Neup. |

3.2.33. PROPOSITION. Let AS be generalized non-dependent, M & Neuy.

() M=z = z€Vy & s > s.
(i) M=s" = (¢,5") € A for some s" > s.

116 Chapter 3. Normalization in Pure Type Systems

(iii) M =Az:A.B = B € Neuj ;.4 & A € Neuy.
(iv) M=BA = B e Neup & A€ Neup:
(v) M =1lz:A. B = B € Neuj ;.4 & A € Neup.

Proor. By Lemma 3.2.31 and Proposition 3.2.32. |

3.2.34. REMARK. Proposition 3.2.32 and 3.2.33 will be used to define sepa-
rate continuation passing style translations on s-terms and s-neutral expres-
sions.

3.2.35. COROLLARY. Let AS be generalized non-dependent and s € S.

(i) M € Neu® & N C M = N € Neu®.
(i) M € Term® & N C M = N € Term® U Neu®.

ProoFr. By induction on M using Proposition 3.2.33 and 3.2.32. a

As a special case we have the following analysis of the sorts of variables
that can occur in s-neutral expressions and in s-terms.

3.2.36. COROLLARY. Let AS be generalized non-dependent, s € S.

(i) BeNeuw” & x € FV(B) & z € Vy = s > s.
(ii) Be Term® & 2 € FV(B) & x € Vg = §' > s.

PROOF. Suppose x € FV(B) and x € Vy.

(i) If B € Neu®, then, by Corollary 3.2.35, = € Neu®. By Lemma 3.2.31,
x & Type® if s < s € St, so x € Term® for some s” > s. By

[—

Proposition 3.2.32, x € Vi, ie, s' = s".

(ii) If B € Term®, then, by Corollary 3.2.35, z € Term®*UNeu®. If z € Term?,
x € Vs, by Proposition 3.2.32. If € Neu®, proceed as in (i). O

3.2.37. REMARK. Let AS be generalized non-dependent, s € §. Also, sup-
pose M € Type® and N C M. By Lemma 3.2.30 and Corollary 3.2.35,
N & Term?®. Thus s-types do not depend on s-terms.

3.3. CPS translation of types

In this section we present a continuation passing style (CPS) translation
on s-types. More precisely, we introduce a CPS translation on s-neutral
expressions; this is more convenient than working with s-types, since the
former are closed under subexpressions. The first subsection introduces the
CPS translation. The second and third subsection show that the translation
preserves (-equivalence and legality, respectively.

3.3. CPS translation of types 117

The translation generalizes Coquand and Herbelin’s [27] translation for
logical non-dependent pure type systems—see Remark 3.2.23—and the re-
sults below are similar to those of Coquand and Herbelin. The main problem
involved with the generalization has already been solved—to generalize Co-
quand and Herbelin’s notion of logical non-dependence to deal with all sorts
of a PTS. Another, smaller, problem is to find conditions ensuring that nega-
tion makes sense on s-types; this leads to the notions of negatable sorts and
negatable PTSs in the first subsection.

3.3.1. Translation

This subsection introduces a CPS translation on s-neutral expressions. For
the translation we need a notion of negation; more precisely, we would like
to have an expression 1 such that if A is an s-type, then so is A — 1.
The following definition expresses a requirement on the sort s that allows
the construction of this product.

3.3.1. DEFINITION. Let AS be PTS. An s € § is negatable if

(i) s is not isolated (see Definition 3.2.24).
(ii) (s,s,s) € R.

An s € S is relevant if (s1,s2,8) € R, for some s1,59 € S. A PTS is
negatable if all its relevant sorts are negatable.

The following then shows how to define negation.

3.3.2. DEFINITION. Let AS be generalized non-dependent, s € S negatable.
Define (Ls; Ag) by:

‘ (¢ I =) if (s,s) e A
(Ls AS)_{ (z 5 z:s, Iyiz — 2) else, if (s,8') € A.

(the choice of s’ is unique) where z € Vy and I, € V. Let sA=A — L.

3.3.3. REMARK. The purpose of the variable Iy will become clear in Sec-
tion 3.4.

3.3.4. LEMMA. Let AS be generalized non-dependent, s € S negatable. Then
Agislegal, Ay F Iy 1Ly — 1, Ag F Lg:s, and

DFA:s = A, T F sA:s.

Proor. We consider two cases.

118 Chapter 3. Normalization in Pure Type Systems

1. (s',s) € A, where L, =s". Then[] F Ly:sandsod: Ly F L
where d is a fresh variable. Since s is negatable, (s,s,s) € R. Thus
[F Ly — Llg:sand I4: Ly — L + Iy Ly — Lg. Therefore Ay is
legal, Ay F I;: 1y — L, and by thinning, A, F Lg:s

2. (s,8") € A, where L, = 2. Then z:s F z:sand z:s5,d: 2 F z:s.
Hence z:s F z — z:sand z:s,[;:2 = 2z = I, : z — z. Therefore A,
is legal, Ay = Iy : 13— 1, and by thinning, A, - 1 :s

Now suppose A, I' F A :s. By start and thinning, Ay, I',d: A F 1,
Hence, in both cases, A, I’ F sA : s. O

3.3.5. DEFINITION. Let AS be generalized non-dependent, s € S negatable.
Define (-)%, (-)® : Neu® — &£ and (-)* : C — C as in Figure 3.5.

8
=
|
. R

A:C<><>
M)* (N)*

[z: A. B)S = Ila: (A)°. (B)*

S
Z=
=
[

)$ if M € Type®
otherwise

(M)? = {

. ([F])S,w (4] ifAe Typesl for some s’ > s
rp* otherwise .

Figure 3.5: CPS TRANSLATION OF TYPES

3.3.2. Preservation of equality on neutral expressions

In this subsection we show that if By =g Bo for Bi,Bs € Neu®, then
(B1)° =p (B2)® and (B1)® =5 (B2)?, if the system is generalized non-
dependent, and s is negatable.

First a couple of lemmas.

3.3.6. LEMMA. Let AS be generalized independent and M legal in T'.

(i) M € Type® = M € Typej. for all s € St.
(ii) M € Term® = M € Term{. for all s € S.

3.3. CPS translation of types 119

PROOF.

(i) Assume M € Type®, for some s € ST, i.e., A F M : s, for some A.
Since M islegal in ', I' - M : B for some B (either that, or I' - C' : M,
for some C; and since M is not a top-sort, correctness of types implies
I' - M : B, for some B again). If B ¢ S+, then, by correctness of types,
' - B: s for some s, so M € Termsl, contradicting Proposition 3.2.26.
Hence, B € ST, and by Proposition 3.2.26, B = s, i.e., M &€ Type}.

(ii) Assume M € Term?, for some s € S,i.e., A - M : A: s, for some A, A.
Since M is legal in I, T' = M : B for some B as in (i). If B € St, then,
M € Type® for an s € St, contradicting Proposition 3.2.26. Hence
B ¢ St, and by correctness of types, I' = B : s’ for some s', so
M € Term® , and by Proposition 3.2.26, s' = s, i.e., M € Termp.. a

3.3.7. PROPOSITION. Let AS be generalized non-dependent, M be legal in
Ix:A A, and assume I’ = N : A.

(i) M €St & M{z:=N}eSt.
(i) M € Typep y.an & M{z:= N} € Typej rp.—py for all s € St.
(ili) M € Termp g n & M{z:= N} € Term r,._yy forall s€S.
PRrROOF. (i)-(iii) “=": by substitution.
(1)-(iii) “<=": we show (i); (ii)-(iii) are similar. Assume M{z := N} €S.

Since M is legal in I',x : A, A, by Proposition 3.2.26 and Lemma 3.3.6,
exactly one of the following situations arise:

1. M € S.
2. M € Typef ;.4 a for some s € St.
3. M € Termj ;.4 A for some s € S.

Suppose, for the sake of contradiction, that M € Typef ;.4 o- By (ii)“=",
M{z := N} € Type} ngp.—ny- This contradicts M{z := N} € S, by
Proposition 3.2.26. Thus M ¢ Typej ;.4 o- Similarly, M ¢ Term{ ;. 4 A-
Hence, M € S. O

3.3.8. LEMMA. Let A\S be generalized non-dependent, By, By € Neup, and
B1 =3 BQ. Then
By € Type® & By € Type’.

PRrROOF. Assume B; € Type®. By Church-Rosser, By —#3 C' and By —#3 C,
for some C. By subject reduction C' € Type®. We consider two cases.

1. s € St. If By & Type®, then by Proposition 3.2.26, By € STUTerms’, for
some s', and then by subject reduction C' € St U Terms’, contradicting
Proposition 3.2.26. Hence By € Type®.

120 Chapter 3. Normalization in Pure Type Systems

2. s ¢ St. Then (s,s') € A, for some s, ie., B;,C € Term®. Now
By ¢ Term?®, yields a contradiction as in (i), so By € Term®. By
Lemma 3.3.6, ' - By :s:s and ' - By : D : s’. By uniqueness

/

of types, Church-Rosser, and subject reduction, I' = Bs : s : ¢, so
By € Type®. O

3.3.9. LEMMA. Let A\S be generalized non-dependent, s € S negatable. As-
sume M € Neup ;.4 A and I' = N : A. Then

(i) (M)*{z = (N)} = (M{z:= N})*.
(i) (M)*{z = (N)*} = (M{z := N})*.

Proor. Let K* = K{x := N} for K € CUE. M* €Neut. 5-, by substitution.

(i) By induction on M.
1. M =z. Then,

(Z){z = (N)*} = (N)*
= (x%)%.
2. M =y # z. Then
Wz :=(N)} =y
= (y°
= W)

3. M =s'. Similar to Case 2.

4. M = Ay: D . P. By Proposition 3.2.33, D € Neuj ;.4 o and also
P € Neup ;.4 A ,.p- Hence, by the induction hypothesis,

((Ay:D . P)*){z := (N)"}

>
<

:(D*)s . (P*)*
(\y: D* . P*)
(Ay: D . P)*)*.

5. M = Mj M. Similar to Case 4.
6. M =1Ily: A;. As. Similar to Case 4, using Proposition 3.3.7.

(ii) By (i) and Proposition 3.3.7.]
3.3.10. LEMMA. Let A\S be generalized non-dependent, s € S negatable, and
B; € Neu®. Then

B -3 By = <Bl>s -3 (Bg>s.

PRrOOF. By induction on By —3 By. By subject reduction, By € Neu®.

3.3. CPS translation of types 121

1. By =(A:A.M)N —g M{zx := N} = By. By assumption, B; € Neup,
for some I'. By a few steps of generation, I' = N : E, where A =5
and ' F A : s, so by conversion I' = N : A. By Proposition 3.2.33,
M € Neuy ;.4. Then, by Lemma 3.3.9,

(Ax:A. M) N)®

2. By =lxz: A. B = Ilz: A'. B' = By, where A -3 A’ and B = B', or
vice versa. Then, by the induction hypothesis and Proposition 3.2.33,
(A)* =3 (A")* and (B)® = (B')*, or vice versa. Then, by Lemma 3.3.8,
A € Type® & A’ € Type® and B € Type® & B’ € Type®. Therefore,
(A)® =5 (A')® and (B)* = (B')*, or vice versa. Thus,

(Ilzz A. By = M (A)*. (B)*
—5 Ha: (A')%. (B')*
= (Ilz: A. B)*.

