
Experiments withthe auction algorithmfor the shortest path problem.Jesper Larsen� Ib PedersenyFebruary 3, 1997AbstractThe auction approach for the shortest path problem as introduced by Bert-sekas is tested experimentally. Parallel algorithms using the auction approachare developed and tested. Both the sequential and parallel auction algorithmsperform signi�cantly worse than a state-of-the-art Dijkstra-like reference algo-rithm.1 IntroductionThe shortest path problem is one of the classical problems in Operations Research.One usually classi�es shortest path algorithms into one of two groups: the label-setting algorithms (Dijkstra-like) and the label-correcting algorithms (Bellman-Ford-like).A recent approach to solving shortest path problems is the auction algorithmproposed by Bertsekas in [Ber91]. In [PS91] and [BPS92] the performance of theauction algorithm is enhanced by the use of graph reduction, thereby reducing theworst-case time-complexity from pseudo-polynomial to strongly polynomial.Here we introduce the improved graph reduction scheme, which allows for ad-ditional reduction of the graph. Furthermore, suggestions in [Ber91] on how toparallelize the auction approach are investigated and used as o�-set for constructingother parallel algorithms.In section 2 the sequential auction algorithm is presented. In section 3 the auctionalgorithm is enhanced by the introduction of graph reduction. Section 4 describesparallel algorithms based on the auction approach, and experimental results aregiven in section 5. Finally the most important �ndings are summarised in theconclusion.�Department of Computer Science (DIKU), University of Copenhagen, Universitetsparken 1,DK-2100 Copenhagen �, e-mail: friberg@diku.dkyDansk Data Elektronik A/S, Herlev Hovedgade 199, DK-2730 Herlev, e-mail: ibp@dde.dk1

2 The auction algorithmLet G = (N ;A; l) be a weighted directed graph with node-set N , arc-set A andlength-function l : A ! IR. We assume that there is at most one arc from node i tonode j, denoted (i; j). Additionally we assume that all arc-lengths are non-negative.n denotes the number of nodes and m denotes the number of arcs in the graph.The auction algorithm was �rst presented by Bertsekas in [Ber91] as a single-source single-destination algorithm but it can easily be extended to a single-sourceall-destination algorithm. Initially we assume that all cycles have positive length,and to simplify descriptions we assume that each node except the destination hasat least one outgoing arc.Let s be the source node and t the destination node. During the execution of theauction algorithm a path called the candidate path is maintained. The �rst node ofthe candidate path is always the source node s. The last node of the candidate pathis called the terminal node. A node that is or has been part of the candidate pathis called a tree node. A border node is a node that has an incoming arc originatingfrom a tree node.The auction algorithm consists of a (�nite) number of iterations. In each itera-tion one of two operations, contraction or extension, is performed. The algorithmterminates when t becomes the terminal node.The selection of operation is determined by the price of the terminal node. Foreach node i we maintain a price �i such that�i � lij + �j for all (i; j) 2 A (1)�i = lij + �j for all (i; j) where P = h: : : ; i; j; : : :i (2)where P is the candidate path. � denotes the vector of prices.Assume that the candidate path P is hs; i1; i2; : : : ; iki and there exists an arc(ik; i) with �ik = liki + �i (3)We perform an extension of P by i by extending the candidate path P with nodei resulting in a new candidate path P = hs; i1; i2; : : : ; ik; ii. The arc (ik; i) is calleda candidate arc. There may exist more than one candidate arc, and in that case arandom one is selected to extend by.If, however, no arc leaving the terminal node satis�es (3) a contraction is made.A contraction consists of two steps:� �rst update the price vector, and then� the terminal node is discarded from the candidate path { the candidate pathP is reduced to hs; i1; i2; : : : ; ik�1i. However this is only done if P is not equalto the degenerate candidate path hsi.A pair (P; �) is said to satisfy Complementary Slackness (or CS for short) if:2

1. P is a simple path.2. � is a price vector that satis�es (1) and (2).Initially (P; �) is required to satisfy CS. If all arc-lengths are non-negative thiscan easily be achieved by settingP = hsi and �i = 0 for all i 2 N .Otherwise a preprocessing algorithm (described in [Ber91]) can be run to initializethe variables.An iteration starts by testing the inequality�i < min(i;j)2Aflij + �jgfor the terminal node of P . If it does not hold then due to the CS conditionsthe corresponding equality holds and an extension using one of the candidate arcs ismade. Otherwise a contraction is performed raising the price of the terminal node ofP to min(i;j)2Aflij+�jg, and discarding it from the candidate path (unless P = hsi).The CS condition clearly remains valid.The algorithm is shown in Figure 1. Note that by (2) �s��i is the length of thepart of the candidate path P between s and i, and by (1) the length of every pathfrom s to i is at least equal to �s � �i. So if a pair (P; �) satis�es CS, the part ofP between s and any node i 2 P is a shortest path from s to i, and �s � �i is thecorresponding shortest distance.Termination and correctness of the algorithm is shown in [Ber91, LP95]. Theauction algorithm has a worst-case time-complexity O(kn2), where k is the lengthof the longest shortest path. Hence if an upper bound on the arc-lengths is imposed,the algorithm becomes strongly polynomial.If a node i without outgoing arcs exists, we may set �i = +1, when calculatingmin(i;j)2Aflij + �jg. It can be viewed as the existence of an (i; t)-arc with length+1.The extension from a single-destination algorithm to an all-destinations algo-rithm can easily be accomplished by not terminating the algorithm before all nodeshave been terminal node.An improvement to the auction algorithm would be to calculateji = arg min(i;j)2Aflij + �jgwhile calculating the minimum. Saving the value, we may next time node i becomesterminal node start by checking �i = liji + �ji :If the equation holds an extension can be performed without calculating the mini-mum. This is called the best neighbor improvement. Note that it does not changethe theoretical time complexity, but it has a signi�cant e�ect when implementingthe algorithm. 3

