
Technical Report DIKU-TR-97/26Department of Computer ScienceUniversity of CopenhagenUniversitetsparken 1DK-2100 KBH �DENMARKNovember 1997
Poly-Logarithmic Deterministic Fully-Dynamic GraphAlgorithms II: 2-edge and biconnectivity

Jacob Holm Kristian de Lichtenberg Mikkel Thorup

Poly-logarithmic deterministic fully-dynamicgraph algorithms II: 2-edge and biconnectivityJacob Holm� Kristian de Lichtenberg� Mikkel Thorup�AbstractDeterministic fully dynamic algorithms are presented for 2-edge con-nectivity and biconnectivity. For 2-edge connectivity the amortized costper operation is O(log4 n) improving over the previous best deterministicbound of O(pn) and the previous best randomized bound of O(log5 n).For biconnectivity the amortized cost per operation is alsoO(log4 n) improving over the previous best deterministic boundof O(pn logn logdm=ne) and the alternative randomized bound ofO(� log4 n) where � is the maximal degree. Thus our O(log4 n) boundis the �rst polylogarithmic bound for biconnectivity.

�E-mail:(samson,morat,mthorup)@diku.dk. Department of Computer Science, Universityof Copenhagen.

1 IntroductionWe consider the fully dynamic graph problems of 2-edge connectivity and bicon-nectivity. A graph is connected if there is a path between any two vertices. Thecomponents of a graph are the maximal connected subgraphs. A graph is 2-edgeconnected if and only if it is connected and no single edge deletion disconnects it.The 2-edge-connected components are the maximal 2-edge connected subgraphs,and two vertices v and w are 2-edge connected if and only if they are in the same2-edge connected component, or equivalently, if and only if v and w are connectedby two edge-disjoint paths. A graph is biconnected if and only if it is connectedand no single vertex deletion disconnects it. The biconnected components arethe maximal biconnected subgraphs, and two vertices v and w are biconnected ifand only if they are in the same biconnected component, or equivalently, if andonly if either (v; w) is an edge or v and w are connected by two internally disjointpaths.In a fully dynamic graph problem, we are considering a graph G over a �xedvertex set V , jV j = n. The graph G may be updated by insertions and deletions ofedges. Unless otherwise stated, we assume that we start with an empty edge set.In the fully dynamic 2-edge connectivity problem, the updates may be interspersedwith queries asking whether two given vertices are 2-edge connected. Similarly forthe fully dynamic biconnectivity problem, queries are whether two given verticesare biconnected.In this paper, we give deterministic algorithms solving the fully dynamic 2-edge and biconnectivity problem in O(log4 n) amortized time per operation. Itshould be noted that biconnectivity has a history of being much harder than2-edge connectivity, and that the biconnectivity result is considered the maincontribution of this paper.Relating to previous work In 1991 [5], Fredrickson succeeded in generalizinghis O(pm) bound from 1983 [4] for fully dynamic connectivity to fully dynamic2-edge connectivity. In 1992{1993 [3, 2], this was improved by Eppstein, Galil,Italiano, and Nissenzweig to O(pn). In 1995{1997 [7, 8], these bounds were im-proved to O(log5 n) expected amortized time per operation, generalizing the ran-domized O(log3 n) bound for connectivity from [7]. In 1996 [10], Henzinger andThorup improved the randomized connectivity bound to O(log2 n) but the im-provement did not a�ect the randomized O(log5 n) bound for 2-edge-connectivity.Here we present a deterministic fully dynamic 2-edge-connectivity algorithm withamortized operation cost O(log4 n). Our algorithm is a careful generalization ofa recent O(log2 n) deterministic fully dynamic connectivity algorithm [11].For biconnectivity, the previous results are a lot worse. The �rst non-trivialresult was a deterministic bound of O(m2=3) from 1992 by Rauch [9]. In 1994 [12],Rauch improved this bound to O(minfpm logn; ng). In 1995, (Rauch) Henzingerand Poutr�e further improved the deterministic bound to O(pn logn logdm=ne).2

In 1995 [6], Henzinger and King generalized their randomized algorithm from [7]to the biconnectivity problem to achieve an O(� log4 n) expected amortized costper operation, where � is the maximal degree (In [6], the bound is incorrectlyquoted as O(log4 n) [Henzinger, personal communication, 1997]). Generalizingour approach for 2-edge connectivity, we present a deterministic fully dynamicbiconnectivity algorithm with an amortized cost per operation of O(log4 n). Thisis the �rst polylogarithmic bound for the problem, even when we include ran-domized algorithms.Techniques We shall follow the general connectivity approach from [11] ofamortizing cost over increases of internal edge levels, making sure that compo-nents induced by edges on level i or higher are of size at most n=2i. Also, wefollow the strategy from [6, 7] of organizing our information around some span-ning forest. In [11], the amortization worked very simply for connectivity, anda decremental minimum spanning tree algorithm followed as a direct specializa-tion. Generalizing to 2-edge connectivity and biconnectivity is a lot more subtle.The details are very di�erent and the secrets are in the details, including twolog-factors. In particular for biconnectivity, we need to make a careful recyclingof information, leading to the �rst polylogarithmic algorithm for this problem.2 2-edge connectivityIn this section we present an O(log4 n) deterministic algorithm for the 2-edgeconnectivity problem for a fully dynamic graph G. First we give a high leveldescription, ignoring all problems concerning data structures. Second, we imple-ment the algorithm with concrete data structures and analyze the running times.Our solution to the 2-edge connectivity also serves as a general framework forsolving the more complicated biconnectivity problem. Most of the highest levelroutines will carry over directly, so to solve the biconnectivity problem, we willonly have to replace certain subroutines.We will maintain a spanning forest F of G, and the edges in F will be referredto as tree edges. If v and w are connected in F , v � � �w denotes the simple pathfrom v to w in F . If they further are connected to u, meet(u; v; w) denotes theintersection vertex between the three paths u � � �v, u � � �w, and v � � �w.A tree edge e is said to be covered by a non-tree edge (v; w) if e 2 v � � �w, thatis if e is in the cycle induced by (v; w). Hence e is a bridge if and only if it is notcovered by any non-tree edge. Thus two vertices x and y are 2-edge connected ifand only if there is a path of covered edges between them.
3

