Experiments with
the auction algorithm
for the shortest path problem.

Jesper Larsen* Ib Pedersen'

February 3, 1997

Abstract

The auction approach for the shortest path problem as introduced by Bert-
sekas is tested experimentally. Parallel algorithms using the auction approach
are developed and tested. Both the sequential and parallel auction algorithms
perform significantly worse than a state-of-the-art Dijkstra-like reference algo-
rithm.

1 Introduction

The shortest path problem is one of the classical problems in Operations Research.
One usually classifies shortest path algorithms into one of two groups: the label-
setting algorithms (Dijkstra-like) and the label-correcting algorithms (Bellman-Ford-
like).

A recent approach to solving shortest path problems is the auction algorithm
proposed by Bertsekas in [Ber91]. In [PS91] and [BPS92] the performance of the
auction algorithm is enhanced by the use of graph reduction, thereby reducing the
worst-case time-complexity from pseudo-polynomial to strongly polynomial.

Here we introduce the improved graph reduction scheme, which allows for ad-
ditional reduction of the graph. Furthermore, suggestions in [Ber91] on how to
parallelize the auction approach are investigated and used as off-set for constructing
other parallel algorithms.

In section 2 the sequential auction algorithm is presented. In section 3 the auction
algorithm is enhanced by the introduction of graph reduction. Section 4 describes
parallel algorithms based on the auction approach, and experimental results are
given in section 5. Finally the most important findings are summarised in the
conclusion.

*Department of Computer Science (DIKU), University of Copenhagen, Universitetsparken 1,
DK-2100 Copenhagen @, e-mail: friberg@diku.dk
tDansk Data Elektronik A/S, Herlev Hovedgade 199, DK-2730 Herlev, e-mail: ibp@dde.dk

2 The auction algorithm

Let G = (N, A,l) be a weighted directed graph with node-set N, arc-set A and
length-function [: A — IR. We assume that there is at most one arc from node i to
node j, denoted (i, 7). Additionally we assume that all arc-lengths are non-negative.
n denotes the number of nodes and m denotes the number of arcs in the graph.

The auction algorithm was first presented by Bertsekas in [Ber91] as a single-
source single-destination algorithm but it can easily be extended to a single-source
all-destination algorithm. Initially we assume that all cycles have positive length,
and to simplify descriptions we assume that each node except the destination has
at least one outgoing arc.

Let s be the source node and ¢ the destination node. During the execution of the
auction algorithm a path called the candidate path is maintained. The first node of
the candidate path is always the source node s. The last node of the candidate path
is called the terminal node. A node that is or has been part of the candidate path
is called a tree node. A border node is a node that has an incoming arc originating
from a tree node.

The auction algorithm consists of a (finite) number of iterations. In each itera-
tion one of two operations, contraction or extension, is performed. The algorithm
terminates when ¢ becomes the terminal node.

The selection of operation is determined by the price of the terminal node. For
each node ¢ we maintain a price m; such that

T < li]‘—l-ﬂ'j for all (’L,]) eA (1)
. = lj+m; for all (¢,j) where P =(...,i,4,...) (2)
where P is the candidate path. 7 denotes the vector of prices.
Assume that the candidate path P is (s,iq,492,...,7t) and there exists an arc
(ig,1) with
Ty = liyi + ™ (3)

We perform an eztension of P by ¢ by extending the candidate path P with node
i resulting in a new candidate path P = (s,i1,1492,...,%k,1). The arc (ix,4) is called
a candidate arc. There may exist more than one candidate arc, and in that case a
random one is selected to extend by.

If, however, no arc leaving the terminal node satisfies (3) a contraction is made.
A contraction consists of two steps:

e first update the price vector, and then

e the terminal node is discarded from the candidate path — the candidate path
P is reduced to (s,i1,42,...,ix—1). However this is only done if P is not equal
to the degenerate candidate path (s).

A pair (P, 7) is said to satisfy Complementary Slackness (or CS for short) if:

1. P is a simple path.

2. 7 is a price vector that satisfies (1) and (2).

Initially (P, 7) is required to satisfy CS. If all arc-lengths are non-negative this
can easily be achieved by setting

P={(s)and m; =0 for alli e N.

Otherwise a preprocessing algorithm (described in [Ber91]) can be run to initialize
the variables.
An iteration starts by testing the inequality

m; < min {l;; + 75
‘ (m)eA{ i + il

for the terminal node of P. If it does not hold then due to the CS conditions
the corresponding equality holds and an extension using one of the candidate arcs is
made. Otherwise a contraction is performed raising the price of the terminal node of
P to ming; jyc 4{lij+m;}, and discarding it from the candidate path (unless P = (s)).
The CS condition clearly remains valid.

The algorithm is shown in Figure 1. Note that by (2) 75 — m; is the length of the
part of the candidate path P between s and 7, and by (1) the length of every path
from s to i is at least equal to g — m;. So if a pair (P,) satisfies CS, the part of
P between s and any node ¢ € P is a shortest path from s to i, and w3 — 7; is the
corresponding shortest distance.

Termination and correctness of the algorithm is shown in [Ber91, LP95]. The
auction algorithm has a worst-case time-complexity O(kn?), where k is the length
of the longest shortest path. Hence if an upper bound on the arc-lengths is imposed,
the algorithm becomes strongly polynomial.

If a node ¢ without outgoing arcs exists, we may set m; = +00, when calculating
ming jye 4{lij + m;}. It can be viewed as the existence of an (i,%)-arc with length
+00.

The extension from a single-destination algorithm to an all-destinations algo-
rithm can easily be accomplished by not terminating the algorithm before all nodes
have been terminal node.

An improvement to the auction algorithm would be to calculate

j; = arg min {l;; + m;
Ji g (i,j)eA{ L) J}
while calculating the minimum. Saving the value, we may next time node i becomes
terminal node start by checking
i = lij; + 7j;.-

If the equation holds an extension can be performed without calculating the mini-
mum. This is called the best neighbor improvement. Note that it does not change
the theoretical time complexity, but it has a significant effect when implementing
the algorithm.

P = (s)
7 set so CS is maintained
< let ¢ be the terminal node of P >
1=3S5
while 7 # ¢ do
if m; < ming j)e a{lij + 7j} then
& Contraction >
mi = ming je a{lij + 7}
if 7 # s then
P=P— i)
1 = terminal node of P
else
< Extension >

Jj; = arg min(i,j)eA{lij + 7Tj}

P =P+ (ji)
L= Ji
return P

Figure 1: The single-destination auction algorithm.