3. Bi=At:A.B =g Ax: A' . B' = By, where A =3 A’ and B = B', or
vice versa. Similar to Case 2.

4. By = AB —3 A' B' = By, where A —3 A’ and B = B, or vice versa.
Similar to Case 2. O

3.3.11. LEMMA. Let AS be generalized non-dependent, s € S negatable, and
B; € Neu®. Then

By -8 By = <Bl>sﬁ)ﬂ <B2>s.
Proor. By Lemma 3.3.10, using transitivity and subject reduction. ad

3.3.12. PROPOSITION. Let AS be generalized non-dependent, s € S negat-
able, B1, By € Neu®, and By =g By. Then

(i) (B1)® =p (B2)’.
(i) (B1)® =g (B2)".

PROOF.

(i) By Church-Rosser, B; —#g C and By —#3 C, for some C. By Lemma 3.3.11,
(B1)® =3 (C)® and (B2)® —»3 (C)*. Hence, (B1)® =3 (B2)*.

(ii) By (i) and Lemma 3.3.8. a

122 Chapter 3. Normalization in Pure Type Systems

3.3.3. Embedding of types

In this subsection we show that, if M € Neu®, then (M)* € Neu®, provided
the system is generalized non-dependent and s is negatable.

3.3.13. PROPOSITION. Let AS be generalized non-dependent, and assume
that s€ S is negatable. Then

(i) Foralls'>s: T F A:s = A () F (A)°:4,if s' € ST.
(ii) Foralls'>s: T F M:A:s = A () F (M)5:(A):4.
PRrROOF. We prove simultaneously by induction on I' = E : F' that

(i) F=sdeSt & s'>s = A, [I')° F (E): 5.

i) T F F:s &s>s = A, (T) F (E): (F)5: 5.

Note that £, F' € Neu®. We first check the cases of (i).

1. The derivation is
Fosp:s’ (s1,8) €A

Since (s1)® = s1, ([])® =[], and Ay is legal, start implies
A, (D° F (s1)%: .
2. The derivation ends in

LEs:s
Dox:s' - ax:s'

This contradicts Lemma 3.2.31.

3. The derivation ends in

F''M:s T FC:s"
Fx:CF M:s

By the induction hypothesis,
Ag, (C) F (M)* s,
We consider two cases.
3.1. s > s. If s € St then by the induction hypothesis
Ag, (L) F (C)* = 6" (%).

If s ¢ St then (s”,5") € A, for some s”. Then T' + s" : 5",
where s > s" > s, and (s")® = s”. Therefore, by the induction
hypothesis (ii), () holds also in this case.?

%In the remainder this type of step will be left implicit.

3.3. CPS translation of types 123

By Lemma 3.3.4 (if s” = s) and Proposition 3.2.26 (if s” > s),
Ag, () = {C)° : $".

Hence,
Ag, (T)%, 2 : (C)* F (M)*: 5.

Since s” > s, ([,x : C)* = (I')*,x : (C)°. Thus,?
A, (Dyz: C)° = (M)*: s
3.2. s" # s. By Proposition 3.2.26, ([, z : C)* = (I')*. Thus,
(C,x:C)* + (M)*: 5.
4. The derivation ends in

'FA:sy Dbx:AF B:s
I' - Iz:A. B : s (s1,8') €R

where s; > s'. Since s’ € 81, s; = s'. By the induction hypothesis,
Ag, (T)° F (A)® 81 & A, (T)%,2: (A)° + (B)®:§.

By Lemma 3.3.4 and Proposition 3.2.26,
Ag, (T)* F (A)® :s1 & A, (T)%,2: (A)° + (B)®: .

Hence
Ag, (T)? + Ha: (A)®. (B)?® - s

Thus,
A, (C)* F (Ilz: A. B)® : 8.

5. The derivation ends in
T M:A.M:§

where s’ = IIz: A. B. This case is impossible.

6. The derivation ends in

P-M:Tl:A.B T'FN:A
' MN:§

where s’ = B{x := N}. This contradicts Lemma 3.2.31

3In the remainder this type of step will be left implicit.

124 Chapter 3. Normalization in Pure Type Systems

7. The derivation ends in

Fr'M:A TFs:s§"
'+ DM:§ A:gs'

By generation (s, s") € A, contradicting s’ € St.
This concludes the cases of (i). We proceed with the cases of (ii).

1. The derivation is
Fosiisy (s1,82) €A

Since (s2)® = s9, (s1)* = s1, ([])* =[], and Ay is legal,
A, (D F (s1)% 2 (s2)® : 6.

2. The derivation ends in

- A:s"
z:AFx: A

Then I''z : A + A : s”. By uniqueness of types s’ = s”. By the
induction hypothesis (i)-(ii),

A, (T)% F (A : 5.
By Proposition 3.2.26, (A)* = (A)®. Thus,

A, (T)* F (A)?: 5.
Hence,

Ag, (T)°,x: (A)° + x: (A)°.
Also, (x)® = x. Thus,
Ag, T,z AY® F (z)®: (A)° @ 6.
3. The derivation ends in

Fr'-M:A T FC:S§"
e:CFHM:A

Since I' = M : A, x ¢ FV(M) UFV(M). Hence, by strengthening,
' = A:s'. By the induction hypothesis,

Ay, (T)° F (M)*: (A): &',

Now proceed as in Case 3 in (i).

3.3. CPS translation of types 125

4. The derivation ends in

' A:sy Dyx:AF B:ss
I+ Iz A. B : s3 (s1,83) € R

where s1 > s3. By generation, (s3,s’) € A, injectivity of A implies
s3 > s. Hence, by the induction hypothesis (i)-(ii),

Ag, () (A 151 & Ag, (I')%,x: (A)° + (B)® : s3.
By Lemma 3.3.4 and Proposition 3.2.26,
Ag, () (A)° 1 s1 & Ag, (T)%, 2 : (A)° F (B)?®: s3.

Hence
Ag, (T)? + Ha: (A)®. (B)?® : s3

Since (s3)° = s3,
Ag, () F (Ilz: A. B)® : (s3)° : §'.
5. The derivation ends in

Dbe:AFM:B T F Ilz:A B:s"
' - Ae:A. M :1lz:A. B

By functionality s’ = s”. By generation,
' A:sy &Tyz: A+ B:s & (s1,8) €R,
where s1 > s’ > s. By the induction hypothesis (i)-(ii),
Ag, (L), 2 : (A)° F (M)*: (B)® & A, (U)° + a: (A)%. (B)® : s'.
By Proposition 3.2.26, (A)°* = (A)® and (B)?® = (B)®. Therefore,
Ag, (T)% F Az (A)* (M) : Ta: (A)®. (B)*® : &

Thus,
A, (T)° F A M) : (Tl A. B)® : .

6. The derivation ends in

F'-M:llmiA.B I'F N:A
' - MN:B{zx:=N}

By correctness of types,

I' - Mz A. B : s3,

126

Chapter 3. Normalization in Pure Type Systems

for some s3 € §. By generation,
' A:sy &Tye:AF B:sy (s1,s3) €R,
where s; > s3. By substitution,
I' - B{x:=N}: ss.
By uniqueness of types, s3 = s’. By the induction hypothesis,
Ag, (T)* F (M)® : Tz (A)°. (B)* : 8" & Ag, (T)® F (N)* : (A)® : 5.
By generation,
Ag, (T)%, 2z : (A)° + (B)®: .

By Proposition 3.2.26, (A)* = (A)* and (B)* = (B)®. Then, by sub-
stitution,

Ag, (T)° F (BY{x:=(N)*}: 5.

Hence,
Ag, () F (M) (N : (B){z := (N)*} : &

By Lemma 3.3.9, (B)*{z := (N)*} = (B{x := N})%. Thus,
Ag, () = (M N)® : (B{z:=N})*: 5.
The derivation ends in

T'-M:A T+FB:s
TF M:B A= B

As usual,
I - A:s".

By uniqueness of types s’ = s”. By the induction hypothesis (i)-(ii),
Ag, (T)° F (M) : (A : 8" & A, (T)° F (B) : 5.
By Proposition 3.3.12, (A)® =g (B)°. Thus,
A, (T)* F (M)® : (B)® : §.

This concludes the proof. ad

3.3.14. COROLLARY. Let AS' be generalized non-dependent, s € S negatable.

FEA:s" & s>s = A, T F (A5

ProOOF. Assume I' - A :s'. We consider two cases.

1.
2.

s" € St. Then, by Proposition 3.3.13(i), Ag, (I')* = (A) : s

s' & St. Then (s',s") € A, for some s”. By Proposition 3.3.13(ii),
A, (T)* F (A)s: (s)*, 1e., A, (T)° F (A)*: 5. a

3.4. CPS translation of terms 127

3.4. CPS translation of terms

This section presents a CPS translation on s-terms. The first subsection
discusses certain difficulties with the translation. The second subsection
presents the translation, and the last subsection shows that the translation
preserves legality.

The translation generalizes Coquand and Herbelin’s [27] translation for
logical non-dependent pure type systems—see Remark 3.2.23—and the re-
sults below are similar to those of Coquand and Herbelin. The generalization
involves mainly two problems. First, for technical reasons our translation
introduces some free variables which entail certain typing problems. In fact,
it turns out that we are able to translate s-terms only when s has certain
properties. The second problem, which is also encountered in the case of
logical non-dependent systems, concerns the typing of certain bound vari-
ables introduced by the translation. These problems are discussed in the
first subsection below.

3.4.1. Problems

This subsection discusses two problems involved with formulating a CPS
translation on s-terms.

3.4.1. D1scUSSION. A main difficulty with the CPS translation on s-terms,
to be introduced below, stems from the introduction of fresh variables. For
instance, consider in A2 the expression Aa:* . Az:« .z which is legal in the
empty context. It will be translated into the expression

Ak Az s . M) o {(Mkk Azsx o Moy sxa (M. 1) h]) n} o,

where o, and e, are fresh variables, and where we have left out domains on
some abstractions for brevity.

To show that the translation preserves legality we must type the trans-
lated expression in a context with bindings for the fresh variables e, and
o,. Let us first consider how to type the subexpression Az.---. It turns out,
ignoring the argument % to e, for the moment, that this expression is
legal in the context

Lok, o il = x— Ly, Qack, o, . l, >xxa — L,.

However, we cannot type Aa: * . An.---. The natural attempt to use the

abstraction rule fails because we cannot remove «:* from the context. The

problem is that the type L, — QU — 1. makes sense only in context «: .
The way out is to use instead the context

Lok, op:ly—x— 1, a:x, e.:V0:x.1l,—03— L,

128 Chapter 3. Normalization in Pure Type Systems

and use an explicit type application e, *xa . The generalized type for e,
makes sense also after removal of « : x from the context.

On the other hand, the correct type for e, turns out to be 1, — * — L,.
The type system is not powerful enough to abstract * analogously to the
way #*q was abstracted. Fortunately, * contains no free variables, so there
is no need to abstract it.

In the general case of CPS translation of an s-term in some PTS AS,
one must distinguish between those abstractions Az: A . --- under which
the fresh variable e, must be accompanied by a type application, and those
abstractions Aa: A. - - - under which the variable e, must not be accompanied
by a type application.