2.1 High level descriptionInternally, the algorithm associates with each non-tree edge e a level `(e) � L =blog2 nc. For each i, let Gi denote the subgraph of G induced by edges of levelat least i together with the edges of F . Thus, G = G0 � G1 � � � � � GL � F .The following invariant is maintained.(i) The maximal number of nodes in a 2-edge connected component of Gi is n=2i.Thus, the maximal relevant level is L.Initially, all non-tree edges have level 0, and hence the invariant is satis�ed. Thepoint in the levels is that we will amortize our work over increases in the levelsof non-tree edges. We say that it is legal to increase the level of a non-tree edgee to j if this does not violate (i), that is, if the 2-edge connected component of ein Gj Sfeg has at most n=2j vertices.For every tree edge e 2 F , we implicitly maintain the cover level c(e) which isthe maximum level of a covering edge. If e is a bridge, c(e) = �1. The de�nitionof a cover level is extended to paths by de�ning c(P) = mine2P c(e). During theimplementation of an edge deletion or insertion, the c-values may temporarilyhave too small values. We say that v and w are c-2-edge connected on level i ifthey are connected and c(v � � �w) � i. Assuming that all c-values are updated,we have our basic 2-edge connectivity query:2-edge-connected(v; w): Decides if v and w are c-2-edge connected on level0.Further note that with updated c-values, e 2 F is a bridge in Gi if and only ifc(e) < i. For basic updates of c-values, we needInitTreeEdge(v; w): c(v; w) := �1.Cover(v; w; i): Where v and w are connected. For all e 2 v � � �w, if c(e) < i,set c(e) := i.Uncover(v; w; i): Where v and w are connected. For all e 2 v � � �w, if c(e) � i,set c(e) := �1.We can now compute c-values correctly by �rst calling InitTreeEdge(v; w) for alltree edges (v; w), and then calling Cover(q; r; `(q; r)) for all non-tree edges (q; r).Inserting an edge is straightforward:Insert(v; w): If the end-points of (v; w) were not connected in F , (v; w) isadded to F and InitTreeEdge(v; w) is called. Otherwise set `(v; w) := 0 andcall Cover(v; w; 0). Clearly (i) is not violated in either case.In connection with deletion, the basic problem is to deal with the deletion of anon-tree edge. If a non-bridge tree edge (v; w) is to be deleted, we �rst swap itwith a non-tree edge as described in Swap below. The sub-routine FreeTreeEdgeis dummy for now, but is included so that Swap can be reused directly for thebiconnectivity problem.Swap(v; w): Where (v; w) is a tree-edge which is not a bridge. Let (x; y) bea non-tree edge covering (v; w) with `(x; y) = c(v; w) = i, and set `(v; w) := i.4

Call FreeTreeEdge(v; w). Replace (v; w) by (x; y) in F . Call InitTreeEdge(x; y)and Cover(v; w; i).To see that the above updates the cover information, note that it is only theedges being swapped whose covering is a�ected. We are now ready to describedelete.Delete(v; w): If (v; w) is a bridge, we simply delete it. If (v; w) is a tree edge,but not a bridge, we call Swap(v; w). Thus, if (v; w) is not a bridge, we are leftwith the problem of deleting a non-tree edge (v; w) on level i = `(v; w). Nowcall Uncover(v; w; i) and delete the edge (v; w). This may leave some c-valueson v � � �w to low and thus for i = `(v; w); : : : ; 0, we call Recover(v; w; i).Recover(v; w; i): We divide into two symmetric phases. Set u := v and let ustep through the vertices of v � � �w towards w. For each value of u, consider, oneat the time, the non-tree edges (x; y) with meet(x; v; w) = u and 8e 2 u � � � x,c(e) � i. If legal, increase the level of (x; y) to i+ 1 and call Cover(x; y; i + 1).Otherwise, we call Cover(x; y; i) and stop the phase.If the �rst phase was stopped, we have a second symmetric phase, starting withu = w, and stepping through the vertices in w � � � v towards v.The problem in seeing that the above algorithm is correct, is to check that thecalls to Recover computes the correct c-values on v � � �w. We say that v � � �w is�ne on level i if all c-values in F are correct, except that c-values < i on v � � �wmay be too low. Clearly, v � � �w is �ne on level `(e) + 1 when we make the �rstcall Recover(v; w; `(v; w)). Thus, correctness follows if we can proveLemma 1 Assuming that v � � �w is �ne on level i + 1. Then after a callRecover(v; w; i), v � � �w is �ne on level i.Proof: First note that we do not violate v � � �w being �ne on level i + 1 if wetake a level i edge (x; y) and either call Cover(x; y; i) directly, or �rst increase thelevel to i + 1, and then call Cover(x; y; i + 1).Given that v � � �w remains �ne on level i+1, to prove that it gets �ne on leveli, we need to show that for any remaining level i non-tree edge (x; y), all edges ein x � � � y have c(e) � i. In particular, it follows that v � � �w does become �ne onlevel i if phase 1 runs through without being stopped.Now, suppose phase 1 is stopped. Let u1 be the last value of u considered, and(x1; y1) be the last edge considered, thus increasing the level of (x1; y1) is illegal.Then phase 2 will also stop, for otherwise, it would end up illegally increasing thelevel of (x1; y1). Let u2 be the last value of u considered in phase 2, and (x2; y2)be the last edge considered in phase 2.Since the phases were not interrupted for non-tree edges (x; y) covering edgesu before u1 or after u2, we know that if (x; y) remains on level i, it is becausex � � � y \ v � � �w � u1 � � �u2. Hence, we prove �neness of level i, if we can showthat all c-values in u1 � � �u2 are � i.For k := 1; 2, from the illegality of increasing the level of (xk; yk), it followsthat the 2-edge connected component Ck of xk in Gi+1 [f(xk; yk)g has > n=2i+15

