Large Euclidean Steiner Minimum Trees in an Hour

Pawel Winter Martin Zachariasen
Dept. of Computer Science Dept. of Computer Science
University of Copenhagen University of Copenhagen

DK-2100 Copenhagen) DK-2100 Copenhagen)
DENMARK DENMARK

October 4, 1996

Abstract

The Euclidean Steiner tree problem asks for a shortest network interconnect-
ing a set of terminals in the plane. Over the last decade the maximum problem
size solvable within one hour (for randomly generated problem instances) has
increased from 10 to approximately 50 terminals. We present a new exact al-
gorithm, called geosteiner96. It has several algorithmic modifications which
improve both the generation and the concatenation of full Steiner trees. On
average, geosteiner96 solves randomly generated problem instances with 50
terminals in less than 2 minutes, and problem instances with 100 terminals in
less than 8 minutes. In addition to computational results for randomly generated
problem instances, we present computational results for (perturbed) regular lat-
tice instances and public library instances.

1 Introduction

The Fuclidean Steiner tree problem asks for a shortest network spanning a given set Z of
n terminals in the plane. Contrary to the minimum spanning tree problem, connections
in Steiner minimum trees (SMTs) are not required to be between the terminals only. Ad-
ditional intersections, called Steiner points, can be introduced to obtain shorter spanning
networks.

The Euclidean Steiner tree problem has received considerable attention in the literature.
The reader is referred to [13] for a comprehensive survey. We mention here only some
basic properties of SMTs needed in the sequel.

e Steiner points are incident with exactly 3 edges making 120° with each other. We
refer to this property as the angle condition.
e SMTs for n terminals have at most n — 2 Steiner points.

e SMTs are unions of full Steiner trees (FSTs). Terminals spanned by an FST have
degree 1. FSTs have two Steiner points less than they have terminals. If two FSTs

share a terminal z, then the two edges incident with z (one from each FST) make at
least 120° with each other. No terminal can therefore be in more than three FSTs.

A possible approach to find an SMT is to generate all FSTs (pruning as many non-optimal
ones as possible), and apply exhaustive concatenation of the surviving FSTs.

Consider any subset 7, of k terminals, 2 < k& < n. All FSTs for 7, have k — 2 Steiner
points. Clearly, only the shortest one (if any) can appear in an SMT for Z. Unfortunately,
the problem of finding a shortest FST for a given subset Zj, of terminals seems to be as
difficult as the Euclidean Steiner tree problem itself. In order to find a shortest FST
for 7, it is necessary to consider all possible full topologies, i.e., all possible ways of
interconnecting k terminals and k& — 2 Steiner points such that the degree condition (all
terminals have degree 1 and all Steiner points have degree 3) is satisfied. For instance,
for k = 4, there are three different full topologies (Figure 1).

(a) (b) (c)
Figure 1: Different full topologies for 4 terminals

Given a full topology Ty for Zy, its unique FST (if it exists) can be determined in O(k) time
and space. The basic idea of this FST-algorithm, discovered by Melzak [16], is as follows.
If & = 2, there is only one full topology (with no Steiner points). The corresponding
FST is the line segment between the two terminals. A full topology T with & terminals,
k > 3, has at least one pair of terminals a¢ and b adjacent to a common Steiner point
Sap- Let v denote the third point adjacent to s,,. The edges from a and b must make
120° at sqp. The location of s, in the corresponding FST is therefore very restricted.
More specifically, consider the equilateral points e,, and ep,, which are third corners of
equilateral triangles with the line segment from a to b as their common side. Assume that
eqb and ey, are respectively to the left and to the right of the line segment ab. Draw circles
circumscribing these two triangles. The Steiner point s,, must be located on one of the
two 120° Steiner arcs ab and ba, respectively to the right and to the left of ab. Assume
that s, is on ab (Figure 2).

Consider a smaller full topology Tz—; where the terminals @ and b, and the Steiner point
Sqp, are replaced by e, acting as a terminal adjacent to v. Tj_y is full, and has one
terminal and one Steiner point less than 7. A necessary condition for the existence of
the FST for 7T, with s, on ab is that the FST for Tr_1 exists. The existence of this
smaller FST can be determined by such repeated merging (unless k& = 2, in which case
the smaller FST is a line segment; it is refereed to as the Simpson line). Once the FST
for Tr—1 is known, so is the location of v. Furthermore, if the line segment e,v intersects
the arc 57), the FST for T, exists. The Steiner point s,, must then be at this intersection.

