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Abstract

Deterministic fully dynamic algorithms are presented for 2-edge con-
nectivity and biconnectivity. For 2-edge connectivity the amortized cost
per operation is O(log4 n) improving over the previous best deterministic
bound of O(y/n) and the previous best randomized bound of O(log® n).

For biconnectivity the amortized cost per operation is also
O(log*n) improving over the previous best deterministic bound
of O(y/nlognlog[m/n]) and the alternative randomized bound of
O(Alog*n) where A is the maximal degree. Thus our O(log*n) bound
is the first polylogarithmic bound for biconnectivity.
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1 Introduction

We consider the fully dynamic graph problems of 2-edge connectivity and bicon-
nectivity. A graph is connected if there is a path between any two vertices. The
components of a graph are the maximal connected subgraphs. A graph is 2-edge
connected if and only if it is connected and no single edge deletion disconnects it.
The 2-edge-connected components are the maximal 2-edge connected subgraphs,
and two vertices v and w are 2-edge connected if and only if they are in the same
2-edge connected component, or equivalently, if and only if v and w are connected
by two edge-disjoint paths. A graph is biconnected if and only if it is connected
and no single vertex deletion disconnects it. The biconnected components are
the maximal biconnected subgraphs, and two vertices v and w are biconnected if
and only if they are in the same biconnected component, or equivalently, if and
only if either (v, w) is an edge or v and w are connected by two internally disjoint
paths.

In a fully dynamic graph problem, we are considering a graph G over a fixed
vertex set V', |V| = n. The graph G may be updated by insertions and deletions of
edges. Unless otherwise stated, we assume that we start with an empty edge set.
In the fully dynamic 2-edge connectivity problem, the updates may be interspersed
with queries asking whether two given vertices are 2-edge connected. Similarly for
the fully dynamic biconnectivity problem, queries are whether two given vertices
are biconnected.

In this paper, we give deterministic algorithms solving the fully dynamic 2-
edge and biconnectivity problem in O(log4 n) amortized time per operation. It
should be noted that biconnectivity has a history of being much harder than
2-edge connectivity, and that the biconnectivity result is considered the main
contribution of this paper.

Relating to previous work In 1991 [5], Fredrickson succeeded in generalizing
his O(y/m) bound from 1983 [4] for fully dynamic connectivity to fully dynamic
2-edge connectivity. In 1992-1993 [3, 2], this was improved by Eppstein, Galil,
[taliano, and Nissenzweig to O(y/n). In 1995-1997 [7, 8], these bounds were im-
proved to O(log” n) expected amortized time per operation, generalizing the ran-
domized O(log® n) bound for connectivity from [7]. In 1996 [10], Henzinger and
Thorup improved the randomized connectivity bound to O(log®n) but the im-
provement did not affect the randomized O(log® n) bound for 2-edge-connectivity.
Here we present a deterministic fully dynamic 2-edge-connectivity algorithm with
amortized operation cost O(log*n). Our algorithm is a careful generalization of
a recent O(log? n) deterministic fully dynamic connectivity algorithm [11].

For biconnectivity, the previous results are a lot worse. The first non-trivial
result was a deterministic bound of O(m?/?) from 1992 by Rauch [9]. In 1994 [12],
Rauch improved this bound to O(min{y/mlogn,n}). In 1995, (Rauch) Henzinger
and Poutré further improved the deterministic bound to O(y/nlognlog[m/n]).
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In 1995 [6], Henzinger and King generalized their randomized algorithm from [7]
to the biconnectivity problem to achieve an O(A log® n) expected amortized cost
per operation, where A is the maximal degree (In [6], the bound is incorrectly
quoted as O(log*n) [Henzinger, personal communication, 1997]). Generalizing
our approach for 2-edge connectivity, we present a deterministic fully dynamic
biconnectivity algorithm with an amortized cost per operation of O(log* n). This
is the first polylogarithmic bound for the problem, even when we include ran-
domized algorithms.

Techniques We shall follow the general connectivity approach from [11] of
amortizing cost over increases of internal edge levels, making sure that compo-
nents induced by edges on level 7 or higher are of size at most n/2°. Also, we
follow the strategy from [6, 7] of organizing our information around some span-
ning forest. In [11], the amortization worked very simply for connectivity, and
a decremental minimum spanning tree algorithm followed as a direct specializa-
tion. Generalizing to 2-edge connectivity and biconnectivity is a lot more subtle.
The details are very different and the secrets are in the details, including two
log-factors. In particular for biconnectivity, we need to make a careful recycling
of information, leading to the first polylogarithmic algorithm for this problem.

2 2-edge connectivity

In this section we present an O(logn) deterministic algorithm for the 2-edge
connectivity problem for a fully dynamic graph G. First we give a high level
description, ignoring all problems concerning data structures. Second, we imple-
ment the algorithm with concrete data structures and analyze the running times.
Our solution to the 2-edge connectivity also serves as a general framework for
solving the more complicated biconnectivity problem. Most of the highest level
routines will carry over directly, so to solve the biconnectivity problem, we will
only have to replace certain subroutines.

We will maintain a spanning forest F' of GG, and the edges in F' will be referred
to as tree edges. If v and w are connected in F', v---w denotes the simple path
from v to w in F. If they further are connected to u, meet(u, v, w) denotes the
intersection vertex between the three paths w---v, u---w, and v---w.