Each fresh variable is introduced in the following situation

FFA:sy Tha:AF M:C:s
F'F XA M:lle:A.C s (s1,8) €ER

The CPS translation will introduce a fresh variable e, under Az : A. The
type of this variable should be IIB:s;. Ly — B — L5 or Ly — (4)° — L.

It is simplest to choose the former. This can be done whenever formation
of the product in question is allowed, i.e., when there is s € § with

(s1,82) € A & (s2,8) € R.

When the product is disallowed, we must choose the latter type and make
sure that no binding y : D for a free variable y of (A))® can subsequently be
removed from the context. The free variables of {A))* are the same as those
of A, and

y €FV(A) = y € Vg for some s > s1.

There are two ways such a variable y can be removed from the context:

Ayy:D:sy - M:E:s
AF XD . M:lly:D.E:s (s},s)€R

Ajy:D:s) F M:sg:s
A Ty:D.M:5sp:s (s0,8) €A & (s),50) €R

These two situations can be prevented by assuming for all s > s;:

(i) (s1,5) € R; and
(ii) (so,s) € A = (s],s0) € R.

This motivates the following definition.

3.4.2. DEFINITION. Let AS be generalized non-dependent, s € S.

3.4. CPS translation of terms 129

(i) sy € S is generalizable in s, notation sy 1 s, if there is s € S such that
(s1,82) € A and (s2,s) € R.

(ii) s; € S is harmless in s, notation s; | s, if for all | > s;: (s],s) € R,
and if (sg, s) € A then (s],s0) € R.

(iii) A rule (s1,s) € R is clean if s; T s or s1 | s.

(iv) AS'is clean if all (s1,s) € R are clean.

3.4.3. REMARK. Let A\S be persistent, (s1,s) € R. Each of the following
conditions imply that s; | s and therefore that (sy,s) is clean.
(i) s1 € ST.
(i) for all 8§ > s1: no rule has form (s}, s).
(iii) s € 8, and the only rule of form (s, s) is (s1, s).

Consider the systems of the left hand side of the cube. By (i), all rules
of form (O, s) are clean. By (iii) the rule (%, %) is clean in A— and Aw; in A2
and Aw the rules is clean since * 1 x.

In AHOL, (%,) is clean since * 1 *, and (0O, %), (3, 0) are clean by (ii).

In A\U™, (%,%) and (0,0) are clean because x 1 x and O 1 O, (O,) is
clean because O | x (none of (i)-(iii) apply), and (A, O) is clean by (i).

In AU, (*,%), (O,%), and (0,0) are clean because because the first sort
is generalizable in the second, and (A,) and (A, O) are clean by (i).

The following gives a supply of fresh variables.
3.4.4. DEFINITION. Let AS be a PTS.

(i) For each s € S, let Us denote a countably infinite set of variables such
that U, NUy = 0 when s # s’ and YU NV = 0, where U = U,csls.

(ii) For each z € Vq, let o, € Uy be such that e, # e, when z # y.
The following shows how to choose fresh variables and typings for them.

3.4.5. DEFINITION. Let AS be generalized non-dependent and clean, and
s € § negatable. For M € Term?, define A*(M) a in Figure 3.6.

The following lemma will be used to show that, indeed, free variables of
the types in A*(M) cannot be removed from context.

3.4.6. LEMMA. Let \S be generalized non-dependent and clean, s € S negat-
able, and M € Term®. Let z € Vg and x € Vs,. Then

o.:EeA*(M) & z e FV(E)\{Ls} = s1>s) & 81)s.

Proor. By induction on M.

130 Chapter 3. Normalization in Pure Type Systems

Al = 1

A() = 1

sora sy = (BT e R EN
AS(B A) = {izgg)) *(B) Lfisz:laGTerms

AS(lz: A B) = {iigg))a (B) if 4 Term'

Figure 3.6: CHOICE OF FRESH VARIABLES

1. M =y. Then the property trivially holds.

2. M = s'. Similar to Case 1.

3. M =My A. M, where y € Vgn. By generation, A€ Neuiill,.
3.1. s 1s. Then

A*(Ny:A. M) =ey:11B:sy. Ly = B — Ly, A°(M).

Then o, : E € A*(M). Now use the induction hypothesis.
3.2. s] | s. Then

Az AL M) = ey: Ly — (A) = L, A*(M).

If o,: B € A®(M) use the induction hypothesis. If e, is e, then
z =y, so s] = s|. Since z € FV((A)*) = FV(A), Corollary 3.2.36
implies s; > 5.

4. M = B A. Similar to Case 3.1.
5. M =Ilz: A. B. Similar to Case 3.1. a

3.4.7. D1scUsSION. Another difficulty with our CPS translation on terms is
that it introduces some new bound variables whose types depend on the
type of the term we are translating. For instance, consider again the term

Ak Az, .
If we supply the missing domains in the translated version

Ak Aack . M. oy {(M.k Azisx v Nh.ey sxa [(M.z 1) h] x) n} o

it turns out that the type of x should be * (D)* where D is the type of
Aa:x . Ar: «.x. Our solution to this problem, following Coquand and

3.4. CPS translation of terms 131

Herbelin [27], is to define the CPS translation of a term relative to the
context in which the terms is considered. Another possibility [46] is to
define the translation relative to derivations. These issues are discussed
further in [10].

However, even in a fixed context, the type of a term is unique only up
to (B-equality. This ambiguity is resolved by choosing types in normal form;
this is possible since we are working under the hypothesis that the system
we are dealing with is weakly normalizing.

This motivates the following lemma and definition.
3.4.8. LEMMA. Let AS be functional and weakly normalizing.
M € Termy. = there is exactly one D € NFg with ' = M : D :s .

Proor. Assume M € Termj. We show that such a D exists. By assump-
tion, I' = M : C : s for some C. Since AS is weakly normalizing, C' =3 D
for some D € NFg. By subject and predicate reduction, I' = M : D : s.

To show uniqueness of D, suppose that also I' = M : D’ : s for some
D' € NFg. By uniqueness of types, D =g D’. Since D, D € NFg, Church-
Rosser implies D = D'. O

3.4.9. DEFINITION. Let AS be functional and weakly normalizing. For any
M € Termy, Typep (M) is the unique D € NFg with I' = M : D : s.

3.4.2. Translation

This subsection defines the translation on s-terms.

3.4.10. DEFINITION. Let AS be generalized non-dependent, clean, and weakly
normalizing, and s € S negatable. For M € Termy{ define [M]]. € £ as in
Figure 3.7.

3.4.11. REMARK. [M]{. is defined by induction on M € Termf.. The expres-
sions D, E, and F which occur in the clauses for, e.g., Axz: A . B are not
necessarily smaller than Ax: A . B, but this does not matter since (-)*, not
[-]¢, is applied to D, E, and F. The idea of using two distinct translations
in this way also appears in [27] and [46].

3.4.3. Embedding of terms

Now we show that, if M € Termp, then [M]} € Term} rips as(an)-
First a lemma.

3.4.12. LEMMA. Let AS be weakly normalizing, generalized non-dependent,
and clean, s € S negatable. Let ' C A both be legal, M € Termf..

132 Chapter 3. Normalization in Pure Type Systems
[x]]. =MD .zk
[s"]}. =XMe:D . ks
Ak:D ke (A)® . A\ E . ey (A)° ([B]7 h)xz if s;1s
PETIVE T A A i S
Me:D .k Ax: (A) . A E . o, ([B](F,a;:A) h) x else
Bap = PEDBRAGE ARk A€ Term®
r WD . [BiX:F.j (AP k else
s [ME:D .k Ia: ([A]f L). ([Blf goa Is) if A € Term?
[Mz: A Bl = {/\k:D ke Tz (A (Bl ya Is) else

where D = s(Typej.

E = E(Typefﬂy

(M))? in each clause for [M]}.
2:A(B))? and z € Vy, in the clause for [Az: A . B},

F = (Typef(B))® in the clause for [B AJ}.

Figure 3.7: NON-STANDARD CPS TRANSLATION OF TERMS

(i) Typep(M) = Typei (M).

(i) (M]3 = [M]4.

PROOF.

(i) Since M € Term{, also M € Term’ by thinning. Let A = Typef (M)
and A" = Typej(M). ThenI' - M : A:sand A - M : A" :s. By
thinning, A - M : A : s. By uniqueness of types, A =3 A’. Since
A, A" € NF, Church-Rosser implies A = A'.

(ii) Let D = s(Typei(M))*, D' = s(Type\(M))%. By (i), D = D'. Now
proceed by induction on M.

1. M =x. Then

[zl =MD . x k = [z]).

2. M =s'. Similar to Case 1.
3. M = Ax: A.B. By Proposition 3.2.32, B € Termp .4 and
A € Neu®. Also, Typep (M) € Neu® and Typer ;. 4(B) € Neuf . 4.

Moreover, T,

x:ACA,z: A are both legal. Finally, let z € V,,

and E = 3(Typep . (B))*, F = 3(Typed ,.4(B))* By (i), E = F.
We consider two cases.
3.1. s1 T s. Then, by the induction hypothesis,

[Az:A . BJ}

= AMe:D .k Ax:(A)* . A\ E ey (A)° ([B]fr,z;A) h) x
= Me:D'.kXx:(A)° . A F .oy (A)® ([B]fA 4
= [A\z:A.BJ}\.

3.4. CPS translation of terms 133

3.2. s’ ¥s. Similar to 3.1.
4. M = B A. Similar to Case 3.
5 M =Ilx: A. B. Similar to Case 3. a

3.4.13. PROPOSITION. Let AS be weakly normalizing, generalized non-dependent,
and clean, and s € § negatable. Then

T - M:A:s= A, (D), A%M) F [M]5: (A)° : s

ProoF. By inductionon I' = M : A. Before proceeding with the individual
cases it is useful to make some general observations.

Let D =s(Type.(M))*. By definition, A —5 Type{.(M). By Lemma 3.3.11,
$(A)* =5 D. By Corollary 3.3.14 and Lemma 3.3.4 A, (I')* F s(4)° : s
and Ay, (T)® F ss (A)® : 5. By subject reduction also Ay, (I')* + D : s and
Ay, (T) + sD:s.

We now proceed with the individual cases.

1. The derivation is
Fos1:8y (s1,82) € A
By a few steps,
Ay F Me:D .k sy :55 so.
That is,
As, (D%, A%(s1) F [s1]f : (s2)”.
2. The derivation ends in
PEA:d
Nz:AFaxz: A

Then ',z : A = A:s'. By uniqueness of types s’ = s. By a few steps,

Ay, ()%, :55 (A = Me:D .z k :ss (A)°.

That is,
Ay, (U AY A% () B [2]fr a2 (AD°

3. The derivation ends in

r-M:A T FC:s
Fz:C+HM:A

SinceI' W M : A = ¢ FV(M) UFV(A). Hence, by strengthening,
I' = A:s. By the induction hypothesis,

As, (T)°, A%(M) F [M] = (A)°.
By Lemma 3.4.12, [M]}, = [M]? (r,z:c)- Hence
As, (D%, A*(M) F [M]ip ey = (AD°

We consider two cases.

134

Chapter 3. Normalization in Pure Type Systems

3.1. s’ > s. By Corollary 3.3.14,

A, (D) F (C) : 5.