P = hsi� set so CS is maintained� let i be the terminal node of P �i = swhile i 6= t doif �i < min(i;j)2Aflij + �jg then� Contraction ��i = min(i;j)2Aflij + �jgif i 6= s thenP = P � hiii = terminal node of Pelse� Extension �ji = argmin(i;j)2Aflij + �jgP = P + hjiii = jireturn PFigure 1: The single-destination auction algorithm.3 Graph reductionIn an e�ort to decrease the time complexity of the algorithm, arcs that can not bea member of the solution, can be removed by reduction. Three types of reductiondenoted simple (described in [PS91]), extended (described in [BPS92]) and improvedreduction (described in [LP95]) are described. All reductions result in algorithmsbetter than the classic auction algorithm both wrt. empirical and worst-case timecomplexity. The latter is improved from pseudo-polynomial to strongly polynomial.When running the auction algorithm as an all-destinations algorithm, all threetypes of reductions delete all arcs not belonging to a shortest path tree. Upontermination the graph has \collapsed" into a shortest path tree. The di�erencebetween the three types is how early the arcs are deleted during the execution. Anarc may be deleted earlier by improved reduction than extended reduction, whichmay delete the arc earlier than simple reduction.In simple graph reduction, the �rst time a node becomes terminal node theshortest path from the source to this node is found as described earlier. No pathfrom the source ending in this node is shorter. So all arcs going into the node exceptthe arc used to extend to the node can be removed. The time complexity nowbecomes O(m2) as proved in [PS91].In the extended graph reduction not only incoming arcs are deleted but alsooutgoing arcs. In order to do so a new variable uj is introduced for each node j. For4

node j, uj is an upper bound on the length of the shortest path from s to j. Thesesvariables corresponds exactly to the temporary labels on the nodes generated by theDijkstra algorithm. Therefore one sometimes refer to the variables uj as Dijkstralabels. During the execution of the algorithm uj is monotonically non-increasing,and as j becomes terminal node it equals the length of the shortest path from s toj. Initially we set uj = (0 if j = s+1 if j 6= sLike simple reduction extended reduction is only performed at �rst scan, where ascan is the calculation of the minimum of lij + �j (we say we \scan" the arcs).
�
��i �
��j�
��k -@@@@@RFigure 2: Node i has just become terminal node for the �rst time.Consider the situation in Figure 2. Node i has just become the terminal nodefor the �rst time. If uj � ui + lij the arc (i; j) can be deleted once the value ofuj indicates that another path has a smaller upper bound, thereby excluding i asintermediate node in the shortest path to j.Otherwise uj > ui + lij a new better upper bound using i as intermediate nodeis found. The Dijkstra label uj is therefore updated to ui + lij and the arc (k; j),where uk + lkj was equal to the former value of uj, is deleted. This arc is easy todetermine as it is the only arc going into j coming from a tree node.In [BPS92] it is shown that the auction algorithm with extended reduction hasa worst-case time complexity of O(nminfm;n log ng).In an e�ort to delete even more arcs we developed the improved reduction. Thetheoretical worst-case time complexity is worse than extended reduction but remainsstrongly polynomial as we get O(nm). The proof can be seen in [LP95].Consider again node j in Figure 2. If we now calculatearg min(k;j)2Afuk + lkjg (4)we can use it to check whether the arc (i; j) can be discarded or not. If (4) is di�erentfrom i another path has an upper bound better than the path using i. Hence theother path is better (or at least not worse) and, as it is only an upper bound, it mayget even better. Notice that beside checking arcs outgoing from tree nodes we now5

also check arcs outgoing from border nodes, which was not the case in the extendedreduction.The fact that all border nodes at most has one ingoing border arc enables us tomake the check in constant time in the extended reduction, while all ingoing arcshas to be scanned in the improved reduction. This accounts for the di�erence inworst-case time complexity.4 Parallel AlgorithmsBefore discussing the parallel algorithms developed we will describe the parallelcomputer used in our experiments.The Meiko parallel computer at the Department of Computer Science, Univer-sity of Copenhagen (DIKU) is an asynchronous MIMD (Multiple Instruction-streamMultiple Data-stream) parallel computer equipped with 16 Intel i860 processors eachhaving 16Mb of memory. The communication between the 16 i860's is controlled by32 T800 communication transputers. The Meiko is capable of both synchronousand asynchronous communication.When communicating asynchronously sender and receiver must regularly testwhether the communication has been completed. In practice the receiver has to testif any data has arrived in the prepared bu�ers.As with most of the MIMD-class parallel computers the startup latency (thetime used to setup communication) is very high compared to the time it takes tosend information (e.g. an integer) and the time to do an integer operation (e.g. addtwo numbers).4.1 The Parallel Reverse AlgorithmsIt should be quite obvious that in the single-source single-destination approach wemay \reverse the calculations" building the path from the destination and back tothe source instead of building the path from the source to the destination. Thisresults in the reverse algorithm shown in Figure 3.A way to parallelise the auction algorithm is by viewing the single-source all-destination problem as n�1 single-source single-destination problems. Imagine thatwe had an unlimited polynomial number of processors at our disposal. We couldthen run the reverse algorithm on n� 1 processors each with the same source but adi�erent destination.This would give us a \naive" parallel algorithm where the results gained alongthe computation (intermediate shortest paths) are not shared among the processors.In an e�ort to utilise the intermediate results we consider the price vectors. Aseach reverse algorithm is run independently each processor works on its own pricevector. To share some of the information in the price vectors we observe that if two6

R = hti� � set so that CS is maintained ��i = 0 8i 2 N� let j be the terminal node of R �j = twhile j 6= s doif �j > max(i;j)2Af�i � lijg then� Contraction ��j = max(i;j)2Af�i � lijgif j 6= t thenR = R� hjij = terminal node of Relse� Extension �ij = argmax(i;j)2Af�i � lijgR = R+ hijij = ijreturn PFigure 3: The reverse algorithm.processors P i and P j each maintain their price vectors �i and �j respectively then�p = minf�ip; �jpg for p = 1; : : : ; n (5)will again satisfy CS (as proved in [Ber91, LP95]). So the price vector � de�nedby (5) is a valid price vector. Combining the price vectors of some (or all) of theprocessors tends to speed up the termination of the algorithm.Note that even though CS is maintained for the new price vector we may havedestroyed the equality within the candidate path. So we must traverse the candidatepath from the destination and stop when the equality is not satis�ed.A more severe problem is that graph reduction may not be used when we ex-change prices. An arc not present in processor P i's representation of the graph maylead to a violation of the CS on P j where the arc may still be present when we usethe new \common" price vector. Due to the substantial e�ect of graph reductionthis is a major drawback wrt. running times.Communication between the processors is quite expensive on the Meiko (as onmost MIMD machines). Hence, the communication scheme must be kept as simple aspossible. It is far too expensive to exchange �-values every time these are changed.It is also too expensive to communicate values from one processor directly to allother processors (broadcasting). 7

