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Abstract. A variant of Heapsort—named Ultimate Heapsort—is presented
that sorts n elements in-place in ©(nlog,(n + 1)) worst-case time by per-
forming at most nlog,n + @(n) key comparisons and nlog,n + @(n) el-
ement moves. The secret behind Ultimate Heapsort is that it occasionally
transforms the heap it operates with to a two-layer heap which keeps small
elements at the leaves. Basically Ultimate Heapsort is like Bottom-Up Heap-
sort, but due to the two-layer heap property an element taken from a leaf
has to be moved towards the root only O(1) levels, on an average.

Let a[l..n] be an array of n elements each consisting of a key and some information
associated with this key. This array is a (maximum) heap if, for all i € {2,...,n}, the
key of element a[|i/2]] is larger than or equal to that of element a[i]. That is, a heap
is a pointer-free representation of a left complete binary tree, where the elements
stored are partially ordered according to their keys. Element a[l] with the largest
key is stored at the root. Elements a[|i/2]], a[2i] and a[2i 4+ 1] (if they exist) are
respectively stored at the parent, the left child and the right child of the node at
which element a[i] is stored.

Heapsort is a classical sorting method that is described in almost all algorithmic
textbooks. Heapsort sorts the given elements in ascending order with respect to
their keys as follows:

Input: Array a[l..n] of n elements.
Output: The elements in a[l..n] rearranged in sorted order, i.e., the key of ali]
should be smaller than or equal to that of a[i + 1], for all i € {1,2,...,n — 1}.
1. Rearrange a[l..n] into a heap.
2. for i «+ n step -1 until 2 do
Exchange a[1] and a[i].
Remake a[l..i — 1] into a heap.

According to Williams [28], who invented Heapsort and the heap data structure,
Heapsort is a marriage of Treesort developed by Floyd [14] and Tournament-sort
described, for instance, by Tverson [17, Section 6.4] (see also [15]). Both Treesort and
Tournament-sort run in @(nlogy(n + 1)) worst-case time and carry out nlog, n +
O(n) key comparisons and nlog, n + @(n) element moves. For example, Treesort
uses 2n + O(1) pointers and 2n additional locations for elements, whereas Heapsort
requires only @ (1) extra space for its operation. In the form programmed by Williams
[28], Heapsort sorts an array of size n in @(nlog,(n + 1)) time by performing about



3nlog, n key comparisons and 42nlog, n element moves (cf. [23]) in the worst case.
Soon after the publication of Heapsort, Floyd [16] improved it by showing that
(1) the construction of a heap for n elements can be accomplished in-place in @(n)
time by performing at most 2n key comparisons and 2n element moves, and (2) n
elements can be sorted in-place in @(nlog,(n + 1)) time by performing at most
2nlogy n + ©(n) key comparisons and nlog, n + @(n) element moves.

Floyd’s results have been improved further. Now there exists an in-place algorithm
that constructs a heap of size n in linear time by performing only 1.6316n+0(10g2 n)
key comparisons in the worst case [8] (see also [5]). Moreover, the number of element
moves can be easily reduced to, say 1.625n. As to Heapsort, the number of key com-
parisons performed has been gradually reduced to %n log, n+6©(n) [21, Exercise
5.2.3-28], 3nlog, n+0O(n) [2, 11, 23, 25, 2nlog, n+O(n) [29, 30], Znlog, n+O(n)
[26], nlog, n+nlog, log, n+©(n) [3, 13], and nlog, n+nlogi n+©(n) [4, 12]. Here
log3 n is defined as 1+log}(log, n), if n > 2, and otherwise it is 1. It is even possible
to reduce the number of key comparisons to nlog, n+ @ (n)—without increasing the
running time or the number of element moves—if extra storage for n bits is available
[6, 10, 24] or if this behaviour is only called for in the average case [23, 25].

In this paper a new variant of Heapsort—mamed Ultimate Heapsort—is presented
that guarantees @ (nlog,(n + 1)) worst-case time behaviour, uses @(1) extra space,
and performs at most nlogy, n + @(n) key comparisons and nlog, n + ©(n) element
moves. This resolves a long-standing open problem but it must be conceded that the

solution is mainly of theoretical interest.