nodes. However, we know that before the deletion of (v; w), C1 and C2 whereboth part of a 2-edge connected component D of Gi, and this component had atmost n=2i nodes. Hence C1\C2 6= ;. Thus, they are contained in the same 2-edgeconnected component C of Gi+1[f(x1; y1); (x2; y2)g. Since covering is done for alllevel i+1 edges, it follows that our calls Cover(x1; y1; i) and Cover(x2; y2; i) implythat all tree-edges in C has got c-values � i. Moreover uk 2 Ck, so u1 � � �u2 � C,and hence all edges in u1 � � �u2 have c-values � i. 2After the last call Recover(v; w; 0), we now know that v � � �w is �ne on level 0,that is, all c-values in F are correct, except that c-values < 0 on v � � �w may betoo low. However, since -1 is the smallest value, we conclude that all c-values arecorrect, and hence our fully dynamic 2-edge-connectivity algorithm is correct.2.2 Implementation2.2.1 Top-treesIn order to e�ciently process information concerning paths in F , we shall use avariant from [1] of Frederickson's topology trees [4]. The original topology treesare de�ned for ternary trees which can then be used to encode trees of unboundeddegrees. This is often quite technical, so instead we use a variant from [1], calledtop-trees, which works directly for trees of unbounded degree, and which givesrise to much fewer cases. For our purposes, top-trees are also easier to use thanthe dynamic trees of Sleator and Tarjan [13].The top-tree is a data structure for dynamic trees that allows simple divideand conquer algorithms. The basic idea is to maintain a balanced binary treeT representing a recursive subdivision of the tree T into clusters, which aresubtrees of T that are connected to the rest of T through at most two boundarynodes. Each leaf of T represents a unique edge of T and each internal node of Trepresents the cluster that is the union of the clusters represented by its children.The set of boundary nodes of a given cluster C is denoted @C, and a nodein C n @C is called an internal node of C. If @C = fa; bg then the path a � � � b iscalled the cluster path of C and is denoted }(C). If a 6= b then the cluster is calleda path-cluster. The cluster C is said to be a path-ancestor of the cluster A and Ais called a path-descendant of C if they are both path-clusters and }(A) � }(C).If C is also the parent of A then A is called a path-child of C. If a is a boundarynode of C and C as two children A and B, then A is considered nearest to a ifa 62 B or if @A = fag. If @C = @A = @B = fag, the nearest cluster is chosenarbitrarily (see �gure 1 on page 18).As a slight generalization from the above description we may have up totwo external boundary nodes for each top-tree T . These nodes are consideredboundary nodes of any cluster in which they appear. In particular, they are theonly boundary nodes of the root cluster of T .6

The top-tree supports the following update operations:Link(v; w): Where v and w are in di�erent top-trees Tv and Tw. Creates asingle new top-tree T representing Tv [Tw [f(v; w)g.Cut(e): Removes the edge e from the top-tree T containing it, thus separatingthe endpoints of e.Expose(v; w): Makes v and w external boundary nodes of the tree T containingthem and returns the new root cluster.Every update of the top-tree can be implemented as a sequence of the followingtwo operations:Merge(A;B; S): Where A and B are the root-clusters of two top-trees TA andTB, A [B is a cluster, (@A [@B) n (@A \ @B) � S � @A [@B and jSj � 2.Creates a new cluster C = A [B with @C = S and makes it the common rootof A and B, thus turning TA and TB into a single new top-tree T with (possiblyexternal) boundary nodes S.Split(C): Where C is the root-cluster of a top-tree T and has children A andB. Deletes C, thus turning T into the two top-trees TA and TB.Theorem 2 ([1, 4]) We can maintain a top-tree of height O(logn) supportingeach of the operations Link, Cut and Expose, using a sequence of at most O(logn)Merges and Splits per operation. In addition this sequence can be computed inO(logn) time. 2Note that since the height of any top-tree is O(logn), we have that an edge iscontained in at most O(logn) clusters. A node is internal to at most O(logn)clusters, and we assume pointers from each node to the unique smallest clusterit is internal to.To illustrate the power of our machinery, we now give a short proof of a resultfrom [13]:Corollary 3 We can maintain a fully dynamic forest F and support queriesabout the maximum weight between any two nodes in O(logn) time per operation.Proof: For each path-cluster C we maintain the maximum weightWC on the cluster path. Then Merge(A;B; S) has to assignWC := maxfWDjD 2 fA;Bg is a path-clusterg to the new root-cluster C,while Split(C) just deletes C. Both operations take constant time. To answerthe query MaxWeight(v � � �w) we just call C :=Expose(v; w) and return WC . 22.2.2 2-edge connectivity by top-treesThe algorithm maintains the spanning forest in a top-tree data structure. Foreach cluster C we maintain cC = c(}(C)). Thus, 2-edge connectivity queries areimplemented by:2-edge-connected(v; w): Set C :=Expose(v; w). Return (cC � 0).7