Figure 2: FST construction

The remaining Steiner points in the FST for 7, have the same locations as in the FST
for Tr—1. If the FST for 7; with s, on ab does not exist, the other possibility (s, on ba)
must be tried. This algorithm requires O(2%) time. However, Hwang [12] noticed that it
is always possible to select a, b, and s, in T such that v is a terminal (i.e., k = 3), or v
is adjacent to a terminal, or v is adjacent to a Steiner point (other than s,,) with its two
other neighbours being terminals. In each of these three cases, the locations of terminals
can be used to exclude in constant time one of the Steiner arcs ab and ba as a location
for sq. This yields an O(k) time and space FST-algorithm for a given full topology 7.

The number f(k) of full topologies (each defining a topologically different tree) with &
terminals and & — 2 Steiner points is given by

2k — 4)!
J(R) = Qk(—Z(k —)2)!

The function f is a superexponential in k, i.e., it increases faster than an exponential
function. The total number of full topologies for n terminals is given by

ROEDS (.) f(k)

k=2

It is obvious that even for relatively small sets of terminals, the number of full topologies
is of such a magnitude that their complete enumeration, followed by the linear FST-
algorithm, is completely out of the question. Winter [20] suggested, instead of enumerating
full topologies, to enumerate equilateral points. This approach has several advantages.
First of all, the same equilateral point is generated repeatedly during the enumeration of
full topologies of all subsets of terminals. This redundancy is avoided when generating
equilateral points. Secondly, particular locations of terminals involved in the construction
of an equilateral point e,; often make it impossible to place a Steiner point s,; on the
corresponding Steiner arc such that the angle condition is satisfied. This can be discovered
as the equilateral points are generated (non-existence of an FST for a given full topology
is not discovered until the reconstruction phase). Furthermore, even if the Steiner point
sap can be placed on the Steiner arc, all its feasible locations may lead to a non-optimal
tree which cannot be a part of an SMT (or the arc can be narrowed resulting in subsequent
exclusions of equilateral points involving e,).

As will be explained in Section 4, it is possible to rule out most of the equilateral points
at a very early stage of the generation process. For each surviving equilateral point ey,
terminals not involved in the construction of e,; are considered one_ by one. If for a
particular terminal z, the line segment e,;z intersects the Steiner arc ab corresponding to
€qp, a full Steiner tree for terminals of e¢,, and the terminal z has been identified. This
FST can be submitted to additional optimality tests as explained in Section 5.

In order to emphasize the superiority of the generation of FSTs via the enumeration of
equilateral points rather than the enumeration of full topologies, we merely mention here
one computational result from Section 7. For randomly generated problem instances with
100 terminals, the average number of surviving FSTs of all sizes was 84.7. The total time
to generate them was 431.6 seconds. It is left to the reader to determine the value of

f*(100); the total number of full topologies for all subsets of 100 terminals.

Having identified all FSTs that may appear in an SMT, we want to select a subset of
these such that all terminals are spanned and the length of the resulting tree is as short as
possible. This will be referred to as the concatenation procedure. Basically, the procedure
performs exhaustive backtrack search, but the amount of work required can be reduced
substantially by preprocessing.

The advantage of using preprocessing was first demonstrated in [10] and a similar method
has also been used in the rectilinear Steiner tree problem [17]. For each pair of FSTs a
number of tests are performed in order to decide whether they may appear simultaneously
in an SMT. This information is stored in a compatibility matriz, which is used to limit the
size of the backtrack search tree. Furthermore, this information may be used to reduce
the list of potential FSTs: An FST may become required to be included into an SMT
on the basis of the compatibility information or it may be deleted if it cannot appear in
every SMT. In Section 5 some new and strong compatibility tests are presented and the
concatenation procedure is described in Section 6.

