External heaps combined with effective buffering

Ramzi Fadel

Department of Computer Science
University of Copenhagen
Universitetsparken 1

DK-2100 Copenhagen East, Denmark
ramzi @diku. dk

Jyrki Katajainen

Department of Computer Science
University of Copenhagen
Universitetsparken 1

DK-2100 Copenhagen East, Denmark
Jyrki@diku.dk

Abstract

An external heap structure is suggested that tries
to make the best use of the available buffer space in
main memory. The heap is a multi-way balanced
tree, with blocks of records as nodes, satisfying a
generalized heap property. The root is buffered,
whereas other nodes are kept on secondary storage.
A special property of the tree is that the nodes
The
structure is complemented with priority queue
When handling

the amortized

may be partially filled, as with B-trees.
operations insert and delete-maz.
a sequence of these operations,
number of page accesses per operation is shown
to be O((1/P)logar/p)(N/P)), where P denotes
the number of records fitting into a page, M
the capacity of the buffer space in records, and
N the largest number of records in the heap
(4P < M < N). This results in optimal erternal
heapsort that performs O((N/P)logy py(N/P))
page accesses in the worst case, when sorting N
records.

Keywords External-storage data structures, ex-
ternal sorting, priority queues, heaps, heapsort.

1 Introduction

The traditional data structure for implementing
priority queues is the heap (see, e.g., [7]). It is a
complete binary tree with the heap property: The
priority of a parent is always higher than or equal
to the priorities of its children. Thus the root con-
tains the maximum. Of course, the order can also

Proceedings of CATS’97 (Computing: The Aus-
tralasian Theory Symposium), Sydney, Aus-
tralia, February 3—4 1997.

Kim Vagn Jakobsen

Department of Computer Science
University of Copenhagen
Universitetsparken 1

DK-2100 Copenhagen East, Denmark
kvj@uki.dk

Jukka Teuhola

Department of Computer Science
University of Turku
Lemminkaisenkatu 14 A

FIN-20520 Turku, Finland

teuhola@cs.utu.fi

be the opposite — one may talk about maz-heaps
and min-heaps. The two important priority queue
operations (in addition to creation) against a max-
heap are (1) insert, which inserts a record with
an arbitrary priority into the heap, and (2) delete-
maz, which extracts the record with the highest
In both cases, the heap
Perhaps the best-
known application of the heap structure is heap-
sort [8, 13] which is one of the few in-place sorting
methods guaranteeing an O(N log, N) worst case,
when sorting N records in main memory.
However, there are some applications, for ex-
ample, large minimum spanning tree problems and
extremely large sorting tasks, where the data col-

priority from the heap.
property should be restored.

lection may be too large to fit in main memory.
On secondary storage, the typical measure of com-
For this
reason, the internal algorithms are not applicable
as such. Our intention is to generalize the heap into
an effective external data structure. In part, this
was already done by Wegner and Teuhola in their
external heapsort [12]. Their heap had the same
structure as the internal heap, namely a balanced
binary tree, but the nodes were extended to whole
pages, and node comparisons were replaced by node
merges. A clear advantage of external heapsort
over external mergesort is that the former oper-
ates in minimum space. Another “in-situ” sorting
algorithm was presented in [10], based on quicksort.

The heapsort in [12]
improved if we assume that the buffer space in

plexity is the number of page accesses.

external cannot be

main memory has a fixed size. What happens,
if we express the complexity as a function of
both problem size N (in records) and buffer-
space capacity M (in records), keeping the page
size P fixed? We could keep the top part of

the heap always in main memory, resulting
in O((N/P)logy(N/M)) page accesses. This
is, however, asymptotically worse than the

best possible bound O((N/P)loga,py(N/P)),
obtained by external (M/P)-way mergesort [1].

The behavior of (internal) heapsort in virtual
memory environment was studied in [4], where it
was noticed to require O(N log,(N/P)) page ac-
cesses for N records. Thus, this approach is not
competitive with tailored external heapsort.