By Proposition 3.2.26 and Lemma 3.3.4,

A, (D) F (C)° 6

By thinning

Hence,

Ag, (T)°, A%(M) = (C)* : &'

AS,QFDS,AS(M),JJ : <[C]>S - []FxC <[A]>s

Since (C)? is legal in A, (I')?, it holds that z € FV({C)?), for all
z: E € A*(M). By permutation,

Thus,

A, (T)%, 2 : (€7, A% (M) = [Mp 0y = (AD”

As,qral‘ : CstAS(M) - []FxC <[A]>

3.2. §' # s. By Proposition 3.2.26, (I, z : C)* = (I')*. Thus,

Asa <[F,95 : CDSaAS(M) [] Iz:C) <[A]>s

4. The derivation ends in

' A:sy Dyx:AF B:ss

I+ Iz A. B : s3 (s1,s3) € R,

where s; > s3 and z € V. Since (s3,s) € A, Ls = s3.

4.1. A € Term?®

,ie, ' A: E:s, for some E. By uniqueness of types,

Church-Rosser, and subject reduction, I' = s; : s. By injectivity
of A, s1 = s3 = L. By the induction hypothesis,

-

Ay, (T, A%(A) F (AL} 55 51804, (1), A%(B) F [Blip 44y i85 53.

By convention, dom(A*(A))Ndom(A*(B)) = (. Therefore, we can
replace A%(A) and A*(B) by A*(Ilz: A. B). Therefore, in a few

steps,

A, (T)*, A%(Ma: A. B) = Ak: Dk Ta: ([A]f I,). ([Blf poa Is) 55 s3.

That is,

Ag, (T)%, A%(Ilx: A. B) F [Ilz: A. B]f : (s3)°.

3.4. CPS translation of terms 135

4.2. A ¢ Term®. By injectivity of A, s; = s3 or s; > s. Since
A ¢ Term?®, the former is impossible. By Corollary 3.3.14 and
the induction hypothesis,

A, (T (AD° : s1&A, (T)%, @ 2 (A)*, A%(B) F [Blip p.a) i85 83

We must now move z : (A)* across A*(B). Suppose z € FV(E) for
some o, : B € A%(B)',z : A. By Lemma 3.4.6, 2 € Vg, 51 > s,
and s| | s. This contradicts (s3,s) € A and (s1,s3) € R.

Hence by permutation,

A, (T, A%(B), @ : (A)* F (Bl 4.a) 158 s2.
Therefore, in a few steps,
Ay, (T)*,A%(B) = Ak:D .k Ta: (A)*. ([Blf poa Is) : 55 s3.
That is,
Ay, ()%, A%(Ta: A. B) + [a: A. BJ : (s3)°.
5. The derivation ends in

Dz:AFM:B T©'FIlz:A.B:s
' Ae:A. M :1lx:A. B

By functionality s’ = s. By generation,
PFA:sy &Tye:AF B:s & (s1,8) €R,
where s; > s. Hence, by the induction hypothesis and thinning,
Ay, ()0 (A4), AT (M) F (M, ¢ (BD.

We must now move z : (A)* across A%(M). Suppose z € FV(E) for
some o, : B € A*(M). By Lemma 3.4.6, 2 € Vg, s1 > s} and s} | s.
This contradicts (s1,s) € R. Hence by transitivity

A, (L)%, A%(M), = (A)” F [M]p 4.0y (B)”

We now consider two cases.

5.1. s1 7 s. In a few steps
Ay, (D)%, A3 (M) F (A)® : s1&A,, (D), A% (M), z : (A)* Fs(B)*
Therefore, after a few more steps,
A, (I')°, 05 : [IB:s;. Ly - B — L, A°(M) F [Az: A. M|{ : (Ia: A.B)?,
ie.,

Ag, (T, A°(A: A M) F [Ae:A. M)p : (LLz: A. B)®.

136

Chapter 3. Normalization in Pure Type Systems

5.2. s1) s. Similar.

. The derivation ends in

'+ M:M:AB T FHN:A
T - MN:B{z:=NJ

By correctness of types,
I' - Ilz: A. B : s3.

for some s3 € S. By generation,

' A:sg &Tye:AF B:sg (s1,s3) €R.
where s; > s3. By substitution,

I' - B{x:=N}: ss.

By uniqueness of types s3 = s. By the induction hypothesis,

Ag, (T)?, A5 (M) = (M)* .55 T (A)*. (B)°.
By generation,

Ag, (C),A%(M) + Iz: (A)*. (B)* : s".

for some s”. We now consider two cases.

6.1. N € Term®. By the induction hypothesis,
Ay, (ID%, A%(N) = [N]p = (4)°
Therefore, by a few simple steps,
Ay (), AN M N) F (M N)*: (B)*{z := [N]r}.
By Corollary 3.2.36, z ¢ FV(B) = FV((B)*). Thus,
Ag, (T)?, A°(M N) = (M N)®: (B{z:= N})°.
6.2. N ¢ Term®. By Proposition 3.3.13,
As, (TD* = (N)7 = (A)°.
Therefore, by a few simple steps,
Ay (0D, A (M N) F (M N)* = (B)*{z = (N)*}.
By Lemma 3.3.9,

A, ([)*, A*(M N) F (M N)*: (B{a := N})*.

3.5. Strong normalization from weak normalization 137

7. The derivation ends in

T'-M:A TFB:&
T M:B A=g B.

As usual,
I -A:s.

By uniqueness of types s’ = s. By the induction hypothesis,
Ay (0)%, A%(M) + [M]p = (A)°.
By Corollary 3.3.14, Lemma 3.3.4 and thinning,
Ag, (T)°, A%(M) + (A)° :s.
By Proposition 3.3.12, (A)* =5 (B)*. Thus,
Ay (%A F [M]p: (B)”.

This concludes the proof. O

3.5. Strong normalization from weak normalization

In this section we use the CPS translations of the two preceding sections to
show that in all generalized non-dependent pure type systems—that are also
negatable and clean—weak normalization implies strong normalization. The
first subsection shows that our CPS translation on s-terms preserves infinite
reductions. The second subsection proves a conservation result which is
useful for relating weak and strong normalization, and the last subsection
puts all the pieces together.

3.5.1. Preservation of infinite reductions

In this subsection we show that, for every M € Term{,,
(M € SN = M € SNg

when AS' is generalized non-dependent, weakly normalizing and clean, and
s is negatable. The proof technique, due to Xi [141], uses a variant of
Plotkin’s [100] colon translation. Other proofs are discussed in Chapter 2.

3.5.1. DEFINITION. Let AS be generalized non-dependent, weakly normaliz-
ing, and clean, and s € S be negatable. For K € £ and M € Term{,, define
M K € £ and M} € £ as in Figure 3.8.

138 Chapter 3. Normalization in Pure Type Systems

z i K =z K
s K = K¢
KXz (A)° . A\ E . oy (A)° (B h)z if s11s
SOy i i Ml
K \x: (A)? .\ E . o, (B) h) x if s7]s
\ [B3 AGF.j A} K if A€ Term®
(BA) 1 K _{ B Aj:F.j (A)® K else
s | KNz (A L) (B:fgx L) if A€ Term®
(Mz:A. B) i K _{ K Mz:(A). (B 5,4 1) else
M = MuD.M 3 h

where £ = E(Typelﬁ,x:A(B)>s, x € Vs, in the clause for (Az:A. B) } K.
F = (Typef(B))® in the clause for (B A) i} K.
D = s(Typej:(M))* in the definition for M;3.

Figure 3.8: COLON TRANSLATION OF TERMS

3.5.2. LEMMA. Let AS be generalized non-dependent, weakly normalizing,
and clean, and s € S be negatable, and let ' C A both be legal. For all
K €& and M € Termj.:

M:j K=M:\ K.
PROOF. By induction on M. Note that M € Termj by thinning.

1. M = z. Then
z i K

2. M = s'. Similar to Case 1.
3. M =Ar:A.B. Then B € Term} ;. 4, and A € Neu®. Suppose first that

51T s, where z € V,,. Let Er = E(Typefﬂyx:A(B))s and let also Ex = s
(TypeA 4:4(B))°. By Lemma 3.4.12 and the induction hypothesis,

A\z:A.B) 3 K = KAu:(A)* . AEp. oy (A)* (Bif .4 h) 2

K Az: (A)* . Ab:En . o (A)* (B gy) @
(Az:A.B) % K.

The case where s; | s is similar.
4. M =Tlx: A. B. Similar to Case 3.

3.5. Strong normalization from weak normalization 139

5. M = A B. Similar to Case 3. a

3.5.3. LEMMA. Let AS be generalized non-dependent, weakly normalizing,
and clean, and s € S be negatable. For all M € Term{::

(i) k € dom(T) = (M :5 K){k:=L} = M 5 (K{k := L}).
(i) K= L = M :5 K—%3 M . L.

PRrROOF. By induction on M. ad

3.5.4. LEMMA. Let \S be generalized non-dependent, weakly normalizing,
and clean, and s € S be negatable. Let M € Termj. .4 A and I' = N : A.
Let L* = L{zx:= N} for Le CUE.

(i) NeTermp & LT = L{z == Nip p = (M f a0 K)T = M* i \c KT

(i) N € Neup & L# = L{z := (N)*} = (M 3§ ;0 n K)# =5 M* 35 A0 K¥,

JL:
PROOF. (i) is by induction on M.

1. M = z. By substitution, I', A* is legal. Then, by Lemma 3.5.3(i) and
Lemma 3.5.2,

+ (x K)+
N K+
5 (N b= K}
N 5 K+t
N :lsﬂ’A* Kt
T* :%,A* KT.

(Q} :f‘,:z;:A,A K)

11| T S T 1

2. M =y # x. By substitution, y € Term A+, and

+
|

(Y Ppan K)T = (WK)T
yK*
Yipoas K™t
YA KT

3. M = s'. Similar to the previous case.

4. M = My: B.C. Then C € Termp ;.4 p,.p and B € Neu’. Since
I' = N:Aand N € Term{, A € Typef and = € V.
Let T' = Typep ;.4 A 4:5(C) and E =s(T)*. Also, T' = Typer a- 4:5(C7)
and E' =s(T")5. Since T' € Type®, Corollary 3.2.36 implies # ¢ FV(T) =
FV(s(T)*). Since T,z : A,A,y:B + C: T, also [, A*,y:B + C* : T*.

140 Chapter 3. Normalization in Pure Type Systems

Therefore, T* —3 T'. By Lemma 3.3.11,

BY = (ST))*

If s 1 s, then

(Ay:B.C) i} pan K)T
= (KM (B)’ . \uE. oy (B)* (C’ (0,0:4,A,:B) h) y)*
5 KT Ay (B)* . A E'. oy (B)® (C* i ae oy 1) Y
= (\:B.C* 'FA* K+
= (A\:B.O)" A KT

The case where s | s is similar.
5. M = B C. Similar to the preceding case.
6. M =Tly:B. C.

This concludes the proof of (i). The proof of (ii) is by induction on M.

1. M = z. This case is impossible: since z € Termy, ;.4 A, it follows that
A € Typep ;.4 a, hence N € Termf ;.4 A contradicting N € Neu®.