The present investigation was triggered off by the recent analyses of the best case
of Heapsort [2, 23] and the worst case of Bottom-Up Heapsort [11, 23, 25]. These
analyses show clearly that the normal heap property is not fully satisfactory, since it
still permits Bottom-Up Heapsort to carry out as many as %n log, n—0(nlog, log, n)
key comparisons in the worst case [11, 23]. On an average Bottom-Up Heapsort
performs only nlog, n + ©(n) key comparisons [23, 25]. Even if there exists some
pathological inputs that cannot be handled efficiently by Bottom-Up Heapsort, these
are rare. Therefore, T started to search for a stronger heap property that would make
these pathological cases impossible. The two-layer heap concept to be defined next
turns out to have the characteristics T was looking for.

Let a[l..n] be an array of size n. Further, let 2¢ be the largest power of 2 for which
29 < n. A two-layer heap stored in a[l..n] is a heap with the additional property
that, forall j € {1,2,...,29— 1} and k € {29,294+ 1,...,n}, the key of element a[j]
is larger than or equal to that of element a[k]. Fig. 1 gives an example of a two-layer
heap storing integers.

Fig. 1. A two-layer heap of size 12.



The elements in an array can be rearranged to form a two-layer heap as follows:

Input: Array a[l..n] of n elements.
Output: The elements in a[l..n] rearranged into a two-layer heap.

1. Find element z that has the 2%h largest key of the elements in a[l..n], where 2¢
is the largest power of 2 smaller than or equal to n. This can be done, e.g., by
using the in-place selection algorithm of Lai and Wood [22].

2. Partition a[l..n] into three pieces a[l..f], a[f + 1..£+ €], and a[¢ 4+ ¢ + 1..n] such
that the key of every element in a[l..f], a[f + 1..£ + €], and a[¢ + ¢ + 1..n] is
larger than, equal to, and smaller than that of z, respectively. Here the 3-way
partitioning algorithm described, e.g., by Dijkstra [9, Chapter 14] or Wegner [27]
could be used.

3. Rearrange a[l..f] into a heap, e.g., by using the standard heap-construction al-
gorithm [16].

Lemmal. A two-layer heap for n elements can be constructed in-place in O(n) time
by performing fewer than 9n + ¢ key comparisons and 22n element moves, where £
s the number of elements with a key larger than that of the partitioning element x.

Proof. That the running time of the algorithm described is linear is obvious since
all the subroutines run in linear time. The selection of the partitioning element x
requires fewer than 7n key comparisons and 19n element moves [22]. It is not difficult
to organize the partitioning such that every element with a key larger than that
of & causes one comparison and one move, while every other element causes two
comparisons and three moves. Thus the partitioning requires 2n — £ comparisons
and 3n — 20 4+ 1 moves in total. The construction of the heap requires at most
2¢ comparisons and 2¢ moves [16]. Hence, the total number of key comparisons is
bounded by 9n + £ and that of element moves by 22n. ]

The reader is encouraged to device a method for constructing a two-layer heap
that improves the constant factors given in Lemma 1. Especially, a better in-place
method for selecting the kth largest element of a multiset is needed that performs
the partitioning at the same time.

We need also a subroutine that picks up those elements from a heap that have a key
equal to the key of the element stored currently at the root. The elements picked
up are to be moved at the end of the array storing the heap. It is easy to write
a recursive procedure that traverses the heap in depth-first order and carries out
the movements required. The recursion can be removed from this procedure without
using any space for a recursion stack. The details are given below:

Input: A heap of n elements stored in a[l..n].
Output: The elements in a[l..n] rearranged such that, if the key of a[j] is smaller
than that of a[n], then the same holds for all i € {1,2,...,j}.
L (i,j) « (0,1); 2 = a[l]; y = a[n]; h < n;
2. while (i,7) # (1,0) do
if j > h then (i,j) « (J,1)



else if i = |j/2| then
if the key of a[j] is equal to that of  then (7, j) « (J,2j)
else (i,7) « (4,1);

else if i = 25 then (4, ) « (j,2j + 1)

else if i = 2j + 1 then
repeat alh] < a[j]; h <+ h —1; a[j] + a[h]
until the key of a[j] is not equal to that of z or j = h;
(1,0) < (U, 13/2]);

3. alh] + y.