3 Graph reduction

In an effort to decrease the time complexity of the algorithm, arcs that can not be
a member of the solution, can be removed by reduction. Three types of reduction
denoted simple (described in [PS91]), extended (described in [BPS92]) and improved
reduction (described in [LP95]) are described. All reductions result in algorithms
better than the classic auction algorithm both wrt. empirical and worst-case time
complexity. The latter is improved from pseudo-polynomial to strongly polynomial.

When running the auction algorithm as an all-destinations algorithm, all three
types of reductions delete all arcs not belonging to a shortest path tree. Upon
termination the graph has “collapsed” into a shortest path tree. The difference
between the three types is how early the arcs are deleted during the execution. An
arc may be deleted earlier by improved reduction than extended reduction, which
may delete the arc earlier than simple reduction.

In simple graph reduction, the first time a node becomes terminal node the
shortest path from the source to this node is found as described earlier. No path
from the source ending in this node is shorter. So all arcs going into the node except
the arc used to extend to the node can be removed. The time complexity now
becomes O(m?) as proved in [PS91].

In the eztended graph reduction not only incoming arcs are deleted but also
outgoing arcs. In order to do so a new variable u; is introduced for each node j. For

node j, u; is an upper bound on the length of the shortest path from s to j. Theses
variables corresponds exactly to the temporary labels on the nodes generated by the
Dijkstra algorithm. Therefore one sometimes refer to the variables u; as Dijkstra
labels. During the execution of the algorithm wu; is monotonically non-increasing,
and as j becomes terminal node it equals the length of the shortest path from s to

j. Initially we set
w — 0 ifj=s
T 4o ifj#s

Like simple reduction extended reduction is only performed at first scan, where a
scan is the calculation of the minimum of /;; + m; (we say we “scan” the arcs).

0,

Figure 2: Node ¢ has just become terminal node for the first time.

Consider the situation in Figure 2. Node i has just become the terminal node
for the first time. If u; < u; + [;; the arc (i,7) can be deleted once the value of
u; indicates that another path has a smaller upper bound, thereby excluding i as
intermediate node in the shortest path to j.

Otherwise u; > u; + l;; a new better upper bound using ¢ as intermediate node
is found. The Dijkstra label u; is therefore updated to u; + [;; and the arc (k,),
where uy, + l; was equal to the former value of uj, is deleted. This arc is easy to
determine as it is the only arc going into j coming from a tree node.

In [BPS92] it is shown that the auction algorithm with extended reduction has
a worst-case time complexity of O(n min{m,nlogn}).

In an effort to delete even more arcs we developed the improved reduction. The
theoretical worst-case time complexity is worse than extended reduction but remains
strongly polynomial as we get O(nm). The proof can be seen in [LP95].

Consider again node j in Figure 2. If we now calculate

i + U 4
arg (kI’Igl)lélA{uk kit (4)

we can use it to check whether the arc (i, 7) can be discarded or not. If (4) is different
from 7 another path has an upper bound better than the path using ¢. Hence the
other path is better (or at least not worse) and, as it is only an upper bound, it may
get even better. Notice that beside checking arcs outgoing from tree nodes we now

also check arcs outgoing from border nodes, which was not the case in the extended
reduction.

The fact that all border nodes at most has one ingoing border arc enables us to
make the check in constant time in the extended reduction, while all ingoing arcs
has to be scanned in the improved reduction. This accounts for the difference in
worst-case time complexity.

4 Parallel Algorithms

Before discussing the parallel algorithms developed we will describe the parallel
computer used in our experiments.

The MEIKO parallel computer at the Department of Computer Science, Univer-
sity of Copenhagen (DIKU) is an asynchronous MIMD (Multiple Instruction-stream
Multiple Data-stream) parallel computer equipped with 16 Intel i860 processors each
having 16Mb of memory. The communication between the 16 i860’s is controlled by
32 T800 communication transputers. The MEIKO is capable of both synchronous
and asynchronous communication.

When communicating asynchronously sender and receiver must regularly test
whether the communication has been completed. In practice the receiver has to test
if any data has arrived in the prepared buffers.

As with most of the MIMD-class parallel computers the startup latency (the
time used to setup communication) is very high compared to the time it takes to
send information (e.g. an integer) and the time to do an integer operation (e.g. add
two numbers).

4.1 The Parallel Reverse Algorithms

It should be quite obvious that in the single-source single-destination approach we
may “reverse the calculations” building the path from the destination and back to
the source instead of building the path from the source to the destination. This
results in the reverse algorithm shown in Figure 3.

A way to parallelise the auction algorithm is by viewing the single-source all-
destination problem as n —1 single-source single-destination problems. Imagine that
we had an unlimited polynomial number of processors at our disposal. We could
then run the reverse algorithm on n — 1 processors each with the same source but a
different destination.

This would give us a “naive” parallel algorithm where the results gained along
the computation (intermediate shortest paths) are not shared among the processors.

In an effort to utilise the intermediate results we consider the price vectors. As
each reverse algorithm is run independently each processor works on its own price
vector. To share some of the information in the price vectors we observe that if two

R=(t)
< 7 set so that CS is maintained >

m, =0 Vi e N
& let j be the terminal node of R >
J=t

while j # s do
if 7 > max(i’j)eA{m — lij} then
< Contraction >
T = maX(i’j)eA{m — lij}
if j At then
R=R-(j)
j = terminal node of R
else
< Extension >

ij = argmax; je a{m — lij}

R=R+ (i)
J=1j
return P

Figure 3: The reverse algorithm.

processors P* and P’ each maintain their price vectors n* and 77 respectively then

szmin{ﬂzi),ﬂg forp=1,...,n (5)
will again satisfy CS (as proved in [Ber91, LP95]). So the price vector 7 defined
by (5) is a valid price vector. Combining the price vectors of some (or all) of the
processors tends to speed up the termination of the algorithm.

Note that even though CS is maintained for the new price vector we may have
destroyed the equality within the candidate path. So we must traverse the candidate
path from the destination and stop when the equality is not satisfied.

A more severe problem is that graph reduction may not be used when we ex-
change prices. An arc not present in processor P'’s representation of the graph may
lead to a violation of the CS on PJ where the arc may still be present when we use
the new “common” price vector. Due to the substantial effect of graph reduction
this is a major drawback wrt. running times.

Communication between the processors is quite expensive on the MEIKO (as on
most MIMD machines). Hence, the communication scheme must be kept as simple as
possible. Tt is far too expensive to exchange w-values every time these are changed.
It is also too expensive to communicate values from one processor directly to all
other processors (broadcasting).

