
Technical Report DIKU-TR-97/17Department of Computer ScienceUniversity of CopenhagenUniversitetsparken 1DK-2100 KBH �DENMARKSeptember 1997
Poly-Logarithmic Deterministic Fully-Dynamic GraphAlgorithms I: Connectivity and Minimum Spanning Tree

Jacob Holm Kristian de Lichtenberg Mikkel Thorup

Poly-logarithmic deterministic fully-dynamicgraph algorithms I: connectivity and minimumspanning treeJacob Holm� Kristian de Lichtenberg� Mikkel Thorup�AbstractDeterministic fully dynamic graph algorithms are presented for con-nectivity and minimum spanning forest. For connectivity, starting with noedges, the amortized cost for maintaining a spanning forest is O(log2 n) perupdate, i.e. per edge insertion or deletion. Deciding connectivity betweenany two given vertices is done in O(log n= log log n) time. This matchesthe previous best randomized bounds. The previous best deterministicbound was O(3pn log n) amortized time per update but constant time forconnectivity queries.For minimum spanning trees, �rst a deletions-only algorithm is pre-sented supporting deletes in amortized time O(log2 n). Applying a generalreduction from Henzinger and King, we then get a fully dynamic algo-rithm such that starting with no edges, the amortized cost for maintaininga minimum spanning forest is O(log4 n) per update. The previous bestdeterministic bound was O(3pn log n) amortized time per update, and nobetter randomized bounds were known.Corresponding O(log2 n) algorithms for 2-edge connectivity and bicon-nectivity will be presented in a subsequent report.1 IntroductionWe consider the fully dynamic graph problems of connectivity and of minimumspanning forest. In a fully dynamic graph problem, we are considering a graph Gover a �xed vertex set V , jV j = n. The graph G may be updated by insertionsand deletions of edges. Unless otherwise stated, we assume that we start with anempty edge set.For the fully dynamic connectivity problem, the updates may be interspersedwith connectivity queries, asking whether two given vertices are connected in G.�E-mail:(samson,morat,mthorup)@diku.dk. Department of Computer Science, Universityof Copenhagen. 1

Both updates and queries are presented on-line, meaning that we have to respondto an update or query without knowing anything about the future.In the fully dynamic minimum spanning tree problem, we have weights on theedges, and we wish to maintain a minimum spanning forest F of G. Thus, inconnection with any update to G, we need to respond with the correspondingupdates for F , if any.The connectivity problem reduces to the spanning tree problem in that ifwe can maintain any spanning forest F for G at cost O(t(n) logn) per up-date, then, using dynamic trees [10], we can answer connectivity queries in timeO(logn= log t(n)).In this paper, we �rst show a very simple deterministic algorithm for main-taining a spanning forest in a graph in amortized time O(log2 n) per update.Connectivity queries are then answered in time O(logn= log logn).Second, we derive a quite simple deterministic algorithm for maintaining aminimum spanning forest in a graph in amortized time O(log4 n).History For deterministic algorithms, all the previous best solutions to thefully dynamic connectivity problem were also solutions to the minimum span-ning tree problem. In 1985 [5], Frederickson introduced a data structure knownas topology trees for the fully dynamic minimum spanning tree problem with aworst case cost of O(pm) per update, permitting connectivity queries in timeO(logn= log(pm= logn)) = O(1). In 1992, Epstein et. al. [3, 2] improvedthe update time to O(pn) using the sparsi�cation technique. Finally in 1997Henzinger and King [8] gave an algorithm with O(3pn logn) update time andO(logn= log logn) time per connectivity query.Randomization has been used to improve the bounds for the connectivityproblem. In 1995 [6], Henzinger and King showed that a spanning forest could bemaintained in O(log3 n) expected amortized time per update. Then connectivityqueries are supported in O(logn= log logn) time. The update time was furtherimproved to O(log2 n) in 1996 [9] by Henzinger and Thorup. No randomizedtechnique was known for improving the deterministic O(3pn logn) update costfor the minimum spanning tree problem.As mentioned, we present a deterministic fully dynamic connectivity algo-rithm with an update cost of O(log2 n), thus matching the previous best ran-domized bound and improving substantially over the previous best deterministicbound of O(3pn logn). For the minimum spanning tree problem our determin-istic update cost of O(log4 n) improves substantially over the previous bound ofO(3pn logn), and here no better randomized bound was known.The result is achieved in three steps: First, we give a deterministic fullydynamic connectivity algorithm that uses O(log2 n) amortized time per updateand O(logn= log logn) time per query. Then, we extend this algorithm to givea deletions-only minimum spanning tree data structure supporting deletes in2