Our intention is to create an external heap
organization that tries to make the best use of
the available main memory. Especially, we try to
achieve the same complexity for external heapsort
as for mergesort. We will adopt some features
from B-trees [5], which have become the standard
comparison-based external search structure. Their
virtues are balance, large fanout (implying short
paths from root to leaf), and flezibility, due to
the “slack” allowed in the loading factor of pages
(usually between 0.5 and 1). It turns out that
all these properties can be transferred to heaps.
One may wonder, how a B-tree would manage as
a priority queue. The maximum is easily found
from the rightmost leaf (which could be buffered).
Inserting (as well as deleting) records is quite
efficient. However, a more careful study reveals
that the B-tree cannot compete with the heap to
be described. The B-tree contains “too much”
order, and maintaining that order does not pay
off.

The performance of our heap structure is
as follows. When handling any sequence of
insert and delete-max operations the amortized
number of page accesses per operation is
O((1/P)logar/py(N/P)), ~ where P denotes
the number of records fitting into a page, M
the capacity of the buffer space in records, and
N the largest number of records in the heap
(4P < M < N). This results in external heapsort
that performs O((N/P)log s py(N/P)) page
accesses in the worst case, when sorting N records.

A data structure with a similar performance as
ours has been independently developed by Arge
[2, 3]. The basic difference is that he expresses
the complexity of the priority queue operations as
a function of P, M, and Ny, where Ny denotes
the accumulated number of operations carried out
on the structure. In sorting this difference is not
essential, since the total number of operations and
the maximum size of the structure are about the
same. However, his data structure is quite compli-
cated and mainly of theoretical value, whereas the
heap structure explored in this paper is practical.
The experimental results will be reported in the full
version of this paper.

The rest of the paper is organized as follows.
The new data structure is described in Section 2. In

Section 3 the procedures for accomplishing the two
priority queue operations, insert and delete-max,
are presented. The external and internal complex-
ities of these operations, as well as that of external
heapsort, are analysed in Sections 4 and 5, respec-
tively. In Section 6 some conclusions are drawn
and extensions to the repertoire of operations are
discussed.

2 Data structure

We assume that the elements to be stored in the
heap are fixed-size records, each having a prior-
ity attribute. Priorities need not be unique; ties
are broken arbitrarily in delete-max. The fixed-
size assumption 1s not absolutely necessary, but
allowing variable-size records would complicate the
presentation. The following notations will be used:

e N: the total number of records,

e P: page size (the number of records fitting into
a page),

n = [N/P] (the minimum number of pages to
store N records),

e m: the number of pages per block (a collection
of pages kept in a node); also the fanout of
heap nodes,

e M: the capacity of available main memory in
records; M = ¢Pm, where constant c¢ is around

3.

Notice that M is determined first, after which we
can calculate, how big m we can afford. Hereafter
we assume that ¢P < M < N and that the size of
a record is larger than the size of a pointer.

The main part of the data structure (see Fig. 1)
consists of a heap with the following properties:

e The degree (fanout) of the nodes is m.

e Each node consists of six parts: (a) a block of
m pages, containing records in ascending order
of priority; (b) m pointers to its children; (c¢) m
pointers to the last records of the children,
that is, a page and an offset inside this page
is specified; (d) a pointer to its parent, (e) a
pointer to its predecessor with respect to the
normal numbering of nodes in a heap; and (f) a
pointer to the corresponding successor.

e The generalized heap property holds: For any
record 2 in a node v and any record y in a child
of v, the priority of 2 is larger than or equal
to that of y.

e The heap is completely balanced: The nodes
on the lowest level are arranged to the left, as

Main storage

Insert buffer

Heap root

M er ge buffer

Secondary
storage

.. /
[T T

EEEN I:I:III:I

VA /fX\

VAN

VAN

Figure 1: The internal and external data structures when m = 4.

in normal binary heaps. Therefore, the posi-
tion of the last node of the heap is uniquely
defined, and we can maintain a pointer to it.
The parent of the last node is the only node
whose degree may be between 1 and m, all
other nodes have m or no children.

e Each node, except the root and the last leaf,
is at least half full, i.e., they contain at least
[Pm/2] records. This is called the load con-
dition. A node with (temporarily) less records
is said to be imperfect.

e The root is always kept in main storage. Its
records are maintained in ascending order of
priority, as in the other nodes.

e The pages within a block are either physically
consecutive, or two-way linked, so that we can
move from page to page in both directions.
The latter alternative would avoid wasting
storage space, because the empty pages at
the end of each block could be released and

reused.