Instead we setup a different topology. We have chosen a ring. This gives a
simple communication protocol, and we have only a small amount of processors at
our disposal. Each processor sends its values only to one specific processor and
receives values only from a specific processor as depicted in Figure 4.

(;)—»(1),0 :1

Processor no. n—2 n—1

Figure 4: Communicating using a ring with n processors. The arrows indicate the
direction of communication.

In addition to the simple structure we use asynchronous communication which
is much faster than synchronous communication. Asynchronous communication is,
however, more difficult to implement as we have to maintain communication buffers.
In order to minimize the administrational overhead we implement our ring structure
with only one processor being allowed to send at a time. This approach might
although not be optimal on systems with more processors as the longest path a
message has to travel before the information on every processor is updated grows
linearly to the number of processors available.

The interesting prices are those that have changed since the last communication.
Rather than sending all prices when communicating, it is enough to send updated
prices. It does, however, seem that the overhead introduced by packing and unpack-
ing the updated prices is too expensive. Therefor the whole price vector is passed
along.

The prices will be communicated after a fixed number of changes. After testing
different values, we have found that 200000/p, where p is the number of processors
used, gave the best result. The reason for dividing by p, is that with more processors,
more information can be used by other processors, and the communication frequency
should increase.

The set of destinations are partitioned equally among the processors. Fach
processor can solve the problems in two ways:

e Once we start working on a destination we only proceed to another destination
when the shortest path is found.

e We run several iterations on one destination, then proceed to a new one, even
if we did not find the shortest path. We then later return to the destinations
that are not solved, run a number of iterations and so forth.

Using the first approach only one price vector is needed. Indeed as the CS
is maintained after the first destination is solved we do not have to reset it, but
may instead use the information when running the remaining destinations. Memory

allocation for one candidate path is also enough if the shortest path tree is saved
in another way, e.g. by pointers to the predecessors. Note that when a destination
reaches a node that is already in the shortest path tree the reverse algorithm can
proceed to the next destination since the source now can be reached by a series
of extensions from the terminal node. When solving one destination at a time the
algorithm becomes sensitive to the order in which the destinations are processed. It
would be best to solve the destinations in order of “closeness” to the source, starting
with the nearest destinations. In this way the closest destination helps building up
a path towards the destinations farthest away.

We can minimize the communication by communicating the nodes of the shortest
path tree built so far instead of m-values. Each time a destination reaches the source,
the nodes in the candidate path and their predecessors and the prices are added to
a queue. At some fixed interval the queue is emptied sending the information to
the next processor. By communicating the prices we had to communicate O(n)
elements in each communication, now the total amount of elements to communicate
throughout the execution is O(n). On the other hand the information is weaker
since only the prices for tree nodes are communicated.

In order to exploit the information gathered, both prices and predecessors could
be sent. All the three described ideas have been tested.

When the price vector is communicated a small series of tests showed that com-
munication after 200000/p alternate in the prices (p is the number of processors)
is optimal. When only the predecessors are communicated the tests showed that
communication should be performed more frequently, namely after 50000/p changes
in prices.

Our second idea is to alternate between the destinations. Ideally we would like
to be able to have only one candidate path and only one price vector. If we alternate
from one destination to another only when the candidate path has “collapsed” into
the degenerate candidate path (d;), only one candidate path is present at any point
(because the first node of each candidate path can be implicitly represented, as it
is the destination node). When a new node starts from this degenerate candidate
path the price vector can not be violated by any of the operations, that is, we have
to keep track of only one candidate path and one price vector.

Regarding the time complexity, the worst case is that each of destinations run
independently, i.e. the nodes searched by each of the destinations are only reached
by one of the destinations. Therefore the worst-case time complexity running p
destinations on each processor will in the worst case be p times the time complexity
for running the algorithm with only one destination.

When there are p > 1 processors and 0 destinations, each processor solves the
problem for p = % destinations. The destinations are distributed using the commu-
nication ring. The first processor keeps the first % destinations and sends the rest
to the next processor, which keeps its amount of destinations, and so on. Once a
processor has sent the rest of the destinations to the next processor it can start the

multiple destinations algorithm shown in Figure 5.

fori=1tod
found(i) = FALSE
while (not all found)
fori=1to
if not found(7)
(run reverse for destination 7 until the candidate path only
contains the destination, or the source is reached)
if (source reached)
found(i) = TRUE

Figure 5: Solving multiple destinations (interchangeably) on one processor.

As previously the communication is performed after 200000/p changes in the
prices (p is the number of processors).

4.2 The Parallel Two-sided Algorithm

In [Ber91] Bertsekas suggests an algorithm for the single-source single-destination
problem where we use both the auction algorithm and the reverse algorithm. Since
this algorithm will be used in the following we will briefly describe it here.

We now consider combining the auction algorithm (hereafter also called the
forward algorithm) with the reverse algorithm. Initially we have two candidate
paths P (starting at the source) and R (starting at the destination) and one price
vector m. We then run the forward algorithm using P and the reverse algorithm
using R as candidate paths. The algorithm (called the two-sided auction algorithm)
terminates when the candidate paths contain a common node. Since both P and
R satisfies CS throughout the algorithm the composite path of P and R will be a
shortest path from the source s to the destination ¢.

Correctness and termination of the two-sided auction algorithm can only be
proved under the assumption that the potentials and lengths are integers as is done
in [Ber91, LP95]. Without the requirement of s and m; being increased respectively
decreased at least once in each step it is possible to construct examples where the
two-sided algorithm never terminates (see [LP95]).

The MEIKO parallel computer has no shared memory. This creates a problem
since when we parallelise the two-sided auction algorithm the two candidate paths
must operate on the same price vector. If we are to parallelise this algorithm we
must be able to maintain the common price vector. Here we may use some of the
ideas described earlier, namely to communicate prices and predecessors for nodes in
the shortest path tree found so far.

An example of the execution is shown in Figure 7. When the forward algorithm

10

do
< Step 1 >
Run several iterations of the while-loop of the forward algorithm,
at least once increasing
if P and R contains a common node then exit
< Step 2 >
Run several iterations of the while-loop of the reverse algorithm,
at least once decreasing
while P and R does not contain a common node

Figure 6: The sequential two-sided auction algorithm.

scans the node ¢ for the first time, it sets u to the shortest distance from the source
s to i. If w! is set to —uf in the reverse algorithm, an extension to i in the reverse
algorithm means that a shortest path from ¢ via 7 to s has been found. If the
reverse algorithm furthermore receives the predecessors from the forward processor,
the shortest path is known.

