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AbstractAlthough the widely-used Perona{Malik �lter is regarded as ill-posed, straightforward implemen-tations are often surprisingly stable. We give an explanation for this e�ect by applying a discretenonlinear scale-space framework: a spatial discretization on a �xed pixel grid gives a well-posedscale-space with many image-simplifying properties, and an explicit time discretization leads toa scheme which does not introduce additional oscillations. This explains why staircasing is essen-tially the only practically appearing instability.Key words: Nonlinear di�usion, well-posedness, discretization, scale-space.
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1 IntroductionThe nonlinear di�usion �lter by Perona and Malik [1] was the starting point of a new area in imageprocessing, where images are �ltered by studying their evolutions under nonlinear partial di�erentialequations (PDEs). Unfortunately, this starting point is usually regarded as ill-posed, because the�lter is designed to behave like a backward di�usion across edges. Nevertheless, practitioners use thePerona{Malik (PM) equation very often, and rarely report instabilities, except for some staircasinge�ects at slowly varying edges.The mathematical problems behind the continuous PM equation are highly complicated and shallnot be treated here. Recent results, however, give evidence that the ill-posedness of the continuousPM process is less severe than it has been assumed in the past [2, 3, 4]. Sometimes it has also beenconjectured that discretizations have a stabilizing e�ect [5, 6]. This paper shows that this is indeedthe case, and it clari�es to which extend one can expect straightforward discretizations to be stable.Applying a recently discovered nonlinear discrete scale-space framework, we show that already a spatialdiscretization on a �xed pixel grid is su�cient to turn the PM equation into a well-posed system ofordinary di�erential equations, which has many nice scale-space properties. Furthermore, we shall seethat the simplest and most widely used explicit (Euler forward) time discretization is monotonicitypreserving in 1-D: this means that applying such a scheme does not introduce oscillations into asigmoid-like edge. Therefore, practically observed instabilities are basically restricted to staircasinge�ects.The paper is organized as follows: Section 2 explains the continuous PM �lter and presents an m-dimensional semidiscrete formulation. By semidiscrete we mean discrete in space and continuousin time. In Section 3 we discuss a semidiscrete well-posedness and scale-space theory for nonlineardi�usion �lters, which we apply in Section 4 to the semidiscrete PM �lter. Section 5 is devoted tofully discrete results, especially to establishing monotonicity preservation. The presented proofs aresimple and instructive, and the techniques may be useful for similar image processing problems. Weconclude with a summary in Section 6. A preliminary version of this paper has been presented at aworkshop [7].2 The Perona{Malik �lter2.1 Continuous formulationWe consider an m-dimensional rectangular image domain 
 = (0; a1) � � � � � (0; am) with boundary@
, and a (grey-value) image which is given by a bounded mapping f : 
! IR. In order to avoid theblurring and localization problems of linear di�usion �ltering, Perona and Malik proposed a nonlineardi�usion method [1]. Their nonuniform process { which they name anisotropic1 { reduces the di�usivityat those locations which have a larger likelihood to be edges, since they reveal larger gradients. Peronaand Malik obtain a �ltered image u(x; t) as solution of a nonlinear di�usion equation with the originalimage as initial condition and re
ecting boundary conditions (@n denotes the derivative normal to theimage boundary @
): @tu = div (g(jruj2) ru) on 
� (0;1); (1)u(x; 0) = f(x) on 
; (2)@nu = 0 on @
� (0;1): (3)The \time" t is a smoothing parameter: larger values correspond to simpler image representationsu(x; t). Using for instance di�usivities of typeg(jruj2) = 11 + jruj2=�2 (� > 0); (4)they obtained visually impressive results [1]: edges remained stable over a very long time. It wasdemonstrated that edge detection based on this process clearly outperforms the linear Canny edgedetector.1It would be more appropriate to regard the PM �lter as an isotropic model, since it uses a scalar-valued di�usivityand not a di�usion tensor. For models with a di�usion tensor, see e.g. [8, 9].2



2.2 ProblemsSoon it became clear that the PM approach reveals a problem: It is not hard to see that (1) can bedecomposed into a process across the edge and one perpendicular to it:@tu = �g(jruj2) + 2jruj2g0(jruj2)� @��u+ g(jruj2)��u� @��u�; (5)where � := ru=jruj, and � denotes the m-dimensional Laplacian. This process is a usual (forward)di�usion equation as long as jruj � �, since the factors in front of @��u and (�u � @��u) arenonnegative. For jruj > �, however, the factor in front of u�� becomes negative. Thus, across high-contrast edges, the PM �lter acts like a di�usion backward in time. This forward{backward di�usionbehavior is explicitly intended in the PM method, since it gives the desirable result of blurring small
