Technical Report DIKU-TR-97/17
Department of Computer Science
University of Copenhagen
Universitetsparken 1
DK-2100 KBH O
DENMARK

September 1997

Poly-Logarithmic Deterministic Fully-Dynamic Graph
Algorithms I: Connectivity and Minimum Spanning Tree

Jacob Holm Kristian de Lichtenberg Mikkel Thorup

Poly-logarithmic deterministic fully-dynamic
graph algorithms I: connectivity and minimum
spanning tree

Jacob Holm* Kristian de Lichtenberg* Mikkel Thorup*

Abstract

Deterministic fully dynamic graph algorithms are presented for con-
nectivity and minimum spanning forest. For connectivity, starting with no
edges, the amortized cost for maintaining a spanning forest is O(log? n) per
update, i.e. per edge insertion or deletion. Deciding connectivity between
any two given vertices is done in O(logn/loglogn) time. This matches
the previous best randomized bounds. The previous best deterministic
bound was O(/nlogn) amortized time per update but constant time for
connectivity queries.

For minimum spanning trees, first a deletions-only algorithm is pre-
sented supporting deletes in amortized time O(log®n). Applying a general
reduction from Henzinger and King, we then get a fully dynamic algo-
rithm such that starting with no edges, the amortized cost for maintaining
a minimum spanning forest is O(log*n) per update. The previous best
deterministic bound was O(+/nlogn) amortized time per update, and no
better randomized bounds were known.

Corresponding O(log? n) algorithms for 2-edge connectivity and bicon-
nectivity will be presented in a subsequent report.

1 Introduction

We consider the fully dynamic graph problems of connectivity and of minimum
spanning forest. In a fully dynamic graph problem, we are considering a graph G
over a fixed vertex set V', |[V| = n. The graph G may be updated by insertions
and deletions of edges. Unless otherwise stated, we assume that we start with an
empty edge set.

For the fully dynamic connectivity problem, the updates may be interspersed
with connectivity queries, asking whether two given vertices are connected in G.

*E-mail: (samson ,morat ,mthorup) @diku.dk. Department of Computer Science, University
of Copenhagen.

Both updates and queries are presented on-line, meaning that we have to respond
to an update or query without knowing anything about the future.

In the fully dynamic minimum spanning tree problem, we have weights on the
edges, and we wish to maintain a minimum spanning forest F' of G. Thus, in
connection with any update to G, we need to respond with the corresponding
updates for F', if any.

The connectivity problem reduces to the spanning tree problem in that if
we can maintain any spanning forest F for G at cost O(t(n)logn) per up-
date, then, using dynamic trees [10], we can answer connectivity queries in time
O(logn/logt(n)).

In this paper, we first show a very simple deterministic algorithm for main-
taining a spanning forest in a graph in amortized time O(log®n) per update.
Connectivity queries are then answered in time O(logn/loglogn).

Second, we derive a quite simple deterministic algorithm for maintaining a
minimum spanning forest in a graph in amortized time O(log4 n).

History For deterministic algorithms, all the previous best solutions to the
fully dynamic connectivity problem were also solutions to the minimum span-
ning tree problem. In 1985 [5], Frederickson introduced a data structure known
as topology trees for the fully dynamic minimum spanning tree problem with a
worst case cost of O(y/m) per update, permitting connectivity queries in time
O(logn/log(y/m/logn)) = O(1). In 1992, Epstein et. al. [3, 2] improved
the update time to O(y/n) using the sparsification technique. Finally in 1997
Henzinger and King [8] gave an algorithm with O(¥/nlogn) update time and
O(logn/loglogn) time per connectivity query.

Randomization has been used to improve the bounds for the connectivity
problem. In 1995 [6], Henzinger and King showed that a spanning forest could be
maintained in O(log3 n) expected amortized time per update. Then connectivity
queries are supported in O(logn/loglogn) time. The update time was further
improved to O(log®n) in 1996 [9] by Henzinger and Thorup. No randomized
technique was known for improving the deterministic O(/nlogn) update cost
for the minimum spanning tree problem.