Figure 7: The solid arcs are arcs in the shortest path tree found so far by the forward
algorithm. The dotted arcs are some of the other arcs. As the shortest path from
s to h is found, we set 7, = —uj = —8. When the reverse algorithm can make an
extension from r to h, it means that it can extend further on to ¢ and s, as the
CS equality holds for these nodes. Therefore is the shortest path found from the
destination to the source when the reverse algorithm reaches h.

It should be noted that the CS condition may be violated if a node in the
candidate path of the reverse algorithm is updated by the forward algorithm. If we
mark the nodes for which we have received information from the forward algorithm
and vice versa the problem is solved.

A simple method to communicate is as follows: Each time the forward processor
expands its shortest path tree by a node (i.e. first time node i becomes terminal

5. Similar

node) it communicates —uf to the other processor, which sets ! = —u?.

11

action is performed by the reverse algorithm. Even as asynchronous communication
is used on the MEIKO this may be an expensive communication strategy because of:

e The large startup latency.

e In the first iterations of the algorithm, there will be many first scans. Later
on, more iterations will be performed before a first scan is encountered.

¢ Running the parallel program on a “big” problem the source and the destina-
tion are likely to be far apart. Communicating the u-values before a certain
number of first scans is hence a waste of time.

To minimize communication, the nodes are placed in a queue where they are
scanned for the first time (i.e. becomes tree nodes). When the queue reaches a
certain size (denoted the critical size), all the nodes in the queue are sent to the
other processor, and the queue becomes empty. The size of the queue before it is
sent should decrease as the algorithm iterates. There are two reasons for this:

e During the execution of the parallel program, the trees are closing in on each
other. So the chances of a possible common node is increasing, which should
be reflected by intensifying the communication.

e In the beginning of the algorithm first scans are performed more often. Hence
the queue grows faster in the beginning of the algorithm.

After each communication the critical size is halved. To determine the initial com-
munication threshold, we ran some tests, where the threshold was set to different
percentage values of the number of nodes. The best result was obtained with the
initial threshold set to 1%.

4.3 The Parallel Combined Algorithm

Like we solved the single-source single-destination problem with the two-sided auc-
tion algorithm, the same effect for the single-source all-destinations problem could
be obtained by running n—1 combined algorithms each using 2 processors. It would,
however, be a waste of processors as the source is the same for all problems. Instead,
we propose to use one processor to run the forward algorithm and the rest to run
reverse algorithms, virtually combining the two previous ideas (hence we call it the
combined algorithm).

Let us initially assume that we have enough processors at our disposal. A simple
parallel scheme would then be to run the forward algorithm on one processor (from
now on called the forward processor) and n — 1 reverse algorithms each on their own
processor (called the reverse processors). Each of the reverse processors communi-
cates with the forward processor making the forward processor virtually acting as
n — 1 forward processors.

12

We want to keep the communication as simple as possible, which can be achieved
by ensuring that at most one message is “in transit” between the forward proces-
sor and any given reverse processor at a time. The forward processor will therefore
communicate only with those reverse processors that have acknowledged the commu-
nication. Also, only the reverse processors detect when the paths have met. Hence
we do not have to communicate the shortest path trees of all the reverse processors
to the forward processor.

By sending to a reverse processor only when it has acknowledged the last message,
we may get into a situation in which we want to send some new tree nodes to a reverse
processor that has not yet acknowledged the previous message. This problem may
be solved by having a separate queue for each reverse processor. It does, however,
seem to be a waste of memory as many of the elements would be identical, and it
would require updating. Instead we use a queue, in which we do not physically erase
the nodes when they have been sent. The queue for processor i, which we will refer
to as the sub-queue for i, is defined as the elements from first(i) pointer and up to
but not including the last pointer. The last pointer points to the first free space in
the queue, and it is equal for all sub-queues (therefore no index is required) because
when we send the tree nodes we “locally” empty the sub-queue. So if first(i) = last
the sub-queue for ¢ is empty.

When the threshold is exceeded the elements in the sub-queues are sent to the
particular processors and first(i) is set to last. This is only done if the processor has
acknowledged the last message, otherwise the sub-queue is left unchanged and no
communication is performed.

The forward processor terminates when it has received the solutions from all the
reverse processors.

If we do not have enough processors at our disposal to run one destination
per processor we can use a technique similar to that described earlier. The set of
destinations is partitioned evenly among the available processors.

Our parallel program now virtually runs n—1 two-sided auction algorithms but at
the expense of only one forward processor. The reverse processors are nevertheless
all working independently of each other. We may therefore improve our parallel
algorithm by sharing prices.

In the simple implementation the forward processor communicates directly with
all reverse processors.

When a reverse processor (r1) receives a price —u? from forward, it updates
', and it knows that when it reaches the node i it should terminate. Suppose
another reverse processor (r2) has not yet received the price —uj from forward, and
it receives the updated prices from ri. r9 now has the updated m;* values, but it
does not know that i must terminate when this node is reached. A situation where
the CS is violated can therefore occur.

When communicating the u-values from the forward processor to the reverse
processors, we must ensure that all reverse processors receive the same information
at the same time. Using synchronous communication will, however, slow down the

™

13

forward processor, especially when using many reverse processors.

Another solution is to let the forward processor communicate only with one
reverse processor (a “master”), who then distributes the information received from
the forward processor to the other reverse processors through the ring. This also
minimize the work load on the forward processor. The idea is depicted in Figure 8
and works as follows: Forward sends its tree nodes to one reverse processor (r1),
who acknowledges the received data. The next time r; sends data to the next
reverse processor (rq), it furthermore sends information on which nodes now have
become tree nodes in the forward processor. When a reverse processor receives this
information, it updates the local information and passes it on to the next reverse
processor (except for the last processor r3).

Figure 8: An example of the communication with 1 forward processor (f) and 3
reverse processors (r1, ro and r3).

Earlier we discussed what can be sent between the reverse processors. In the
current implementation we only implement the communication of all the prices,
along with the nodes in the forward tree. We have also tested the program to find
the best communication frequency in the ring. Among a number of different values
100000/ # (reverse processors) updates gave the best result. The forward processor
sends information to the “master” reverse processor after first scans of 1 % of the
nodes. As with the two-sided auction algorithm this threshold is halved after each
communication.