Hwang and Weng [14] suggested another approach to find an SMT. It requires the enume-
ration of full topologies for the entire set Z of terminals (i.e., there is no need to enumerate
full topologies of subsets of Z). For a given full topology T for Z, let D(T) denote the set
of topologies which can be obtained from T by any sequence of collapsing pairs of adjacent
vertices. The luminary algorithm determines, in O(n?) time, the unique minimum length
(not necessarily full) tree satisfying the angle condition among all trees with topologies
in D(T). Since any topology satisfying the degree condition (each terminal has degree
at most 3 and each Steiner point has degree 3) can be obtained from some (not necessa-
rily unique) full topology for all terminals, applying the luminary algorithm to each full
topology for 7 will yield an SMT for Z. The advantage of this approach is that there
is no need for the concatenation. However, the number of full topologies for n terminals
is f(n), still a very large number. Consequently, the overall complexity of the algorithm
is O(n*f(n)). No implementation of the luminary approach is available. However, it
seems unrealistic to expect to solve problem instances with 100 terminals in a reasonable
amount of time. Nevertheless, a combination of the ideas suggested in our paper and the
approach based on the luminary algorithm may prove very powerful.

2 Definitions

Let p and ¢ be two points in the plane. The equilateral point e,y of p and ¢ is the third
corner of the equilateral triangle with the line segment pg as one of its sides, and such
that the sequence of points {p, €,,, ¢} makes a right turn at e,,. Points p and ¢ are called
the base points of e,,. Note that e,, and ¢4, are distinct equilateral points.

If p and g are terminals, then ¢,, is said to be an equilateral point of first order. In order
to simplify some arguments in the sequel, terminals will also be referred to as equilateral
points of zero order. If base points p or g of e,, are equilateral points of order ORD(p)
and ORD(q) respectively, then ORD(e,,) = max{ORD(p),ORD(q)} + 1. The set of
terminals involved in the (recursive) construction of an equilateral point e will be denoted
by Z(e). Note that Z(e) = {e} if e is of zero order (i.e., if € is a terminal).

The equilateral circle of p and ¢ is the circle circumscribing the equilateral triangle Ape,,.q
and is denoted by C,,. Its radius is denoted by r,,. The center of C,, is denoted by o0,,.

Let pg be a line segment from a point p to a point g. Its length is denoted by |pg|. The
direction d,, of pq is defined as the counterclockwise angle between the positive z-axis
and pq. The direction of the line segment o,,p is denoted by 7,,. The counterclockwise
arc from p to q on C,, is called the Steiner arc from p to g. It is denoted by pg. Note that
Lpoy,q = 2Lpeyyq = 120°. A circle with center in p and radius r is denoted by C(p,r).

Our interest in equilateral points and Steiner arcs is due to the fact that if two terminals
p and g are adjacent to a common Steiner point s,,, and the sequence of points {p, s,,, ¢}
makes a left turn at s,,, then the location of s,, is restricted to the Steiner arc pg. If p
and ¢ are Steiner points on Steiner arcs ac¢ and gc\l, and the sequence of points {p, s,,, ¢}
makes a left turn, then the location of s,, is restricted to the Steiner arc e,.€5; where e,
is the equilateral point with base points a and ¢, and epq is the equilateral point with base
points b and d. Note that a,b, ¢, d can be terminals or equilateral points.

Consider an arbitrary path P between a pair of terminals z; and z;, and with other
terminals (if any) as intermediate vertices. The Steiner distance between z; and z; along
P is the length of the longest edge in P. The boltleneck Steiner distance b, between z;
and z; is the minimum Steiner distance between z; and z; taken over all paths between
z; and z;.

3 Overview of the Exact Algorithm

3.1 Generation of Equilateral Points

An equilateral point e,,, which survives pruning tests (described in Section 4) is appended
to a list £. Initially, £ contains all terminals (equilateral points of zero order).

New equilateral points are generated in the following manner. For each equilateral point
p € &, an attempt to construct the equilateral point e,, for every ¢ € £ is made. If
Z(p)NZ(q) =0,|Z(p)|+|Z(q)| < n, and e,, passes all pruning tests, then e,, is appended
to €. Even if ¢,, passes all pruning tests, the location of the corresponding Steiner point

Spq 1s usually restricted to a subarc of the Steiner arc pg. When all equilateral points in €
have been processed as p, the entire procedure is repeated. However, for a given p, only
equilateral points added after the last scan of p are used as gq.