A tree edge e is said to be covered by a non-tree edge (v, w) if e € v---w, that
is if e is in the cycle induced by (v, w). Hence e is a bridge if and only if it is not
covered by any non-tree edge. Thus two vertices x and y are 2-edge connected if
and only if there is a path of covered edges between them.



2.1 High level description

Internally, the algorithm associates with each non-tree edge e a level ¢(e) < L =
|log, n]. For each i, let G; denote the subgraph of G induced by edges of level
at least ¢ together with the edges of F. Thus, G =Gy 2 G, 2 --- 2D G O F.
The following invariant is maintained.

(i) The maximal number of nodes in a 2-edge connected component of G; is n/2".
Thus, the maximal relevant level is L.

Initially, all non-tree edges have level 0, and hence the invariant is satisfied. The
point in the levels is that we will amortize our work over increases in the levels
of non-tree edges. We say that it is legal to increase the level of a non-tree edge
e to j if this does not violate (i), that is, if the 2-edge connected component of e
in G;U{e} has at most n/27 vertices.

For every tree edge e € F', we implicitly maintain the cover level ¢(e) which is
the maximum level of a covering edge. If e is a bridge, ¢(e) = —1. The definition
of a cover level is extended to paths by defining ¢(P) = mingep ¢(e). During the
implementation of an edge deletion or insertion, the c-values may temporarily
have too small values. We say that v and w are c-2-edge connected on level i if
they are connected and ¢(v---w) > i. Assuming that all c-values are updated,
we have our basic 2-edge connectivity query:

2-edge-connected (v, w): Decides if v and w are ¢-2-edge connected on level
0.

Further note that with updated c-values, e € F' is a bridge in G; if and only if
c(e) < i. For basic updates of ¢-values, we need

InitTreeEdge (v, w): ¢(v,w) := —1.
Cover(v,w,i): Where v and w are connected. For all e € v---w, if ¢(e) < i,
set c(e) 1= 1.
Uncover (v, w,i): Where v and w are connected. For alle € v---w, if c(e) < i,
set c¢(e) := —1.
We can now compute c-values correctly by first calling InitTreeEdge(v, w) for all

tree edges (v, w), and then calling Cover(q, r, £(¢q,r)) for all non-tree edges (g, r).
Inserting an edge is straightforward:

Insert(v,w): If the end-points of (v,w) were not connected in F, (v,w) is
added to F' and InitTreeEdge(v,w) is called. Otherwise set ¢(v,w) := 0 and
call Cover(v,w,0). Clearly (i) is not violated in either case.

In connection with deletion, the basic problem is to deal with the deletion of a
non-tree edge. If a non-bridge tree edge (v, w) is to be deleted, we first swap it
with a non-tree edge as described in Swap below. The sub-routine FreeTreeEdge
is dummy for now, but is included so that Swap can be reused directly for the
biconnectivity problem.

Swap (v, w): Where (v,w) is a tree-edge which is not a bridge. Let (z,y) be
a non-tree edge covering (v,w) with ¢(z,y) = ¢(v,w) = i, and set (v, w) = i.
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Call FreeTreeEdge(v, w). Replace (v, w) by (z,y) in F'. Call InitTreeEdge(z,y)
and Cover (v, w, 7).
To see that the above updates the cover information, note that it is only the
edges being swapped whose covering is affected. We are now ready to describe
delete.
Delete(v, w): If (v,w) is a bridge, we simply delete it. If (v, w) is a tree edge,
but not a bridge, we call Swap (v, w). Thus, if (v, w) is not a bridge, we are left
with the problem of deleting a non-tree edge (v, w) on level i = (v, w). Now
call Uncover(v,w,7) and delete the edge (v, w). This may leave some c-values
on v---w to low and thus for i = ¢(v,w),...,0, we call Recover(v,w,1).
Recover(v,w,i): We divide into two symmetric phases. Set v := v and let u
step through the vertices of v - - - w towards w. For each value of u, consider, one
at the time, the non-tree edges (x,y) with meet(x,v,w) = v and Ve € u-- -z,
c(e) > 1. If legal, increase the level of (z,y) to i+ 1 and call Cover(z,y,i + 1).
Otherwise, we call Cover(x,y,7) and stop the phase.
If the first phase was stopped, we have a second symmetric phase, starting with
u = w, and stepping through the vertices in w---v towards v.

The problem in seeing that the above algorithm is correct, is to check that the
calls to Recover computes the correct c-values on v---w. We say that v---w is
fine on level ¢ if all c-values in F' are correct, except that c-values <z onv---w
may be too low. Clearly, v ---w is fine on level /(e) + 1 when we make the first
call Recover(v, w, £(v,w)). Thus, correctness follows if we can prove

Lemma 1 Assuming that v---w is fine on level i + 1. Then after a call
Recover(v,w, i), v---w is fine on level i.

Proof: First note that we do not violate v---w being fine on level ¢ 4 1 if we
take a level i edge (z,y) and either call Cover(z,y, 1) directly, or first increase the
level to i + 1, and then call Cover(z,y,i + 1).

Given that v - - - w remains fine on level ¢+ 1, to prove that it gets fine on level
i, we need to show that for any remaining level i non-tree edge (z,y), all edges e
in - -y have c¢(e) > i. In particular, it follows that v---w does become fine on
level ¢ if phase 1 runs through without being stopped.

Now, suppose phase 1 is stopped. Let u; be the last value of u considered, and
(x1,41) be the last edge considered, thus increasing the level of (z1,y;) is illegal.
Then phase 2 will also stop, for otherwise, it would end up illegally increasing the
level of (z1,y1). Let uy be the last value of u considered in phase 2, and (z2, y2)
be the last edge considered in phase 2.