2. M =y # x. Then, by substitution, y € Termp, -, and

(y ToaiA,A K)# (y K)*

3. M = s'. Similar to the previous case.
4. M =Xy:B.C. Then C € Term{ ;.4 A ,.p and B € Neu®.
Let T' = Typep ;.4 A 4:5(C) and E =s(T)*. Also, T' = Typep ax4:5(C7)
and E' = s(T")*. Since D,z : A,A,y:B + C : T, it also follows that
IA*,y:B* + C* : T*. Therefore, T* =3 T'. By Lemma 3.3.11
and 3.3.9,
Bt = (e

3.5. Strong normalization from weak normalization 141

If s 1 s, then

(Ay:B.C) FxAAK)#

(K Ny (B) Ah:E oy (BY (C i ppn g 1) 0)F
—g K¥ \y: (B*)° . A E' . o, (B*)* (C* {0, A% B h)y
(Ay: B* . C*) ; A K#

(\y:B . O)* i oo K.

The case where s | s is similar.
5. M = B C. Similar to the preceding case.
6. M =1ly: B. C. Similar to the preceding case.

This concludes the proof of (ii). a

The following lemma, related to certain results in the theory of perpetual
reductions (see Chapter 1), gives a sufficient condition for strong normaliza-
tion of terms of a certain form.

3.5.5. LEMMA. Let (Ax:A.My) My ... M, € € for somen > 1.
A, My, Mo{CC = Ml} Ms...M, € SNﬂ = ()\CCA . Mg) My...M, € SN/[;.

PRrROOF. Suppose A, M, Mo{x := M} My...M, € SNg. Clearly also
My, My, ... ,M, € SNg. If (Az: A. My) M, ... M, € oog, then any infinite
reduction must therefore have form

(Az:A . Mo) My ... M, —»3 (Az:A".My)M|...M)
—3 M’{x —M’}M’ M,’l
—)/3 e
But then also
Mo{x := M} My... M, —3 Mo{x =M} My... M),
—>ﬂ ey

contradicting Mo{z := My} My ... M, € SNg. 0

The following lemma summarizes the syntactic form of legal expressions.

3.5.6. LEMMA. Let AS be a PTS. If M is legal, then

(i) M

(i) M

(iii)) M = Iz: A. My; or
) M = (Ax:A. My) M ... M,, where n > 0.

=xM,...M,, where n > 0; or

= S, or

(iv

142 Chapter 3. Normalization in Pure Type Systems

PROOF. Any M € & has form (i), (ii’), (iii’), or (iv), where (ii’),(iii’) are

(i) M = s M, ...M,, where n > 0.
(iii’) M = (z: A. My) My ... M,,, where n > 0.

The job then is to show that n = 0 in (ii’) and (iii’).

For (ii’) let s M ... M, be legal and assume n > 0. Then s M is legal
and, by correctness of types, I' = s M : s', for some I' and s’. By generation,
I' - s:1IIz: A. B, for some Ilz: A. B. By generation again, Ilz: A. B =3 5",
for some s”, contradicting Church-Rosser. Thus n = 0.

For (iii’) let (ITz: A. My) M, ... M, be legal and assume n > 0. Then
(ILz: A. B) M is legal and, by correctness of types, I' F (Ilz: A. My) My : ¢,
for some ' and s’. By generation I' + Tlz: A. My : Iy: E. F, for some
IIy: E. F. By generation again, Ily: E. F =3 s", for some s”, contradicting
Church-Rosser. Thus n = 0. O

3.5.7. LEMMA. Let AS be generalized non-dependent, weakly normalizing,
and clean, and s € S be negatable. For all k € V and M € Termj.:

M k € SNy = M € SNg.

PROOF. By lexicographic induction on (i,7), where i is the length of the
longest reduction from M :f. k and j is the size of M. We split into cases
according to the structure of M.

1. M =x M;...M,, wheren > 0. If n =0, M =2 € SNg. If n > 1, let

= M;;i if M; € Term?
© T (M) if M; € Neu®.

Also, for certain Fy,... , Fy, let
Kn+1 = k
Ki = >\]ze . jl MZI Ki+1 1 S 1 S n.

Then
M:ik=zK,.
Since M :j. k € SNg, also M] € SNg for all i. By Lemma 3.3.11 and the
induction hypothesis, M; € SNg. Therefore M € SNg.
2. M =5s'. Then s’ € SNg.
3. M =1lz: A. B. Similar to Case 1.
4. M = Ax: A. B. Similar to Case 1.

3.5. Strong normalization from weak normalization 143

5. M = (Ax: A.B) M;...M,, where n > 1. Let M/ and K; be as in
Case 1. Then
Mk Ky Aoz (A)* M E oy (A) (B i, h) 2
o, (A)° (B :fF,x:A) Ky){z := M|} M]
oy (A)* (B{x := M} ip Ko) My
o, (A)* (B{z := M} My... M, :§ k) M.

|||Q¢ % Il

By Lemma 3.3.11, A € SNg. Also, B{x := M} My ... M, :{ k € SNg
and M| € SNg. Moreover, by Lemma 3.3.11 and the induction hy-
pothesis B{z := M} My...M, € SNg and M; € SNg. Therefore,
(Az:A.B)M;...M, € SNg, by Lemma 3.5.5. a

3.5.8. LEMMA. Let AS be generalized non-dependent, weakly normalizing,
and clean, and s € S be negatable. For all M € Term{::

[M]p =g Mg
PRrOOF. By induction on M using Lemma 3.5.3(i).]

3.5.9. PROPOSITION. Let AS be generalized non-dependent, weakly normal-
izing, and clean, and s € S be negatable. For all M € Termj.:

[M]f‘ € SNg = M e SNg.

Proor. By Lemma 3.5.7 and Lemma 3.5.8. O

3.5.2. A conservation result

In this subsection we prove a version of the conservation theorem for expres-
sions (see Chapter 1).

3.5.10. DEFINITION. Let K —, L mean that K —3 L by a left-most reduc-
tion.

3.5.11. DEFINITION. Let AS be generalized non-dependent. An s € § is
secure if, for all N € Neu®, N € SNg.

3.5.12. LEMMA. Let A\S be generalized non-dependent, s € S be secure, and
M € Term®. Then there is an N such that:

M € WNg = M —» N € NFg.

ProoOF. Rather than derive the result by the usual technique for untyped
A-terms we use erasing to infer the result from the one for untyped A-terms.
Let L be the language generated by the grammar:

L:=V|S|\V.L|LL|IIV:L.L,

144 Chapter 3. Normalization in Pure Type Systems

and let |- | : & — L be the forgetful map:

o[= @
|s| = s
tul =[] |ul
Az At = x|t
Iz : A.B| = Iz : |A|.|B|

In terms of reduction, L is isomorphic to the set of untyped A-terms—we
can view Ilz: A. B as v AB. The relation — 3+ on L is the compatible closure
of the rule

(Ax.b)a [* b{x:=a}.

For every K € £ show by induction on K that

K—)BL = |K| — 3=

L (D).
For every K € L, show by induction on K that

K € NF3 = |K| € NFg-. (+)
In the converse direction, show for all N € Term®, by induction on N,

|N| € NFg« = N € SNg. (%)

We write K —¢« L if K —4+ L by a left-most reduction. Finally, prove
for all N € Term?,

IN| 5« K = AN': N—% N' & |N'| = K. (D)

by induction on N using (%), splitting into cases according to Lemma 3.5.6.

Since M € WNg, also |[M| € WNg- by (A) and (4). This result implies
that left-most (*-reduction of |M| terminates in a normal form, i.e., that
|M| —#- N € NFg-—see Section 1.7.6. By (O), M = M' & |[M'| = N for
some M' € SNg. Hence M —w M'—» M" € NFg, by (). a

3.5.13. REMARK. The idea in the proof of Lemma 3.5.12 of studying domain-
free expressions (elements of L) to prove properties about expressions (el-
ements of &) appears also in [38] and [14]. In the latter paper, so-called
domain-free pure type systems are introduced, allowing properties about
legal expressions to be inferred from properties about legal domain-free ex-
pressions.

3.5.14. DEFINITION. Let AS be generalized non-dependent and s € S.

I-Term® = {M € Term® UNeu® | M D Az:A. B € Term® = x € FV(B)}.

3.5. Strong normalization from weak normalization 145

3.5.15. PROPOSITION. Let AS be generalized non-dependent, s € S secure.
For all M € I-Term®:

M € WNg = M € SNg.

Proor. By Lemma 3.5.12 we may proceed by induction on lexicographi-
cally ordered pairs (m, M), where m is the length of the left-most reduction
sequence to normal-form of M.

1. M =2 M...M,. Then M,... ,M, € WNg. My,... ,M, € I-Term?,
so by the induction hypothesis, My, ... , M, € SNg, so M &€ SNg.

2. M ="s. Then M € SNg.

3. M =1Ilz: A. B. Similar to Case 1.

4. M = (Ax: A. My) My...M,. If n = 0, proceed as in Case 1. Now
assume n > 0. If M € Neu®, then M € SNg, so assume M € Term?®.
Then, M —; Mo{x := M} My... M, € Term® NI-Term® N WNg. By
the induction hypothesis, Mo{x := M} Ms... M, € SNg. Also, since
Ax:A. My € Term®, € FV(My), so M; € SNg. Then M € SNg by
Lemma 3.5.5. U

3.5.3. Strong normalization from weak normalization
In this subsection we finally show that
AS = WNg = AS |= SNy,

provided AS is generalized non-dependent, clean and negatable.

3.5.16. LEMMA. Let AS be generalized non-dependent, weakly normalizing
and clean, and s € S secure and negatable. For M € Termf.:

[M]; € WNg = M € SNj.
Proor. By Proposition 3.5.15 and 3.5.9, noting that [M]{ € I-Term®. O

3.5.17. LEMMA. Let AS be generalized non-dependent.

(i) For all s € ST, s € SNg.
(ii) For all s € ST, and M € Type®, M € SNg.

PROOF. (i) is trivial. (ii) is by induction on M using Lemma 3.2.31. a

3.5.18. LEMMA. Let A\S be generalized non-dependent and weakly normaliz-
ing, and s € S secure. If s € § is irrelevant then

M € Term® = M € SNg.

146 Chapter 3. Normalization in Pure Type Systems

PROOF. Assume that M € Term® and s is irrelevant. We show that then
M is not an application. The result then follows by induction on M using
Proposition 3.2.32.

So, suppose I' = K L : C : s for some K,L,C. Then, by generation
I' - K:1Iz: A. B : s for some Ilz: A. B. By generation again, there is some
(s1,s) € R, contradicting irrelevance of s. a

3.5.19. REMARK. Let AS be generalized non-dependent, s € §. There is no
infinite sequence s = sg : s1 : $9... with (sg,s1), (s1,$2),... € A since \S is
stratified. In fact, by functionality it easily follows that there is an n such
that for any sequence

S=80:81:...:8m_1:Sm (%)

with (so, 51), (51,582), -+, (Sm—1,5m) € A, m < n.
Let [(s) denote the least n such that for any sequence of form (x), m < n.

3.5.20. THEOREM. Let AS belong to the (infinite) class of generalized non-
dependent, clean, and negatable.

AS = WNg = AS |= SNg.

