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Abstract

Although the widely-used Perona—Malik filter is regarded as ill-posed, straightforward implemen-
tations are often surprisingly stable. We give an explanation for this effect by applying a discrete
nonlinear scale-space framework: a spatial discretization on a fixed pixel grid gives a well-posed
scale-space with many image-simplifying properties, and an explicit time discretization leads to
a scheme which does not introduce additional oscillations. This explains why staircasing is essen-
tially the only practically appearing instability.
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1 Introduction

The nonlinear diffusion filter by Perona and Malik [1] was the starting point of a new area in image
processing, where images are filtered by studying their evolutions under nonlinear partial differential
equations (PDEs). Unfortunately, this starting point is usually regarded as ill-posed, because the
filter is designed to behave like a backward diffusion across edges. Nevertheless, practitioners use the
Perona—Malik (PM) equation very often, and rarely report instabilities, except for some staircasing
effects at slowly varying edges.

The mathematical problems behind the continuous PM equation are highly complicated and shall
not be treated here. Recent results, however, give evidence that the ill-posedness of the continuous
PM process is less severe than it has been assumed in the past [2, 3, 4]. Sometimes it has also been
conjectured that discretizations have a stabilizing effect [5, 6]. This paper shows that this is indeed
the case, and it clarifies to which extend one can expect straightforward discretizations to be stable.
Applying a recently discovered nonlinear discrete scale-space framework, we show that already a spatial
discretization on a fixed pixel grid is sufficient to turn the PM equation into a well-posed system of
ordinary differential equations, which has many nice scale-space properties. Furthermore, we shall see
that the simplest and most widely used explicit (Euler forward) time discretization is monotonicity
preserving in 1-D: this means that applying such a scheme does not introduce oscillations into a
sigmoid-like edge. Therefore, practically observed instabilities are basically restricted to staircasing
effects.

The paper is organized as follows: Section 2 explains the continuous PM filter and presents an m-
dimensional semidiscrete formulation. By semidiscrete we mean discrete in space and continuous
in time. In Section 3 we discuss a semidiscrete well-posedness and scale-space theory for nonlinear
diffusion filters, which we apply in Section 4 to the semidiscrete PM filter. Section 5 is devoted to
fully discrete results, especially to establishing monotonicity preservation. The presented proofs are
simple and instructive, and the techniques may be useful for similar image processing problems. We
conclude with a summary in Section 6. A preliminary version of this paper has been presented at a
workshop [7].

2 The Perona—Malik filter

2.1 Continuous formulation

We consider an m-dimensional rectangular image domain Q = (0,a1) X --- x (0, a,,) with boundary
09, and a (grey-value) image which is given by a bounded mapping f : @ — IR. In order to avoid the
blurring and localization problems of linear diffusion filtering, Perona and Malik proposed a nonlinear
diffusion method [1]. Their nonuniform process — which they name anisotropic! — reduces the diffusivity
at those locations which have a larger likelihood to be edges, since they reveal larger gradients. Perona
and Malik obtain a filtered image u(z, t) as solution of a nonlinear diffusion equation with the original
image as initial condition and reflecting boundary conditions (8, denotes the derivative normal to the
image boundary 0Q):

Owu = div (9(|Vul?) Vu) on Q x (0, 00), (1)
u(z,0) = f(z) on Q, (2)
Opu =0 on 00 x (0, 00). (3)

The “time” ¢ is a smoothing parameter: larger values correspond to simpler image representations
u(z,t). Using for instance diffusivities of type

oIVeP) = i (>0 (W

they obtained visually impressive results [1]: edges remained stable over a very long time. It was
demonstrated that edge detection based on this process clearly outperforms the linear Canny edge
detector.

1t would be more appropriate to regard the PM filter as an isotropic model, since it uses a scalar-valued diffusivity
and not a diffusion tensor. For models with a diffusion tensor, see e.g. [8, 9].



2.2 Problems

Soon it became clear that the PM approach reveals a problem: It is not hard to see that (1) can be
decomposed into a process across the edge and one perpendicular to it:

o = (g(IVuP) +2ATuPg (Vul?)) Sy

+ g(Vul) (Bu = d,u), (5)

where n := Vu/|Vu|, and A denotes the m-dimensional Laplacian. This process is a usual (forward)
diffusion equation as long as |Vu| < A, since the factors in front of 9,,u and (Au — 9,,u) are
nonnegative. For [Vu| > A, however, the factor in front of w,, becomes negative. Thus, across high-
contrast edges, the PM filter acts like a diffusion backward in time. This forward—backward diffusion
behavior is explicitly intended in the PM method, since it gives the desirable result of blurring small
fluctuations and sharpening edges. On the other hand, backward diffusion is well-known to be an
ill-posed process where the solution — if it exists at all — is highly sensitive even to the slightest
perturbations of the initial data.