uctuations and sharpening edges. On the other hand, backward di�usion is well-known to be anill-posed process where the solution { if it exists at all { is highly sensitive even to the slightestperturbations of the initial data.Several numerical studies can be found where instabilities in the PM process have been reported[10, 11, 6, 12, 14]. However, the main observed instability is the so-called staircasing e�ect, where asmoothed step edge evolves into piecewise almost linear segments which are separated by jumps; seee.g. [6] for an illustration. The extend of this e�ect depends on the discretization. Typically, �ne pixelgrids [12, 14] or adaptive numerical schemes with grid re�nement at large gradients [6] leads to asplitting into more stairs. Such instabilities which increase with �ner discretizations can be regardedas a hint that the underlying continuous equation is ill-posed. Contributions to the explanation andavoidance of staircasing can be found in [13, 14, 15, 16, 3, 4]. However, the staircasing e�ect ismainly visible for �ne spatial discretizations and for slowly varying ramp-like edges. Under practicalsituations, this is hardly observed, and it is an experimental fact that discretizations of the PM arenot very unstable.A rigorous mathematical analysis of forward{backward di�usion equations is very di�cult, becausemany classical mathematical theories are not applicable. One reason why people became very pes-simistic about the well-posedness of the PM equation was a result by H�ollig [17]. He constructed aforward{backward di�usion process which can have in�nitely many solutions. Although this processwas di�erent from the PM process, one was warned what can happen. In 1994 the general opinion,including the one of Perona and Malik, was that the PM �lter might have weak solutions2, but oneshould neither expect uniqueness nor stability [18]. In the meantime several theoretical results areavailable which provide a better insight into the actual degree of ill-posedness of the Perona{Malik�lter:Kawohl and Kutev [2] were able to establish that the PM process has a unique weak solution which iscontinuously di�erentiable and which exists for some �nite time. On the other hand, they also showedthat such a solution cannot exist for an in�nite time interval.Kichenassamy [3, 4] proposed a notion of generalized solutions to the PM process, which are piecewiselinear and contain jumps, and showed that an analysis of their moving and merging gives similare�ects to those one can observe in practice.Results of You et al. [19] give evidence that the PM process is unstable with respect to perturbationsof the initial image. They showed that the energy functional leading to the PM process as steepestdescent method has an in�nite number of global minima which are dense in the image space. Each ofthese minima corresponds to a piecewise constant image, and slightly di�erent initial images may endup in di�erent minima for t!1.However, the practical behavior of �nite di�erence approximations is much nicer than one would expectfrom the theory above: One can easily calculate a discrete solution for all times, and this solutionconverges to a 
at image for t ! 1. Thus, since it is well-known that discretizations may have aregularizing e�ect to ill-posed problems, it would be desirable to complement the preceding continuousresults with a detailed analysis of the properties of practically used di�erence approximations. Thiswill be done in the subsequent sections.2A weak solution satis�es a generalized (integral) formulation of the PDE. In particular, a weak solution does nothave to be twice di�erentiable in x. 3



2.3 Semidiscrete formulationA discrete m-dimensional image can be regarded as a vector f 2 IRN , whose components fi, i 2 J :=f1; :::; Ng display the grey values at the N pixels. Pixel i represents the location xi. Let hl denotethe grid size in l direction. By ui and gi we denote approximations to u(xi; t) and g(jru(xi; t)j2),respectively. Then, a consistent spatial discretization of the PM equation with re