Instead we setup a di�erent topology. We have chosen a ring. This gives asimple communication protocol, and we have only a small amount of processors atour disposal. Each processor sends its values only to one speci�c processor andreceives values only from a speci�c processor as depicted in Figure 4.
Processor no. �
��0 �
��1 �
��n� 2 �
��n� 1- q q q q q q q q q q q q q q q q- -� �?Figure 4: Communicating using a ring with n processors. The arrows indicate thedirection of communication.In addition to the simple structure we use asynchronous communication whichis much faster than synchronous communication. Asynchronous communication is,however, more di�cult to implement as we have to maintain communication bu�ers.In order to minimize the administrational overhead we implement our ring structurewith only one processor being allowed to send at a time. This approach mightalthough not be optimal on systems with more processors as the longest path amessage has to travel before the information on every processor is updated growslinearly to the number of processors available.The interesting prices are those that have changed since the last communication.Rather than sending all prices when communicating, it is enough to send updatedprices. It does, however, seem that the overhead introduced by packing and unpack-ing the updated prices is too expensive. Therefor the whole price vector is passedalong.The prices will be communicated after a �xed number of changes. After testingdi�erent values, we have found that 200000=p, where p is the number of processorsused, gave the best result. The reason for dividing by p, is that with more processors,more information can be used by other processors, and the communication frequencyshould increase.The set of destinations are partitioned equally among the processors. Eachprocessor can solve the problems in two ways:� Once we start working on a destination we only proceed to another destinationwhen the shortest path is found.� We run several iterations on one destination, then proceed to a new one, evenif we did not �nd the shortest path. We then later return to the destinationsthat are not solved, run a number of iterations and so forth.Using the �rst approach only one price vector is needed. Indeed as the CSis maintained after the �rst destination is solved we do not have to reset it, butmay instead use the information when running the remaining destinations. Memory8

allocation for one candidate path is also enough if the shortest path tree is savedin another way, e.g. by pointers to the predecessors. Note that when a destinationreaches a node that is already in the shortest path tree the reverse algorithm canproceed to the next destination since the source now can be reached by a seriesof extensions from the terminal node. When solving one destination at a time thealgorithm becomes sensitive to the order in which the destinations are processed. Itwould be best to solve the destinations in order of \closeness" to the source, startingwith the nearest destinations. In this way the closest destination helps building upa path towards the destinations farthest away.We can minimize the communication by communicating the nodes of the shortestpath tree built so far instead of �-values. Each time a destination reaches the source,the nodes in the candidate path and their predecessors and the prices are added toa queue. At some �xed interval the queue is emptied sending the information tothe next processor. By communicating the prices we had to communicate O(n)elements in each communication, now the total amount of elements to communicatethroughout the execution is O(n). On the other hand the information is weakersince only the prices for tree nodes are communicated.In order to exploit the information gathered, both prices and predecessors couldbe sent. All the three described ideas have been tested.When the price vector is communicated a small series of tests showed that com-munication after 200000=p alternate in the prices (p is the number of processors)is optimal. When only the predecessors are communicated the tests showed thatcommunication should be performed more frequently, namely after 50000=p changesin prices.Our second idea is to alternate between the destinations. Ideally we would liketo be able to have only one candidate path and only one price vector. If we alternatefrom one destination to another only when the candidate path has \collapsed" intothe degenerate candidate path hdii, only one candidate path is present at any point(because the �rst node of each candidate path can be implicitly represented, as itis the destination node). When a new node starts from this degenerate candidatepath the price vector can not be violated by any of the operations, that is, we haveto keep track of only one candidate path and one price vector.Regarding the time complexity, the worst case is that each of destinations runindependently, i.e. the nodes searched by each of the destinations are only reachedby one of the destinations. Therefore the worst-case time complexity running �destinations on each processor will in the worst case be � times the time complexityfor running the algorithm with only one destination.When there are p > 1 processors and � destinations, each processor solves theproblem for � = �p destinations. The destinations are distributed using the commu-nication ring. The �rst processor keeps the �rst �p destinations and sends the restto the next processor, which keeps its amount of destinations, and so on. Once aprocessor has sent the rest of the destinations to the next processor it can start the9

multiple destinations algorithm shown in Figure 5.for i = 1 to �found(i) = FALSEwhile hnot all foundifor i = 1 to �if not found(i)hrun reverse for destination i until the candidate path onlycontains the destination, or the source is reached iif h source reached ifound(i) = TRUEFigure 5: Solving multiple destinations (interchangeably) on one processor.As previously the communication is performed after 200000=p changes in theprices (p is the number of processors).4.2 The Parallel Two-sided AlgorithmIn [Ber91] Bertsekas suggests an algorithm for the single-source single-destinationproblem where we use both the auction algorithm and the reverse algorithm. Sincethis algorithm will be used in the following we will brie
y describe it here.We now consider combining the auction algorithm (hereafter also called theforward algorithm) with the reverse algorithm. Initially we have two candidatepaths P (starting at the source) and R (starting at the destination) and one pricevector �. We then run the forward algorithm using P and the reverse algorithmusing R as candidate paths. The algorithm (called the two-sided auction algorithm)terminates when the candidate paths contain a common node. Since both P andR satis�es CS throughout the algorithm the composite path of P and R will be ashortest path from the source s to the destination t.Correctness and termination of the two-sided auction algorithm can only beproved under the assumption that the potentials and lengths are integers as is donein [Ber91, LP95]. Without the requirement of �s and �t being increased respectivelydecreased at least once in each step it is possible to construct examples where thetwo-sided algorithm never terminates (see [LP95]).The Meiko parallel computer has no shared memory. This creates a problemsince when we parallelise the two-sided auction algorithm the two candidate pathsmust operate on the same price vector. If we are to parallelise this algorithm wemust be able to maintain the common price vector. Here we may use some of theideas described earlier, namely to communicate prices and predecessors for nodes inthe shortest path tree found so far.An example of the execution is shown in Figure 7. When the forward algorithm10