5 Experimental Results

In our evaluation of the algorithms we have used the generator-programs Spgrid,
Sprand and Spacyc made by Cherkassky et al. in connection with [CGR93] (available
in the SPLIB package). For each experiment the running time is the average over 5
runs. All running times are given in seconds. If at least one instance for a problem
size was not solved after at least 1000 sec. the calculation was terminated (indicated

14

in the tables by a 'T), because early results indicated that times above 1000 sec.
already were magnitudes worse than the best. In some of the tests of the parallel
algorithms we have, however, allowed running times to exceed 1000 sec. because
solving the same problem with more processes the running time came below 1000
sec. making it possible to comment on a wider range of results. An entry "M’ in the
tables means that the test could not be run due to lack of memory. As the auction
algorithm without reduction can not handle graphs with cycles of length zero all the
graphs have been tested for such cycles.

Some of the graphs generated may have multiple arcs. Since our algorithms are
constructed under the assumption that there are no multiple arcs we have developed
a program cleanup that deletes multiple arcs. Only the shortest of the multiple arcs
between two nodes remains in the graph. Thereby the solution is not changed with
respect to the original graph. This only decreased the number of arcs slightly,
thereby maintaining the desired characteristics e.g. a dense graph remains dense.

The sequential and parallel algorithms were evaluated by running the (to our
knowledge) best state-of-the-art shortest path algorithm, namely the Dijkstra algo-
rithm with double buckets (for a description see [CGR93]). The program (hereafter
referred to as DIKBD) was provided by the authors of [CGR93] in the SPLIB pro-
gram package. The generator-program Spgrid generates rectangular grid networks.
Grid graphs are interesting as they are very sparse and resembles city maps and
other transit networks. Nodes of these graphs correspond to points in the plane
with positive integer coordinates (x,y), 1 < = < Zpax, 1 < ¥ < Ymax. Node (z,y)
has an outgoing arc to (z + 1,y) unless © = Zmax. These arcs will be called level
arcs. For each “layer” of nodes (that is, for z fixed) there is a two-way cycle of arcs,
that is, for the node (z,y) there exist outgoing arcs from and ingoing arcs to the
nodes (z, (y — 1) mod ymax) and (z, (y + 1) mod ymax). These arcs are denoted layer
arcs. Additionally a source is connected to the grid by arcs from the source to all
nodes in the first layer. The lengths of the arcs are selected uniformly at random
from intervals to be specified later.

We experiment with two types of grid graphs. First we have made wide grids
(denoted GRIDW). Here ymax is fixed at 16, while 2,5 take on the values 128, 256,
512 and 1024. For these experiments all arc lengths are selected at random from the
interval [L, U] = [0, 10000].

Secondly we have used the hard grid networks as they are called in [CGR93].
Here ymax is fixed at 16, while x5 takes on the values 32, 64, 128 and 256. In
the hard graphs (referred to as GRIDH) each layer is only a simple cycle (arcs in
this cycle is of length 1) plus a collection of arcs connecting randomly selected pairs
of nodes on the cycle (their length is choosen at random from the interval [0; 100]).
Also arcs from lower to higher numbered layers are added for node (z1,y) outgoing
arcs are made to (ze,y) where x9 = x1 +1+5i (i = 0,1,...,4). If we make an
arc form layer x1 to layer zo the randomly selected length (selected from the same
interval [L, U] = [1000, 10000]) is multiplied by (zo — 1)

The random graphs were constructed using the generator Sprand. The random

15

graphs are constructed by making a Hamiltonian cycle and then adding arcs with
distinct random end points. In our experiments we set the length of the arcs on
the Hamiltonian cycle to 1, and except for the RANDL experiment the length of the
other arcs are chosen at random from the interval [0, 10000].

Our first test is the RAND4. The graphs in this family have m = 4n, which makes
the graphs sparse. Here the graphs were generated for n = 8192, 16384, 32768 and
65536. ‘

The graphs in the RAND14 family have m = "TZ. These are dense graphs and
they are generated for n = 128, 256, 512 and 1024.

Finally, we have in the RANDL test used the random graph generator to test the
algorithms for their arc length dependency. For fixed n = 65536 and m = 262144
we have used different intervals for the arcs that does not belong to the Hamiltonian
cycle. These were [L,U] = [1, 1], [0,10], [0,100], [0,10%] and [0, 105].

The last generator program Spacyc generates acyclic graphs. Experiments with
acyclic graphs are interesting since shortest path problems on acyclic graphs appear
in many applications. The nodes are numbered from 1 to n, and there is a path of
arcs (4,74 1), 1 <14 < n. Furthermore additional arcs are introduced by picking two
nodes at random making an arc from the lower indexed to the higher indexed. All
arc lengths are chosen at random from the interval [L, U] = [0,10000]. The graphs in
this experiment is constructed with m = 16n for n = 4096, 8192, 16384 and 32768.

5.1 The sequential algorithms

We first performed the experiments with the sequential auction algorithms. We
have implemented the auction algorithm with best neighbor improvement as our
“basic” auction algorithm (called AUC hereafter). Afterwards we extended the Auc
algorithm with extended and improved reduction (calling the resulting algorithms
AUCEX and AucIm). The results are presented in the Tables 1 and 2.

Clearly none of our auction algorithms have been able to obtain better running
times than DIKBD. The DIKBD algorithm is at least a factor 10 better than any of
the auction algorithms.

Comparing the auction algorithms there is a significant improvement in perfor-
mance when graph reduction is added. Both the extended (AUCEX) and improved
reduction (AUcCIM) results in substantially better execution times, in some cases
gaining a factor 250 — 300 (in the GRIDH tests). Among the two algorithms with
graph reduction the difference is small, although often slightly in favor of AUCEX.
AUXEX is better in all the RANDX test and also the acyclic graphs (Acyc), while
AucIMm is the fastest algorithm on the grid graphs.

The RANDL test (see Table 2) shows that while DIKBD is almost unaffected of
the range of the arc-length interval, all auction algorithms are highly sensitive to
the size of the [L, U] interval.

It is noteworthy that when we test different size of instances DIKBD typically
doubles in execution time as the size of the instances are doubled, which complies

16

Graph | Size Algorithm
type Auc | AucEx | Auclv | DikBD

GRIDW 128 | 2.247 0.317 0.318 0.026
256 | 7.994 0.990 0.957 0.050
512 | 31.991 3.647 3.350 0.098

1024 | 125.592 | 14.213 | 12.616 | 0.197

GRIDH 32 | 79.566 0.352 0.307 0.014
64 | 325.531 | 1.464 1.258 0.030
128 T 5.466 4.817 0.058

256 T 23.177 | 20.331 0.117

Acyc 4096 | 5.211 1.704 1.943 0.201

8192 | 10.054 3.130 3.899 0.257
16384 | 22.491 6.476 8.412 0.615
32768 | 52.794 | 14.413 | 18.111 1.344

Table 1: Execution times for the grids and acyclic graphs.

with a theoretical time complexity of O(m+n7) for some constant 7. For the auction
algorithms we typically observe an increase by a factor 3 or 4 in the running time
as the size of the instances are doubled.