ecting boundaryconditions can be written as duidt = mXl=1 Xj2Nl(i) gj + gi2h2l (uj � ui); (6)where Nl(i) consist of the two neighbors of pixel i along the direction l (boundary pixels may haveonly one neighbor) and gi := g0@12 mXl=1 Xp;q2Nl(i)�up � uq2hl �21A (7)uses a gradient approximation by central di�erences. In vector{matrix notation (6) becomesdudt = mXl=1Al(u)u (8)where the matrix Al(u) = (aijl(u))ij is given byaijl := 8>>><>>>: gi+gj2h2l (j 2 Nl(i));� mPl=1 Pk2Nl(i) gi+gk2h2l (j = i);0 (else): (9)We observe that a semidiscrete PM process leads to a nonlinear system of ordinary di�erential equa-tions. Let us now study a general well-posedness and scale-space framework for problems of this type.3 Semidiscrete nonlinear scale-space theoryWhile semidiscrete analogues to the linear di�usion scale-space are well-known [20], results for thenonlinear di�usion case have been found quite recently [21].In the continuous setting a nonlinear well-posedness and scale-space framework has been establishedfor spatially regularized variants of the PM process [5, 8, 9]. Such problems have a unique solution[5] which is stable under perturbations of the initial image [8, 9]. In addition to invariances such asthe preservation of the average grey value, it has been shown that these equations create smoothingscale-spaces in spite of their contrast-enhancing potential: they obey a causality property in terms of amaximum{minimum principle, reveal many image simplifying properties, and converge to a constantsteady state [8, 9].Of course, it is desirable to �nd discrete processes which reveal exactly the same qualities. To thisend, criteria have been identi�ed under which it is guaranteed that a semidiscrete scheme of typedudt = A(u)u; (10)u(0) = f ; (11)possesses such properties [9, 21]. All one has to check are the following criteria for A(u) = (aij(u)):(S1) A is a continuously di�erentiable function in u.(S2) A is a symmetric matrix.(S3) All row sums of A are zero.(S4) All o�-diagonal elements of A are nonnegative.4



(S5) A is irreducible:Loosely speaking, this means that we can connect any two pixels by a path with nonvanishingdi�usivities.Formally: For any i; j 2 J there exist k0,...,kr 2 J with k0= i and kr= j such that akpkp+1 6= 0for p = 0,...,r�1.Under these prerequisites the �ltering process satis�es the following properties [9, 21]:(a) Well-posedness:The considered problem has a unique solution for all t > 0, which depends continuously on theinitial value and the right-hand side of the ODE system.This is of signi�cant practical importance, since it guarantees stability under parameter varia-tions and under perturbations of the original image. Such a property is desirable when consider-ing stereo images, image sequences or slices from medical CT or MR sequences, since we knowthat similar images remain similar after �ltering.(b) Average grey level invariance:The average grey level � := 1N Pj2J fj is not a�ected by the semidiscrete di�usion �lter:1N Xj2J uj(t) = � 8 t > 0: (12)This invariance is useful for scale-space based segmentation algorithms [22] and for all applica-tions where grey values are related to physical qualities, for instance in medical imaging.(c) Extremum principle: minj2J fj � ui(t) � maxj2J fj 8 i 2 J; 8 t > 0: (13)This property is much more than a stability result which forbids under- and overshoots. Sinceit also ensures that iso-intensity linking towards the original image is possible, it states animportant causality property, cf. [23].(d) Smoothing Lyapunov functionals:In spite of some possible edge enhancement, the considered processes are simplifying,information-reducing transformations with respect to many aspects: The p-normsku(t)kp := �Xj2J juj(t)jp�1=p (14)are decreasing in t for all p � 2, all even central momentsM2n[u(t)] := 1N Xj2J(uj(t)� �)2n (15)are decreasing in t, and the entropyS[u(t)] := �Xj2J uj(t) lnuj(t); (16)a measure of uncertainty and missing information, is increasing in t (if fj is positive for all j).(e) Convergence to a constant steady state:The scale-space evolution tends to the most global image representation that is possible: aconstant image with the same average grey level as f :limt!1ui(t) = � 8 i 2 J: (17)These semidiscrete results are part of a more general framework which includes also a continuous andfully discrete theory [21]. Full details with proofs can be found in [9], where it is also shown that it ispossible to derive semidiscrete scale-spaces from spatial discretizations of continuous scale-spaces. Dueto its ill-posedness, however, the continuous PM equation cannot be treated within the continuousscale-space framework. 5



Figure 1: Nonlinear di�usion of a Gaussian-like image. (a) Left: Original image,