In addition to the root, main storage contains
New records are not immediately in-
serted in the heap, but gathered in an insert buffer
consisting of m pages. When this buffer space gets

two buffers.

full, the contained records are stored in the heap
as a batch. The records in the insert buffer are
organized as a normal (binary) heap, because we
have to look for its maximum priority. The other
buffer is needed when the heap is manipulated. As
in [12], moving records up or down requires merging
of blocks. Here we need an auxiliary merge buffer
of m 4+ 1 pages.

3 Priority queue operations

The two operations to be executed against the de-
scribed data structure are insertion of a record with
any priority, and extraction of a record having the
highest priority. During the operations, records
will be moving up and down the heap. Inspecting
(without removing) the highest priority is often
included in the repertoire of priority-queue oper-
ations, but since it does not involve any page ac-
cesses, it is uninteresting for us.

Insert

Inserted records are stored first in the related buffer
of m pages. When this buffer becomes full, it is
first sorted internally (by heapsort) and then the
sorted outcome is transferred to the heap as its new
last leaf. To restore the heap property (also called
“heapifying” [7]), records are sifted up as follows.
We merge the block of the last leaf with that of its
parent (using the merge area in main storage). If
the parent had k records before the sift-up, we move
k of the merged records with the largest priorities
to the parent, and the rest to the child. Thus, the
size of the parent block does not change. Observe
also that the minimum priority in the parent can
only increase in this process, and thus its children
will all satisfy the heap property. However, the
sift-up must be repeated for the parent and its
grandparent, etc., up to the root.

One point in the above procedure needs
elaboration. When defining the heap in Section 2,
we stated that the last leaf (L) may be imperfect.
Now, having created a new last leaf (L), we must
check whether L satisfies the load condition. If it

does not, we swap the two (actually the pointers
in their parents), and sift-up both, one at a time.
The sift-up of the last leaf propagates upwards
only in the case that its parent is new.

Delete-max

Due to the heap property, the maximum priority is
either in the root (if not empty), or in the insert

buffer.

buffer is an internal heap, the maximum is easily

Since the root is ordered and the insert

found and extracted. If the root block is empty, we
have to refill it before delete-max. We move at least
[Pm/2] records with the largest priorities from the
children to the root. Each of the children has at
least this amount of records (except in the spe-
cial case when the last leaf, possibly imperfect, is
among the children, but correct operation is easily
guaranteed). Due to the heap property, no lower-
level node (grandchild, etc.) may contain a higher
priority. After refilling the root, it may happen
that one or more children have become imperfect,
in turn, and must be refilled, recursively.

How do we find the [Pm/2] largest priorities?
The records in blocks are arranged in ascending
order. Moreover, we maintain a pointer to the
last record of each block. Therefore we can merge
the m child blocks from back to front, until the
parent block is filled, or one child becomes empty.
In the special case that the last leaf is the only
child, which is imperfect, the parent becomes a leaf,
and the normal procedure for imperfect leaves is to
fill them from the current last leaf. Otherwise, if
the last leaf becomes empty, the process need not
be stopped, and therefore we always get at least
[Pm/2] records to the parent. Notice that most
of the front pages in the child blocks need not be
touched at all; this is important in respect of the
complexity.