Since the phases were not interrupted for non-tree edges (x, y) covering edges
u before u; or after us, we know that if (z,y) remains on level 4, it is because
r---yNuv---w C up---uy. Hence, we prove fineness of level 4, if we can show
that all c-values in uy - - - uy are > 1.

For k := 1,2, from the illegality of increasing the level of (zy, ), it follows
that the 2-edge connected component Cj, of zy in Gy U {(2g, yx)} has > n/20+?



nodes. However, we know that before the deletion of (v, w), C; and Cy where
both part of a 2-edge connected component D of G;, and this component had at
most n/2° nodes. Hence C1NCy # (). Thus, they are contained in the same 2-edge
connected component C of G; 11 U{(z1,y1), (z2,y2)}. Since covering is done for all
level i+ 1 edges, it follows that our calls Cover(xy, y;,7) and Cover(zs, ¥, ) imply
that all tree-edges in C' has got c-values > 7. Moreover uy € Ck, so uy -+ -uy C C,
and hence all edges in uy - - - us have c-values > 1. O

After the last call Recover(v,w,0), we now know that v---w is fine on level 0,
that is, all c-values in F' are correct, except that c-values < 0 on v---w may be
too low. However, since -1 is the smallest value, we conclude that all c-values are
correct, and hence our fully dynamic 2-edge-connectivity algorithm is correct.

2.2 Implementation
2.2.1 Top-trees

In order to efficiently process information concerning paths in F', we shall use a
variant from [1] of Frederickson’s topology trees [4]. The original topology trees
are defined for ternary trees which can then be used to encode trees of unbounded
degrees. This is often quite technical, so instead we use a variant from [1], called
top-trees, which works directly for trees of unbounded degree, and which gives
rise to much fewer cases. For our purposes, top-trees are also easier to use than
the dynamic trees of Sleator and Tarjan [13].

The top-tree is a data structure for dynamic trees that allows simple divide
and conquer algorithms. The basic idea is to maintain a balanced binary tree
T representing a recursive subdivision of the tree 7" into clusters, which are
subtrees of 1" that are connected to the rest of 1" through at most two boundary
nodes. Each leaf of T represents a unique edge of 7" and each internal node of 7
represents the cluster that is the union of the clusters represented by its children.

The set of boundary nodes of a given cluster C' is denoted 0C, and a node
in C'\ 0C is called an internal node of C. If 0C = {a,b} then the path a---b is
called the cluster path of C' and is denoted p(C'). If a # b then the cluster is called
a path-cluster. The cluster C' is said to be a path-ancestor of the cluster A and A
is called a path-descendant of C'if they are both path-clusters and p(A) C p(C).
If C is also the parent of A then A is called a path-child of C'. If a is a boundary
node of C and C' as two children A and B, then A is considered nearest to a if
a ¢ Borif 0A = {a}. If 0C = 0A = OB = {a}, the nearest cluster is chosen
arbitrarily (see figure 1 on page 18).

As a slight generalization from the above description we may have up to
two external boundary nodes for each top-tree 7. These nodes are considered
boundary nodes of any cluster in which they appear. In particular, they are the
only boundary nodes of the root cluster of 7.



The top-tree supports the following update operations:

Link(v,w): Where v and w are in different top-trees 7, and 7,. Creates a
single new top-tree 7 representing 7, U 7, U {(v,w)}.

Cut(e): Removes the edge e from the top-tree 7 containing it, thus separating
the endpoints of e.

Expose(v, w): Makes v and w external boundary nodes of the tree 7 containing
them and returns the new root cluster.

Every update of the top-tree can be implemented as a sequence of the following
two operations:
Merge(A, B,S): Where A and B are the root-clusters of two top-trees T4 and
Ts, AU B is a cluster, (0)AUO0B)\ (0ANJB) C S C JAU OB and |S| < 2.
Creates a new cluster C' = AU B with 0C' = § and makes it the common root
of A and B, thus turning 74 and 7Tp into a single new top-tree 7 with (possibly
external) boundary nodes S.
Split(C): Where C' is the root-cluster of a top-tree 7 and has children A and
B. Deletes C, thus turning 7 into the two top-trees T4 and Tg.

Theorem 2 ([1, 4]) We can maintain a top-tree of height O(logn) supporting
each of the operations Link, Cut and Ezpose, using a sequence of at most O(logn)
Merges and Splits per operation. In addition this sequence can be computed in
O(logn) time. 0

Note that since the height of any top-tree is O(logn), we have that an edge is
contained in at most O(logn) clusters. A node is internal to at most O(logn)
clusters, and we assume pointers from each node to the unique smallest cluster
it is internal to.

To illustrate the power of our machinery, we now give a short proof of a result
from [13]:

Corollary 3 We can maintain a fully dynamic forest F' and support queries
about the mazimum weight between any two nodes in O(logn) time per operation.