Lemma 2. Let ¢ be the root of a heap stored in a[l..n]. Further, let m denote the
number of those elements the key of which is equal to that of x. These m elements
can be gathered to the end of array a[l..n] in-place in O(m) time by performing at
most 3m + 1 key comparisons and 2m + 2 element moves.

Proof. The procedure described above visits at most 2m + 1 nodes at the top of the
heap, i.e., the nodes that contain an element with a key equal to z and the children
of those nodes. When a node is visited for the first time, one element comparison is
carried out. Moreover, when an element is moved to the end of the array, one extra
comparison 1s necessary to check whether the new element also has a key equal to
that of z. In total, at most 3m + 1 comparisons are performed. All the m elements
have to be moved to the hole maintained and a new hole have to be dug beside the
old one. The two extra moves are needed for digging the initial hole at the end of
the array and for filling the final hole. ]

Now we are ready for describing Ultimate Heapsort. Assume that the input array
to be sorted is of size n. The given elements are sorted in d — 1 rounds, where
d = [logy(n+1)]. In each round about one half of the remaining elements is sorted.
Let n; denote the number of remaining elements prior to round ¢, i € {1,2,...,d—1}.
Of course, ny = n. Moreover, assume that 2% is the largest power of 2 that is smaller
than or equal to n;.

In the first phase of the ith round, i € {1,2,...,d — 1}, the remaining n; elements
are built into a two-layer heap. Let z be the element with the 2%ith largest key in
this heap. Further, let ¢; be the number of those elements in the heap that have a
key larger than that of . In the second phase of the ith round, the ¢; elements with
a key larger than that of z are removed from the heap. The removed elements are
exchanged with the last ¢; elements of the heap as normally. In the third phase of
the ith round, n; — 2% —¢; of the elements with a key equal to that of z are gathered
together and moved at the end of the sub-array containing the remaining elements.
Prior to the next round, n;;1 is updated to 2% — 1. The computations carried out
in one round are summarized below:

Input: Array a[l..n] and element 2 whose key is the 29th largest of the elements
in a[l..n]. Here 2¢ is the largest power of 2 for which 2¢ < n. Let ¢ denote the
number of elements with a key larger than that of z.

Output: The elements in a[1..n] rearranged so that the key of a[j] is smaller than
or equal to that of x, for all j € {1,2,...,2¢—1}, and a[2%..n] is in sorted order.



1. Rearrange a[l..n] into a two-layer heap.
2. for j « n step —1 until n — ¢ do
Exchange a[1] and a[j].
Remake a[l..j — 1] into a heap.
3. Gather n-29-¢ of the elements with a key equal to that of z to the end of a[l..7].

To be more specific, the correction of the heap in the second phase is organized as
in Bottom-Up Heapsort. First, a copy of the last leaf is taken; let z be this copy.
Second, a hole is created at the root by removing the current maximum and moving
it at the place occupied earlier by the last leaf. Third, the hole is sifted down along
the path of maximum children until the leaf level is reached. Fourth, the hole is
sifted up along the same path until an element is found which is larger than or equal
to z. Finally, z is moved into this hole after which the next iteration can be started.

Lemma3. Let n be the size of a two-layer heap. Further, let d = [logy(n+1)] and
let £ be the number of the elements that have a key larger than that of the partitioning
element x. These £ elements can be removed from the heap in reversed sorted order
in ©(¢log, n + n) time and during the removal process at most £(d — 1) + 27 key
comparisons and £(d + 1) + 2¢ element moves are carried out.

Proof. We shall analyse the number of key comparisons carried out during the re-
movals. The number of element moves performed as well as the actual running time
are closely related to this quantity, so the verification of that part of the lemma is
left for the reader.