PROOF. Suppose AS = WNj. We prove that for any legal expression M,
M € SNg. If M € St or M € Type® for some s € S, then M € SNg, by
Lemma 3.5.17. By Proposition 3.2.26 it suffices to show for all s € §:

M € Term® = M € SNg.

We proceed by induction on I(s).

1. I(s) =0. Then s € St. If N € Neu®, then N € Type®, so N € SNg, by
Lemma 3.5.17. Thus, s is secure. Now let M € Term?®, i.e., M € Term{,
for some I'. If s is irrelevant, then M € SNg, by Lemma 3.5.18. If s is
relevant, then s is also negatable. By Proposition 3.4.13, [M]{ € Term?,
so [M]}. € WNg by assumption. Then M € SNg, by Lemma 3.5.16.

2. I(s) > 0. If N € Neu®, then N € Type® for some s < s’ € St and
then N € SNg, or N € Term® where s < s/, and then N € SNg by the
induction hypothesis. Thus s is secure. Now proceed as in Case 1. O

3.5.21. COROLLARY. If AS is any of A=, A2, Aw, A\w, A\HOL, AU, AU, then

AS | WNg = AS = SNg.

3.6. Conclusion 147

3.6. Conclusion

We have shown that for any generalized non-dependent (see 3.2.21) PTS
that is also clean (see 3.4.2) and negatable (see 3.3.1), weak normalization
implies strong normalization. For dependent systems the technique runs into
difficulties due to its use of the CPS translation—see [12]. In a nut-shell,
the CPS-translation of a term involves the CPS-translation of a type of the
term. If types may not contain terms, then we can define CPS-translation
of types first. However, if types may contain terms, we must use a single
translation working on both forms of objects, and—unfortunately—there
is no guarantee that our definition is “well-founded,” since a term may be
smaller than some of its types.

It is possible to generalize further the notion of non-dependence. In this
chapter we have considered the order <4 and made certain requirements
relative to that. We might consider an order < which extends <4 by relating
sorts that are incomparable with respect to < 4. For instance, Berardi’s [16]
formulation of the logic cube consists of the eight PTSs AS, where

(i) &= {«P,0OP «* O°}.
(ii) A ={(+*,0%), (+,0P)}.

(iii) R is given for each system in the table:

APROP | (#P,*P)

APROP2 | («P,«P) | (OP, +P)

APROPw | (#P,*P) (0P, OP)

APROPw | (xP,«P) | (TP, «P) | (OP, OP)

APRED | (xP, %) (x5, +P) | (%°,0P)
APRED2 | (xP,«P) | (3P, +P) (x5, %P) | (x%,0P)
APREDw | (#7,*P) (OP, OP) | (x%,«P) | (x*,0P)
APREDw | («P,«P) | (3P, «P) | (TP, 0OP) | (x%,%P) | (x5, 0P)

For these systems, one might define s; < so for s; € {«7, 0P}, sy € {x*, 0%}
Note that with this understanding of the relation <, all of the above systems
become stratified. With a slight modification of the notion of cleanliness and
the associated technique for choosing types for fresh variables, one can use
this idea to show that weak normalization implies strong normalization also
for the systems APREDw and APREDw of Berardi’s logic cube.

However, the extended technique does not work for the two systems
APRED and APRED2: the sort 0P is not negatable. Moreover, the extended
technique does not work in any of the systems in the right hand side of
Barendregt’s [4] or Geuvers’ [38, 37] version of the logic cube.* Finally, the

“Barendregt’s version differs from Berardi’s in two ways: in the first four systems the
axiom (*°,0°) is omitted—this is not an essential difference—and the last four systems
have extra sort */ and rules (+°, %, %), (+°, +/, %) violating persistence. Geuvers’ version

148 Chapter 3. Normalization in Pure Type Systems

extended technique does not apply to AC' or the other systems in the right
hand side of the A-cube: stratification still fails.

Another way to extend the class of systems for which the Barendregt-
Geuvers-Klop conjecture is true is to attack the problem from the other side:
instead of extending our technique to prove

AS = WNg = AS |= SNy (%)

for increasingly large systems, we can show that (x) for some systems follows
from (%) of smaller systems. Translations which eliminate dependent types,
but preserve reductions [45, 39], might be generalized to classes of pure type
systems with such applications in mind.

A problem related to the Barendregt-Geuvers-Klop conjecture is the so-
called K-conjecture [8]. It states that for any PTS AS,

AS = SNg = A'S |= SNg,,
where A"S' is the system arising by addition of the rules

'ty A:B T'bFg C:D
'tk KAC: B

'tk A:B T bg B':s
I b A: B’ if B =, B'.

where K is a constant and —, and =, are the obvious closures of the rule
KAB k A

It seems that the techniques in this chapter can be used to solve the K-
conjecture for the generalized non-dependent systems which are also clean
and negatable. This will be addressed elsewhere.

differs from Berardi’s in that the last two systems have the additional rule (07, %) violating
stratification. For more on the correspondence between traditional formulations of logics
and formulations as pure type systems, and between the A-cube and the logic-cube, see [4,
16, 131, 38, 37].

[1]

2]

[5]

[6]

Bibliography

S. Abramsky, D.M. Gabbay, and T.S.E. Maibaum, editors. Handbook
of Logic in Computer Science, volume II. Oxford University Press,
1992.

Z.M. Ariola, M. Felleisen, J. Maraist, M. Odersky, and P. Wadler.
A call-by-need lambda-calculus. In Conference Record of the Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 233-246. ACM Press, 1995.

H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics.
North-Holland, second, revised edition, 1984.

H.P. Barendregt. Lambda calculi with types. In Abramsky et al. [1],
pages 117-309.

H.P. Barendregt, J. Bergstra, J.W. Klop, and H. Volken. Degrees,
reductions and representability in the lambda calculus. Technical Re-
port Preprint 22, University of Utrecht, Department of Mathematics,
1976.

H.P Barendregt, J.R. Kennaway, J.W. Klop, and M.R. Sleep. Needed
reduction and spine strategies for the lambda calculus. Information
and Computation, 75(3):191-231, 1987.

E. Barendsen. Types and Computations in Lambda Calculi and Graph
Rewrite Systems. PhD thesis, University of Nijmegen, 1995.

G. Barthe. Extensions of pure type systems. In Dezani-Ciancaglini
and Plotkin [32], pages 16-31.

G. Barthe, J. Hatcliff, and M.H. Sgrensen. Classical pure type sys-
tems. In S. Brookes, M. Main, A. Melton, and M. Mislove, editors,
Mathematical Foundations of Programming Semantics, volume 6 of
Electronic Notes in Computer Science. Elsevier, 1997.

149

150

Bibliography

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

G. Barthe, J. Hatcliff, and M.H. Sgrensen. CPS translations and appli-
cations: the cube and beyond. In O. Danvy, editor, ACM SIGPLAN
Workshop on Continuations, number NS-96-13 in BRICS Notes Series,
pages 4:1-31, 1997.

G. Barthe, J. Hatcliff, and M.H. Sgrensen. Weak normalization implies
strong normalization in generalized non-dependent pure type systems.
Submitted for publication, 1997.

G. Barthe, J. Hatcliff, and M.H. Sgrensen. CPS translations and ap-
plications: the cube and beyond. Submitted for publication, 1998.
Extended version of [10].

G. Barthe, J. Hatcliff, and M.H. Sgrensen. An induction principle for
pure type systems. Submitted for publication, 1998.

G. Barthe and M.H. Sgrensen. Domain-free pure type systems. In
S. Adian and A. Nerode, editors, Symposium on Logical Foundations of
Computer Science, volume 1234 of Lecture Notes in Computer Science,
pages 9-20. Springer-Verlag, 1994.

G. Barthe and M.H. Sgrensen. Domain-free pure type systems. Sub-
mitted for publication, 1998. Extended version of [14].

S. Berardi. Type Dependence and Constructive Mathematics. PhD
thesis, Universita di Torino, 1990.

J.A. Bergstra and J.W. Klop. Church-Rosser strategies in the lambda
calculus. Theoretical Computer Science, 9:27-38, 1979.

J.A. Bergstra and J.W. Klop. Strong normalization and perpetual
reductions in the lambda calculus. Journal of Information Processing

and Cybernetics, 18:403-417, 1982.

M. Bezem and J.F. Groote, editors. Typed Lambda Calculus and Appli-
cations, volume 664 of Lecture Notes in Computer Science. Springer-
Verlag, 1993.

R. Bloo, F. Kammareddine, and R. Nederpelt. The Barendregt cube
with definitions and generalised reduction. Information and Compu-
tation, 126(2):123-143, 1996.

C. Bohm, M. Coppo, and M. Dezani-Ciancaglini. Termination tests
inside A-calculus. In A. Salomaa and M. Steinby, editors, A-Calculus
and Computer Science Theory, volume 37 of Lecture Notes in Com-
puter Science, pages 95-110. Springer-Verlag, 1975.

Bibliography 151

22]

[24]

[25]

[26]

[29]

[30]

[31]

[33]

[34]

C. Bohm and M. Dezani-Ciancaglini. A-terms as total or partial func-
tions on normal forms. In C. Bohm, editor, A-Calculus and Computer
Science Theory, volume 52 of Lecture Notes in Computer Science,
pages 96-121. Springer-Verlag, 1975.

V. Capretta and S. Valentini. A general method to prove the normal-
ization theorem for first and second order typed A-calculi. To appear
in Mathematical Structures in Computer Science.

A. Church. The Calculi of Lambda-Conversion. Princeton University
Press, Princeton, N. J., 1941.

A. Church and J.B. Rosser. Some properties of conversion. Transac-
tions of the American Mathematical Society, 39:11-21, 1936.

C. Consel and O. Danvy. For a better support of static data flow. In
J. Hughes, editor, Conference on Functional Programming and Com-
puter Architecture, volume 523 of Lecture Notes in Computer Science,
pages 495-519. Springer-Verlag, 1991.

T. Coquand and H. Herbelin. A-translation and looping combinators
in pure type systems. Journal of Functional Programming, 4(1):77-88,
1994.

Pierre-Louis Curien. Algebre universelle, introduction au A-calcul et
aux logiques combinatoires (notes de cours). Technical Report LIENS-
95-30, Ecole Normale Supériere, 1995.

H.B. Curry and R. Feys. Combinatory Logic. North-Holland, 1958.

N.G. de Bruijn. A survey of the project AUTOMATH. In Seldin and
Hindley [116], pages 579—606.

P. de Groote. The conservation theorem revisited. In Bezem and
Groote [19], pages 163-178.

M. Dezani-Ciancaglini and G. Plotkin, editors. Typed Lambda Calculus
and Applications, volume 902 of Lecture Notes in Computer Science.
Springer-Verlag, 1995.

A. Filinski. Representing monads. In Conference Record of the Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 446-457. ACM Press, 1994.

J.H. Gallier. On Girard’s “candidats de reductibilité”. In P. Odd-
ifreddi, editor, Logic and Computer Science, pages 123-203. Academic
Press Limited, 1990.

152

Bibliography

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

R.O. Gandy. An early proof of normalization by A.M. Turing. In
Seldin and Hindley [116], pages 453-455.

R.O. Gandy. Proofs of strong normalization. In Seldin and Hindley
[116], pages 457-477.