Now the question remains, what happens when
a leaf X becomes imperfect. If X 1s accidentally
the last leaf, then we do not have to do anything;
this is the exception to the loading factor condition.
Otherwise, we have to “borrow” records from some
other leaf. There are several alternatives to do this,
but we suggest the following simple procedure. Let
| X| denote the number of records in node X. Now
we calculate the sum S = | X|+ |L|, and depending
on the value of S there are three possibilities:

1. If S > Pm, move |S/2] — | X| largest-priority
records from L to X (i.e., an even split), and
sift-up X.

2.If S € {[Pm/2],..., Pm}, then merge the
blocks of X and L into X, and sift-up X (delet-
ing L).

3. If S < [Pm/2], then merge the blocks of X
and L into X and delete L. Find the new last

leaf L' (predecessor of L), and repeat the pro-
cess for X and I’. This is guaranteed to suc-
ceed, because either X = L' or |L/| > [Pm/2].
After filling X, it can be sifted up.

We have not explained all details in the above
descriptions concerning the maintenance of point-
ers, the arrangement of merges, as well as the allo-
cation and release of storage. However, the inclu-
sion of these features is relatively straightforward,
so the description of these is omitted.

4 External complexity

The external costs are measured in terms of page
accesses (reads and writes). Only amortized costs
(cf. [11]) will be determined — the worst case of
a single operation can be really bad; for example
in delete-max, the refilling may propagate to all
nodes of the heap. Tt depends on the application,
whether this is important or not. For instance, for
external heapsort, only the amortized cost counts.

Due to amortizing, the cost of a specific oper-
ation does not become real until at some future
restructuring of the heap. Now, since the heap
may grow and shrink in between, it is not clear
what the number of records N (or the number of
pages n) stands for. Therefore, we specify that N
is the largest number of records in the heap at any
moment during the usage of the heap.

Theorem 1. The amortized external cost of record

insert is O((1/P)log,, n).

Proof. The inserts are buffered in blocks of Pm
records. When the insert buffer becomes full, we
perform one (in a special case two) sift-up chain
from a leaf to the root. In a chain, we access
h — 1 or h blocks, i.e., at most mh pages, where
h is the current height of the tree. Therefore, the
amortized number of page accesses per insert is at
most 2mh/(Pm), which is O((1/P)log, n), since
h = 0(1 +log,, (n/m)). [|

Theorem 2. The amortized external cost of delete-

maz is O((1/P)log,, n).

Proof. Delete-max causes page accesses only when
the root (in main storage) becomes empty, and its
block must be refilled. For the purposes of the
proof, we assume that a fized number of records,
namely [Pm/2] are moved up at each refill. This
assumption corresponds to the worst case that can
happen. The drawback is that the loading factor
of blocks tends to be lower than in reality. In
the algorithm even more than [Pm/2] records can
be lifted up from the children, if there is room
in the parent block, and no child block becomes
empty. Moreover, sometimes the maximum may be

found in the insert buffer, which also reduces the
number of refillings. In refilling a block, at most
2m pages in the child blocks are touched, because
the required [Pm/2] highest-priority records are
found among those (starting from the rear pages of
blocks).

The critical question is, how many child blocks
have to be refilled, in turn. As mentioned above,
the worst case is when all the heap blocks are
half-full, and all have to be refilled. However, we
claim that only one child needs to be refilled, on
the average. This can be easily concluded when
studying several, say k, successive refillings of the
same parent. During this sequence, k[Pm/2]
records are moved to the parent. Now, if the
child set (regarded as a whole) were refilled more
often, say (14 €)k times, then the number of
records in the child blocks would rise to at least
m[Pm/2] + ke[Pm/2], which is larger than Pm?
when k > m/e, i.e., the capacity of child blocks
would be exceeded, resulting in contradiction.