In connection with Swap, for a given tree edge (v; w), we need a covering edge ewith `(e) = c(v; w). This is done, by maintaining for each cluster C a non-treeedge eC covering an edge on }(C) with `(eC) = cC . Then the desired edge e isfound by setting C :=Expose(v; w) and returning eC . Calls to cover and uncoveralso reduces to operations on clusters:Cover(v; w; i): Set C :=Expose(v; w). Call Cover(C; i; (v; w)).Uncover(v; w; i): Set C :=Expose(v; w). Call Uncover(C; i).The point is, of course, that we cannot a�ord to propagate the cover/uncoverinformation the whole way down to the edges. When these operations are calledon a path-cluster C, we will implement them directly in C, and then store lazyinformation in C about what should be propagated down in case we want to lookat the descendants of C. The precise lazy information stored is� c+C , c�C and e+C , where c+C � c�C and `(e+C) = c+C . This represents that for alledges e 2 }(C), if c(e) � c�C , we should set c(e) := c+C and e(e) := e+C .The lazy information has no e�ect if c+C = c�C = �1. Trivially, the cover in-formation in a root cluster is always correct in the sense that there cannot beany relevant lazy information above it. Moreover, note that the lazy cover in-formation only e�ects }(C), hence only path descendants of C. Thus, the coverinformation is always correct for all non-path clusters.In order to guide Recover, we need two things: �rst we need to �nd thelevel i non-tree edges (q; r), second we need to �nd out if increasing the level of(q; r) to i + 1 will create a too large level i + 1 component. Thus, we introducecounters size and incident that are further de�ned so as to facilitate e�cientlocal computation of all of Cover, Uncover, Split, and Merge.For any node v and any level i, let sizev;i := 1 and let incidentv;i be the numberof level i non-tree edges with an endpoint in v.Let i and j be levels, and let v be a boundary node of a path-cluster C.Let Xv;C;i;j be the set of internal nodes from the cluster C that are reach-able from v by a path P where c(P \ }(C)) � i and c(P n }(C)) � j.Then sizev;C;i;j = (Pw2Xv;C;i;j sizew;i) is the number of nodes in Xv;C;i;j andincidentv;C;i;j = (Pw2Xv;C;i;j incidentw;i) is the number of (directed) level j non-tree edges (q; r) with q 2 Xv;C;i;j . By directed we mean that (q; r) is countedtwice if r is also in Xv;C;i;j.Similarly for any level i and any non-path cluster C with @C = fvg letXv;C;i be the set of internal nodes q from C such that c(v � � � q) � i. Thensizev;C;i = (Pw2Xv;C;isizew;i) is the number of nodes inXv;C;i and incidentv;C;i =(Pw2Xv;C;i incidentw;i) is the number of (directed) level i non-tree edges (q; r)with q 2 Xv;C;i.We are now ready to implement all the di�erent procedures:Cover(C; i; e): If cC < i, set cC := i and eC := e. If i < c+C , do nothing. Ifc�C � i � c+C , set c+C := i and e+C := e. If i > c�C , set c�C := i and c+C := i and8

e+C := e. For X 2 fsize,incidentg and for all �1 � j � i and �1 � k � L andfor v 2 @C set Xv;C;j;k := Xv;C;�1;k.Uncover(C; i): If cC � i, set cC := �1 and eC := nil. If i < c+C , donothing. If i � c+C , set c+C := �1 and c�C := maxfc�C ; ig and e+C :=nil. ForX 2 fsize,incidentg and for all �1 � j � i and �1 � k � L and for v 2 @C setXv;C;j;k := Xv;C;i+1;k.Clean(C): For each path-child A of C, call Uncover(A; c�C) andCover(A; c+C ; e+C). Set c+C := �1 and c�C := �1 and e+C :=nil.Split(C): Call Clean(C). Delete C.Merge(A;B; fag): Where a 2 @A. Create a parent C of A and B with@C = fag. Let c be the node in @A \ @B. For X 2 fsize,incidentg andfor j := �1; : : : ; L: If A is a non-path cluster, set Xa;C;j := Xa;A;j +Xa;B;j .Otherwise set Xa;C;j := Xa;A;j;j(+Xc;j +Xc;B;j if cA � i).Merge(A;B; fa; bg): Where a 2 @A and b 2 @B. Create a parent C of Aand B with @C = fa; bg. Let c be the node in @A \ @B. Let D be the path-child of C minimizing cD, then set cC := cD and eC := eD. Set c+C := �1and c�C := �1 and e+C :=nil. For X 2 fsize,incidentg and for i; j := �1; : : : ; Lcompute Xa;C;i;j as follows (Xb;C;i;j is symmetrical): If A is a non-path clus-ter, set Xa;C;i;j := Xa;A;j +Xa;B;i;j. Otherwise if B is a non-path cluster,set Xa;C;i;j := Xa;A;i;j(+Xc;B;j if cA � i). Finally if both A and B are path-clusters, set Xa;C;i;j := Xa;A;i;j(+Xc;j +Xc;B;i;j if cA � i).Recover(v; w; i):� For u := v; w{ Set C :=Expose(v; w).{ While incidentu;C;�1;i+incidentu;i > 0 and not stopped,� Set (q; r) :=Find(u;C; i).� D :=Expose(q; r).� If sizeq;D;�1;i + 2 > n=2i,� Cover(D; i; (q; r)).� Stop the while loop.� Else� Set `(q; r) := i + 1, decrement incidentq;i and incidentr;i andincrement incidentq;i+1 and incidentr;i+1.� Cover(D; i + 1; (q; r)).� C :=Expose(v; w).Find(a;C; i): If incidenta;i > 0 then return a non-tree edge incident to a onlevel i. Otherwise call Clean(C) and let A and B be the children of C with Anearest to a. If A is a non-path cluster and incidenta;A;i > 0 or A is a pathcluster and incidenta;A;�1;i > 0, then return �nd(a;A; i). Else, let b be theboundary node nearest to a in B, return �nd(b;B; i).Theorem 4 There exists a deterministic fully dynamic algorithm for maintain-ing 2-edge connectivity in a graph, using O(log4 n) amortized time per operation.9