As mentioned, we present a deterministic fully dynamic connectivity algo-
rithm with an update cost of O(log®n), thus matching the previous best ran-
domized bound and improving substantially over the previous best deterministic
bound of O({/nlogn). For the minimum spanning tree problem our determin-
istic update cost of O(log4 n) improves substantially over the previous bound of
O(/nlogn), and here no better randomized bound was known.

The result is achieved in three steps: First, we give a deterministic fully
dynamic connectivity algorithm that uses O(log” n) amortized time per update
and O(logn/loglogn) time per query. Then, we extend this algorithm to give
a deletions-only minimum spanning tree data structure supporting deletes in

O(log® n) amortized time. Finally we use a technique from [8] to convert our
deletions-only structure to a fully dynamic data structure for the minimum span-
ning tree problem using O(log’n) amortized time per update. Our technique
relies on some of the same intuition as was used in Henzinger and King [6] in
their randomized algorithm. Our deterministic algorithm is, however, much sim-
pler, and in contrast to their algorithm, it generalizes to the minimum spanning
tree problem.

The reader is referred to [1, 3, 4, 6] for discussions of problems that get
improved by our improvements for the fully dynamic connectivity and minimum
spanning tree problems.

2 Connectivity

In this section, we present an O(log”n) time deterministic fully dynamic algo-
rithm for graph connectivity. First we give a high level description, ignoring all
problems concerning data structures. Second, we implement the algorithm with
concrete data structures and analyze the running times.

2.1 High level description

Our dynamic algorithm maintains a spanning forest F' of a graph G. The edges
in F' will be referred to as tree-edges. Internally, the algorithm associates with
each edge e a level {(e) < L = |log,n|. For each i, F; denotes the sub-forest of
F induced by edges of level at least . Thus, F' = Fy, O F; O --- D Fr. The
following invariants are maintained.

i) F'is a maximum (w.r.t. /) spanning forest of GG, that is, if (v, w) is a non-tree
g
edge, v and w are connected in Fjy,).

(ii) The maximal number of nodes in a tree in F; is n/2¢. Thus, the maximal
relevant level is L.

Initially, all edges have level 0, and hence both invariants are satisfied. We are
going to present an amortization argument based on increasing the levels of edges.
The levels of edges are never decreased, so we can have at most L increases per
edge. Intuitively speaking, when the level of a non-tree edge is increased, it is
because we have discovered that its end points are close enough in F' to fit in a
smaller tree on a higher level. Concerning tree edges, note that increasing their
level cannot violate (i), but it may violate (ii).
We are now ready for a high-level description of insert and delete.

Insert(e) The new edge is given level 0. If the end-points were not connected in
F = Fy, e is added to Fj.

Delete(e) If e is not a tree-edge, it is simply deleted. If e is a tree-edge, it
is deleted and a replacement edge, reconnecting F' at the highest possible
level, is searched for. Since F' was a maximum spanning forest, we know
that the replacement edge has to be of level at most ¢(e). We now call
Replace(e, £(e)). Note that when a tree-edge e is deleted, F' may no longer
be spanning, in which case (i) is violated until we have found a replacement
edge. In the time in between, if (v, w) is not a replacement edge, we still
have that v and w are connected in Fy,).

Replace((v,w), i) Assuming that there is no replacement edge on level > i, finds
a replacement edge of the highest level < 4, if any.

Let T, and T}, be the trees in F; containing v and w, respectively. Assume,
without loss of generality, that |7,| < |T,|. Before deleting (v,w), T =
T, U{(v,w)} UT, was a tree on level 7 with at least twice as many nodes
as T,. By (ii), T had at most n/2' nodes, so now T, has at most n/2""!
nodes. Hence, preserving our invariants, we can take all edges of T}, of level
¢ and increase their level to ¢ + 1, so as to make 7}, a tree in Fj ;.

Now level ¢ edges incident to 7}, are visited one by one until either a re-
placement edge is found, or all edges have been considered. Let f be an
edge visited during the search.

If f does not connect T, and T,,, we increase its level to ¢4 1. This increase
pays for our considering f.