Due to the two-layer property of the heap an element at a leaf on its bottommost
level has a key that is smaller than or equal to that of an element stored in any of
the internal nodes. Therefore, it is very probable that during a sift-up only a few
elements are visited. However, the heap is changing all the time so there are some
elements that can traverse close to the root. The formal proof about the number of
comparisons carried out should take this into account.

Consider now the situation prior to any removals. We say that the elements whose
key is larger than that of the partitioning element z are red. All the other elements
are called white. That is, in the second phase all red elements are removed from the
heap, whereas the white elements stay in the heap. Assume now that there are some
red elements, since otherwise nothing is done in the second phase. It is easy to see
that the algorithm maintains the following invariant: on any path from the root to a
leaf there appears some red elements followed by some white elements. In particular,
an element at the bottommost level can never be red.

Let n, d, and £ be as stated in the lemma. We define the height of an element to be d
minus the distance between the node storing it and the root. Assume now that each
comparison costs 1 krone. To pay the climbs down and up the heap, we give d — 1
kroner to each of the £ elements at the bottommost level that are to be replaced
during the removal process. Moreover, we give h kroner for each red element if its
height 1s h. If a white element is moved into the place of some bottommost element
having some money, the just inserted element inherits the money.



The climb down the heap can be paid by the white element taken from the last leaf,
since during this operation d — 1 or d — 2 comparisons are carried out. When a hole
is climbing up, the climb is stopped by a white or a red element. The comparisons
performed can be paid by the red element removed from the root. This element
had d kroner, so it can also donate 1 krone for each red element on the maximum
path above the hole. After getting this donation, a red element that was moved one
position towards the root has still A kroner if A is its current height.

In total, we need at most
d
(d—1)+Y j-2%7"
Jj=1

kroner to pay all the comparisons, which is bounded by £(d — 1) 42%. This concludes
the proof of the lemma. ]

Let us now put the results of the previous lemmas together.

Theorem 4. Ultimate Heapsort sorts n elements in-place in ©(nlog,(n+1)) worst-
case time by performing fewer than nlog, n + 32n + O(log, n) key comparisons and
nlogsn + 62n + O(log, n) element moves.

Proof. Consider first the number of comparisons performed. As earlier, let n; denote
the number of elements left prior to the ith round, 2% the rank of the partitioning
element, and ¢; the number of those elements that have a key larger than that of
the partitioning element. Let d = [logy(n 4+ 1)]. According to the lemmas proved,
the cost of the ith round, i € {1,2,...,d -1}, is

In; + 4; + £;d; + dit! + 3(ni_2di_£i) + 1.

By using the facts that ny = n, n; = 2%+*'—1 fori > 2,d; = d—i, and d <
log, n + 1, we get that the total number of key comparisons performed is bounded

by nlog, n + 32n 4+ O(log, n).

The actual running time is closely related to the number of key comparisons carried
out. Therefore, we conclude that the algorithm runs in @(nlog,(n + 1)) worst-case

time. The number of element moves can be calculated in the same manner as key
comparisons. This quantity turns out be bounded by nlog,n + 62n + O(log, n). W

The goal in this paper has been to show that there exists a variant of Heapsort
which sorts n elements in-place in @(nlog,(n+ 1)) worst-case time by performing at
most nlogy n+ @(n) key comparisons and nlog, n + @(n) element moves. Basically,
Ultimate Heapsort operates like Bottom-Up Heapsort but it is able to handle all
inputs equally efficiently (or should T say inefficiently). This strengthens the con-
viction that Bottom-Up Heapsort is the way how Heapsort should be implemented.
Due to the large constant factor in the linear term of the running time, the current
implementation of Ultimate Heapsort will not beat Bottom-Up Heapsort in practice.
However, as with the first selection algorithm deviced by Blum et al. [1], T believe
that the performance of Ultimate Heapsort can be improved considerably.



Finally, I would like to point out that the performance of in-place Mergesort devel-
oped by Katajainen et al. [19] has been recently improved such that it will beat all
known variants of Heapsort, both in theory [18] and in practice [20].
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