Several numerical studies can be found where instabilities in the PM process have been reported
[10, 11, 6, 12, 14]. However, the main observed instability is the so-called staircasing effect, where a
smoothed step edge evolves into piecewise almost linear segments which are separated by jumps; see
e.g. [6] for an illustration. The extend of this effect depends on the discretization. Typically, fine pixel
grids [12, 14] or adaptive numerical schemes with grid refinement at large gradients [6] leads to a
splitting into more stairs. Such instabilities which increase with finer discretizations can be regarded
as a hint that the underlying continuous equation is ill-posed. Contributions to the explanation and
avoidance of staircasing can be found in [13, 14, 15, 16, 3, 4]. However, the staircasing effect is
mainly visible for fine spatial discretizations and for slowly varying ramp-like edges. Under practical
situations, this is hardly observed, and it is an experimental fact that discretizations of the PM are
not very unstable.

A rigorous mathematical analysis of forward—backward diffusion equations is very difficult, because
many classical mathematical theories are not applicable. One reason why people became very pes-
simistic about the well-posedness of the PM equation was a result by Hollig [17]. He constructed a
forward—backward diffusion process which can have infinitely many solutions. Although this process
was different from the PM process, one was warned what can happen. In 1994 the general opinion,
including the one of Perona and Malik, was that the PM filter might have weak solutions?, but one
should neither expect uniqueness nor stability [18]. In the meantime several theoretical results are
available which provide a better insight into the actual degree of ill-posedness of the Perona—Malik
filter:

Kawohl and Kutev [2] were able to establish that the PM process has a unique weak solution which is
continuously differentiable and which exists for some finite time. On the other hand, they also showed
that such a solution cannot exist for an infinite time interval.

Kichenassamy [3, 4] proposed a notion of generalized solutions to the PM process, which are piecewise
linear and contain jumps, and showed that an analysis of their moving and merging gives similar
effects to those one can observe in practice.

Results of You et al. [19] give evidence that the PM process is unstable with respect to perturbations
of the initial image. They showed that the energy functional leading to the PM process as steepest
descent method has an infinite number of global minima which are dense in the image space. Each of
these minima corresponds to a piecewise constant image, and slightly different initial images may end
up in different minima for ¢ — oo.

However, the practical behavior of finite difference approximations is much nicer than one would expect
from the theory above: One can easily calculate a discrete solution for all times, and this solution
converges to a flat image for ¢ — oo. Thus, since it is well-known that discretizations may have a
regularizing effect to ill-posed problems, it would be desirable to complement the preceding continuous
results with a detailed analysis of the properties of practically used difference approximations. This
will be done in the subsequent sections.

2A weak solution satisfies a generalized (integral) formulation of the PDE. In particular, a weak solution does not
have to be twice differentiable in z.



2.3 Semidiscrete formulation

A discrete m-dimensional image can be regarded as a vector f € RY, whose components f;, i € J :=
{1,..., N} display the grey values at the N pixels. Pixel i represents the location x;. Let h; denote
the grid size in [ direction. By u; and g; we denote approximations to u(z;,t) and g(|Vu(z;,t)|?),
respectively. Then, a consistent spatial discretization of the PM equation with reflecting boundary
conditions can be written as

WY Y L ), ©

= 1]EM(

where V(i) consist of the two neighbors of pixel 4 along the direction I (boundary pixels may have
only one neighbor) and

T () (7

l 1 p,qeN; (i)

uses a gradient approximation by central differences. In vector-matrix notation (6) becomes

“_ ZAl(u)u (8)
=1

where the matrix Aj(u) = (a;; (u));; is given by

vy (G € M),
aji == -y X e (j=9) (9)
I=1 keN; (1) !
0 (else).

We observe that a semidiscrete PM process leads to a nonlinear system of ordinary differential equa-
tions. Let us now study a general well-posedness and scale-space framework for problems of this type.

3 Semidiscrete nonlinear scale-space theory

While semidiscrete analogues to the linear diffusion scale-space are well-known [20], results for the
nonlinear diffusion case have been found quite recently [21].

In the continuous setting a nonlinear well-posedness and scale-space framework has been established
for spatially regularized variants of the PM process [5, 8, 9]. Such problems have a unique solution
[5] which is stable under perturbations of the initial image [8, 9]. In addition to invariances such as
the preservation of the average grey value, it has been shown that these equations create smoothing
scale-spaces in spite of their contrast-enhancing potential: they obey a causality property in terms of a
maximum—minimum principle, reveal many image simplifying properties, and converge to a constant
steady state [8, 9].