If f does connect T, and T, it is inserted as a replacement edge and the
search stops.

If there are no level i edges left, we call Replace((v, w),i—1); except if i = 0,
in which case we conclude that there is no replacement edge for (v, w).

2.2 Implementation

For each 7, we wish to maintain the forest F; together with all non-tree edges on
level . For any vertex v, we wish to be able to find the tree T}, in F; containing
it. We want to be able to compute the size of T,,. We want to be able to find an
edge of T, on level i, if one exists. Finally, we want to be able to find a level ¢
non-tree edge incident to T, if any.

The trees in F; may be cut (when an edge is deleted) and linked (when a re-
placement edge is found, an edge is inserted or the level of a tree edge is increased).
Moreover, non-tree edges may be introduced and any edge may disappear on level
i (when the level of an edge is increased or when non-tree edges are inserted or
deleted).

All the above operations and queries may be supported in O(logn) time using
the ET-trees from [6], to which the reader is referred for additional details. An

ET-tree is a standard balanced binary tree over the Euler tour of a tree. Each
node in the ET-tree represents the segment of the Euler tour below it. The point
in considering Euler tours is that if trees in a forest are linked or cut, the new
Euler tours can be constructed by at most 2 splits and 2 concateations of the
original Euler tours. Rebalancing the ET-trees affects only O(logn) nodes.

Here we have an ET-tree over each tree in F;. Each node of the ET-tree
contains a number telling the size of the Euler tour segment below it, a bit telling
if any tree edges in the segment have level 7, and a bit telling whether there is
any level ¢ non-tree edges incident to a vertex in the segment.

Given a vertex v we can find the tree T, containing v by moving O(logn)
steps up till we find a root of an ET-tree. This root represents the Euler tour of
T,. The size s of the Euler tour of a tree is twice the number of edges, so the
number of vertices is s/2+1. To find a tree edge of level i or an incident non-tree
edge, if any, we move O(logn) steps down the ET-tree, using the bits telling us
under which nodes such edges are to be found. If a tree edge (v, w) is moved from
level i, we only need to update the bits on the paths from (v, w) and (w,v) to the
root, using O(logn) time. If a non-tree edge (v, w) is introduced/disappear, we
only need to update the bits on the paths from v and w to their respective roots.
This takes O(logn) time. When the trees are cut or linked, only O(logn) nodes
are affected, and the information in each node is updated in constant time.

It is now straightforward to analyze the amortized cost of the different opera-
tions. When an edge e is inserted on level 0, the direct cost is O(logn). However,
its level may increase O(logn) times, so the amortized cost is O(log”n).

Deleting a non-tree edge e takes time O(logn). When a tree edge e is deleted,
we have to cut all forests F}, j < {(e), giving an immediate cost of O(log? n). We
then have O(logn) recursive calls to Replace, each of cost O(logn) plus the cost
amortized over increases of edge levels. Finally, if a replacement edge is found,
we have to link O(logn) forests, in O(log”n) total time.

Thus, the cost of inserting and deleting edges from G is O(log®n). The
balanced binary tree over Fy = F' immediately allows us to answer connectivity
queries between arbitrary nodes in time O(logn). In order to reduce this time to
O(logn/loglogn), as in [6], we introduce an extra balanced O(logn)-ary B-tree
over the Euler tour of each tree in F. The B-tree has depth O(logn/loglogn),
which is hence the time it takes for a connectivity query. Each delete or insert
gives rise to at most one cut and one link in F', and for O(logn)-ary B-trees, such
operations can be supported in O(log®n/loglogn) time. Thus, we conclude:

Theorem 1 Given a graph G with m edges and n wvertices, there exists
a deterministic fully dynamic algorithm that answers connectivity queries in
O(log /loglogn) time worst case, and uses O(log”n) amortized time per insert
or delete.

3 Minimum spanning forest

We will now expand on the ideas from the previous section to the problem of
maintaining a minimum spanning forest (MSF). First we present an O(log®n)
deletions-only algorithm, and then we apply a general construction from [8] trans-
forming a deletions-only MSF algorithm into a fully dynamic MSF algorithm.