J.H. Geuvers. Conservativity between logics and typed lambda-calculi.
In H. Barendregt and T. Nipkow, editors, Types for Proofs and Pro-
grams, volume 806 of Lecture Notes in Computer Science, pages 79—
107. Springer-Verlag, 1993.

J.H. Geuvers. Logics and Type Systems. PhD thesis, University of
Nijmegen, 1993.

J.H. Geuvers and M.J. Nederhof. A modular proof of strong nor-
malization for the calculus of constructions. Journal of Functional
Programming, 1(2):155-189, 1991.

S. Ghilezan. Application of typed lambda calculi in the untyped
lambda calculus. In A. Nerode and Yu.V. Matiyasevich, editors, Sym-
posium on Logical Foundations of Computer Science, volume 813 of
Lecture Notes in Computer Science, pages 129-139. Springer-Verlag,
1994.

J.-Y. Girard. Interprétation fonctionelle et élimination des coupures
dans Uarithmétique d’ordre supérieur. PhD thesis, Université Paris
VII, 1972.

J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7
of Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, 1989.

B. Gramlich. Termination and Confluence Properties of Structured
Rewrite Systems. PhD thesis, Fachbereich Informatik der Universitat
Kaiserslautern, 1996.

T.G. Griffin. A formulae-as-types notion of control. In Conference
Record of the Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pages 47-58. ACM Press, 1990.

R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.
In Logic in Computer Science, pages 194-204, 1987.

R. Harper and M. Lillibridge. Explicit polymorphism and CPS conver-
sion. In Conference Record of the Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 206-219.
ACM Press, 1993.

Bibliography 153

[47]

J. Hatcliff and O. Danvy. Thunks and the lambda calculus. Tech-
nical Report 95/3, Department of Computer Science, University of
Copenhagen, 1995.

J.R. Hindley. Reductions of residuals are finite. Transactions of the
American Mathematical Society, 240:345-361, 1978.

J.R. Hindley. BCK-combinators and linear A-terms have types. The-
oretical Computer Science, 64:97-105, 1989.

J.R. Hindley and J.P. Seldin. Introduction to Combinators and -
calculus. Cambridge University Press, 1986.

F. Honsell and M. Lenisa. Some results on the full abstraction
problem for restricted lambda calculi. In A.M. Borzyszkowski and
S. Sokolowski, editors, Symposium on Mathematical Foundations of
Computer Science, volume 711 of Lecture Notes in Computer Science,
pages 84-104. Springer-Verlag, 1993.

W. Howard. The formulae-as-types notion of construction. In Seldin
and Hindley [116], pages 479-490.

W. Howard. Ordinal analysis of terms of finite type. Journal of Sym-
bolic Logic, 45(3):493-504, 1980.

G. Huet and J.-J. Lévy. Call by need computations in non-ambiguous
linear term rewriting systems. Preprint 359, INRIA, 1979.

J.M.E. Hyland. A simple proof of the Church-Rosser theorem. Oxford
University, 1973.

B. Jacobs. Semantics of lambda-I and of other substructure calculi.
In Bezem and Groote [19], pages 195-208.

F. Kammareddine. A reduction relation for which postponement of
k-contractions, conservation, and preservation of strong normalisation
hold. Technical report, Glasgow University, 1996.

F. Kammareddine and R. Nederpelt. A unified approach to type
theory through a refined A-calculus. Theoretical Computer Science,
136:183-216, 1994.

F. Kammareddine and R. Nederpelt. Refining reduction in the lambda
calculus. Journal of Functional Programming, 5(4):637-651, 1995.

F. Kammareddine and R. Nederpelt. A useful A-notation. Theoretical
Computer Science, 155:85-109, 1996.

154

Bibliography

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

F. Kammareddine and A. Rios. Generalized [-reduction and explicit
substitution. In H. Kuchen and D.S. Swierstra, editors, Programming
Languages: Implementations, Logics and Programs, volume 1140 of
Lecture Notes in Computer Science, pages 378-392. Springer-Verlag,
1996.

M. Karr. “Delayability” in proofs of strong normalizability in the
typed lambda calculus. In H. Ehrig, C. Floyd, M. Nivat, and
J. Thatcher, editors, Mathematical Foundations of Computer Software,
volume 185 of Lecture Notes in Computer Science, pages 208-222.
Springer-Verlag, 1985.

A. Kfoury and J. Tiuryn. Type reconstruction in finite-rank frag-
ments of the second-order A-calculus. Information and Computation,
98(2):228-257, 1992.

A. Kfoury, J. Tiuryn, and P. Urzyczyn. An analysis of ML-typability.
Journal of the Association for Computing Machinery, 41(2):368-398,
1994.

A J. Kfoury and J. Wells. A direct algorithm for type inference in the
rank-2 fragment of second-order A-calculus. In ACM Conference on
Lisp and Functional Programming, 1994.

A.J. Kfoury and J. Wells. New notions of reduction and non-semantic
proofs of -strong normalization in typed A-calculi. Technical Report
94-01, Boston University Computer Science Department, 1994. Also
in Logic in Computer Science, 1995.

A.J. Kfoury and J. Wells. Addendum to “new notions of reduction
and non-semantic proofs of S-strong normalization in typed A-calculi”.
Technical Report 95-007, Boston University Computer Science Depart-
ment, 1995.

7. Khasidashvili. g-reductions and (3-developments with the least num-
ber of steps. In P. Martin-Lof and G. Mints, editors, International
Conference on Computer Logic, volume 417 of Lecture Notes in Com-
puter Science, pages 105-111. Springer-Verlag, 1988.

Z. Khasidashvili. Form Reduction Systems and Reductions of Con-
tracted Forms and Lambda-Terms. PhD thesis, Thbilisi State Univer-
sity, 1988. In Russian.

Z. Khasidashvili. Optimal normalization in orthogonal term rewrit-
ing systems. In C. Kirchner, editor, Rewriting Techniques and Ap-
plications, volume 690 of Lecture Notes in Computer Science, pages
243-258. Springer-Verlag, 1993.

Bibliography 155

[71]

[72]

[74]

[79]

[80]

Z. Khasidashvili. The longest perpetual reductions in orthogonal ex-
pression reduction systems. In A. Nerode and Yu. V. Matiyasevich, ed-
itors, Symposium on Logical Foundations of Computer Science, volume
813 of Lecture Notes in Computer Science, pages 191-203. Springer-
Verlag, 1994.

Z. Khasidashvili. On higher order recursive program schemes. In
S. Tison, editor, Colloquium on Trees in Algebra and Programming,
volume 787 of Lecture Notes in Computer Science, pages 172-186.
Springer-Verlag, 1994.

7. Khasidashvili and J. Glauert. Discrete normalization and stan-
dardization in deterministic residual structures. In S. Tison, editor,
Algebraic and Logic Programming, volume 1139 of Lecture Notes in
Computer Science, pages 135-149. Springer-Verlag, 1996.

7. Khasidashvili and M. Ogawa. Perpetuality and uniform normaliza-
tion. In M. Hanus and J. Heering, editors, Algebraic and Logic Pro-
gramming, volume 1298 of Lecture Notes in Computer Science, pages
240-255. Springer-Verlag, 1997.

S.C. Kleene. Origins of recursive function theory. Annals of the History
of Computing, 3(1):52-67, 1981.

J.W. Klop. Combinatory Reduction Systems. PhD thesis, Utrecht
University, 1980. Volume 127 of CWI Tracts, Amsterdam.

J.W. Klop. Term rewriting systems. In Abramsky et al. [1], pages
1-116.

J.W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory
reduction systems, introduction and survey. Theoretical Computer
Science, 121(1-2):279-308, 1993. Special issue in honour of Corrado
Bohm.

Y. Komori. BCK-algebras and lambda calculus. In Proceedings of the
10th Symposium on Semigroups, pages 5—11. Josai University, Sakado,
1987.

J.-L. Krivine. Lambda-Calculus, Types and Models. Ellis Horwood Se-
ries in Computers and their Applications. Masson and Ellis Horwood,
English Edition, 1993.

D. Leivant. Syntactic translations and provably recursive functions.
Journal of Symbolic Logic, 50(3):682-688, 1985.

B. Lercher. Lambda-calculus terms that reduce to themselves. Notre
Dame Journal of Formal Logic, XVII(2):291-292, 1976.

156

Bibliography

[83]

[84]

[85]

[86]

[87]

[83]

[89]

[93]

[94]

[95]

[96]

[97]

J.-J. Lévy. Réductions correctes et optimales dans le lambda-calcul.
PhD thesis, Université de Paris VII, 1978.

J.-J. Lévy. Optimal reductions in the lambda-calculus. In Seldin and
Hindley [116], pages 159-191.

R. Loader. Normalisation by translation. Presented at the BRA
TYPES workshop, Turin, 1995.

P.-A. Mellies. Description Abstraite des Systémes de Réécriture. PhD
thesis, Université Paris VII, 1996. These de doctorat.

A.R. Meyer and M. Wand. Continuation semantics in typed lambda-
calculi (summary). In R. Parikh, editor, Logics of Programs, volume
193 of Lecture Notes in Computer Science, pages 219-224. Springer-
Verlag, 1985.

J.C. Mitchell. Type inference and simple subtypes. Journal of Func-
tional Programming, 1(3):245-285, 1991.

G. Mitschke. The standardization theorem in A-calculus. Zeitschrift
fur Mathematischen Logik und Grundlagen der Mathematik, 25:29-31,
1979.

E. Moggi. Computational lambda-calculus and monads. In Logic in
Computer Science, pages 14-23. IEEE Computer Society Press, 1989.

E. Moggi. Notions of computation and monads. Information and
Computation, 93:55-92, 1991.

R. Nederpelt. Strong normalization for a typed lambda calculus with
lambda structured types. PhD thesis, Eindhoven, 1973.

R. Nederpelt, J.H. Geuvers, and R.C. de Vrijer, editors. Selected Pa-
pers on Automath. Elsevier Science B.V., 1994.

V. van Oostrom. Confluence for Abstract and Higher-Order Rewriting.
PhD thesis, Vrije Universiteit Amsterdam, 1994.

V. van Oostrom. Take five. TR-406, Vrije Universiteit Amsterdam,
1996.

V. van Oostrom. Finite family developments. In H. Comon, editor,
Rewriting Techniques and Applications, volume 1232 of Lecture Notes
in Computer Science, pages 308-322. Springer-Verlag, 1997.

V. van Oostrom and F. van Raamsdonk. Comparing combinatory
reduction systems and higher-order rewrite systems. In J. Heering,
K. Meinke, B. Moller, and T. Nipkow, editors, Higher Order Algebra,

Bibliography 157

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

109

[110]

Logic and Term Rewriting, volume 816 of Lecture Notes in Computer
Science. Springer-Verlag, 1994.

M. Parigot. Internal labellings in lambda-calculus. In B. Rovan, ed-
itor, Symposium on Mathematical Foundations of Computer Science,
volume 452 of Lecture Notes in Computer Science, pages 439-445.
Springer-Verlag, 1990.

D.A. Plaisted. Polynomial time termination and constraint satisfac-
tion tests. In C. Kirchner, editor, Rewriting Techniques and Applica-
tions, volume 690 of Lecture Notes in Computer Science, pages 405—
420. Springer-Verlag, 1993.