5.2 The parallel algorithms

We have developed 5 parallel algorithms. The first is the parallel reverse algo-
rithms described in subsection 4.1. This has resulted in a parallel reverse algorithm
where we solve one destination at a time and exchange only prices (called PREVO).
Furthermore we tried to communicate predecessor values instead of prices, which
resulted in the PREVP algorithm (as with PREVO we work on one destination at a
time). Still using PREVO as basic parallel algorithm we have tried to communicate
both prices and predecessor values. This is called the PREVB algorithm. Finally
we developed a version of the parallel reverse algorithm where we do some iterations
on every destination, changing when the candidate path degenerates. This version
is called PREVI. In order to keep the number of algorithms on a reasonable level we
did not try to communicate the predecessor values on this algorithm.

Finally we integrate the two-sided algorithm with the parallel reverse algorithm
and get the combined algorithm. This is called PCoMm. Like with PREVI we restrict
the algorithm to communicate only the prices among the reverse processors.

The results on the different graph types can be seen in Tables 3 to 8 on the
following pages.

Extensive tests showed that PCoM using extended reduction in the forward
processor was slightly better than using improved reduction in the forward processor.
We therefore only report on the PCoM algorithm where extended reduction is used in

17

Graph Size Algorithm
type Auc | AucEx | Auclm | DIKBD

RAND4 8192 | 5.900 4.251 4.934 0.113
16384 | 12.323 8.968 10.223 0.269
32768 | 26.109 | 18.654 | 21.561 0.599
65536 | 54.112 | 37.383 | 43.401 1.248

RAND14 128 | 0.111 0.025 0.042 0.004
256 | 0.308 0.070 0.133 0.014
512 | 0.969 0.221 0.543 0.064

1024 | 2.980 0.799 2.229 0.261

RANDL | [L,1] | 4319 | 2.698 | 4.045 | 0.854
0,10 | 5.237 | 3.607 | 4.797 | 1.041
(0,100 | 8.872 | 6.125 | 7.755 | 1.149
(0,10 | 53.395 | 37.168 | 42.682 | 1.252
[0,106] | 469.609 | 330.605 | 374.597 | 1.236

Table 2: The “random” graphs.

the forward processor. This algorithm was therefore only tested in this configuration.
All algorithms are tested for 2, 3, 4, 8 and 16 processors.

We have drawn the following main conclusions: In order to analyse the test of
the 5 parallel algorithms we have counted the number of times each algorithm was
the best algorithm for each processorxsize-group. As the PCoM algorithm can not
run using only 2 processors these results are left out. Doing so the PCowm algorithm
is the best parallel algorithm in 88 out of 104 cases. It is always the best in the
GRIDH (Table 4) and Acyc (Table 8) tests (PCoM can, however, not be tested on
the largest instance of the ACYC test due to lack of memory). Additionally only
once in the RAND4 test (see Table 5) and twice in the RANDL test (see Table 7)
another algorithm was faster. In the remaining tests (GRIDW and RAND14) there
is no clear winner, especially the results obtained in the RAND14 test contains no
indication what so ever. Noteworthy is though that PCoM not once in the RAND14
test is the best algorithm.

Among the PREV algorithms the best ones are PREVB and PREVP which
accounts for over 80% of the best running times, where PREVB quite consistently
is the best in the RAND4 and ACYC tests. The worst algorithm clearly seems to be
PREVI which is the best algorithm very few times.

In PCoMm we use one processor to run a forward algorithm, thereby assigning
more destinations to the remaining p—1 processors than in the PREV algorithms. In
most cases it is worth using one processor to run the forward algorithm. The reasons
must be the efficiency of the two-tree approach as displayed in [LP95, HKS93], and
the fact that we are able to use graph reduction in the forward algorithm.The last
conclusion is confirmed by the huge advantage in the GRIDH test (see Table 4).

18

Procs. | Algorithm | 128 | 256 | 512 | 1024

2 PREVO | 0.945 | 1.703 | 3.329 | 7.439
PREVP | 0.656 | 1.306 | 2.760 | 5.871
PREVB | 0.924 | 1.633 | 3.075 | 6.576
PREVI | 0.633 | 0.985 | 1.445 | 2.868
PCom 0.430 | 0.886 | 1.624 | 3.653

3 PREVO | 0.690 | 1.221 | 2.559 | 5.862
PREVP | 0.492 | 0.992 | 2.093 | 4.421
PREVB | 0.678 | 1.171 | 2.371 | 5.200
PREVI | 0.573 | 0.728 | 1.433 | 2.870
PCom 0.457 | 0.693 | 1.221 | 2.784

4 PREVO | 0.630 | 1.201 | 2.077 | 4.127
PREVP | 0.425 | 0.693 | 1.253 | 2.519
PREVB | 0.618 | 1.186 | 2.020 | 3.658
PREVI | 0.476 | 0.814 | 1.471 | 3.045
PCom 0.342 | 0.698 | 1.256 | 2.477

8 PREVO | 0.576 | 1.055 | 1.987 | 4.358
PREVP | 0.346 | 0.550 | 0.901 | 1.712
PREVB | 0.603 | 1.125 | 2.412 | 4.482
PREVI | 0.573 | 0.879 | 1.638 | 3.688
PCom 0.337 | 0.678 | 1.267 | 2.744

16 PREVO | 0.797 | 1.531 | 2.912 | 7.041
PREVP | 0.417 | 0.761 | 1.420 | 2.758
PREVB | 0.839 | 1.869 | 3.572 | 7.070
PREVI | 0.689 | 1.210 | 2.206 | 5.617
PCom 0.337 | 0.790 | 1.628 | 3.492

Table 3: Parallel single-all. GRIDW.