Proof: Cover(C; i; e) and Uncover(C; i) both take O(log2 n) time. This meansthat Clean(C) and thus Split(C) takes O(log2 n) time. Since Merge(A;B; S)also takes O(log2 n) time we have by theorem 2 that Link(v; w), Cut(e) andExpose(v; w) takes O(log3 n) time. This again means that FindCoverEdge(v; w),2-edge-connected(v; w), Cover(v � � �w; i; e) and Uncover(v � � �w; i) take O(log3 n)time. Find(a; C; i) calls Clean(C) O(logn) times and thus takes O(log3 n) time.Finally Recover(v; w; i) takes O(� log3 n) time where � is the number of non-treeedges whose level is increased. Since the level of a particular edge is increased atmost O(logn) times we spend at most O(log4 n) time on a given edge betweenits insertion and deletion. 23 BiconnectivityIn this section we present an O(log4 n) deterministic algorithm for the biconnec-tivity problem for a fully dynamic graph G.A triple is a length two path xyz in the graph G, and a tree triple xyz in Fis said to be covered by a non-tree edge (v; w) if xyz � v � � �w, that is if xyzis a segment of the cycle induced by (v; w). Covered triples are also transitivelycovered, and if xyz and x0yz are transitively covered, then so is xyx0.Lemma 5 v is an articulation point if and only if there is an uncovered tree tripleuvw. Moreover, v and w are biconnected if and only if for all xyz � v � � �w, xyzis transitively covered.3.1 High-levelAs with 2-edge connectivity, with each non-tree edge e, we associate a level`(e) 2 f0; : : : ; Lg, L = blog2 nc, and for each i, we let Gi denote the subgraphof G induced by edges of level at least i together with the edges of F . ThusG = G0 � G1 � : : : � GL � F . Here, for biconnectivity, we will maintain theinvariant:(ii) The maximal number of nodes in a biconnected component of Gi is n=2i.As for 2-edge connectivity, the invariant is satis�ed initially, by letting all non-tree edges have level 0. We say that it is legal to increase the level of a non-treeedge e to j if this does not violate (ii), that is, if the biconnected component ofe in Gj Sfeg has at most n=2j vertices.For each vertex v and each level i, we implicitly maintain the disjoint sets ofneighbors biconnected on level i. If u is a neighbor of v, the set of neighbors of vbiconnected to u on level i is maintained as cv;i(u). As for 2-edge connectivity, thec-values may temporarily not be fully updated. If P is a path in G, c(P) denotesthe maximal i such that for all triples xyz � P , z 2 cy;i(x). If there is no suchi, c(P) = �1. Thus c(P) � i witnesses that the end points of P are biconnected10

on level i. Typically P will be a tree path, but in connection with Recover, wewill consider paths where the last edge (q; r) is a non-tree edge. We say that vand w are c-biconnected on level i if they are connected and c(v � � �w) � i. If allc-values are updated, we therefore havebiconnected(v; w): Decides if v and w are c-biconnected on level 0.To update c-values from scratch, we needInitTreeEdge(v; w): For i := 0; � � � ; L; set cx;i(y) := fyg and cy;i(x) := fxg.FreeTreeEdge(v; w): Remove y from cx;�(�) and remove x from cy;�(�).Cover(xyz; i): Where xyz is a tree triple, unions cy;j(x) and cy;j(z) for j :=0; : : : ; i.Cover(v; w; i): Calls Cover(xyz; i) for all xyz � v � � �w.Now, as for 2-edge connectivity, we update all c-values by �rst callingInitTreeEdge(v; w) for all tree edges (v; w), and then calling Cover(q; r; `(q; r))for all non-tree edges (q; r). The above routines immediately complete the de-scriptions of Insert and Swap. In order to describe Delete, we need to de�ne bothUncover and Recover. To do this e�ciently, we have to recycle cover informationusing the following:Lemma 6 Let (v; w) be a level i non-tree edge covering a tree triple xyz �v � � �w. Suppose s is a neighbor to y biconnected on level j � i to x, and henceto y, and z. Then, if (v; w) is deleted, afterwards, s is biconnected on level j tox or z, and it may be biconnected to both. 2The lemma suggests, that when (v; w) is deleted, we should store the neighborss mentioned. This is done in cy;j(xjz) by Uncover. More precisely, cy;j(xjz) willbe the set of neighbors to y that we know are biconnected to x or z, but thatare not yet c-biconnected to either. This will be used in one of two ways. Eitherx and z get c-biconnected on level j, in which case we just restore cy;j(x) andcy;j(z) by setting cy;j(x) := cy;j(z) := cy;j(xjz)[cy;j(x)[cy;j(z) and cy;j(xjz) := ;.Alternatively, suppose we know we have �nished updating cy;j(x) and that z 62cy;j(x). Then we can set cy;j(z) := cy;j(xjz) [cy;j(z) and cy;j(xjz) := ;.Uncover(xyz; i): where xyz is a tree triple c-biconnected on level i, if it isalso c-biconnected on level i + 1, do nothing; otherwise, for j := i; : : : ; 0, setcy;j(xjz) := cy;j(x) n (cy;j+1(x) [cy;j+1(z)), cy;j(x) := cy;j+1(x), and cy;j(z) :=cy;j+1(z).Strictly speaking, above, we should also set cy;j(s) := cy;j+1(s) for all s 2 cy;j(xjz),but our algorithm will never query any subset of cy;j(xjz).Uncover(v; w; i): Calls Uncover(xyz; i) for all xyz � v � � �w.Cover(xyz; i): Where xyz is a tree triple. For j = 0; : : : ; i, if cy;j(xjz) 6= ;,union cy;j(x), cy;j(z), and cy;j(xjz), and set cy;j(xjz) := ;. Otherwise, unioncy;j(x) and cy;j(z), subtracting them from any cy;j(�j�) they might appear in.To complete the description of Delete, we need to de�ne Recover.11