Proof: For each path-cluster ' we maintain the maximum weight
We  on  the cluster path. Then Merge(A, B,S) has to assign
We = max{Wp|D € {A, B} is a path-cluster} to the new root-cluster C,
while Split(C') just deletes C'. Both operations take constant time. To answer
the query MaxWeight(v - --w) we just call C' :=Expose(v,w) and return We. O

2.2.2 2-edge connectivity by top-trees

The algorithm maintains the spanning forest in a top-tree data structure. For
each cluster C' we maintain cc = ¢(p(C)). Thus, 2-edge connectivity queries are
implemented by:

2-edge-connected (v, w): Set C' :=Expose(v,w). Return (c¢c > 0).
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In connection with Swap, for a given tree edge (v, w), we need a covering edge e
with ¢(e) = ¢(v,w). This is done, by maintaining for each cluster C' a non-tree
edge ec covering an edge on p(C') with ¢(ec) = ¢¢. Then the desired edge e is
found by setting C' :=Expose(v, w) and returning ec. Calls to cover and uncover
also reduces to operations on clusters:

Cover(v,w,i): Set C :=Expose(v,w). Call Cover(C, i, (v, w)).
Uncover(v,w,i): Set C':=Expose(v,w). Call Uncover(C,i).

The point is, of course, that we cannot afford to propagate the cover/uncover
information the whole way down to the edges. When these operations are called
on a path-cluster C, we will implement them directly in C, and then store lazy
information in C' about what should be propagated down in case we want to look
at the descendants of C'. The precise lazy information stored is

e ¢/, cg and e, where ¢, < cg and {(ef,) = cf. This represents that for all
edges e € p(C), if c(e) < ¢, we should set c(e) := ¢ and e(e) := e

The lazy information has no effect if ¢/, = ¢ = —1. Trivially, the cover in-
formation in a root cluster is always correct in the sense that there cannot be
any relevant lazy information above it. Moreover, note that the lazy cover in-
formation only effects p(C'), hence only path descendants of C. Thus, the cover
information is always correct for all non-path clusters.

In order to guide Recover, we need two things: first we need to find the
level i non-tree edges (g, r), second we need to find out if increasing the level of
(q,7) to i+ 1 will create a too large level i + 1 component. Thus, we introduce
counters size and incident that are further defined so as to facilitate efficient
local computation of all of Cover, Uncover, Split, and Merge.

For any node v and any level i, let size,; := 1 and let incident, ; be the number
of level 7 non-tree edges with an endpoint in v.

Let ¢ and j be levels, and let v be a boundary node of a path-cluster C.
Let X, c;; be the set of internal nodes from the cluster C' that are reach-
able from v by a path P where ¢(P N p(C)) > ¢ and ¢(P \ p(C)) > j.
Then size, c,;; = (Zwer’o,i’jsizewyi) is the number of nodes in X, c;; and
incident, c;;j = (e Xo.ci incident,, ;) is the number of (directed) level j non-

tree edges (¢,r) with ¢ € X, ¢, ;. By directed we mean that (¢,r) is counted
twice if r is also in X, ¢; ;.

Similarly for any level ¢ and any non-path cluster C' with 0C = {v} let
Xy,ci be the set of internal nodes ¢ from C such that ¢(v---¢) > i. Then
sizey, ¢ = (Zwexv,o,iSizew,i) is the number of nodes in X, ¢; and incident, ¢ ; =
(Xwex, ¢ incidenty ;) is the number of (directed) level 7 non-tree edges (q,r)
with ¢ € X, cj.

We are now ready to implement all the different procedures:

Cover(C,i,e): If co < i, set cc =i and ec :=e. Ifi < cg, do nothing. If
Co > 1> cJCC, set cJCC ;=1 and eJCC =e. Ifi>cq, set ¢, :=1 and cJCC ;=1 and



eJCC :=e. For X € {size,incident} and for all —1 < j <iand —1 <k < L and
for v € 9C set X'U,C,j,k = vac’,l’k.

Uncover(C,i): If c¢ < i, set ¢¢ := —1 and e := nil. If i < cg, do
nothing. If i > ¢/, set ¢, :== —1 and ¢ := max{cg,i} and e}, :=nil. For
X € {size,incident} and for all —1 < j <7 and —1 <k < L and for v € 9C set
Xo,cjk = Xo,Citlk

Clean(C): For each path-child A of C, call Uncover(A4,c;) and
Cover(A, ¢, ely). Set ¢f,:= —1 and ¢ := —1 and e/, :=nil.

Split(C): Call Clean(C). Delete C.

Merge(A, B,{a}): Where a € 0A. Create a parent C of A and B with
0C ={a}. Let ¢ be the node in 0ANOB. For X € {size,incident} and
for j:=—1,...,L: If A is a non-path cluster, set X, c;:= X, 4+ XoB,j-
Otherwise set Xo ¢ j := Xg,a,5,(+Xc; + Xe,g,j if ca >19).
Merge(A, B,{a,b}): Where a € 0A and b € 0B. Create a parent C of A
and B with 0C = {a,b}. Let ¢ be the node in 0A N JB. Let D be the path-
child of C' minimizing c¢p, then set ¢cc := ¢p and ec := ep. Set cg = —1
and ¢ := —1 and e/, :=nil. For X € {size,incident} and for 7,5 := —1,...,L
compute X4 c;; as follows (Xp ;5 is symmetrical): If A is a non-path clus-
ter, set X, cij:= Xqaj+ Xa,B,ij- Otherwise if B is a non-path cluster,
set Xo c,ij = Xaa,i,j(+Xc,B,j if ca4 > 7). Finally if both A and B are path-
clusters, set Xo ;1= Xaa,ij(+Xc; + XeBij if ca >4).
Recover(v, w,i):
e For u:=v,w
— Set C' :=Expose(v,w).
— While incident,, ¢, 1 ;+incident, ; > 0 and not stopped,
Set (q,r) :=Find(u, C, ).
D :=Expose(q,r).
If sizeg p,—1; + 2 > n/2i,
- Cover(D,1,(q,r)).
- Stop the while loop.
x Else
- Set ¢(q,r) := i + 1, decrement incident,; and incident, ; and
increment incidenty ;41 and incident, ;1.
- Cover(D,i +1,(q,7)).
x C :=Expose(v,w).