O(log2 n) amortized time. Finally we use a technique from [8] to convert ourdeletions-only structure to a fully dynamic data structure for the minimum span-ning tree problem using O(log4 n) amortized time per update. Our techniquerelies on some of the same intuition as was used in Henzinger and King [6] intheir randomized algorithm. Our deterministic algorithm is, however, much sim-pler, and in contrast to their algorithm, it generalizes to the minimum spanningtree problem.The reader is referred to [1, 3, 4, 6] for discussions of problems that getimproved by our improvements for the fully dynamic connectivity and minimumspanning tree problems.2 ConnectivityIn this section, we present an O(log2 n) time deterministic fully dynamic algo-rithm for graph connectivity. First we give a high level description, ignoring allproblems concerning data structures. Second, we implement the algorithm withconcrete data structures and analyze the running times.2.1 High level descriptionOur dynamic algorithm maintains a spanning forest F of a graph G. The edgesin F will be referred to as tree-edges. Internally, the algorithm associates witheach edge e a level `(e) � L = blog2 nc. For each i, Fi denotes the sub-forest ofF induced by edges of level at least i. Thus, F = F0 � F1 � � � � � FL. Thefollowing invariants are maintained.(i) F is a maximum (w.r.t. `) spanning forest of G, that is, if (v; w) is a non-treeedge, v and w are connected in F`(v;w).(ii) The maximal number of nodes in a tree in Fi is n=2i. Thus, the maximalrelevant level is L.Initially, all edges have level 0, and hence both invariants are satis�ed. We aregoing to present an amortization argument based on increasing the levels of edges.The levels of edges are never decreased, so we can have at most L increases peredge. Intuitively speaking, when the level of a non-tree edge is increased, it isbecause we have discovered that its end points are close enough in F to �t in asmaller tree on a higher level. Concerning tree edges, note that increasing theirlevel cannot violate (i), but it may violate (ii).We are now ready for a high-level description of insert and delete.Insert(e) The new edge is given level 0. If the end-points were not connected inF = F0, e is added to F0. 3

Delete(e) If e is not a tree-edge, it is simply deleted. If e is a tree-edge, itis deleted and a replacement edge, reconnecting F at the highest possiblelevel, is searched for. Since F was a maximum spanning forest, we knowthat the replacement edge has to be of level at most `(e). We now callReplace(e; `(e)). Note that when a tree-edge e is deleted, F may no longerbe spanning, in which case (i) is violated until we have found a replacementedge. In the time in between, if (v; w) is not a replacement edge, we stillhave that v and w are connected in F`(v;w).Replace((v; w); i) Assuming that there is no replacement edge on level > i, �ndsa replacement edge of the highest level � i, if any.Let Tv and Tw be the trees in Fi containing v and w, respectively. Assume,without loss of generality, that jTvj � jTwj. Before deleting (v; w), T =Tv [f(v; w)g [Tw was a tree on level i with at least twice as many nodesas Tv. By (ii), T had at most n=2i nodes, so now Tv has at most n=2i+1nodes. Hence, preserving our invariants, we can take all edges of Tv of leveli and increase their level to i+ 1, so as to make Tv a tree in Fi+1.Now level i edges incident to Tv are visited one by one until either a re-placement edge is found, or all edges have been considered. Let f be anedge visited during the search.If f does not connect Tv and Tw, we increase its level to i+1. This increasepays for our considering f .If f does connect Tv and Tw, it is inserted as a replacement edge and thesearch stops.If there are no level i edges left, we call Replace((v; w); i�1); except if i = 0,in which case we conclude that there is no replacement edge for (v; w).2.2 ImplementationFor each i, we wish to maintain the forest Fi together with all non-tree edges onlevel i. For any vertex v, we wish to be able to �nd the tree Tv in Fi containingit. We want to be able to compute the size of Tv. We want to be able to �nd anedge of Tv on level i, if one exists. Finally, we want to be able to �nd a level inon-tree edge incident to Tv, if any.The trees in Fi may be cut (when an edge is deleted) and linked (when a re-placement edge is found, an edge is inserted or the level of a tree edge is increased).Moreover, non-tree edges may be introduced and any edge may disappear on leveli (when the level of an edge is increased or when non-tree edges are inserted ordeleted).All the above operations and queries may be supported in O(logn) time usingthe ET-trees from [6], to which the reader is referred for additional details. An4