do � Step 1 �Run several iterations of the while-loop of the forward algorithm,at least once increasing �sif P and R contains a common node then exit� Step 2 �Run several iterations of the while-loop of the reverse algorithm,at least once decreasing �twhile P and R does not contain a common nodeFigure 6: The sequential two-sided auction algorithm.scans the node i for the �rst time, it sets usi to the shortest distance from the sources to i. If �ti is set to �usi in the reverse algorithm, an extension to i in the reversealgorithm means that a shortest path from t via i to s has been found. If thereverse algorithm furthermore receives the predecessors from the forward processor,the shortest path is known.
�
�� �
�� �
��s g k�
�� �
�� �
��i h j�
�� �
��q r

5 3����� �����- - -q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q� �- -
Figure 7: The solid arcs are arcs in the shortest path tree found so far by the forwardalgorithm. The dotted arcs are some of the other arcs. As the shortest path froms to h is found, we set �th = �ush = �8. When the reverse algorithm can make anextension from r to h, it means that it can extend further on to g and s, as theCS equality holds for these nodes. Therefore is the shortest path found from thedestination to the source when the reverse algorithm reaches h.It should be noted that the CS condition may be violated if a node in thecandidate path of the reverse algorithm is updated by the forward algorithm. If wemark the nodes for which we have received information from the forward algorithmand vice versa the problem is solved.A simple method to communicate is as follows: Each time the forward processorexpands its shortest path tree by a node (i.e. �rst time node i becomes terminalnode) it communicates �usi to the other processor, which sets �ti = �usi . Similar11

action is performed by the reverse algorithm. Even as asynchronous communicationis used on the Meiko this may be an expensive communication strategy because of:� The large startup latency.� In the �rst iterations of the algorithm, there will be many �rst scans. Lateron, more iterations will be performed before a �rst scan is encountered.� Running the parallel program on a \big" problem the source and the destina-tion are likely to be far apart. Communicating the u-values before a certainnumber of �rst scans is hence a waste of time.To minimize communication, the nodes are placed in a queue where they arescanned for the �rst time (i.e. becomes tree nodes). When the queue reaches acertain size (denoted the critical size), all the nodes in the queue are sent to theother processor, and the queue becomes empty. The size of the queue before it issent should decrease as the algorithm iterates. There are two reasons for this:� During the execution of the parallel program, the trees are closing in on eachother. So the chances of a possible common node is increasing, which shouldbe re
ected by intensifying the communication.� In the beginning of the algorithm �rst scans are performed more often. Hencethe queue grows faster in the beginning of the algorithm.After each communication the critical size is halved. To determine the initial com-munication threshold, we ran some tests, where the threshold was set to di�erentpercentage values of the number of nodes. The best result was obtained with theinitial threshold set to 1%.4.3 The Parallel Combined AlgorithmLike we solved the single-source single-destination problem with the two-sided auc-tion algorithm, the same e�ect for the single-source all-destinations problem couldbe obtained by running n�1 combined algorithms each using 2 processors. It would,however, be a waste of processors as the source is the same for all problems. Instead,we propose to use one processor to run the forward algorithm and the rest to runreverse algorithms, virtually combining the two previous ideas (hence we call it thecombined algorithm).Let us initially assume that we have enough processors at our disposal. A simpleparallel scheme would then be to run the forward algorithm on one processor (fromnow on called the forward processor) and n�1 reverse algorithms each on their ownprocessor (called the reverse processors). Each of the reverse processors communi-cates with the forward processor making the forward processor virtually acting asn� 1 forward processors. 12

We want to keep the communication as simple as possible, which can be achievedby ensuring that at most one message is \in transit" between the forward proces-sor and any given reverse processor at a time. The forward processor will thereforecommunicate only with those reverse processors that have acknowledged the commu-nication. Also, only the reverse processors detect when the paths have met. Hencewe do not have to communicate the shortest path trees of all the reverse processorsto the forward processor.By sending to a reverse processor only when it has acknowledged the last message,we may get into a situation in which we want to send some new tree nodes to a reverseprocessor that has not yet acknowledged the previous message. This problem maybe solved by having a separate queue for each reverse processor. It does, however,seem to be a waste of memory as many of the elements would be identical, and itwould require updating. Instead we use a queue, in which we do not physically erasethe nodes when they have been sent. The queue for processor i, which we will referto as the sub-queue for i, is de�ned as the elements from �rst(i) pointer and up tobut not including the last pointer. The last pointer points to the �rst free space inthe queue, and it is equal for all sub-queues (therefore no index is required) becausewhen we send the tree nodes we \locally" empty the sub-queue. So if �rst(i) = lastthe sub-queue for i is empty.When the threshold is exceeded the elements in the sub-queues are sent to theparticular processors and �rst(i) is set to last. This is only done if the processor hasacknowledged the last message, otherwise the sub-queue is left unchanged and nocommunication is performed.The forward processor terminates when it has received the solutions from all thereverse processors.If we do not have enough processors at our disposal to run one destinationper processor we can use a technique similar to that described earlier. The set ofdestinations is partitioned evenly among the available processors.Our parallel program now virtually runs n�1 two-sided auction algorithms but atthe expense of only one forward processor. The reverse processors are neverthelessall working independently of each other. We may therefore improve our parallelalgorithm by sharing prices.In the simple implementation the forward processor communicates directly withall reverse processors.When a reverse processor (r1) receives a price �usi from forward, it updates�r1i , and it knows that when it reaches the node i it should terminate. Supposeanother reverse processor (r2) has not yet received the price �usi from forward, andit receives the updated prices from r1. r2 now has the updated �r2i values, but itdoes not know that i must terminate when this node is reached. A situation wherethe CS is violated can therefore occur.When communicating the usi -values from the forward processor to the reverseprocessors, we must ensure that all reverse processors receive the same informationat the same time. Using synchronous communication will, however, slow down the13

forward processor, especially when using many reverse processors.Another solution is to let the forward processor communicate only with onereverse processor (a \master"), who then distributes the information received fromthe forward processor to the other reverse processors through the ring. This alsominimize the work load on the forward processor. The idea is depicted in Figure 8and works as follows: Forward sends its tree nodes to one reverse processor (r1),who acknowledges the received data. The next time r1 sends data to the nextreverse processor (r2), it furthermore sends information on which nodes now havebecome tree nodes in the forward processor. When a reverse processor receives thisinformation, it updates the local information and passes it on to the next reverseprocessor (except for the last processor r3).
����f ����r1

����r2
����r3
??