*x % %

Find(a,C,i): If incident,; > 0 then return a non-tree edge incident to a on
level i. Otherwise call Clean(C') and let A and B be the children of C' with A
nearest to a. If A is a non-path cluster and incident, 4; > 0 or A is a path
cluster and incident, 4,1, > 0, then return find(a, A,7). Else, let b be the
boundary node nearest to a in B, return find (b, B, ).

Theorem 4 There exists a deterministic fully dynamic algorithm for maintain-
ing 2-edge connectivity in a graph, using O(log4 n) amortized time per operation.
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Proof: Cover(C,i,e) and Uncover(C, i) both take O(log®n) time. This means
that Clean(C) and thus Split(C) takes O(log?n) time. Since Merge(A, B, S)
also takes O(log®n) time we have by theorem 2 that Link(v,w), Cut(e) and
Expose(v, w) takes O(log® n) time. This again means that FindCoverEdge(v, w),
2-edge-connected (v, w), Cover(v - --w, i, e) and Uncover(v - --w, i) take O(log® n)
time. Find(a,C,4) calls Clean(C) O(logn) times and thus takes O(log®n) time.
Finally Recover(v, w, i) takes O(&log® n) time where ¢ is the number of non-tree
edges whose level is increased. Since the level of a particular edge is increased at
most O(logn) times we spend at most O(log*n) time on a given edge between
its insertion and deletion. a

3 Biconnectivity

In this section we present an O(log4 n) deterministic algorithm for the biconnec-
tivity problem for a fully dynamic graph G.

A triple is a length two path zyz in the graph G, and a tree triple xyz in F
is said to be covered by a non-tree edge (v,w) if xyz C v---w, that is if zyz
is a segment of the cycle induced by (v, w). Covered triples are also transitively
covered, and if zyz and z'yz are transitively covered, then so is zyx'.

Lemma 5 v is an articulation point if and only if there is an uncovered tree triple
uvw. Moreover, v and w are biconnected if and only if for all xyz Cv---w, zyz
18 transitively covered.

3.1 High-level

As with 2-edge connectivity, with each non-tree edge e, we associate a level
l(e) € {0,...,L}, L = |log,n|, and for each i, we let G; denote the subgraph
of G induced by edges of level at least ¢ together with the edges of F. Thus
G =Gy DG D...D G D F. Here, for biconnectivity, we will maintain the
invariant:

(ii) The maximal number of nodes in a biconnected component of G; is n/2".

As for 2-edge connectivity, the invariant is satisfied initially, by letting all non-
tree edges have level 0. We say that it is legal to increase the level of a non-tree
edge e to j if this does not violate (ii), that is, if the biconnected component of
e in G;U{e} has at most n/27 vertices.

For each vertex v and each level 7, we implicitly maintain the disjoint sets of
neighbors biconnected on level ¢. If u is a neighbor of v, the set of neighbors of v
biconnected to u on level i is maintained as ¢, ;(u). As for 2-edge connectivity, the
c-values may temporarily not be fully updated. If P is a path in G, ¢(P) denotes
the maximal ¢ such that for all triples 2yz C P, z € ¢,;(x). If there is no such
i, ¢(P) = —1. Thus ¢(P) > i witnesses that the end points of P are biconnected

10



on level 7. Typically P will be a tree path, but in connection with Recover, we
will consider paths where the last edge (g, ) is a non-tree edge. We say that v
and w are c-biconnected on level i if they are connected and ¢(v---w) > i. If all
c-values are updated, we therefore have

biconnected (v, w): Decides if v and w are c-biconnected on level 0.

To update c-values from scratch, we need
InitTreeEdge(v, w): For i :=0,---, L, set ¢;;(y) := {y} and ¢, i(x) := {z}.
FreeTreeEdge(v, w): Remove y from ¢, .(-) and remove z from ¢, .(:).
Cover(zyz,i): Where zyz is a tree triple, unions ¢, ;(z) and ¢, j(z) for j :=
Cover(v,w,i): Calls Cover(zyz,i) for all zyz Cv---w.

Now, as for 2-edge connectivity, we update all c-values by first calling
InitTreeEdge(v, w) for all tree edges (v, w), and then calling Cover(q,r, ¢(q,))
for all non-tree edges (¢,r). The above routines immediately complete the de-
scriptions of Insert and Swap. In order to describe Delete, we need to define both
Uncover and Recover. To do this efficiently, we have to recycle cover information
using the following:

Lemma 6 Let (v,w) be a level i non-tree edge covering a tree triple xyz C
v---w. Suppose s is a neighbor to y biconnected on level 7 < i to x, and hence
toy, and z. Then, if (v,w) is deleted, afterwards, s is biconnected on level j to
x or z, and it may be biconnected to both. a

The lemma suggests, that when (v, w) is deleted, we should store the neighbors
s mentioned. This is done in ¢, j(x|2) by Uncover. More precisely, ¢, ;(z|z) will
be the set of neighbors to y that we know are biconnected to x or z, but that
are not yet c-biconnected to either. This will be used in one of two ways. Either
x and z get c-biconnected on level j, in which case we just restore ¢, ;(x) and
¢y.;(2) by setting ¢, ;(z) == ¢, ;(2) 1= ¢, j(x|2) Uc, ; () Ucy ;(2) and ¢, j(x]z) := 0.
Alternatively, suppose we know we have finished updating ¢, ;j(z) and that z ¢
¢y.;(z). Then we can set ¢, ;(z) 1= ¢, j(z|z) Uc,;(2) and ¢, j(x]z) := 0.