Of course, it is desirable to find discrete processes which reveal exactly the same qualities. To this
end, criteria have been identified under which it is guaranteed that a semidiscrete scheme of type

du
il A(u)u, (10)

u(0) = f, (11)
possesses such properties [9, 21]. All one has to check are the following criteria for A(u) = (a;;(u)):

(1
)

) A is a continuously differentiable function in u.
(S2) A is a symmetric matrix.
(S3) All row sums of A are zero.
(S4)

All off-diagonal elements of A are nonnegative.



(S3)

A is irreducible:

Loosely speaking, this means that we can connect any two pixels by a path with nonvanishing
diffusivities.

Formally: For any 7,5 € J there exist ko,...,k. € J with kg =14 and k,=j such that ay,x,,, #0
for p=0,...,r—1.

Under these prerequisites the filtering process satisfies the following properties [9, 21]:

(a)

Well-posedness:

The considered problem has a unique solution for all ¢ > 0, which depends continuously on the
initial value and the right-hand side of the ODE system.

This is of significant practical importance, since it guarantees stability under parameter varia-
tions and under perturbations of the original image. Such a property is desirable when consider-
ing stereo images, image sequences or slices from medical CT or MR sequences, since we know
that similar images remain similar after filtering.

Average grey level invariance:
The average grey level y := % > jeq Ii 1s not affected by the semidiscrete diffusion filter:

1
NZuj(t):u vt > 0. (12)
JjEJ

This invariance is useful for scale-space based segmentation algorithms [22] and for all applica-
tions where grey values are related to physical qualities, for instance in medical imaging.

Ezxtremum principle:

i - < uy < ; ; .
I]_I?él‘rjlfj <wui(t) < IJIlea}(fJ VielJ, Vt>0 (13)

This property is much more than a stability result which forbids under- and overshoots. Since

it also ensures that iso-intensity linking towards the original image is possible, it states an
important causality property, cf. [23].

Smoothing Lyapunov functionals:
In spite of some possible edge enhancement, the considered processes are simplifying,
information-reducing transformations with respect to many aspects: The p-norms

1/p
@)l = (3 sl (14)
JjeJ
are decreasing in ¢ for all p > 2, all even central moments
1 n
Monlu(t)] = + > (us(t) — w)? (15)
JjeJ
are decreasing in ¢, and the entropy
Su(t)] == =Y ui(t) Inu;(t), (16)
JjeJ
a measure of uncertainty and missing information, is increasing in ¢ (if f; is positive for all j).

Convergence to a constant steady state:
The scale-space evolution tends to the most global image representation that is possible: a
constant image with the same average grey level as f:

tlggo ui(ty=p Vie.ld (17)

These semidiscrete results are part of a more general framework which includes also a continuous and
fully discrete theory [21]. Full details with proofs can be found in [9], where it is also shown that it is
possible to derive semidiscrete scale-spaces from spatial discretizations of continuous scale-spaces. Due
to its ill-posedness, however, the continuous PM equation cannot be treated within the continuous
scale-space framework.



Figure 1: Nonlinear diffusion of a Gaussian-like image. (a) LEFT: Original image,
Q = (0,101)2. (b) MIDDLE: Filtered without regularization, A = 9, o = 0, ¢t = 250.
(c) RIGHT: Filtered with regularization, A =9, ¢ = 0.7, t = 250.

4 Application to the semidiscrete Perona-Malik process

Interestingly, it is not hard to verify that the semidiscrete PM process satisfies the well-posedness and
scale-space requirements (S1)—(S5).

(S1) Since g is infinitely times differentiable, it follows from (9) that the same also holds for A :=

2 Ar

(S2) The symmetry of A follows directly from (9) and the symmetry of the neighborhood relation:
i € M(j) = jeN®).

(S3) By the construction of A it is also evident that all row sums vanish.
(S4) Since g is positive, it follows that a;; > 0 for all ¢ # j.

(S5) In order to show that A is irreducible, let us consider two arbitrary pixels i and j. Then we have
to find ko,...,k, € J with kg =s; and k, = s such that a ., # 0 for ¢ = 0,..r—1. If i = j,
we know already from (9) that a;; < 0. In this case we have the trivial path i = kg = k, = j.
For i # j, we may choose any arbitrary path ky,...,k,, such that k, and k,y; are neighbors for
q=0,....,r—1. Then,

kg T Ghgya

0
oh

a’quq+1 =
for some I € {1, ...,m}. This proves (S5).