Recover(v; w; i): We divide into two symmetric phases. Phase 1 goes as fol-lows: Set u := v and let u0 be the successor of u in v � � �w.(*) While there is a level i non-tree edge (q; r) such that u =meet(q; v; w) and c(u0 u � � � q r) � i, if legal, increase the levelof (q; r) to i + 1 and call Cover(q; r; i + 1); otherwise, just callCover(q; r; i) and stop Phase 1.While 9u0uu00 � v � � �w with cy;j(xjz) 6= ;,Let u0uu00 be such a triple nearest to v.Run (*) again with the new values of u and u0.Union cu;j(u00) and cu;j(u0ju00), and set cu;j(u0ju00) := ;.Run (*) again with u00 in place of u0.If Phase 1 was stopped in (*), we have a symmetric Phase 2, which is the sameexcept that we start with u = w and in the loop choose the triple u0uu00 � w � � � vnearest to w.The proof of correctness is essentially the same as for 2-edge connectivity. Asa small point, note that di�erent biconnected components may overlap in onevertex. Nevertheless, we cannot have two di�erent biconnected components with> n=2i+1 nodes whose combined size is � n=2i.Note that at the end of Recover(v; w; j), all sets cy;j(xjz), xyz � v � � �w,will be empty. Hence, for each y, there can be at most one pair x and z withcy;j(xjz) 6= ;, and then we refer to x and z as the uncovered neighbors of y.3.2 ImplementationThe main di�erence between biconnectivity and 2-edge connectivity, is that weneed to maintain the biconnectivity of the neighbors of all vertices e�ciently.For each vertex y, we will maintain cy;�(�) as a list with weights on the linksbetween succeeding elements such that c(xyz) is the minimum weight of a linkbetween x and z in cy;�(�). Then cy;i(x) is a segment of cy;�(�) and using standardtechniques for manipulating lists, we can easily �nd c(xyz) or identify cy;i(x) intime O(logn).Now, if cy;j�1(x) = cy;j�1(z), we can union cy;j(x) and cy;j(z) without a�ectingcy;j�1(x), simply by moving cy;j(z) to cy;j(x) on level j as follows. First we extractcy;j(z), replacing it by the minimal link to its neighbors. Since both of these linksare at most j � 1, this does not a�ect the minimum weight between elementsoutside cy;j(z). Second we insert cy;j(z) after cy;j(x) with link j in between. Thelink after cy;j(z) becomes the link we had after cy;j(x). Note that if x 2 cu;�(u0ju00)and we move cu;j(x) to cu;j(u0), then, implicitly, we delete cu;j(x) from cu;j(u0ju00),as required.InitTreeEdge(v; w): Link w to cv;�(�) on level -1 and v to cw;�(�) on level -1.12

FreeTreeEdge(v; w): Extract w from cv;�(�) and v from cw;�(�).Cover(xyz; i): Where xyz is a tree triple. For j = 0; : : : ; i, if x and z areuncovered neighbors of y and cy;j(xjz) 6= ;, move cy;j(xjz) and cy;j(z) to cy;j(x).Else, if x is an uncovered neighbor of y, move cy;j(z) to cy;j(x). Else move cy;j(x)to cy;j(z).Uncover(xyz; i): where c(xyz) � i, if c(xyz) > i, do nothing; otherwise,for j := i; : : : ; 0, �rst extract cy;j(x) and set cy;j(xjz) := cy;j(x). Then movecy;j+1(x) and cy;j+1(z) back to the neighbor list cy;�(�) on level -1.Biconnectivity by top-trees As for 2-edge connectivity, the algorithm main-tains the spanning forest in a top-tree data structure. For each cluster C wemaintain cC = }(C).Biconnected(v; w): Set C :=Expose(v; w). Return (cC � 0).Also, eC , c+C , c�C , and e+C are de�ned analogously to in 2-edge connectivity. Thecover edges eC and e+C are exactly the same, while c+C and c�C , like cC , now referto covering of triples instead of edges.A main new idea is that we overrule the top-trees by using the neighbor listscy;�(�) to propagate information from minimal non-path clusters to path clusters.Recall that in 2-edge, the information in non-path clusters is never missing anylazy information. Let v be the boundary node of a path cluster C, and let wbe any neighbor to v in C n }(C). Then we call w a cluster neighbor of v. Itis easy to see that there is then a non-path cluster A � C with fvg = @A andw 2 A. We call the minimal such cluster A the neighbor cluster of (v; w), anddenote it NC(v; w). Note that the ordering of v and w matters. It is easy tosee that there cannot be another (v; w0) with NC(v; w0) = NC(v; w). Hence,for any neighbor cluster NC(v; w), we can uniquely talk about the neighbor edge(v; w). We are going to use the neighbor lists to propagate counters directlyfrom neighbor clusters to the minimal path clusters containing them, skipping allnon-path clusters in between.We are now ready for the rather delicate de�nitions of the counters size andincident for path clusters and neighbor clusters.Let j and k be levels, and let C be a path-cluster with @C = fv; wg. Letsizev;C;j;k denote the number of internal nodes q of C such that either q 2 }(C)and c(v � � � q) � i or there exist a triple u0uu00 � }(C) with u = meet(v; w; q)and (u; x) 2 u � � � q such that c(v � � � u) � j, c(u � � � q) � k and either c(u0ux) � kor c(u0uu00) � j and x 2 cu;k(u00)[cu;k(u0ju00). Let incidentv;C;j;k be the numberof (directed) non-tree edges (q; r) with the path v � � � qr satisfying the conditionsfrom above for the path v � � � q.Similarly let k be a level and let C be a neighbor cluster with neighboredge (v; w). Let sizev;C;k be the number of internal nodes q of C such thatc(vw � � � q) � k, and let incidentv;C;k be the number of (directed) non-tree edges(q; r) where q is an internal node of C and c(vw � � � qr) � k.13