Uncover(zyz,i): where zyz is a tree triple c-biconnected on level i, if it is

also ¢-biconnected on level 7 4+ 1, do nothing; otherwise, for j :=4,...,0, set
Cy,j(2]2) 1= ¢y () \ (eyj41(2) U cyj41(2), ¢y5(2) := cyj41(2), and ¢y ;(2) :=

Strictly speaking, above, we should also set ¢, ;(s) := ¢, j11(s) forall s € ¢, j(z]2),
but our algorithm will never query any subset of ¢, ;(z|z).

Uncover(v,w,i): Calls Uncover(zyz,i) for all zyz Cv---w.

Cover(zyz,i): Where zyz is a tree triple. For j = 0,...,1, if ¢y ;(z|z) # 0,
union ¢y (), ¢y(2), and ¢y j(x|z), and set ¢, j(x|z) := 0. Otherwise, union
cyj(x) and ¢y j(2), subtracting them from any ¢, ;(:|-) they might appear in.

To complete the description of Delete, we need to define Recover.
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Recover(v,w,i): We divide into two symmetric phases. Phase 1 goes as fol-
lows:

Set u := v and let u’' be the successor of v in v-- - w.

(*) While there is a level ¢ non-tree edge (q,r) such that u =
meet(q,v,w) and c(u w---qr) > i, if legal, increase the level
of (¢,r) to i + 1 and call Cover(q,r,i + 1); otherwise, just call
Cover(q,r,i) and stop Phase 1.

While Ju'uu” Cv---w with ¢, j(x|z) # 0,

Let v'uu” be such a triple nearest to v.

Run (*) again with the new values of v and «'.

Union ¢, ;(u") and ¢, j(u'|[u"), and set ¢, ;(u'|u") := 0.
Run (*) again with «” in place of u'.

If Phase 1 was stopped in (*), we have a symmetric Phase 2, which is the same
except that we start with u = w and in the loop choose the triple v'uu” C w---v
nearest to w.

The proof of correctness is essentially the same as for 2-edge connectivity. As
a small point, note that different biconnected components may overlap in one
vertex. Nevertheless, we cannot have two different biconnected components with
> n/2""! nodes whose combined size is < n/2".

Note that at the end of Recover(v,w,j), all sets ¢, ;(z|2), zyz C v---w,
will be empty. Hence, for each y, there can be at most one pair x and z with
¢y.i(z|z) # 0, and then we refer to z and z as the uncovered neighbors of y.

3.2 Implementation

The main difference between biconnectivity and 2-edge connectivity, is that we
need to maintain the biconnectivity of the neighbors of all vertices efficiently.
For each vertex y, we will maintain ¢,.(-) as a list with weights on the links
between succeeding elements such that ¢(zyz) is the minimum weight of a link
between x and z in ¢, .(-). Then ¢, ;(z) is a segment of ¢, .(-) and using standard
techniques for manipulating lists, we can easily find c(zyz) or identify ¢, ;(x) in
time O(logn).

Now, if ¢, j_1(z) = ¢, ;—1(%), we can union ¢, ;(x) and ¢, j(z) without affecting
¢y,j—1(x), simply by moving c, j(2) to ¢, j(x) on level j as follows. First we extract
¢y,j(z), replacing it by the minimal link to its neighbors. Since both of these links
are at most 7 — 1, this does not affect the minimum weight between elements
outside ¢, ;(z). Second we insert ¢, ;(z) after ¢, ;(x) with link j in between. The
link after ¢, j(2) becomes the link we had after ¢, j(x). Note that if x € ¢, .(u'|u")
and we move ¢, ;() to ¢, j(u'), then, implicitly, we delete ¢, j(x) from ¢, ;(u'|u"),
as required.

InitTreeEdge(v, w): Link w to ¢,.(-) on level -1 and v to ¢, .(-) on level -1.
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FreeTreeEdge(v,w): Extract w from ¢, .(-) and v from ¢, .(+).

Cover(zyz,i): Where zyz is a tree triple. For j = 0,...,4, if z and z are
uncovered neighbors of y and ¢, j(x|z) # 0, move ¢, ;(z|2) and ¢ ;(2) to ¢y j(x).
Else, if z is an uncovered neighbor of y, move ¢, ;(2) to ¢y j(z). Else move ¢, ;(z)
to ¢y ;(2).

Uncover(zyz,i): where c(xyz) > i, if ¢(xyz) > i, do nothing; otherwise,
for j :=1i,...,0, first extract ¢, ;(x) and set ¢, j(z|z) := ¢, ;(z). Then move
¢y j+1(2) and ¢y j11(2) back to the neighbor list ¢, .(-) on level -1.

Biconnectivity by top-trees As for 2-edge connectivity, the algorithm main-
tains the spanning forest in a top-tree data structure. For each cluster C' we
maintain cc = p(C).

Biconnected (v, w): Set C':=Expose(v,w). Return (c¢ > 0).