�
�

�*� pppppppppppppppppp
Figure 8: An example of the communication with 1 forward processor (f) and 3reverse processors (r1, r2 and r3).Earlier we discussed what can be sent between the reverse processors. In thecurrent implementation we only implement the communication of all the prices,along with the nodes in the forward tree. We have also tested the program to �ndthe best communication frequency in the ring. Among a number of di�erent values100000/#(reverse processors) updates gave the best result. The forward processorsends information to the \master" reverse processor after �rst scans of 1 % of thenodes. As with the two-sided auction algorithm this threshold is halved after eachcommunication.5 Experimental ResultsIn our evaluation of the algorithms we have used the generator-programs Spgrid,Sprand and Spacycmade by Cherkassky et al. in connection with [CGR93] (availablein the Splib package). For each experiment the running time is the average over 5runs. All running times are given in seconds. If at least one instance for a problemsize was not solved after at least 1000 sec. the calculation was terminated (indicated14

in the tables by a 'T'), because early results indicated that times above 1000 sec.already were magnitudes worse than the best. In some of the tests of the parallelalgorithms we have, however, allowed running times to exceed 1000 sec. becausesolving the same problem with more processes the running time came below 1000sec. making it possible to comment on a wider range of results. An entry 'M' in thetables means that the test could not be run due to lack of memory. As the auctionalgorithm without reduction can not handle graphs with cycles of length zero all thegraphs have been tested for such cycles.Some of the graphs generated may have multiple arcs. Since our algorithms areconstructed under the assumption that there are no multiple arcs we have developeda program cleanup that deletes multiple arcs. Only the shortest of the multiple arcsbetween two nodes remains in the graph. Thereby the solution is not changed withrespect to the original graph. This only decreased the number of arcs slightly,thereby maintaining the desired characteristics e.g. a dense graph remains dense.The sequential and parallel algorithms were evaluated by running the (to ourknowledge) best state-of-the-art shortest path algorithm, namely the Dijkstra algo-rithm with double buckets (for a description see [CGR93]). The program (hereafterreferred to as DikBd) was provided by the authors of [CGR93] in the Splib pro-gram package. The generator-program Spgrid generates rectangular grid networks.Grid graphs are interesting as they are very sparse and resembles city maps andother transit networks. Nodes of these graphs correspond to points in the planewith positive integer coordinates (x; y), 1 � x � xmax, 1 � y � ymax. Node (x; y)has an outgoing arc to (x + 1; y) unless x = xmax. These arcs will be called levelarcs. For each \layer" of nodes (that is, for x �xed) there is a two-way cycle of arcs,that is, for the node (x; y) there exist outgoing arcs from and ingoing arcs to thenodes (x; (y � 1)mod ymax) and (x; (y + 1)mod ymax). These arcs are denoted layerarcs. Additionally a source is connected to the grid by arcs from the source to allnodes in the �rst layer. The lengths of the arcs are selected uniformly at randomfrom intervals to be speci�ed later.We experiment with two types of grid graphs. First we have made wide grids(denoted GridW). Here ymax is �xed at 16, while xmax take on the values 128, 256,512 and 1024. For these experiments all arc lengths are selected at random from theinterval [L;U] = [0; 10000].Secondly we have used the hard grid networks as they are called in [CGR93].Here ymax is �xed at 16, while xmax takes on the values 32, 64, 128 and 256. Inthe hard graphs (referred to as GridH) each layer is only a simple cycle (arcs inthis cycle is of length 1) plus a collection of arcs connecting randomly selected pairsof nodes on the cycle (their length is choosen at random from the interval [0; 100]).Also arcs from lower to higher numbered layers are added for node (x1; y) outgoingarcs are made to (x2; y) where x2 = x1 + 1 + 5i (i = 0; 1; : : : ; 4). If we make anarc form layer x1 to layer x2 the randomly selected length (selected from the sameinterval [L;U] = [1000; 10000]) is multiplied by (x2 � x1)2.The random graphs were constructed using the generator Sprand. The random15