Thus, it must hold that e = 0, implying that the
number of parent refills is asymptotically the same
as the number of refills for the whole child set. This
can be considered an application of Kirchhoff’s law
of confluent flows (for other applications of Kirch-
hoff’s law in algorithms, see [9]). For one root refill,
we perform one refill per each level, on the average.
The asymptotic amortized refill cost per record is
proportional to

2mlog,, n
W = O((]/P)]Ogm 17)

It should be emphasized that insert operations
do not invalidate the above deduction, because the
sift-up operations do not change the sizes of blocks
on the way up. The size of the last leaf may change,
but only increase, so reducing the need for refill. B

Our starting point was the external heapsort by
Wegner and Teuhola [12], the complexity of which
was shown to be O(nlog,n) accesses for n pages
and O(1) buffer pages. Now we get a stronger
result:

Corollary 3. Gwen N records stored on n pages,
external heapsort can sort these with O(nlog,, n)
page accesses by using O(n/m) extra pages for
records and O(m) buffer pages.

Proof. External heapsort sorts the given records
by performing first N insert operations and then
N delete-max operations. The organization of the
computation is as in internal heapsort. The costs
of N insert and N delete-max operations add up
to O((N/P)log,, n+ (N/P)log,, n) = O(nlog,, n)
accesses. As to the space complexity, each node

requires some space for pointers and it can contain

at most one half-full page of records (the linked
organization of block pages is used here, avoiding
empty pages at the block rear). Since the number
of nodes is O(n/m), the space bound follows. Our
calculations do not take into account the space con-
sumed by the pointers. However, it is not difficult
to modify the heap organization — without effect-
ing the time bound — such that only a constant
amount of pointers is used at each page. We leave
the elaboration of these details for an interested
reader.]

This result is important in the sense that the exter-
nal complexity i1s the same as for m-way external
mergesort, which is known to be optimal [1]. How-
ever, the space complexity of external heapsort is
a bit worse than that of external mergesort, since
the latter requires only O(m) buffer pages plus a
constant number of pointers within each page.

5 Internal complexity

The internal costs of insert and delete-max are
counted as the number of priority comparisons.
Notice that the number of record moves cannot
be higher than a constant times the number of
comparisons, because the decision about record
movement is done only after its priority has been
compared with some other. Altogether, the total
number of all internal operations performed is
proportional to that of comparisons.

Theorem 4. The amortized internal cost of insert

is O(logy(Pm) + log,, n).

Proof. We can divide the comparisons carried out
into two parts:

1. Comparisons in the insert buffer: Since the
insert buffer is organized as an internal heap,
an insert costs O(log,(Pm)) comparisons.

2. Comparisons during sift-up operations: First,
the insert buffer is sorted internally using
O(Pmlog,(Pm)) comparisons. A sift-up
step means that parent and child blocks
are merged, using the merge buffer, and

then the records are returned back to the

two blocks.

therefore,

This 1s a linear operation, and
deducing from Theorem 1, the
number of comparisons is O(Pmlog,, n),
in the whole sift-up chain. When this is
amortized over ©(Pm) inserted records, we
get O(logy(Pm) + log,, n) comparisons, on
the average, completing the proof. []

Theorem 5. The amortized internal cost of delete-
maz is O(logy,(Pm) + log, n).

Proof. Again we inspect two sorts of comparisons:

1. Comparisons in the buffers: The maximum
priority is found either from the root, or from
the insert buffer, with one comparison. How-
ever, keeping the insert buffer (heap) in shape
costs O(log,(Pm)) comparisons.

2. Comparisons during refillings: Refilling of one
block is an m-way merge of O(Pm) records.
This costs O(Pmlog, m) comparisons.
Gathering up the refill costs on the path
down, deducing from Theorem 2, we get
O(Pmlog, mlog,, n) = O(Pmlogy,n). The
amortized cost per deleted record is thus

O(logy n).

This is O(logy(Pm) + log, n) in total. Refilling a
leaf causes a sift-up, but according to Theorem 4,
the cost of this is O(log, (Pm)+log,, n), which does

not increase the overall complexity.]

Applying the above two results, we get

Corollary 6. Ezxternal heapsort sorts N records in
O(N logy N) internal time.

Proof. From Theorems 4 and 5 we see that the
delete-max cost dominates the insert cost. The
direct multiplication of N by the amortized cost
per delete-max gives O(N log, N). [|

The internal running time of external heapsort is
asymptotically the same as that required by inter-
nal heapsort. Actually, if N < Pm, only the root
remains, and the method degenerates to normal
internal heapsort: The heap is built into the insert
buffer and then sorted (by heapsort) into the root.