To get from neighbor clusters to path clusters, and vice versa, we need the fol-lowing functions:Size(v;W; i): where W is a set of neighbors of v, returns Pw2W (Sizev;NC(v;w);iif w cluster neighbor of v, 0 otherwise).Incident(v;W; i): where W is a set of neighbors of v, returns Pw2W (1 if wnon-tree neighbor of v, Incidentv;NC(v;w);i if w cluster neighbor of v, and 0otherwise).NeighborX(u; u0; i): X 2 fSize, Incidentg, X(u; cu;i(u0); i)NeighborX(u; u0 _ u00; i): X 2 fSize, Incidentg, X(u; cu;i(u0) [cu;i(u00) [cu;i(u0ju00); i).NeighborFind(u; u0; i): Finds z 2 cu;i(u0) such that z is either a non-treeneighbor of u or a cluster neighbor with incidentu;NC(u;z);i > 0.Whenever the counters of a neighbor cluster NC(v; w) are updated, we updatecorresponding counters of w in the neighbor list cv;�(�) of v. Standard list datastructures allow us, in O(logn) logarithmic time, to update any one of the 2Lcounters of a neighbor, or to answer a query NeighborX. The remaining opera-tions are implemented analogously to in 2-edge connectivity.Cover(C; i; e): First we do as in 2-edge connectivity. If C has path childrenA and B and fug = @A \ @B 6� @C and u0uu00 is the triple with u0 2 A andu00 2 B, then we call Cover(u0uu00; i).Uncover(C; i): First we do as in 2-edge connectivity. If C has path childrenA and B and fug = @A \ @B 6� @C and u0uu00 is the triple with u0 2 A andu00 2 B, then we call Uncover(u0uu00; i).Merge(A;B; fag): Where a 2 @A. Create a parent C of A and B with@C = fag. If A is a non-path cluster, we are done. Otherwise, let u0uu00 be theunique triple such that u0 2 }(A), fug = @A\@B and B is the neighbor clusterof (u; u00). Then forX 2 fsize,incidentg and k := �1; : : : ; L, Xa;C;k := Xa;A;k;k ifcA < k, Xa;C;k := Xa;A;k;k+NeighborX(u; u0; k) if cA � k^c(u0uu00) < k, and �-nallyXa;C;k := Xa;A;k;k+NeighborX(u; u0_u00; k)+Xu;B;k if cA � k^c(u0uu00) �k. Let a0 be the successor of a in }(A). Then C = NC(a; a0), so we have toupdate the 2L counters associated with a0 in a's neighbor list ca;�(�).Merge(A;B; fa; bg): Where a 2 @A and b 2 @B. Create a parent C ofA and B with @C = fa; bg. cC , eC , c+C , c�C and e+C are maintained as in2-edge connectivity. For X 2 fsize,incidentg and j; k := �1; : : : ; L computeXa;C;j;k as follows (Xb;C;j;k is symmetrical): If A is a non-path cluster, setXa;C;j;k := Xa;B;j;k. Otherwise ifB is a non-path cluster, setXa;C;j;k := Xa;A;j;k.Finally if both A and B are path-clusters, let u0uu00 be the triple such thatu0 2 }(A), fug = @A [@B, and u00 2 }(B). Then Xa;C;j;k := Xa;A;j;k if cA < j,Xa;C;j;k := Xa;A;j;k+NeighborX(u; u0; k) if cA � j ^ c(u0uu00) < j, and �nallyXa;C;j;k := Xa;A;j;k+NeighborX(u; u0_u00; k)+Xu;B;j;k if cA � j^c(u0uu00) � j.Recover(v; w; i): We divide into two symmetric phases. Phase 1 goes as fol-lows: 14

Set C :=Expose(v; w).Set u := v and let u0 be the successor of u on u � � �w.(*) While NeighborIncident(u; u0; i) > 0,� Set (q; r) :=VertexFind(u;C; i; u0).� D :=Expose(q; r).� Let (q; q0) and (r0; r) be edges on q � � � r� If sizeq;D;�1;i + 2+ NeighborSize(q; q0; i)+NeighborSize(r; r0; i) > n=2i,{ Cover(D; i; (q; r)).{ Stop the phase.� Else{ Set `(q; r) := i+1, updating the corresponding incidencecounters cq;�(�) and cr;�(�).{ Move cq;i+1(r) to cq;i+1(q0) and cr;i+1(q) to cr;i+1(r0) onlevel i+ 1.{ Cover(D; i + 1; (q; r)).� C :=Expose(v; w).u :=FindBranch(v; C; i).While u 6=nil,Let u0 be the predecessor, and let u00 be the successor of uin v � � �w.Run (*) again with the new values of u and u0.Move cy;j(xjz) to cy;j(z) and set cy;j(xjz) := ;.Run (*) again with u00 in place of u0.u :=FindBranch(v; C; i).If Phase 1 was stopped in (*), we have a symmetric Phase 2 with the roles of vand w interchanged.FindBranch(a;C; i): If incidenta;C;�1;i = 0 return nil else call Clean(C). IfC has only one path-child a then return FindBranch(a;A; i). Otherwise let Aand B be the children of C with A nearest to a and let u0uu00 be the triplesuch that u0 2 }(A) and u00 2 }(B) and u 2 @A [@B. If incidenta;A;�1;i > 0then return FindBranch(a;A; i). Otherwise if cu;i(u0ju00) 6= ; then return u elsereturn FindBranch(u;B; i).VertexFind(u;C; i; u0): Call Clean(C). Let z :=NeighborFind(u; u0; i). Ifz is a non-tree neighbor, return (u; z). Otherwise z is a cluster neigh-bor and then NC(u; z) has two children A and B with u 2 A, A \ B =fbg. If incident(u;A; i; i) > 0, return PathFind(u;A; i). Otherwise, returnVertexFind(b;B; i; b0) where b0 is the predecessor of b in u � � � b.PathFind(a;C; i): Call VertexFind(a;C; i; a0) where a0 is the successor of aon a � � � b. If no edge was returned, let A and B be the children of C with Anearest to a. If incidenta;A;�1;i > 0 then return PathFind(a;A; i). Else let b be15