graphs are constructed by making a Hamiltonian cycle and then adding arcs withdistinct random end points. In our experiments we set the length of the arcs onthe Hamiltonian cycle to 1, and except for the RandL experiment the length of theother arcs are chosen at random from the interval [0; 10000].Our �rst test is the Rand4. The graphs in this family have m = 4n, which makesthe graphs sparse. Here the graphs were generated for n = 8192, 16384, 32768 and65536.The graphs in the Rand14 family have m = n24 . These are dense graphs andthey are generated for n = 128, 256, 512 and 1024.Finally, we have in the RandL test used the random graph generator to test thealgorithms for their arc length dependency. For �xed n = 65536 and m = 262144we have used di�erent intervals for the arcs that does not belong to the Hamiltoniancycle. These were [L;U] = [1; 1], [0; 10], [0; 100], [0; 104] and [0; 106].The last generator program Spacyc generates acyclic graphs. Experiments withacyclic graphs are interesting since shortest path problems on acyclic graphs appearin many applications. The nodes are numbered from 1 to n, and there is a path ofarcs (i; i+1), 1 � i < n. Furthermore additional arcs are introduced by picking twonodes at random making an arc from the lower indexed to the higher indexed. Allarc lengths are chosen at random from the interval [L;U] = [0; 10000]. The graphs inthis experiment is constructed with m = 16n for n = 4096, 8192, 16384 and 32768.5.1 The sequential algorithmsWe �rst performed the experiments with the sequential auction algorithms. Wehave implemented the auction algorithm with best neighbor improvement as our\basic" auction algorithm (called Auc hereafter). Afterwards we extended the Aucalgorithm with extended and improved reduction (calling the resulting algorithmsAucEx and AucIm). The results are presented in the Tables 1 and 2.Clearly none of our auction algorithms have been able to obtain better runningtimes than DikBd. The DikBd algorithm is at least a factor 10 better than any ofthe auction algorithms.Comparing the auction algorithms there is a signi�cant improvement in perfor-mance when graph reduction is added. Both the extended (AucEx) and improvedreduction (AucIm) results in substantially better execution times, in some casesgaining a factor 250 { 300 (in the GridH tests). Among the two algorithms withgraph reduction the di�erence is small, although often slightly in favor of AucEx.AuxEx is better in all the RandX test and also the acyclic graphs (Acyc), whileAucIm is the fastest algorithm on the grid graphs.The RandL test (see Table 2) shows that while DikBd is almost una�ected ofthe range of the arc-length interval, all auction algorithms are highly sensitive tothe size of the [L;U] interval.It is noteworthy that when we test di�erent size of instances DikBd typicallydoubles in execution time as the size of the instances are doubled, which complies16

Graph Size Algorithmtype Auc AucEx AucIm DikBdGridW 128 2.247 0.317 0.318 0.026256 7.994 0.990 0.957 0.050512 31.991 3.647 3.350 0.0981024 125.592 14.213 12.616 0.197GridH 32 79.566 0.352 0.307 0.01464 325.531 1.464 1.258 0.030128 T 5.466 4.817 0.058256 T 23.177 20.331 0.117Acyc 4096 5.211 1.704 1.943 0.2018192 10.054 3.130 3.899 0.25716384 22.491 6.476 8.412 0.61532768 52.794 14.413 18.111 1.344Table 1: Execution times for the grids and acyclic graphs.with a theoretical time complexity of O(m+n�) for some constant � . For the auctionalgorithms we typically observe an increase by a factor 3 or 4 in the running timeas the size of the instances are doubled.5.2 The parallel algorithmsWe have developed 5 parallel algorithms. The �rst is the parallel reverse algo-rithms described in subsection 4.1. This has resulted in a parallel reverse algorithmwhere we solve one destination at a time and exchange only prices (called PRevO).Furthermore we tried to communicate predecessor values instead of prices, whichresulted in the PRevP algorithm (as with PRevO we work on one destination at atime). Still using PRevO as basic parallel algorithm we have tried to communicateboth prices and predecessor values. This is called the PRevB algorithm. Finallywe developed a version of the parallel reverse algorithm where we do some iterationson every destination, changing when the candidate path degenerates. This versionis called PRevI. In order to keep the number of algorithms on a reasonable level wedid not try to communicate the predecessor values on this algorithm.Finally we integrate the two-sided algorithm with the parallel reverse algorithmand get the combined algorithm. This is called PCom. Like with PRevI we restrictthe algorithm to communicate only the prices among the reverse processors.The results on the di�erent graph types can be seen in Tables 3 to 8 on thefollowing pages.Extensive tests showed that PCom using extended reduction in the forwardprocessor was slightly better than using improved reduction in the forward processor.We therefore only report on thePCom algorithm where extended reduction is used in17

Graph Size Algorithmtype Auc AucEx AucIm DikBdRand4 8192 5.900 4.251 4.934 0.11316384 12.323 8.968 10.223 0.26932768 26.109 18.654 21.561 0.59965536 54.112 37.383 43.401 1.248Rand14 128 0.111 0.025 0.042 0.004256 0.308 0.070 0.133 0.014512 0.969 0.221 0.543 0.0641024 2.980 0.799 2.229 0.261RandL [1; 1] 4.319 2.698 4.045 0.854[0; 10] 5.237 3.607 4.797 1.041[0; 100] 8.872 6.125 7.755 1.149[0; 104] 53.395 37.168 42.682 1.252[0; 106] 469.609 330.605 374.597 1.236Table 2: The \random" graphs.the forward processor. This algorithm was therefore only tested in this con�guration.All algorithms are tested for 2, 3, 4, 8 and 16 processors.We have drawn the following main conclusions: In order to analyse the test ofthe 5 parallel algorithms we have counted the number of times each algorithm wasthe best algorithm for each processor�size-group. As the PCom algorithm can notrun using only 2 processors these results are left out. Doing so the PCom algorithmis the best parallel algorithm in 88 out of 104 cases. It is always the best in theGridH (Table 4) and Acyc (Table 8) tests (PCom can, however, not be tested onthe largest instance of the Acyc test due to lack of memory). Additionally onlyonce in the Rand4 test (see Table 5) and twice in the RandL test (see Table 7)another algorithm was faster. In the remaining tests (GridW and Rand14) thereis no clear winner, especially the results obtained in the Rand14 test contains noindication what so ever. Noteworthy is though that PCom not once in the Rand14test is the best algorithm.Among the PRev algorithms the best ones are PRevB and PRevP whichaccounts for over 80% of the best running times, where PRevB quite consistentlyis the best in the Rand4 and Acyc tests. The worst algorithm clearly seems to bePRevI which is the best algorithm very few times.In PCom we use one processor to run a forward algorithm, thereby assigningmore destinations to the remaining p�1 processors than in the PRev algorithms. Inmost cases it is worth using one processor to run the forward algorithm. The reasonsmust be the e�ciency of the two-tree approach as displayed in [LP95, HKS93], andthe fact that we are able to use graph reduction in the forward algorithm.The lastconclusion is con�rmed by the huge advantage in the GridH test (see Table 4).18