Despite the fact that the PM filter is regarded to be ill-posed in the continuous setting, we observe
that its semidiscrete approximation on a fixed grid satisfies (S1)—(S5) and, thus, reveals all the before
mentioned well-posedness and scale-space properties. Hence, the spatial discretization has a strong
regularizing effect. It is caused by the fact that the extremum principle limits the modulus of discrete
gradient approximations®.

One of the remarkable consequences of the gradient restriction due to the grid regularization is the
established continuous dependence of the filtered image on the initial one. This is quite unusual
for a process which may act edge-enhancing. Another interesting property is the convergence to a
constant image for ¢ — oco. In some publications it has been stated that PM implementations create
a segmentation for ¢ — oo. Our result shows that this is not correct.

It should be noted that the grid regularization due to the semidiscretization is certainly not the best
regularization strategy. Experiments show that grid refinement leads to more staircasing [6, 12, 14].
Moreover, grid regularization may cause artifacts which reflect the grid structure (Fig. 1(b)). One

30ur results are in accordance with a recent paper by Pollak et al. [24]. They study an image evolution under an
ODE system with a discontinuous right hand side, which has some interesting relations to the limit case of a semidiscrete
PM model. They also report stable behavior of their process.



can avoid these problems by introducing the regularization explicitly in the continuous PM model,
for instance by a Gaussian smoothing of Vu within the diffusivity [10, 5, 6, 13, 8, 9]. Figure 1(c)
illustrates that — as soon as the standard deviation o of the Gaussian approaches the pixel size — this
regularization dominates over the pixel regularization and avoids their artifacts. Moreover, since the
convolution with a Gaussian bounds the gradient already in the continuous formulation, it leads to
continuous models which satisfy similar well-posedness and scale-space properties as in the semidiscrete
case [8, 9]. Last but not least, it makes the filter more robust against noise [5] and reduces staircasing
[6, 12, 14]. Thus, such regularizations are generally recommendable.

5 Fully discrete results

We have seen that a spatial discretization is sufficient to make the PM filter well-posed. Of course, in
practice, one has to apply a temporal discretization as well. If we consider a time step size 7 > 0 and
denote by u¥ an approximation of u(z;, kT), then the simplest fully discrete PM equation is given by

the explicit scheme
k+1 _

i Z 3 9 +or +gz (uk — ub). (18)

FJENI(3) l

In [9] it is shown that such a scheme inherits its well-posedness and scale-space properties from the
semidiscrete one if the time step size satisfies the stability restriction* 7 < 1/ 3", % So we do not
1

have to worry that we loose the nice semidiscrete results by the temporal discretization.

Finally, we prove an important property which is responsible for the fact that — apart from the grid ar-
tifacts depicted in Fig. 1 — staircasing is essentially the only practical instability that is observed when
implementing the PM equation: the one-dimensional discrete PM process is monotonicity preserving
[14]: if the grey values are increasing (decreasing) from left to right, then they remain increasing (de-
creasing) after filtering. This property explains why over- and undershoots and the creation of other
oscillations are not possible.

Proposition 1 (Monotonicity preservation) Forrt < , the 1-D explicit PM scheme is (strictly)
monotonicity preserving. For a consecutive pixel numbemng thzs means that

ub <uf, Vi = uftt <uftl o Vi

Proof. Consider some arbitrary inner pixel ¢ € {2, ..., N—2}. From

1 k k
witt = Tais gy + (=T =7 aii) uf
k
+ T Q-1 Uiyq
1 k k
Ufﬁ = Taip o Uhs + (1=Tam se—7ai i) ugy

+ TafH—l,iU
and the symmetry of A we obtain

EH B k k
Uy — Y = Tagie (Ui — uiy)

+ (1= 2ra;4) (uly —uy)

+ Tai, (uic — uiﬁl).

2
Let 7 < 20 and u} < ub,, for all j. Since 0 < aj ;41 < 1/h? for all j, we know that all summands of
the RHS are positive. Thus, it follows that uf“ < ufill fori € {2,..., N—2}. It is easy to see that the
same reasoning is applicable to the modified equations arising at the boundaries when ¢ =1 or N —1.
q.e.d.

4More efficient absolutely stable schemes can be found in [25].



6 Conclusions

In this paper we have presented a semidiscrete and discrete analysis of the Perona—Malik process. In
order to explain the well-posedness of a spatially discretized PM equation, we have applied a recent
framework for semidiscrete nonlinear scale-spaces. These results also carry over to the fully discrete
setting, where a monotonicity preserving property has been proved. They explain that observed in-
stabilities of PM discretizations are restricted to staircasing effects and grid artifacts affecting the
rotational invariance. These effects may be tamed by introducing a grid independent spatial regular-
izations already in the continuous equation [10, 5, 6, 9].
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