19

Procs. | Algorithm [32 [64 | 128 | 256 |
2 PREVO [79.376 | 352.715 | 1343.924 T
PREVP | 78.964 | 349.735 | 1334.090 T
PREVB | 79.073 | 329.736 | 1352.781 T
PREVI | 85.231 | 320.215 | 1129.772 T
PCoM 1.320 1.967 6.917 | 28.157
3 PREVO | 52.806 | 246.924 | 932.918 T
PREVP | 60.258 | 276.114 | 1067.202 T
PREVB | 56.219 | 245.639 | 954.789 T
PREVI | 70.945 | 260.964 | 853.052 T
PCoM 1.527 2.294 6.792 | 28.218
4 PREVO | 42.812 | 187.458 | 742.329 T
PREVP | 52.679 | 244.631 | 948.004 T
PREVB | 44.276 | 176.535 | 757.543 T
PREVI | 61.759 | 217.112 | 700.024 T
PCoM 1.109 2.033 6.792 | 28.209
8 PREVO | 18.797 | 91.834 | 382.155 T
PREVP | 33.877 | 177.168 | 696.376 T
PREVB | 19.785 | 84.079 | 365.750 T
PREVI | 34.207 | 126.767 | 455.175 T
PCoM 0.677 1.882 6.762 | 28.158
16 PREVO | 7.591 | 42.495 | 192.644 T
PREVP | 21.622 | 123.593 | 524.768 T
PREVB 7.556 | 37.591 | 196.558 T
PREVI | 19.121 | 75.773 | 276.684 T
PCoM 0.583 1.889 6.877 | 28.750

Table 4: Parallel single-all. GRIDH.

20

Procs. | Algorithm | 8192 [16384 | 32768 | 65536 |

2 PREVO 9.137 | 18.768 | 36.166 | 83.144
PREVP 8.933 | 19.205 | 40.662 | 88.320
PREVB 7.501 | 13.671 | 26.852 | 58.378
PREVI 14.235 | 26.900 | 48.986 | 103.820
PCom 3.915 | 8.041 | 16.825 | 35.564

3 PREVO 6.927 | 13.616 | 26.370 | 59.067
PREVP 8.735 | 18.773 | 40.082 | 86.856
PREVB 5.844 | 10.648 | 20.611 | 43.472
PREVI 10.680 | 21.129 | 36.789 | 76.938
PCom 4.502 | 8.164 | 16.178 | 32.676

4 PREVO 5.500 | 10.696 | 20.847 | 47.124
PREVP 8.461 | 18.502 | 38.913 | 86.361
PREVB 4.688 | 8.456 | 16.703 | 37.272
PREVI 8.693 | 17.073 | 29.303 | 62.540
PCom 4.024 | 7.411 | 14.741 | 30.466

8 PREVO 3.695 | 7.416 | 14.957 | 34.012
PREVP 7.138 | 17.167 | 36.087 | 85.717
PREVB 3.643 | 7.135 | 13.842 | 32.052
PREVI 5.276 | 12.089 | 22.802 | 51.995
PCom 3.543 | 6.566 | 13.415 | 29.498

16 PREVO 3.396 | 7.759 | 14.929 | 34.789
PREVP 5.896 | 15.515 | 32.494 | 84.908
PREVB 3.824 | 8.079 | 17.315 | 36.608
PREVI 4.855 | 10.682 | 22.375 | 51.062
PCom 3.242 | 6.533 | 13.553 | 30.260

Table 5: Parallel single-all. RAND4.

21

Procs. | Algorithm | 128 | 256 | 512 | 1024

2 PREVO | 0.118 | 0.439 | 1.578 | 5.945
PREVP | 0.107 | 0.429 | 1.568 | 5.928
PREVB | 0.111 | 0.462 | 1.538 | 6.059
PREVI | 0.155 | 0.569 | 2.044 | 7.397
PCom 0.163 | 0.842 | 2.144 | 7.092

3 PREVO | 0.107 | 0.405 | 1.631 | 5.791
PREVP | 0.108 | 0.409 | 1.625 | 5.791
PREVB | 0.096 | 0.432 | 1.558 | 5.899
PREVI | 0.133 | 0.509 | 1.917 | 6.728
PCom 0.153 | 0.609 | 1.996 | 7.062

4 PREVO | 0.124 | 0.395 | 1.538 | 5.744
PREVP | 0.121 | 0.392 | 1.528 | 5.724
PREVB | 0.111 | 0.412 | 1.498 | 5.812
PREvVI | 0.138 | 0.442 | 1.725 | 6.240
PCom 0.123 | 0.539 | 1.861 | 6.433

8 PREVO | 0.114 | 0.379 | 1.474 | 5.406
PREVP | 0.107 | 0.379 | 1.454 | 5.372
PREVB | 0.101 | 0.402 | 1.423 | 5.476
PREVI | 0.114 | 0.396 | 1.538 | 5.640
PCom 0.121 | 0.456 | 1.541 | 5.543

16 PREVO | 0.114 | 0.368 | 1.484 | 5.289
PREVP | 0.121 | 0.365 | 1.358 | 4.766
PREVB | 0.105 | 0.398 | 1.442 | 5.325
PREvVI | 0.131 | 0.437 | 1.543 | 5.332
PCom 0.119 | 0.446 | 1.407 | 4.773

Table 6: Parallel single-all. RAND14.

22

Procs. | Algorithm | [1,1] [[0,10] | [0,100] | [0,10%] | [0,10°] |

2 PREVO | 10.678 | 12.326 | 18.760 | 80.205 | 606.757
PREVP 9.124 | 10.265 | 16.922 | 88.459 | 767.789
PREVB | 10.588 | 11.361 | 16.564 | 58.570 | 439.428
PREVI 10.236 | 13.222 | 22.227 | 100.600 | 1250.546
PCowm 4.572 | 5.101 7.629 | 34.202 | 262.343

3 PREVO 9.975 | 11.372 | 15.438 | 57.693 | 438.262
PREVP 9.004 | 9.863 | 16.439 | 87.183 | 723.618
PREVB | 10.683 | 10.674 | 14.677 | 44.302 | 329.691
PREVI 10.329 | 12.195 | 18.475 | 74.340 | 951.963
PCom 5.558 | 5.979 7.989 | 32.441 | 235.216

4 PREVO 9.956 | 10.273 | 14.000 | 45.089 | 338.822
PREVP 9.224 | 10.049 | 16.188 | 86.636 | 732.312
PREVB | 11.639 | 11.900 | 14.150 | 35.950 | 253.527
PREVI 9.965 | 12.140 | 16.713 | 60.374 | 672.986
PCom 5.186 | 5.492 7.732 | 30.899 | 222.724

8 PREVO | 11.744 | 11.834 | 14.764 | 32.793 | 179.879
PREVP | 10.723 | 11.405 | 16.992 | 84.266 | 613.481
PREVB | 14.320 | 14.049 | 17.017 | 30.223 | 135.204
PREVI 11.954 | 13.186 | 19.061 | 49.758 | 352.138
PCowm 6.726 | 7.229 8.935 | 28.910 | 199.879

16 PREVO | 16.716 | 16.801 | 19.781 | 31.926 | 113.177
PREVP | 13.741 | 14.977 | 19.450 | 81.705 | 487.712
PREVB | 22.441 | 22.254 | 21.465 | 33.050 89.312
PREVI 16.796 | 16.873 | 22.753 | 48.615 | 221.042
PCowm 8.249 | 9.427 | 12.449 | 29.124 | 163.108

Table 7: Parallel single-all. RANDL.