the boundary node nearest to a in B, return PathFind(b;B; i). If no edge wasfound return VertexFind(b; C; i; b0), where b0 is the predecessor of b on a � � � b.Theorem 7 There exists a deterministic fully dynamic algorithm for maintain-ing biconnectivity in a graph, using O(log4 n) amortized time per operation. 2It turns out that we can preserve the O(log4 n) amortized update time whilereducing the query time for \are v and w biconnected" to O(logn) worst casetime. This is, however, beyond the scope of the current report.References[1] S. Alstrup, J. Holm, K. de Lichtenberg, and M. Thorup. Minimizing diameters ofdynamic trees. In Proc. 24th International Colloquium on Automata, Languages,and Programming (ICALP), pages 270{280, 1997.[2] David Eppstein, Zvi Galil, and Giuseppe F. Italiano. Improved sparsi�cation.Technical Report 93-20, Univ. of California, Irvine, Dept. Information and Com-puter Science, 1993.[3] David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Amnon Nissenzweig. Spar-si�cation { a technique for speeding up dynamic graph algorithms. In Proc. 33rdSymp. Foundations of Computer Science, pages 60{69. IEEE, 1992.[4] Greg N. Frederickson. Data structures for on-line updating of minimum span-ning trees, with applications. SIAM J. Computing, 14(4):781{798, 1985. See alsoSTOC'83.[5] Greg N. Frederickson. Ambivalent data structures for dynamic 2-Edge-Connectivity and k smallest spanning trees. SIAM Journal on Computing,26(2):484{538, April 1997. See also FOCS'91.[6] M. R. Henzinger and V. King. Fully dynamic biconnectivity and transitive closure.In Proc. 36th IEEE Symp. Foundations of Computer Science, pages 664{672, 1995.[7] M. R. Henzinger and V. King. Randomized dynamic graph algorithms with poly-logarithmic time per operation. In Proc. 27th Symp. on Theory of Computing,pages 519{527, 1995.[8] M. R. Henzinger and V. King. Fully dynamic 2-edge connectivity algorithm inpolygarithmic time per operation. Technical Report SRC 1997-004a, Digital, 1997.A preliminary version appeared as [7].[9] Monika Rauch Henzinger. Fully dynamic biconnectivity in graphs. Algorithmica,13(6):503{538, June 1995. See also FOCS'92.
16

[10] Monika Rauch Henzinger and Mikkel Thorup. Improved sampling with appli-cations to dynamic graph algorithms. In Proceedings of the 23rd InternationalColloquium on Automata Languages, and Programming (ICALP), LNCS 1099,pages 290{299, 1996.[11] J. Holm, K. de Lichtenberg, and M. Thorup. Poly-logarithmic deterministic fully-dynamic graph algorithms I: connectivity and minimum spanning tree. TechnicalReport DIKU-TR-97/17, University of Copenhagen, Dept. of Computer Science,1997. Also submitted to STOC'98.[12] Monika Rauch. Improved data structures for fully dynamic biconnectivity. In Pro-ceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing,may 1994.[13] D D Sleator and Robert E Tarjan. A data structure for dynamic trees. Journalof Computer and System Sciences, 26:362{390, 1983.

17

A Illustration of cluster compositions
21

4

5

3

A

Aa
a

A

a

A

a
a

A

Figure 1: The 5 cluster compositions. Cluster A is nearest to a. In 4 the choiceof nearest is arbitrary.B Top-trees implemented through topologytreesFor completeness, we sketch the reduction from our top-trees to Frederickson'stopology trees, giving Theorem 2 from [1]. It should be noted that in practice itis much more e�cient to implement our top-trees directly.Let T be a dynamic tree for which we wish to maintain a top-tree T . This maybe done directly, in a manner very similar to the maintainance of the topologytrees, but the proof is rather technical. Here we show how to maintain T by asimple reduction to the topology trees by Frederickson [4, 5].The basic idea of the reduction is to maintain a ternary tree T� for T , whereeach node represents a (possibly empty) edge-cluster of T . Using the algorithmfrom Frederickson [5] we then maintain a topology tree T� for T�. Finally weshow that every node of T� represents a cluster in T and thus T is maintained.Let T� be a tree derived from T as follows:� For every edge e 2 T , T� contains a node te representing the edge-clusterfeg.� For every node v 2 T having edges e1; : : : ; ed, T� contains:{ nodes ve1; : : : ; ved representing empty edge-clusters.{ edges (ve1 ; te1); : : : ; (ved; ted).{ edges (ve1 ; ve2); : : : ; (ved�1; ved) if d > 1.18

T� has 3n� 3 nodes and any link or cut in T corresponds to a constant numberof links and cuts in T�. Thus by using the algorithm from [5] we can maintain atopology tree T� for T�. The desired result then follows by this lemma:Lemma 8 Any node-cluster in T� corresponds to an edge-cluster of T .Proof: From [5] we know that the node-clusters of T� have the following prop-erty: Either the external degree of the cluster (the number of edges with exactlyone endpoint in the cluster) is � 2 or the cluster consists of a single node.This means that if the external degree is � 2 then the node-cluster triviallycorresponds to an edge-cluster of T . Otherwise the cluster consists of a singlenode of degree 3 and all nodes in T� of degree 3 represent empty edge-clusters.2It should be noted that Frederickson has no equivalent to our Expose, whichhence does not follow from the reduction. Implementing Expose is, however,very similar to implementing cut and link.

19