ET-tree is a standard balanced binary tree over the Euler tour of a tree. Eachnode in the ET-tree represents the segment of the Euler tour below it. The pointin considering Euler tours is that if trees in a forest are linked or cut, the newEuler tours can be constructed by at most 2 splits and 2 concateations of theoriginal Euler tours. Rebalancing the ET-trees a�ects only O(logn) nodes.Here we have an ET-tree over each tree in Fi. Each node of the ET-treecontains a number telling the size of the Euler tour segment below it, a bit tellingif any tree edges in the segment have level i, and a bit telling whether there isany level i non-tree edges incident to a vertex in the segment.Given a vertex v we can �nd the tree Tv containing v by moving O(logn)steps up till we �nd a root of an ET-tree. This root represents the Euler tour ofTv. The size s of the Euler tour of a tree is twice the number of edges, so thenumber of vertices is s=2+1. To �nd a tree edge of level i or an incident non-treeedge, if any, we move O(logn) steps down the ET-tree, using the bits telling usunder which nodes such edges are to be found. If a tree edge (v; w) is moved fromlevel i, we only need to update the bits on the paths from (v; w) and (w; v) to theroot, using O(logn) time. If a non-tree edge (v; w) is introduced/disappear, weonly need to update the bits on the paths from v and w to their respective roots.This takes O(logn) time. When the trees are cut or linked, only O(logn) nodesare a�ected, and the information in each node is updated in constant time.It is now straightforward to analyze the amortized cost of the di�erent opera-tions. When an edge e is inserted on level 0, the direct cost is O(logn). However,its level may increase O(logn) times, so the amortized cost is O(log2 n).Deleting a non-tree edge e takes time O(logn). When a tree edge e is deleted,we have to cut all forests Fj, j � `(e), giving an immediate cost of O(log2 n). Wethen have O(logn) recursive calls to Replace, each of cost O(logn) plus the costamortized over increases of edge levels. Finally, if a replacement edge is found,we have to link O(logn) forests, in O(log2 n) total time.Thus, the cost of inserting and deleting edges from G is O(log2 n). Thebalanced binary tree over F0 = F immediately allows us to answer connectivityqueries between arbitrary nodes in time O(logn). In order to reduce this time toO(logn= log logn), as in [6], we introduce an extra balanced �(logn)-ary B-treeover the Euler tour of each tree in F . The B-tree has depth O(logn= log logn),which is hence the time it takes for a connectivity query. Each delete or insertgives rise to at most one cut and one link in F , and for �(logn)-ary B-trees, suchoperations can be supported in O(log2 n= log logn) time. Thus, we conclude:Theorem 1 Given a graph G with m edges and n vertices, there existsa deterministic fully dynamic algorithm that answers connectivity queries inO(log = log logn) time worst case, and uses O(log2 n) amortized time per insertor delete.
5