23

Procs. | Algorithm | 4096 | 8192 | 16384 | 32768 |

2 PREVO 6.575 | 14.292 | 31.380 | 70.237
PREVP 6.069 | 13.357 | 30.208 | 68.658
PREVB 6.436 | 13.465 | 30.405 | 66.584
PREVI 10.112 | 21.195 | 53.297 | 112.879
PCom 2815 | 3.135 | 6.557 M

3 PREVO 5.851 | 12.537 | 27.083 | 60.467
PREVP 5.496 | 12.051 | 27.558 | 63.363
PREVB 5.818 | 11.857 | 26.678 | 58.607
PREVI 8.549 | 17.180 | 40.108 | 87.318
PCom 4.522 | 6.608 | 9.054 M

4 PREVO 0.426 | 11.479 | 24.156 | 52.771
PREVP 5.118 | 11.271 | 25.308 | 58.279
PREVB 5.431 | 10.822 | 24.085 | 51.905
PREVI 6.950 | 14.597 | 31.716 | 73.574
PCom 3.511 | 5.302 | 8.009 M

8 PREVO 4.026 | 8.086 | 17.377 | 38.971
PREVP 3.895 | 8.524 | 20.160 | 48.469
PREVB 4.090 | 8.064 | 17.399 | 39.335
PREVI 4.384 | 8.601 | 18.487 | 42.862
PCom 2.265 | 3.765 | 6.502 M

16 PREVO 2.869 | 5.588 | 12.809 | 30.095
PREVP 2.526 | 5.677 | 13.941 | 36.696
PREVB 2.889 | 5.528 | 13.331 | 30.5533
PREVI 3.010 | 5.893 | 13.258 | 28.770
PCom 1.609 | 3.106 | 6.421 M

Table 8: Parallel single-all. Acyc.

24

The advantage of PCoM clearly drops with increasing number of processors, e.g.
in the RAND4 test the advantage drops from a factor 2.3 over PREVB in the 4
processor case to 1.6 in the 8 processor instances and further to 1.1 when we use 16
processors, which means that PCoM does not scale as well as PREVB. Generally
the PREV-algorithms scales rather well.

As PCoM is the best of our parallel algorithms we have calculated the absolute
speed up (defined as ;":’*’ where T}, is the running time of the algorithm using p
processors, and T* is the fastest sequential algorithm) and efficiency (defined as
speedup divided with the number of processors used) for it. The results are tabulated
in Table 9. The speedup and efficiency presented is the minimum and maximum
over all tests with p processors.

Procs. | Spin [gmax | pmin | pax
3 47-103] 0.16 | 1.6 -1073 | 5.2- 1072
4 5.2-1073 | 0.17 | 1.3-1073 | 4.3-1072
8 5.2-1073 | 0.14 | 7.7-107* | 1.7-1072
16 51-1073 | 0.12 | 4.7-107*| 7.0-1073

Table 9: The speed up and efficiency for PCowm.

Clearly our parallel algorithms behaves very poorly when we compare with
DikBD. Not a single place we obtain speed up above 1, in fact, best absolute
speed up is 0.17. Note also that the speedup values deteriorate as we use more
processors.

In order to evaluate the relative performance of the PCoM algorithm we have
calculated the scalability, that is Sc, = % These figures are shown in Table 10
below.

Procs. | S | 8™
3 0.4744 | 1.3826
4 0.5913 | 1.5621
8 0.7056 | 1.9498

16 0.5411 | 2.2642

Table 10: The scalability for PCowm.

These figures are not impressive but in general we almost always achieve some-
thing by adding more processors. Only for very few instances we get a scalability
below 1. The reason for the low scalability values stems from the difference between
the forward and the reverse algorithms. The scalability of the PREV algorithms is
much better, but as they are substantially slower than the PCowM algorithm it is of
no use.

25

6 Conclusion

The experimental results are very clear both for the sequential and the parallel
algorithms.

None of the auction algorithms were even close to the execution times of the
D1kBD algorithm. Even though graph reduction was effective in reducing the exe-
cution time of the auction algorithm it is still significantly slower than DIKBD. For
us the auction approach is beautiful, but it is and will remain inferior to Dijkstra-like
algorithms when implemented.

For our parallel algorithm we obtain very low speed-up values. Here the prob-
lem is two-fold: we have based our parallel algorithms on an algorithm (the auction
algorithm) that behaves poorly compared to DIKBD, and the efficiency of the se-
quential DIKBD is difficult to compete with since we have to overcome the expensive
communication. A major drawback is that we can not use graph reduction in our
reverse processors in combination with exchange prices.

Acknowledgement

We would like to thank Jens Clausen (DIKU) for valuable comments upon the draft.

References

[Ber91] Dimitri P. Bertsekas. An auction algorithm for shortest paths. SIAM
Journal on Optimization, 1:425 — 447, 1991.

[BPS92] Dimitri P. Bertsekas, Steffano Pallottino, and Maria Grazia Scutella. Poly-
nomial auction algorithms for shortest paths. Technical Report TR-16/92,
Dipartimento di Informatica, University of Pisa, 1992.

[CGRI3] Boris V. Cherkassky, Andrew V. Goldberg, and Tomasz Radzik. Shortest
path algorithms: Theory and experimental evaluation. Draft, July 1993.

[HKS93] Richard V. Helgason, Jeffrey L. Kennington, and Douglas B. Steward. The
one-to-one shortest-path problem: An empirical analysis with the two-tree

dijkstra algorithm. Computational Optimization and Applications, 1:47 —
75, 1993.

[LP95] Jesper Larsen and Ib Pedersen. The auction approach for the shortest
path problem: Theory and experiments. Master’s thesis, Department of
Computer Science, University of Copenhagen (DIKU), 1995.

[PS91] Stefano Pallottino and Maria Grazia Scutelld. Strongly polynomial auction
algorithms for shortest path. Technical Report TR-19/91, Dipartimento
di Informatica, University of Pisa, 1991.

26