3.1 Decremental minimum spanning forests

It turns out that if we only want to support deletions, we can obtain an MSF-
algorithm from our connectivity algorithm by some very simple changes. The first
is, of course, the initial spanning forest F' has to be a minimal spanning forest.
The second is that when in replace (cf. page 4). we consider the level ¢ non-tree
edges incident to T, instead of doing it in an arbitrary order, we should do it
in order of increasing weights. That is, we repeatedly take the lightest incident
level ¢ edge e: if e is a replacement edge, we are done; otherwise, we move e to
level ¢ + 1, and repeat with the new lightest incident level 7 edge, if any. For the
above changes to work, it is crucial, that all weights are distinct. To ensure this,
we associate a unique number with each edge. If two edges have the same weight,
it is the one with the smaller number that is the smaller.

To see that the above simple changes suffice to maintain that F' is a mini-
mum spanning forest, we will prove that in addition to (i) and (ii), the following
invariant is maintained:

(iii) If e is the heaviest edge on a cycle C', then e has the lowest level on C.

The original replace function found a replacement edge on the highest possible
level, but now, among the replacement edges on the highest possible level, we
choose the one of minimum weight. Using (iii), we will show that this edge has
minimum weight among all replacement edges.

Lemma 2 For any tree edge e, among all replacement edges, the lightest edge is
on the maximum level.

Proof: Let e; and ey be replacement edges for e. Let C; be the cycle induced by
e;; then e € C;. Suppose e is lighter than eo. We want to show that £(e;) > £(e2).

Consider the cycle C'= (C,UCy) \ (C1NCy). Since F is a minimum spanning
forest, we know that e; is the heaviest edge on C;. Hence e; is the heaviest edge
on C. By (iii) this implies that e, has the lowest level on C. In particular,
l(er) > l(e). O

Since our algorithm is just a specialized version of the decremental connectivity
algorithm, we already know that (i) and (ii) are maintained.

Lemma 3 (iii) is maintained.

Proof: Initially (iii) is satisfied since all edges are on level 0. We will now show
that (iii) is maintained under all the different changes we make to our structure
during the deletion of an edge. If an edge e is just deleted, any cycle in G\ {e}
also existed in G, so (iii) is trivially preserved. Also note that replacing a deleted
tree-edge cannot in itself violate (iii) since it does not change the levels or weights
of any edges.

Our real problem is to show that (iii) is preserved during Replace when the
level of an edge e is increased. This cannot violate (iii) if e is not the heaviest
edge on some cycle, so assume that e is the heaviest edge on a cycle C'. To prove
that (iii) is not violated, we want to show that before the increase, all other edges
in C have level > i + 1.

No tree edge is heaviest on any cycle, so e is a non-tree edge. When £(e) is to
be increased from ¢ to ¢ + 1, we know it is the lightest level ¢ edge incident to 7T,
(cf. the description of replace on page 4). Moreover, by (iii), all other edges on
C have level at least 7. Thus, all other edges from C' incident to T, have level at
least 7 + 1.

To complete the proof, we show that all edges in C' are incident to 7T),. Suppose,
for a contradiction, that C' contained an edge f leaving 7;. Since e is to be
increased, e # f. Also, the call to Replace requires that there is no replacement
edge of level > 4, so ¢(f) <. This contradicts that all edges # e from C' incident
to T, have level > ¢+ 1. O

It has now been established that the above change in replace suffices to maintain
a minimum spanning forest. A last point is that we need to modify our ET-trees
to give us the lightest non-tree edge incident to a tree. So far, for each node in
the ET-trees, we had a bit telling us whether the Euler tour segment below it had
an incident non-tree edge. Now, with the node, we store the minimum weight of
a non-tree edge incident to the Euler tour segment below it. Clearly, we can still
support the different operations in O(logn) time. We conclude

Theorem 4 There exists a deletions-only MSF algorithm that can be initialized
on a graph with n nodes and m edges and support any sequence of Q(m) deletions
in total time O(mlog®n). O

3.2 Fully dynamic MSF

To obtain a fully dynamic minimum spanning forest algorithm we apply a general
reduction, which is a slight generalization of the one provided by Henzinger and
King [8, pp. 600-603]. The reduction is described as follows.