Procs. Algorithm 128 256 512 10242 PRevO 0.945 1.703 3.329 7.439PRevP 0.656 1.306 2.760 5.871PRevB 0.924 1.633 3.075 6.576PRevI 0.633 0.985 1.445 2.868PCom 0.430 0.886 1.624 3.6533 PRevO 0.690 1.221 2.559 5.862PRevP 0.492 0.992 2.093 4.421PRevB 0.678 1.171 2.371 5.200PRevI 0.573 0.728 1.433 2.870PCom 0.457 0.693 1.221 2.7844 PRevO 0.630 1.201 2.077 4.127PRevP 0.425 0.693 1.253 2.519PRevB 0.618 1.186 2.020 3.658PRevI 0.476 0.814 1.471 3.045PCom 0.342 0.698 1.256 2.4778 PRevO 0.576 1.055 1.987 4.358PRevP 0.346 0.550 0.901 1.712PRevB 0.603 1.125 2.412 4.482PRevI 0.573 0.879 1.638 3.688PCom 0.337 0.678 1.267 2.74416 PRevO 0.797 1.531 2.912 7.041PRevP 0.417 0.761 1.420 2.758PRevB 0.839 1.869 3.572 7.070PRevI 0.689 1.210 2.206 5.617PCom 0.337 0.790 1.628 3.492Table 3: Parallel single-all. GridW.
19

Procs. Algorithm 32 64 128 2562 PRevO 79.376 352.715 1343.924 TPRevP 78.964 349.735 1334.090 TPRevB 79.073 329.736 1352.781 TPRevI 85.231 320.215 1129.772 TPCom 1.320 1.967 6.917 28.1573 PRevO 52.896 246.924 932.918 TPRevP 60.258 276.114 1067.202 TPRevB 56.219 245.639 954.789 TPRevI 70.945 260.964 853.052 TPCom 1.527 2.294 6.792 28.2184 PRevO 42.812 187.458 742.329 TPRevP 52.679 244.631 948.004 TPRevB 44.276 176.535 757.543 TPRevI 61.759 217.112 700.024 TPCom 1.109 2.033 6.792 28.2098 PRevO 18.797 91.834 382.155 TPRevP 33.877 177.168 696.376 TPRevB 19.785 84.079 365.750 TPRevI 34.207 126.767 455.175 TPCom 0.677 1.882 6.762 28.15816 PRevO 7.591 42.495 192.644 TPRevP 21.622 123.593 524.768 TPRevB 7.556 37.591 196.558 TPRevI 19.121 75.773 276.684 TPCom 0.583 1.889 6.877 28.750Table 4: Parallel single-all. GridH.
20

Procs. Algorithm 8192 16384 32768 655362 PRevO 9.137 18.768 36.166 83.144PRevP 8.933 19.205 40.662 88.320PRevB 7.501 13.671 26.852 58.378PRevI 14.235 26.900 48.986 103.820PCom 3.915 8.041 16.825 35.5643 PRevO 6.927 13.616 26.370 59.067PRevP 8.735 18.773 40.082 86.856PRevB 5.844 10.648 20.611 43.472PRevI 10.680 21.129 36.789 76.938PCom 4.502 8.164 16.178 32.6764 PRevO 5.500 10.696 20.847 47.124PRevP 8.461 18.502 38.913 86.361PRevB 4.688 8.456 16.703 37.272PRevI 8.693 17.073 29.303 62.540PCom 4.024 7.411 14.741 30.4668 PRevO 3.695 7.416 14.957 34.012PRevP 7.138 17.167 36.087 85.717PRevB 3.643 7.135 13.842 32.052PRevI 5.276 12.089 22.802 51.995PCom 3.543 6.566 13.415 29.49816 PRevO 3.396 7.759 14.929 34.789PRevP 5.896 15.515 32.494 84.908PRevB 3.824 8.079 17.315 36.608PRevI 4.855 10.682 22.375 51.062PCom 3.242 6.533 13.553 30.260Table 5: Parallel single-all. Rand4.
21

Procs. Algorithm 128 256 512 10242 PRevO 0.118 0.439 1.578 5.945PRevP 0.107 0.429 1.568 5.928PRevB 0.111 0.462 1.538 6.059PRevI 0.155 0.569 2.044 7.397PCom 0.163 0.842 2.144 7.0923 PRevO 0.107 0.405 1.631 5.791PRevP 0.108 0.409 1.625 5.791PRevB 0.096 0.432 1.558 5.899PRevI 0.133 0.509 1.917 6.728PCom 0.153 0.609 1.996 7.0624 PRevO 0.124 0.395 1.538 5.744PRevP 0.121 0.392 1.528 5.724PRevB 0.111 0.412 1.498 5.812PRevI 0.138 0.442 1.725 6.240PCom 0.123 0.539 1.861 6.4338 PRevO 0.114 0.379 1.474 5.406PRevP 0.107 0.379 1.454 5.372PRevB 0.101 0.402 1.423 5.476PRevI 0.114 0.396 1.538 5.640PCom 0.121 0.456 1.541 5.54316 PRevO 0.114 0.368 1.484 5.289PRevP 0.121 0.365 1.358 4.766PRevB 0.105 0.398 1.442 5.325PRevI 0.131 0.437 1.543 5.332PCom 0.119 0.446 1.407 4.773Table 6: Parallel single-all. Rand14.
22

Procs. Algorithm [1; 1] [0; 10] [0; 100] [0; 104] [0; 106]2 PRevO 10.678 12.326 18.760 80.205 606.757PRevP 9.124 10.265 16.922 88.459 767.789PRevB 10.588 11.361 16.564 58.570 439.428PRevI 10.236 13.222 22.227 100.600 1250.546PCom 4.572 5.101 7.629 34.202 262.3433 PRevO 9.975 11.372 15.438 57.693 438.262PRevP 9.004 9.863 16.439 87.183 723.618PRevB 10.683 10.674 14.677 44.302 329.691PRevI 10.329 12.195 18.475 74.340 951.963PCom 5.558 5.979 7.989 32.441 235.2164 PRevO 9.956 10.273 14.000 45.089 338.822PRevP 9.224 10.049 16.188 86.636 732.312PRevB 11.639 11.900 14.150 35.950 253.527PRevI 9.965 12.140 16.713 60.374 672.986PCom 5.186 5.492 7.732 30.899 222.7248 PRevO 11.744 11.834 14.764 32.793 179.879PRevP 10.723 11.405 16.992 84.266 613.481PRevB 14.320 14.049 17.017 30.223 135.204PRevI 11.954 13.186 19.061 49.758 352.138PCom 6.726 7.229 8.935 28.910 199.87916 PRevO 16.716 16.801 19.781 31.926 113.177PRevP 13.741 14.977 19.450 81.705 487.712PRevB 22.441 22.254 21.465 33.050 89.312PRevI 16.796 16.873 22.753 48.615 221.042PCom 8.249 9.427 12.449 29.124 163.108Table 7: Parallel single-all. RandL.
23