3.2 Generation of Full Steiner Trees

Once all equilateral points have been determined, FSTs can be generated in a straight-
forward manner. Let e,, € £. For every terminal z, z ¢ Z(e,,), the corresponding FST
exists if and only if the Simpson line €,,z intersects the (reduced) Steiner arc pg. As will
be explained in Section 5, additional pruning tests can be applied to identify non-optimal

FSTs.

3.3 Concatenation of Full Steiner Trees

The SMT is the shortest union of FSTs which spans all terminals. Starting from a single
FST, a tree is grown by adding FSTs which are compatible to those already in the tree.
This procedure is continued until either all terminals have been spanned, the length of
the current tree is longer than a previously generated tree spanning all terminals, or no
FST can be added. FSTs are removed from the tree in a last-in first-out manner until all
possibilities have been evaluated (backtrack search). Details are given in Section 6.

4 Equilateral Points

4.1 Projections

Suppose that p and ¢ are two equilateral points, and p is of non-zero order. Let a and ¢
denote the base points of p, 1.e., p = €4.. In this subsection we examine how the location
of a and ¢ can be used to identify infeasible locations for the Steiner point s,, on the
Steiner arc pg (similar arguments apply if ¢ is an equilateral point of non-zero order). We
need to distinguish between the following six subcases (Figure 3):

I: 0° < Zgpa < 240°. Tt is impossible to connect p with any point on pg by a line
segment intersecting ac. In other words, it is impossible to place adjacent Steiner
points on pg and ac¢ without violating the angle condition at s,.. Hence, in this case,
there is no feasible location for s,, on pg. The equilateral point e,, can be pruned.

IT: 240° < Zgpa < 300°, and ¢ is not in the interior of Cp,. It is impossible to place
adjacent Steiner points on pg and ac¢ without violating the angle condition (when ¢
is on the boundary of (), these two Steiner points will overlap). Hence, also in this
case the equilateral point e,, can be pruned.

III: 240° < Zgpa < 300°, and c is in the interior of C,,. Consider the projection ¢’ of ¢

onto pg in direction from p to ¢. The Steiner point on pg cannot be placed on ¢'q
without violating the angle condition. Hence, the Steiner arc pg can be reduced to

() (1) ()

e
€ pg pPq

Figure 3: Projections: six subcases

;5&’. The equilateral circles C},, and C,, intersect at p and at another point 2 on ;5&’.

The angle condition at Steiner points on pq' and ac will be fulfilled only if the Steiner
point on pg’ is on xq’. Hence, the Steiner arc pg’ can be reduced to z¢'.

IV: 300° < Zgpa < 360°, and ¢ is in the interior of C,.. The intersection between C,,
and C,. (other than at p) is not on pg. Consequently, it is impossible to place
adjacent Steiner points on pg and ac¢ without violating the angle condition. Hence,
the equilateral point e,, can be pruned.

V: 300° < Zgpa < 360°, g 1s not in the interior of Cy., and a is not in the interior of Cp,.
The intersection z of Cp, and C,. (other than p) is somewhere on pg. The Steiner
arc on pg can be reduced to zq.

VI: 300° < Zgpa < 360°, g is not in the interior of Cy., and a is in the interior of Cp,.
Let p' be the projection of @ onto pg in direction from p to a. The Steiner arc pg can
be reduced to p'q.

In order to carry out the above tests and reductions efficiently, we need to:

e Determine Zgpa. Since dp, = v, + 150° and d,, = 7,4, + 30°, it follows immediately
that Zgpa = dpy — dps = Ypg — Yae + 120°.

¢ Determine the projection ¢’ of ¢ onto pq in the direction from p through c. In order
to determine ¢’ it is sufficient to determine /po,,q’. Using straightforward geometric
properties of equilateral points yields

Apopqq’ = QApepqq’ = Q(depqq’ - depqi?) =
2(c1lpC —60° — dopqp — 30°) = Q(dpa + Lapc — 60° — v, — 30°) =
Q(doaca +30° 4 205, — 60° — 7,y — 30°) = 2(%C + 2040 — Ypg — 60°)

where a,, = Laog.c.

e Determine the intersection « of Cp, and (. other than p under the assumption that
this intersection appears on pq. In order to determine z, it is sufficient to determine
Lpopgt = 2Lp0p,04e.