Lemma 5 Suppose we have a deletions-only MSF algorithm that for any k, I,
can be initialized on a graph with k nodes and | edges and support any sequence
of Q() deletions in total time O(l-t(k,l)) where t is non-decreasing. Then there

exists a fully-dynamic MSF algorithm for a graph on n nodes starting with no
edges, that for m edges, supports an update in amortized time

3+log,m 4
@) (log3n + Y > t(min{n, 2j},2j)> :

i=1 j=1

“Proof”: Essentially, we combine the reduction from [8] with a contraction
idea from [7]. We will only sketch the changes needed in [8]. Asin [8], we operate
on a series of graphs A;, where A; has 2' non-tree edges. In [8], A; may have
n — 1 MSF-edges, and this forces them to introduce a special efficient operation
for adding a batch of edges. Here, instead, when we first create A;, we contract
all MSF-paths that are not incident to any non-tree edge. The “super” edge e
replacing a MSF-path P gets the minimum weight on P. Moreover, if any edge
from P is deleted, we have to delete e in A;. As a result, we can base our fully-
dynamic algorithm directly on deletions-only algorithms. a

From Theorem 4, we get t(k,l) = O(log* k), and hence we get a fully dynamic
algorithm with update cost

3+logy, m ¢
@) (log3 n+ Y. > log’(min{n, 2j})) = O(log"* n).

i=1 j=1

Note for comparison, that in [8], Henzinger and King had ¢(k,1) = O(v/1logk),
giving them an update cost of O(/mlogn). Then sparsification [2, 3| reduces
the cost to O(y¥/nlogn). From the combination of Theorem 4 and Lemma 5, we
conclude

Theorem 6 There is a fully-dynamic MSF algorithm that for a graph with
n nodes and starting with no edges maintains a minimum spanning forest in
O(log* n) amortized time per edge insertion or deletion. a

References

[1] D. Eppstein. Dynamic euclidean minimum spanning trees and extrema of
binary functions. Discrete Comput. Geom., 13:237-250, 1995.

(2] David Eppstein, Zvi Galil, and Giuseppe F. Italiano. Improved sparsification.
Technical Report 93-20, Univ. of California, Irvine, Dept. Information and
Computer Science, 1993.

(3] David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Amnon Nissenzweig.
Sparsification — A technique for speeding up dynamic graph algorithms. In
Proc. 33rd Symp. Foundations of Computer Science, pages 60-69. IEEE,
1992.

[4]

8]

[10]

Shimon Even and Yossi Shiloach. An on-line edge-deletion problem. Journal
of the ACM, 28(1):1-4, January 1981.

Greg N. Frederickson. Data structures for on-line updating of minimum
spanning trees, with applications. STAM J. Computing, 14(4):781-798, 1985.

M. R. Henzinger and V. King. Randomized dynamic graph algorithms with
polylogarithmic time per operation. In Proc. 27th Symp. on Theory of Com-
puting, pages 519-527, 1995.

M. R. Henzinger and V. King. Fully dynamic 2-edge connectivity algorithm
in polygarithmic time per operation. Technical report, Digital, 1997. A
preliminary version appeared as [6].

M. R. Henzinger and V. King. Maintaining minimum spanning trees in
dynamic graphs. In Proc. 2/th International Colloquium on Automata, Lan-
guages, and Programming (ICALP), pages 594-604, 1997.

Monika Rauch Henzinger and Mikkel Thorup. Improved sampling with ap-
plications to dynamic graph algorithms. In Proceedings of the 23rd Inter-
national Colloquium on Automata Languages, and Programming (ICALP),
LNCS 1099, pages 290-299, 1996.

D D Sleator and Robert E Tarjan. A data structure for dynamic trees.
Journal of Computer and System Sciences, 26:362-390, 1983.