 = (0; 101)2. (b) Middle: Filtered without regularization, � = 9, � = 0, t = 250.(c) Right: Filtered with regularization, � = 9, � = 0:7, t = 250.4 Application to the semidiscrete Perona-Malik processInterestingly, it is not hard to verify that the semidiscrete PM process satis�es the well-posedness andscale-space requirements (S1){(S5).(S1) Since g is in�nitely times di�erentiable, it follows from (9) that the same also holds for A :=PlAl.(S2) The symmetry of A follows directly from (9) and the symmetry of the neighborhood relation:i 2 Nl(j) () j 2 Nl(i):(S3) By the construction of A it is also evident that all row sums vanish.(S4) Since g is positive, it follows that aij � 0 for all i 6= j.(S5) In order to show that A is irreducible, let us consider two arbitrary pixels i and j. Then we haveto �nd k0,...,kr 2 J with k0= s1 and kr = s2 such that akqkq+1 6= 0 for q = 0,...,r�1. If i = j,we know already from (9) that aii < 0. In this case we have the trivial path i = k0 = kr = j.For i 6= j, we may choose any arbitrary path k0,...,kr, such that kq and kq+1 are neighbors forq = 0,...,r�1. Then, akqkq+1 = gkq + gkq+12h2l > 0for some l 2 f1; :::;mg. This proves (S5).Despite the fact that the PM �lter is regarded to be ill-posed in the continuous setting, we observethat its semidiscrete approximation on a �xed grid satis�es (S1){(S5) and, thus, reveals all the beforementioned well-posedness and scale-space properties. Hence, the spatial discretization has a strongregularizing e�ect. It is caused by the fact that the extremum principle limits the modulus of discretegradient approximations3.One of the remarkable consequences of the gradient restriction due to the grid regularization is theestablished continuous dependence of the �ltered image on the initial one. This is quite unusualfor a process which may act edge-enhancing. Another interesting property is the convergence to aconstant image for t ! 1. In some publications it has been stated that PM implementations createa segmentation for t!1. Our result shows that this is not correct.It should be noted that the grid regularization due to the semidiscretization is certainly not the bestregularization strategy. Experiments show that grid re�nement leads to more staircasing [6, 12, 14].Moreover, grid regularization may cause artifacts which re
ect the grid structure (Fig. 1(b)). One3Our results are in accordance with a recent paper by Pollak et al. [24]. They study an image evolution under anODE system with a discontinuous right hand side, which has some interesting relations to the limit case of a semidiscretePM model. They also report stable behavior of their process.6



can avoid these problems by introducing the regularization explicitly in the continuous PM model,for instance by a Gaussian smoothing of ru within the di�usivity [10, 5, 6, 13, 8, 9]. Figure 1(c)illustrates that { as soon as the standard deviation � of the Gaussian approaches the pixel size { thisregularization dominates over the pixel regularization and avoids their artifacts. Moreover, since theconvolution with a Gaussian bounds the gradient already in the continuous formulation, it leads tocontinuous models which satisfy similar well-posedness and scale-space properties as in the semidiscretecase [8, 9]. Last but not least, it makes the �lter more robust against noise [5] and reduces staircasing[6, 12, 14]. Thus, such regularizations are generally recommendable.5 Fully discrete resultsWe have seen that a spatial discretization is su�cient to make the PM �lter well-posed. Of course, inpractice, one has to apply a temporal discretization as well. If we consider a time step size � > 0 anddenote by uki an approximation of u(xi; k�), then the simplest fully discrete PM equation is given bythe explicit scheme uk+1i � uki� = mXl=1 Xj2Nl(i) gkj + gki2h2l (ukj � uki ): (18)In [9] it is shown that such a scheme inherits its well-posedness and scale-space properties from thesemidiscrete one if the time step size satis�es the stability restriction4 � < 1=Pml=1 2h2l . So we do nothave to worry that we loose the nice semidiscrete results by the temporal discretization.Finally, we prove an important property which is responsible for the fact that { apart from the grid ar-tifacts depicted in Fig. 1 { staircasing is essentially the only practical instability that is observed whenimplementing the PM equation: the one-dimensional discrete PM process is monotonicity preserving[14]: if the grey values are increasing (decreasing) from left to right, then they remain increasing (de-creasing) after �ltering. This property explains why over- and undershoots and the creation of otheroscillations are not possible.Proposition 1 (Monotonicity preservation) For � < h212 , the 1-D explicit PM scheme is (strictly)monotonicity preserving. For a consecutive pixel numbering this means thatuki < uki+1 8 i =) uk+1i < uk+1i+1 8 i:Proof. Consider some arbitrary inner pixel i 2 f2; :::; N�2g. Fromuk+1i = � ai;i+1 uki+1 + (1�� ai;i+1�� ai;i�1)uki+ � ai;i�1 uki�1uk+1i+1 = � ai+1;i+2 uki+2 + (1�� ai+1;i+2�� ai+1;i)uki+1+ � ai+1;i ukiand the symmetry of A we obtainuk+1i+1 � uk+1i = � ai+1;i+2 (uki+2 � uki+1)+ (1� 2�ai;i+1) (uki+1 � uki )+ � ai�1;i (uki � uki�1):Let � < h212 and ukj < ukj+1 for all j. Since 0 < aj;j+1 � 1=h21 for all j, we know that all summands ofthe RHS are positive. Thus, it follows that uk+1i < uk+1i+1 for i 2 f2; :::; N�2g. It is easy to see that thesame reasoning is applicable to the modi�ed equations arising at the boundaries when i = 1 or N�1.q.e.d.4More e�cient absolutely stable schemes can be found in [25].7
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