We assumed so far that the Steiner point s,. can be located anywhere on ac. However,
tests applied to e,. can reduce this Steiner arc to a proper subarc a’¢’. Above arguments
apply if ac is replaced by a’c’.

4.2 Lune Property

Suppose that an SMT is known to contain a line segment uv where v and v can be termi-
nals or Steiner points. The [une L., of the line segment uv is defined as the intersection
of two circles C'(u, |uv|) and C(v, |vu|) (Figure 4a). It is well-known [11] that a necessary
condition for the line segment wv to be in any SMT is that L(u,v) contains no terminals.

Figure 4: Lune L(u,v)

Suppose that p and ¢ are equilateral points of any order (Figure 5). Let p;g; be a feasible
subarc of pg. If ¢ is an equilateral point of non-zero order based on a and ¢, let a; and ¢;
be the points on the Steiner arc ac of ¢ such that the projections of a; and ¢; on pg are
respectively p; and ¢;. If ¢ is an equilateral point of zero order, then a; = ¢; = q. Suppose
that there is a terminal z, such that z € L(a;,p;) (Figure 5a). Consequently, p;g; can be
reduced by moving p; toward g. We are interested in a point a} on a;¢; and its projection

(a) (b)

Figure 5: Lune-based reduction

pi on p;q; such that |alp}| = |aiz| or |alpi| = |piz| (a} = q if q is of zero order). If there is
more than one such p!, we are interested in the one closest to p;.
Let ap, = Lpoy,p; and a,, = Lao,.a; (g, = 0° if ¢ is of zero order). Since p;g; is given,

a,, i1s known. Furthermore, a,; = 2Zaqp; if q is of non-zero order. It can be easily verified
that

D; =\/§r cos%—r sinapi
qp Pg 9 Pq 9

|qa2-| = \/g'r',lC Cos Qo + r,es1n Qa
2 2

with r,. = 0 if ¢ is an equilateral point of zero order. The distance between p; and a; is
then given by [piai| = api] — |qa].
Let z be a terminal satisfying

|za;| < |pia;| and |zp;| < |psa]
ie, z € L(a;,p;). Let a} be a point on @;¢;. Let 8 = La;o,.a}, and let p; denote the
projection of a; onto p;q;. Then 3 = Lp;0,,p}, and

3., A* B A* p?

piatl* = (lgpl] — lqai])? = (Acosg— Bsin0)? = -+ -+)cos 3 — ABsin 3

2 2 2
where o o o o
_ Pi . Pi a; . a; g
A= \/grpq CoS -5~ T'pg SIIL -5~ \/grac Cos 5 T'ge SITL -5 = |pia
Ly, Q. L O Oy
B = \/grpq sin —% 4+ T'pg COS Pi_ \/grac SIN — 4 74, COS —
2 2 2 2

The square of the distance between z and a! is given by

|zal]* = C + Dcos 3 — Esin 3

k3

It follows that a! and p! with |pla’| = |ral| satisfy

—FG TP (GE 1 HE)(FE -)
G2 ¥ H?

where F= 4 4 B _ 0 (= FE—AB,and H=D — 4 4 &,

Similarly, the square of the distance between z and p. is given by

|zpl|? = C + D cos B — Esin 3

sin 3 =

where 0,, = (07, 0%,) and C., D, E are determined in analogous way as C, D, E.

It follows that a! and p} with |pla}| = |zp}| satisfy

—FG L[PG — (G + TP (P -)
G2+1€[2
where F =4 4 B° _C. G=FE-ABand H=D -4 4 B

sin 3 =

The smallest 3 determines the new location of p;. In particular, if 3 > /p;0,.q;, then
there is no feasible location of s,, on the Steiner arc pq.

Suppose that there is a terminal z, z € L(¢;, q;) (Figure 5b). Consequently, p;g; can be
reduced by moving ¢; away from g. The determination of how far ¢g; can be moved is
analogous to the previous case.