Also, ec, ¢, co, and e, are defined analogously to in 2-edge connectivity. The
cover edges ec and ef; are exactly the same, while ¢/, and cg, like ¢c, now refer
to covering of triples instead of edges.

A main new idea is that we overrule the top-trees by using the neighbor lists
¢y..(+) to propagate information from minimal non-path clusters to path clusters.
Recall that in 2-edge, the information in non-path clusters is never missing any
lazy information. Let v be the boundary node of a path cluster C, and let w
be any neighbor to v in C'\ p(C). Then we call w a cluster neighbor of v. It
is easy to see that there is then a non-path cluster A C C with {v} = 0A and
w € A. We call the minimal such cluster A the neighbor cluster of (v,w), and
denote it NC'(v,w). Note that the ordering of v and w matters. It is easy to
see that there cannot be another (v,w’) with NC(v,w') = NC(v,w). Hence,
for any neighbor cluster NC (v, w), we can uniquely talk about the neighbor edge
(v,w). We are going to use the neighbor lists to propagate counters directly
from neighbor clusters to the minimal path clusters containing them, skipping all
non-path clusters in between.

We are now ready for the rather delicate definitions of the counters size and
incident for path clusters and neighbor clusters.

Let j and k be levels, and let C' be a path-cluster with 0C = {v,w}. Let
sizey ¢k denote the number of internal nodes g of C' such that either ¢ € p(C)
and c(v---q) > i or there exist a triple u'uu” C p(C) with u = meet(v,w,q)
and (u,z) € u---qsuch that c(v---u) > j, ¢(u---q) > k and either c(v'uzx) > k
or ¢(v'uu") > j and z € ¢k (u") Ucy i (u'|u”). Let incident, ¢ ;x be the number
of (directed) non-tree edges (g, r) with the path v - - - gr satisfying the conditions
from above for the path v---q.

Similarly let £ be a level and let C' be a neighbor cluster with neighbor
edge (v,w). Let size, ) be the number of internal nodes g of C' such that
c(vw---q) > k, and let incident, ¢ be the number of (directed) non-tree edges
(q,r) where ¢ is an internal node of C' and c(vw - -- qr) > k.
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To get from neighbor clusters to path clusters, and vice versa, we need the fol-
lowing functions:

Size(v, W,4): where W is a set of neighbors of v, returns 3, <y (Size, N (v,w),i
if w cluster neighbor of v, 0 otherwise).

Incident(v, W,i): where W is a set of neighbors of v, returns Y, oy (1 if w
non-tree neighbor of v, Incident, yc(yw),; if w cluster neighbor of v, and 0
otherwise).

NeighborX (u,u',i): X € {Size, Incident}, X (u,c,;(u'),7)

NeighborX (u,u’ VvV u”,i): X € {Size, Incident}, X (u,cyi(u’) U ¢y i(u”) U
("), ).

NeighborFind(u,v',i): Finds z € ¢, (u') such that z is either a non-tree
neighbor of u or a cluster neighbor with incident, xc(u,z); > 0.

Whenever the counters of a neighbor cluster NC(v,w) are updated, we update
corresponding counters of w in the neighbor list ¢,.(-) of v. Standard list data
structures allow us, in O(logn) logarithmic time, to update any one of the 2L
counters of a neighbor, or to answer a query NeighborX. The remaining opera-
tions are implemented analogously to in 2-edge connectivity.

Cover(C,i,e): First we do as in 2-edge connectivity. If C' has path children
A and B and {u} = 0AN 0B ¢ 0C and v'uu" is the triple with «' € A and
u" € B, then we call Cover(u'uu”,1).

Uncover(C,i): First we do as in 2-edge connectivity. If C' has path children
A and B and {u} = 0AN OB ¢ 90C and v'uu” is the triple with u' € A and
u”" € B, then we call Uncover(u'uu”, ).

Merge(A, B,{a}): Where a € 0A. Create a parent C of A and B with
0C = {a}. If A is a non-path cluster, we are done. Otherwise, let v'uu" be the
unique triple such that u’ € p(A4), {u} = IANIB and B is the neighbor cluster
of (u,u”). Then for X € {size,incident} and k := —1,..., L, Xo ¢ = Xg 4k if
ca <k, Xqcr = Xgapkk+NeighborX (u,u’, k) if ca4 > kAc(u'uu) <k, and fi-
nally X, ok := X, 4% k+NeighborX (u, v'Vu", k) + X, g i if ca > EAc(u/uu”) >
k. Let o' be the successor of a in p(A). Then C = NC(a,d’), so we have to
update the 2L counters associated with @’ in a’s neighbor list ¢,.(-).

Merge(A, B,{a,b}): Where a € 0A and b € 0B. Create a parent C of
A and B with 0C = {a,b}. cc, ec, ¢f, c; and e, are maintained as in
2-edge connectivity. For X € {size,incident} and j,k := —1,...,L compute
Xocjk as follows (Xp cjp is symmetrical): If A is a non-path cluster, set
Xo,0,jk = Xqo,B,j k- Otherwise if B is a non-path cluster, set X, ¢ jr := Xq 4, k-
Finally if both A and B are path-clusters, let «'uu” be the triple such that
u' € p(A), {u} = 0AUIB, and u" € p(B). Then X, ¢ = Xg a5k if ca <,
Xo,cjk = Xa,a,jk+NeighborX (u,u’, k) if ca4 > j A c(u'uu”) < j, and finally
Xa,cjk = Xa,a,j+NeighborX (u, v’ Vu", k) + Xy g ji if ca > jAc(u'uu) > j.
Recover(v,w,i): We divide into two symmetric phases. Phase 1 goes as fol-
lows:

14



Set C' :=Expose(v,w).
Set u := v and let v/ be the successor of u on u---w.
(*) While NeighborIncident(u,u’,7) > 0,
Set (q,r) :=VertexFind(u, C,i,u’).
D :=Expose(q,r).
Let (q,4¢') and (r',r) be edges on ¢---r
If sizegp -1, + 2+ NeighborSize(q, ¢', i)+
NeighborSize(r, ;i) > n/2¢,
— Cover(D,1,(q,7))-
— Stop the phase.
o Else
— Set £(q,r) := i+ 1, updating the corresponding incidence
counters ¢,.(-) and ¢, .(-).
— Move c¢gi+1(r) to ¢qi+1(¢") and ¢ iv1(q) to ¢riq1(r') on
level ¢ + 1.
— Cover(D,i+1,(q,r)).
e (C :=Expose(v,w).
u :=FindBranch(v, C, ).
While v #nil,

Let v’ be the predecessor, and let u” be the successor of u
inv--w.

Run (*) again with the new values of u and u'.

Move ¢, ;(z|z) to ¢y j(z) and set ¢, j(z|z) = 0.

Run (*) again with " in place of u'.

u :=FindBranch(v, C, ).

If Phase 1 was stopped in (*), we have a symmetric Phase 2 with the roles of v
and w interchanged.

FindBranch(a,C,): If incident, ¢ _1; = 0 return nil else call Clean(C). If
C has only one path-child a then return FindBranch(a, A,7). Otherwise let A
and B be the children of C' with A nearest to a and let v'uu” be the triple
such that u' € p(A) and v € p(B) and u € AU 9B. If incident, 41, > 0
then return FindBranch(a, A,7). Otherwise if ¢, ;(u'|u”) # 0 then return v else
return FindBranch(u, B, 7).

VertexFind(u,C,i,u’): Call Clean(C). Let z :=NeighborFind(u,u’,i). If
z is a non-tree neighbor, return (u,z). Otherwise z is a cluster neigh-
bor and then NC(u,z) has two children A and B with u € A, ANB =
{b}. If incident(u, A,i,7) > 0, return PathFind(u, A,7). Otherwise, return
VertexFind(b, B, i,b") where ¥ is the predecessor of b in u---b.
PathFind(a, C,i): Call VertexFind(a,C,%,a’) where o’ is the successor of a
on a---b. If no edge was returned, let A and B be the children of C' with A
nearest to a. If incidentg 4 —1; > 0 then return PathFind(a, A,4). Else let b be
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the boundary node nearest to a in B, return PathFind(b, B, 7). If no edge was
found return VertexFind (b, C,i,b"), where b’ is the predecessor of b on a- - - b.

Theorem 7 There exists a deterministic fully dynamic algorithm for maintain-
ing biconnectivity in a graph, using O(log4 n) amortized time per operation. O

It turns out that we can preserve the O(log'n) amortized update time while
reducing the query time for “are v and w biconnected” to O(logn) worst case
time. This is, however, beyond the scope of the current report.
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A Illustration of cluster compositions
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Figure 1: The 5 cluster compositions. Cluster A is nearest to a. In 4 the choice
of nearest is arbitrary.

B Top-trees implemented through topology
trees

For completeness, we sketch the reduction from our top-trees to Frederickson’s
topology trees, giving Theorem 2 from [1]. It should be noted that in practice it
is much more efficient to implement our top-trees directly.

Let T be a dynamic tree for which we wish to maintain a top-tree 7. This may
be done directly, in a manner very similar to the maintainance of the topology
trees, but the proof is rather technical. Here we show how to maintain 7 by a
simple reduction to the topology trees by Frederickson [4, 5].

The basic idea of the reduction is to maintain a ternary tree Th for 1', where
each node represents a (possibly empty) edge-cluster of T'. Using the algorithm
from Frederickson [5] we then maintain a topology tree Ta for Th. Finally we
show that every node of Ta represents a cluster in 7" and thus 7 is maintained.

Let Th be a tree derived from 71" as follows:

e For every edge e € T', T contains a node t, representing the edge-cluster
{e}.
e For every node v € T" having edges ey, ...,e4, Tao contains:

— nodes v, , ..., v, representing empty edge-clusters.

d
— edges (Vey,tey)s -y (Veys tey)-
— edges (Vey, Vey)y -« oy (Vey_, Ve,) if d > 1.
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T'A has 3n — 3 nodes and any link or cut in 7" corresponds to a constant number
of links and cuts in Tx. Thus by using the algorithm from [5] we can maintain a
topology tree Ta for Ta. The desired result then follows by this lemma:

Lemma 8 Any node-cluster in Ta corresponds to an edge-cluster of T

Proof: From [5] we know that the node-clusters of 7 have the following prop-
erty: Either the external degree of the cluster (the number of edges with exactly
one endpoint in the cluster) is < 2 or the cluster consists of a single node.

This means that if the external degree is < 2 then the node-cluster trivially
corresponds to an edge-cluster of 7. Otherwise the cluster consists of a single

node of degree 3 and all nodes in TA of degree 3 represent empty edge-clusters.
a

It should be noted that Frederickson has no equivalent to our Expose, which
hence does not follow from the reduction. Implementing Expose is, however,
very similar to implementing cut and link.
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