Procs. Algorithm 4096 8192 16384 327682 PRevO 6.575 14.292 31.380 70.237PRevP 6.069 13.357 30.208 68.658PRevB 6.436 13.465 30.405 66.584PRevI 10.112 21.195 53.297 112.879PCom 2.815 3.135 6.557 M3 PRevO 5.851 12.537 27.083 60.467PRevP 5.496 12.051 27.558 63.363PRevB 5.818 11.857 26.678 58.607PRevI 8.549 17.180 40.108 87.318PCom 4.522 6.608 9.054 M4 PRevO 5.426 11.479 24.156 52.771PRevP 5.118 11.271 25.308 58.279PRevB 5.431 10.822 24.085 51.905PRevI 6.950 14.597 31.716 73.574PCom 3.511 5.302 8.009 M8 PRevO 4.026 8.086 17.377 38.971PRevP 3.895 8.524 20.160 48.469PRevB 4.090 8.064 17.399 39.335PRevI 4.384 8.601 18.487 42.862PCom 2.265 3.765 6.502 M16 PRevO 2.869 5.588 12.809 30.095PRevP 2.526 5.677 13.941 36.696PRevB 2.889 5.528 13.331 30.553PRevI 3.010 5.893 13.258 28.770PCom 1.609 3.106 6.421 MTable 8: Parallel single-all. Acyc.
24

The advantage of PCom clearly drops with increasing number of processors, e.g.in the Rand4 test the advantage drops from a factor 2:3 over PRevB in the 4processor case to 1:6 in the 8 processor instances and further to 1:1 when we use 16processors, which means that PCom does not scale as well as PRevB. Generallythe PRev-algorithms scales rather well.As PCom is the best of our parallel algorithms we have calculated the absolutespeed up (de�ned as TpT � where Tp is the running time of the algorithm using pprocessors, and T � is the fastest sequential algorithm) and e�ciency (de�ned asspeedup divided with the number of processors used) for it. The results are tabulatedin Table 9. The speedup and e�ciency presented is the minimum and maximumover all tests with p processors.Procs. Sminp Smaxp Eminp Emaxp3 4:7 � 10�3 0.16 1:6 � 10�3 5:2 � 10�24 5:2 � 10�3 0.17 1:3 � 10�3 4:3 � 10�28 5:2 � 10�3 0.14 7:7 � 10�4 1:7 � 10�216 5:1 � 10�3 0.12 4:7 � 10�4 7:0 � 10�3Table 9: The speed up and e�ciency for PCom.Clearly our parallel algorithms behaves very poorly when we compare withDikBd. Not a single place we obtain speed up above 1, in fact, best absolutespeed up is 0:17. Note also that the speedup values deteriorate as we use moreprocessors.In order to evaluate the relative performance of the PCom algorithm we havecalculated the scalability, that is Scp = T2Tp . These �gures are shown in Table 10below. Procs. Scminp Scmaxp3 0.4744 1.38264 0.5913 1.56218 0.7056 1.949816 0.5411 2.2642Table 10: The scalability for PCom.These �gures are not impressive but in general we almost always achieve some-thing by adding more processors. Only for very few instances we get a scalabilitybelow 1. The reason for the low scalability values stems from the di�erence betweenthe forward and the reverse algorithms. The scalability of the PRev algorithms ismuch better, but as they are substantially slower than the PCom algorithm it is ofno use. 25

6 ConclusionThe experimental results are very clear both for the sequential and the parallelalgorithms.None of the auction algorithms were even close to the execution times of theDikBd algorithm. Even though graph reduction was e�ective in reducing the exe-cution time of the auction algorithm it is still signi�cantly slower than DikBd. Forus the auction approach is beautiful, but it is and will remain inferior to Dijkstra-likealgorithms when implemented.For our parallel algorithm we obtain very low speed-up values. Here the prob-lem is two-fold: we have based our parallel algorithms on an algorithm (the auctionalgorithm) that behaves poorly compared to DikBd, and the e�ciency of the se-quential DikBd is di�cult to compete with since we have to overcome the expensivecommunication. A major drawback is that we can not use graph reduction in ourreverse processors in combination with exchange prices.AcknowledgementWe would like to thank Jens Clausen (DIKU) for valuable comments upon the draft.References[Ber91] Dimitri P. Bertsekas. An auction algorithm for shortest paths. SIAMJournal on Optimization, 1:425 { 447, 1991.[BPS92] Dimitri P. Bertsekas, Ste�ano Pallottino, and Maria Grazia Scutell�a. Poly-nomial auction algorithms for shortest paths. Technical Report TR-16/92,Dipartimento di Informatica, University of Pisa, 1992.[CGR93] Boris V. Cherkassky, Andrew V. Goldberg, and Tomasz Radzik. Shortestpath algorithms: Theory and experimental evaluation. Draft, July 1993.[HKS93] Richard V. Helgason, Je�rey L. Kennington, and Douglas B. Steward. Theone-to-one shortest-path problem: An empirical analysis with the two-treedijkstra algorithm. Computational Optimization and Applications, 1:47 {75, 1993.[LP95] Jesper Larsen and Ib Pedersen. The auction approach for the shortestpath problem: Theory and experiments. Master's thesis, Department ofComputer Science, University of Copenhagen (DIKU), 1995.[PS91] Stefano Pallottino and Maria Grazia Scutell�a. Strongly polynomial auctionalgorithms for shortest path. Technical Report TR-19/91, Dipartimentodi Informatica, University of Pisa, 1991.26