G. Plotkin. Call-by-name, call-by-value and the A-calculus. Theoretical
Computer Science, 1:125-159, 1975.

J. van de Pol. Termination proofs for higher-order rewrite systems.
In J. Heering et al., editor, Higher Order Algebra, Logic and Term
Rewriting, volume 816 of Lecture Notes in Computer Science, pages
305-325. Springer-Verlag, 1994.

J. van de Pol. Termination of Higher-Order Rewrite Systems. PhD
thesis, University of Utrecht, 1996. Volume 16 of Questiones Infinitae.

J. van de Pol and H. Schwichtenberg. Strict functionals for termination
proofs. In Dezani-Ciancaglini and Plotkin [32], pages 350-364.

D. Prawitz. Natural Deduction: A proof theoretical study. Almquist
& Wiksell, 1965.

F. van Raamsdonk. Confluence and Normalisation for Higher-Order
Rewriting. PhD thesis, Vrije Universiteit Amsterdam, 1996.

F. van Raamsdonk and P. Severi. On normalisation. Technical Report
CS-R9545, CWI, 1995.

F. van Raamsdonk, P. Severi, M.H.B. Sgrensen, and H. Xi. Perpetual
reductions in A-calculus. Information and Computation, 1998. To
appear.

L. Regnier. Une équivalence sur les lambda-termes. Theoretical Com-
puter Science, 126:281-292, 1994.

J.C. Reynolds. The discoveries of continuations. LISP and Symbolic
Computation, 6:233-248, 1993.

J.B. Rosser. Highlights of the history of the lambda-calculus. Annals
of the History of Computing, 6(4):337-349, 1984.

158

Bibliography

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

A. Sabry. A reflection on call-by-value. In International Conference
on Functional Programming, pages 13-24. ACM Press, 1996.

A. Sabry and M. Felleisen. Reasoning about programs in continuation-
passing style. Lisp and Symbolic Computation, 6:289-360, 1993.

D.E. Schroer. The Church-Rosser Theorem. PhD thesis, Cornell Uni-
versity, 1965.

H. Schwichtenberg. Complexity of normalization in the pure typed
lambda-calculus. In A.S. Troelstra and D. van Dalen, editors,
The L.E.J. Brouwer Centenary Symposium, pages 453-457. North-
Holland, 1982.

H. Schwichtenberg. An upper bound for reduction sequences in the
typed lambda-calculus. Archive for Mathematical Logic, 30:405-408,
1991.

J.P. Seldin and J.R. Hindley, editors. 7o H.B. Curry: FEssays on
Combinatory Logic, Lambda Calculus and Formalism. Academic Press
Limited, 1980.

P. Severi. Normalisation in Lambda Calculus and its relation to Type
Inference. PhD thesis, Eindhoven University of Technology, 1996.

M.H. Sgrensen. Embeddings and infinite reduction paths in untyped
A-calculus. Presented at the second International Workshop on Ter-
mination, La Bresse, France, 1995.

M.H. Sgrensen. Effective longest and infinite reduction paths in un-
typed A-calculi. In H. Kirchner, editor, Colloguium on Trees in Algebra
and Programming, volume 1059 of Lecture Notes in Computer Science,
pages 287-301. Springer-Verlag, 1996.

M.H. Sgrensen. Properties of infinite reduction paths in untyped A-
calculus. In J. Ginzburg, Z. Khasidashvili, J.J. Lévy, E. Vogel, and
E. Vallduvi, editors, Proceedings of the Tbilisi Symposium on Lan-
guage, Logic, and Computation, CLSI Lecture Notes, 1996. To appear.

M.H. Sgrensen. Strong normalization from weak normalization in
typed A-calculi. Information and Computation, 133(1):35-71, 1997.

M.H. Sgrensen. A note on shortest developments. Submitted for pub-
lication, 1998.

J. Springintveld. Lower and upper bounds for reductions of types in
Aw and AP. In Bezem and Groote [19], pages 391-405.

Bibliography 159

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

R. Statman. A local translation of untyped A calculus into simply
typed A calculus. Research Report 91-134, Carnegie-Mellon University,
1991.

W.W. Tait. Intensional interpretations of functionals of finite type I.
Journal of Symbolic Logic, 32(2):190-212, 1967.

W.W. Tait. A realizability interpretation of the theory of species. In
R. Parikh, editor, Logic Colloquium, volume 453 of Lecture Notes in
Mathematics, pages 240-251. Springer-Verlag, 1975.

M. Takahashi. Parallel reductions in A-calculus. Information and
Computation, 118:120-127, 1995.

J. Terlouw. Reduction of higher type levels by means of an ordinal
analysis of finite terms. Annals of Pure and Applied Logic, 28:73-102,
1985.

J. Terlouw. Strong normalization in type systems: a model theoretical
approach. Annals of Pure and Applied Logic, 73:53-78, 1995.

J. Terlouw. A proof of strong normalization for generalized la-
beled [-reduction by means of Howard’s successor relation method.
Manuscript, Rijksuniversiteit Groningen, the Netherlands, February
1998.

T. Tonino and K.-E. Fujita. On the adequacy of representing higher
order intuitionistic logic as a pure type system. Annals of Pure and
Applied Logic, 57:251-276, 1992.

A.S. Troelstra. Metamathematical Investigation of Intuitionistic Arith-
metic and Analysis, volume 344 of Lecture Notes in Mathematics.
Springer-Verlag, 1973.

P. Urzyczyn. Positive recursive type assigment. In J. Wiedermann and
P. Hijek, editors, Mathematical Foundations of Computer Science,
volume 969 of Lecture Notes in Computer Science, pages 382-391.
Springer-Verlag, 1995.

D. Vidal. Nowvelles Notions de Réduction en Lambda Calcul. PhD
thesis, Université de Nancy, 1989.

R.C. de Vrijer. A direct proof of the finite developments theorem.
Journal of Symbolic Logic, 50:339-343, 1985.

R.C. de Vrijer. Exactly estimating functionals and strong normaliza-
tion. Koninklijke Nederlandse Akademie van wetenschappen, 90(4),
1987. Also appeared as [137].

160

Bibliography

[137]

[138]

[139)]

[140]

[141]

[142]

[143]

[144]

R.C. de Vrijer. Exactly estimating functionals and strong normaliza-
tion. Indagationes Mathematicae, 49:479-493, 1987.

R.C. de Vrijer. Surjective Pairing and Strong Normalization: Two
Themes in Lambda Calculus. PhD thesis, University of Amsterdam,
1987.

B. Werner. Continuations, evaluation styles and types systems.
Manuscript, 1992.

H. Xi. An induction measure on A-terms and its applications. Research
Report 96-192, Department of Mathematical Sciences, Carnegie Mel-
lon University, 1996.

H. Xi. On weak and strong normalisations. Research Report 96-187,
Department of Mathematical Sciences, Carnegie Mellon University,
1996.

H. Xi. Separating developments. Manuscript, 1996.

H. Xi. Upper bounds for standardization and an application. To
appear in the Journal of Symbolic Logic. An earlier version appeared
in the Proceedings of the 5th Kurt Godel Colloguium, volume 1289 of
Lecture Notes in Computer Science, pages 335-348, Springer-Verlag,
1997.

H. Xi. Weak and strong beta normalisations in typed A-calculi. In
P. de Groote and J.R. Hindley, editors, Typed Lambda Calculus and
Applications, volume 1210 of Lecture Notes in Computer Science,
pages 390—404. Springer-Verlag, 1997.

Index

SN-substitution, 53
neutral, 54
(B-contractum, 2
B-normal form, 3
B-redex, 2
(B-reduction, 2, 107
non-erasing, 74
Q-theorem, 34
n-redex, 3
n-reduction, 3
Al-calculus, 4
AK-calculus, 4
A-calculus, 1
A-cube, 107
A-term, 1
L1
K, 1
K* 1
Q,3
w, 3
Church-Rosser, 15
finitely branching, 15
good, 54
labeled, 42
legal, 100, 101
normal form, 15, 73
simply typed, 38
strongly normalizing, 4, 15, 73
typable, 94
weakly normalizing, 4, 15, 73
AB-calculus, 3
AfBn-calculus, 3

abstraction, 1
duplicating, 30

161

application, 1

Barendregt-Geuvers-Klop conjecture,
110, 146
Bergstra-Klop theorem, 57

Church-Rosser theorem, 2
classification, 112
colon translation, 83, 137
combinatory logic, 5
conservation theorem, 145
for A1, 4, 50
for AK, 52
for K-redexes, 56
consistency, 6
constructor, 101
context, 94
continuation passing style (CPS),
83
continuation passing style transla-
tion, 83
of terms, 131
of types, 118
Curry-Howard Isomorphism, 5

denotational semantics, 5

development, 4, 43
complete, 43
inside-out, 48

expression
legal, 107
neutral, 114
normal form, 110
strongly normalizing, 110
term, 112

162

Index

type, 112
weakly normalizing, 110

finite developments theorem, 4, 43,
45

fundamental lemma of maximal-
ity, 25

fundamental lemma of perpetual-
ity, 21

halting problem, 6
higher-order typed A-calculus, 101

I-redex, 51

inner interpretation, 87
agreeing with inner type inter-

pretation, 98

language determined by, 88
map determined by, 87
permutative, 88
sound, 88

inner model, 93

inner type interpretation, 98

K-conjecture, 148
K-redex, 51
kind, 101

monad, 98

Newman’s Lemma, 6
normalization theorem, 4, 60, 143

polymorphic typed A-calculus, 99
proof theory, 5
pure type system
axioms of, 106
clean, 129
contexts of, 107
expressions of, 107
functional, 110
generalized non-dependent, 111
logical non-dependent, 111
negatable, 117
persistent, 110
rules of, 106

sorts of, 106

stratified, 111

strongly normalizing, 110

variables of, 106

weakly normalizing, 110
pure type system (PTS), 106

recursion theory, 5
recursively typed A-calculus, 96
redex
argument of, 51
body of, 51
essential, 67
external, 35
labeled, 42
maximal, 19, 58
minimal, 19
needed, 61
perpetual, 12, 19, 52, 56, 58
reduction path, 14, 73, 109
canonical, 35
constricting, 34
length of, 14, 73
longest, 15
quasi-leftmost, 60
shortest, 15
standard, 32
upper bound for length of, 28,
41
reduction strategy, 4, 11, 16
leftmost, 22, 143
limit, 27
maximal, 4, 11, 17, 26
minimal, 4, 11, 17
normalizing, 4, 11, 17, 22
partial, perpetual, 19
path of, 16
perpetual, 4, 11, 17, 24
zoom-in, 35
rule
clean, 129

S-term, 35
second-order typed A-calculus, 99

Index 163

simply typed A-calculus, 95
simulation of reduction, 82
sort
bot-, 112
generalizable, 128
harmless, 129
isolated, 112
negatable, 117
relevant, 117
secure, 143
top-, 112
strong normalization
of simply typed A-calculus, 40
substitution, 2

thunkification, vii

type, 4
higher-order, 101
polymorphic, 99
recursive, 96
second-order, 99
simple, 37, 95

type theory, 4
strongly normalizing, 5
weakly normalizing, 5

type variable, 95

typed A-calculus & la Curry, 94

variable
bound, 1