3 Minimum spanning forestWe will now expand on the ideas from the previous section to the problem ofmaintaining a minimum spanning forest (MSF). First we present an O(log2 n)deletions-only algorithm, and then we apply a general construction from [8] trans-forming a deletions-only MSF algorithm into a fully dynamic MSF algorithm.3.1 Decremental minimum spanning forestsIt turns out that if we only want to support deletions, we can obtain an MSF-algorithm from our connectivity algorithm by some very simple changes. The �rstis, of course, the initial spanning forest F has to be a minimal spanning forest.The second is that when in replace (cf. page 4). we consider the level i non-treeedges incident to Tv, instead of doing it in an arbitrary order, we should do itin order of increasing weights. That is, we repeatedly take the lightest incidentlevel i edge e: if e is a replacement edge, we are done; otherwise, we move e tolevel i+ 1, and repeat with the new lightest incident level i edge, if any. For theabove changes to work, it is crucial, that all weights are distinct. To ensure this,we associate a unique number with each edge. If two edges have the same weight,it is the one with the smaller number that is the smaller.To see that the above simple changes su�ce to maintain that F is a mini-mum spanning forest, we will prove that in addition to (i) and (ii), the followinginvariant is maintained:(iii) If e is the heaviest edge on a cycle C, then e has the lowest level on C.The original replace function found a replacement edge on the highest possiblelevel, but now, among the replacement edges on the highest possible level, wechoose the one of minimum weight. Using (iii), we will show that this edge hasminimum weight among all replacement edges.Lemma 2 For any tree edge e, among all replacement edges, the lightest edge ison the maximum level.Proof: Let e1 and e2 be replacement edges for e. Let Ci be the cycle induced byei; then e 2 Ci. Suppose e1 is lighter than e2. We want to show that `(e1) � `(e2).Consider the cycle C = (C1[C2)n (C1\C2). Since F is a minimum spanningforest, we know that ei is the heaviest edge on Ci. Hence e2 is the heaviest edgeon C. By (iii) this implies that e2 has the lowest level on C. In particular,`(e1) � `(e2). 2Since our algorithm is just a specialized version of the decremental connectivityalgorithm, we already know that (i) and (ii) are maintained.Lemma 3 (iii) is maintained. 6

Proof: Initially (iii) is satis�ed since all edges are on level 0. We will now showthat (iii) is maintained under all the di�erent changes we make to our structureduring the deletion of an edge. If an edge e is just deleted, any cycle in G n fegalso existed in G, so (iii) is trivially preserved. Also note that replacing a deletedtree-edge cannot in itself violate (iii) since it does not change the levels or weightsof any edges.Our real problem is to show that (iii) is preserved during Replace when thelevel of an edge e is increased. This cannot violate (iii) if e is not the heaviestedge on some cycle, so assume that e is the heaviest edge on a cycle C. To provethat (iii) is not violated, we want to show that before the increase, all other edgesin C have level � i+ 1.No tree edge is heaviest on any cycle, so e is a non-tree edge. When `(e) is tobe increased from i to i+ 1, we know it is the lightest level i edge incident to Tv(cf. the description of replace on page 4). Moreover, by (iii), all other edges onC have level at least i. Thus, all other edges from C incident to Tv have level atleast i + 1.To complete the proof, we show that all edges in C are incident to Tv. Suppose,for a contradiction, that C contained an edge f leaving Tv. Since e is to beincreased, e 6= f . Also, the call to Replace requires that there is no replacementedge of level > i, so `(f) � i. This contradicts that all edges 6= e from C incidentto Tv have level � i+ 1. 2It has now been established that the above change in replace su�ces to maintaina minimum spanning forest. A last point is that we need to modify our ET-treesto give us the lightest non-tree edge incident to a tree. So far, for each node inthe ET-trees, we had a bit telling us whether the Euler tour segment below it hadan incident non-tree edge. Now, with the node, we store the minimum weight ofa non-tree edge incident to the Euler tour segment below it. Clearly, we can stillsupport the di�erent operations in O(logn) time. We concludeTheorem 4 There exists a deletions-only MSF algorithm that can be initializedon a graph with n nodes and m edges and support any sequence of
(m) deletionsin total time O(m log2 n). 23.2 Fully dynamic MSFTo obtain a fully dynamic minimum spanning forest algorithm we apply a generalreduction, which is a slight generalization of the one provided by Henzinger andKing [8, pp. 600-603]. The reduction is described as follows.Lemma 5 Suppose we have a deletions-only MSF algorithm that for any k, l,can be initialized on a graph with k nodes and l edges and support any sequenceof
(l) deletions in total time O(l � t(k; l)) where t is non-decreasing. Then there7