6 Conclusion and further work

We have described an external priority queue
organization, which i1s a natural generalization of
the traditional heap organization in main memory.
Multi-page nodes with a large fanout imply a
very low height for the heap, which keeps the
number of page accesses low. The key point is
an effective utilization of the main memory. The
obtained complexities for the two priority queue
operations can be considered to be satisfactory for
two reasons:

e The two external complexities are balanced.

e The operations guarantee an optimal external
heapsort.

Either of the two operations can, of course, be made
more efficient, at the cost of the other. Also, our
frame of reference includes only comparison-based
techniques. For special priority distributions better
results may be obtained by other means.

It would be of interest to develop efficient algo-
rithms for maintaining some special types of prior-
ity queues on secondary storage. The applications
we have had in mind are that of finding a min-
imum spanning tree in an undirected graph and
that of computing a shortest path tree in a directed
graph. The standard solutions for these problems
(see, e.g., [7]) use a priority queue which, in addi-
tion to insert and delete-min, supports an operation
for decreasing priority values. This presupposes
that the records also contain a unique key (or ad-
dress) and that there exists a search mechanism for
the records by this key. However, we have not been
able to develop a data structure which could be
used to solve, for example, the minimum-spanning-
tree problem faster than by the method of Chiang
et al. [6].

Acknowledgement

This work was partially supported by the Dan-
ish Natural Science Research Council under con-
tract No. 9400952 (Project “Computational Algo-
rithmics”).

References

[1] A. Aggarwal and J.S. Vitter. The in-
put/output complexity of sorting and related
problems. Communications of the ACM, Vol-
ume 31, pages 1116-1127, 1988.

[2] L. Arge. External-storage data structures for
plane-sweep algorithms. Technical Report A94
RS-94-16, Department of Computer Science,
University of Aarhus, Arhus, 1994.

[3] L. Arge. The buffer tree: A new technique for
optimal 1/O-algorithms. In Proceedings of the
4th Workshop on Algorithms and Data Struc-
tures, Lecture Notes in Computer Science 955,

pages 334-345, Springer, Berlin, 1995.
[4] T.O. Alanko, H.H. A. Erkio and I.J. Haikala.

Virtual memory behavior of some sorting
algorithms. [EEE Transactions on Software
Engineering, Volume SE-10, pages 422-431,
1984.

[5] R. Bayer, and E. M. McCreight. Organization
and maintenance of large ordered indexes.
Acta Informatica, Volume 1, pages 173-189,
1972.

[6] Y.-J. Chiang, M.T. Goodrich, E.F. Grove,
R. Tamassia, D. E. Vengroff, and J.S. Vitter.
External-memory graph algorithms. In Pro-
ceedings of the 6th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 139—
149, ACM, New York and STAM, Philadelphia,
1995.

[7]

[12]

[13]

T.H. Cormen, C.E. Leiserson, and R.
L. Rivest. Introduction to Algorithms. The
MIT Press, Cambridge, 1990.

R.W. Floyd. Algorithm 245, Treesort 3. Com-
munications of the ACM , Volume 7, page 701,
1964.

D.E. Knuth. The Art of Computer Program-
ming, Volume 1: Fundamental Algorithms.
Addison-Wesley Publishing Company, Read-
ing, 1968.

H.W. Six, and L. Wegner. Sorting a random
access file wn situ. The Computer Journal,

Volume 27, pages 270-275, 1984.

R.E. Tarjan. Amortized computational com-
plexity. STAM Journal on Algebraic and Dis-
crete Methods, Volume 6, pages 306-318, 1985.

L. M. Wegner and J.I. Teuhola. The external
heapsort. IEEE Transactions on Software En-
gineering, Volume 15, pages 917-925, 1989.

J.W.J. Williams. Algorithm 232, Heapsort.
Communications of the ACM, Volume T,
pages 347-348, 1964.