exists a fully-dynamic MSF algorithm for a graph on n nodes starting with noedges, that for m edges, supports an update in amortized timeO0@log3 n + 3+log2mXi=1 iXj=1 t(minfn; 2jg; 2j)1A :\Proof": Essentially, we combine the reduction from [8] with a contractionidea from [7]. We will only sketch the changes needed in [8]. As in [8], we operateon a series of graphs Ai, where Ai has 2i non-tree edges. In [8], Ai may haven� 1 MSF-edges, and this forces them to introduce a special e�cient operationfor adding a batch of edges. Here, instead, when we �rst create Ai, we contractall MSF-paths that are not incident to any non-tree edge. The \super" edge ereplacing a MSF-path P gets the minimum weight on P . Moreover, if any edgefrom P is deleted, we have to delete e in Ai. As a result, we can base our fully-dynamic algorithm directly on deletions-only algorithms. 2From Theorem 4, we get t(k; l) = O(log2 k), and hence we get a fully dynamicalgorithm with update costO0@log3 n+ 3+log2 mXi=1 iXj=1 log2(minfn; 2jg)1A = O(log4 n):Note for comparison, that in [8], Henzinger and King had t(k; l) = O(3pl log k),giving them an update cost of O(3pm logn). Then sparsi�cation [2, 3] reducesthe cost to O(3pn logn). From the combination of Theorem 4 and Lemma 5, weconcludeTheorem 6 There is a fully-dynamic MSF algorithm that for a graph withn nodes and starting with no edges maintains a minimum spanning forest inO(log4 n) amortized time per edge insertion or deletion. 2References[1] D. Eppstein. Dynamic euclidean minimum spanning trees and extrema ofbinary functions. Discrete Comput. Geom., 13:237{250, 1995.[2] David Eppstein, Zvi Galil, and Giuseppe F. Italiano. Improved sparsi�cation.Technical Report 93-20, Univ. of California, Irvine, Dept. Information andComputer Science, 1993.[3] David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Amnon Nissenzweig.Sparsi�cation { A technique for speeding up dynamic graph algorithms. InProc. 33rd Symp. Foundations of Computer Science, pages 60{69. IEEE,1992. 8

[4] Shimon Even and Yossi Shiloach. An on-line edge-deletion problem. Journalof the ACM, 28(1):1{4, January 1981.[5] Greg N. Frederickson. Data structures for on-line updating of minimumspanning trees, with applications. SIAM J. Computing, 14(4):781{798, 1985.[6] M. R. Henzinger and V. King. Randomized dynamic graph algorithms withpolylogarithmic time per operation. In Proc. 27th Symp. on Theory of Com-puting, pages 519{527, 1995.[7] M. R. Henzinger and V. King. Fully dynamic 2-edge connectivity algorithmin polygarithmic time per operation. Technical report, Digital, 1997. Apreliminary version appeared as [6].[8] M. R. Henzinger and V. King. Maintaining minimum spanning trees indynamic graphs. In Proc. 24th International Colloquium on Automata, Lan-guages, and Programming (ICALP), pages 594{604, 1997.[9] Monika Rauch Henzinger and Mikkel Thorup. Improved sampling with ap-plications to dynamic graph algorithms. In Proceedings of the 23rd Inter-national Colloquium on Automata Languages, and Programming (ICALP),LNCS 1099, pages 290{299, 1996.[10] D D Sleator and Robert E Tarjan. A data structure for dynamic trees.Journal of Computer and System Sciences, 26:362{390, 1983.

9