Similar feasibility tests can be applied by examining line segments pg; and pp;.

4.3 Bottleneck Property

Let p;g; be a subarc of the Steiner arc pg. Let a; be as defined in Subsection 4.2. If there
are two terminals z, € Z(p) and z, € Z(q) such that

b < la;p;]

2Zp2q

then p; can be moved toward ¢ until the equality is obtained (or p; moves beyond ¢;). The
new location of p; is obtained by rotating it around o,, by the smallest angle 3 satisfying

b

pzg = Acos§ — Bsin§

where A and B are as in Subsection 4.2. In particular, if 3 > /Zp;0,,¢;, then there is no
feasible location of s,, on p;¢;. It follows that

10

z

. __bzpzq}; j: \/bzpzq132 - (/42 + lgz)(bﬁp
S111 5 = A2 + Bz

)

The bottleneck-based reductions are very powerful and not very time-consuming if the
bottleneck Steiner distances are determined in the preprocessing phase in O(n”) time
using an algorithm which is very similar to the all-shortest paths algorithm (see [13]).

4.4 Upper Bounds

If one is willing to use the additional computational effort, there is space for improvement
of the bottleneck test when examining the line segment p;a;. Let LCT(p) denote an
upper bound on the Steiner minimal tree for Z(p) obtained by one of several available
heuristics [13]. Suppose that

b,z + LCT(p) < |pip|

Zp2q

Note that |a;p| is a valid upper bound; when inserted into the above inequality, the original
inequality b.,., < |a;p;| is obtained. However, if a smaller LC'T(p) can be determined, a
stronger test will be obtained.

Suppose that ¢ is an equilateral point of non-zero order, i.e., ¢ = €,4.. Let z, € Z(a) and
z. € Z(c) such that b, . is minimized. Then

LCT(a)+ LCT(c) + b.,..

is an upper bound on the Steiner minimal tree for Z(g). Note that LCT(a) = 0 if a is
of zero order (similarly for LCT'(¢)). Otherwise, LCT(a) (and/or LCT(c)) is determined

recursively.

Sometimes it is possible to obtain even a better upper bound. Suppose that a is an
equilateral point of non-zero order. If a full Steiner tree with ac as its Simpson line exists,
then |ac| is a valid upper bound.

Suppose that ¢ is of non-zero order, i.e., ¢ = ¢e,,. If a full Steiner tree with au as its
Simpson line exists, then |au| + b,,,, + LCT(v) is a valid upper bound. Similarly, if a
full Steiner tree with av as its Simpson line exists, then |av| + b.,., + LCT(u) is a valid
upper bound. If u is also of non-zero order, i.e., u = €4, and a full Steiner tree with ab
(respectively ad) as its Simpson line exists, then |ab|+b,,., +b.,., + LCT(d) (respectively
lad| + b.,., + b.,., + LCT(b)) is a valid upper bound. Continuing in this manner until
zero order equilateral points are encountered, and repeating this process for a if it is of
non-zero order, several valid upper bounds can be obtained. The smallest is then used in
the bottleneck test.

11

4.5 Wedge Property

Suppose that p;g; is the feasible subarc of the Steiner arc pg. Draw four half-lines (Fi-
gure 6): Li: rooted at e,, through p;, Ly: rooted at e,, through ¢;, Ls: rooted at p
through ¢;, Ls: rooted at ¢ through p,. Consider the regions R;: bounded by L, Ly and
7:G;, Ry: bounded by L, and Lz, Rs: bounded by L; and L.

Figure 6: Wedge property

Suppose that the region Ry contains no terminals. If Ry or Rs contains no terminals, then
no full Steiner tree involving e,, and with a Steiner point on p;¢; can exist.

Suppose that the region R; contains at least one terminal but R; is empty. Let z denote
the terminal in Ry so that /p;ep,z is maximized. Let ¢/ denote the intersection of e,z
with p;¢;. Then no full Steiner tree involving e,, has a Steiner point in the interior of ¢lq;.
Similarly, suppose that the region R; contains at least one terminal but Rj is empty. Let

z denote the terminal in Ry so that /p;e,,2 is minimized. Let p! denote the intersection
of e,,2z with p;g;. Then no full Steiner tree involving e,, has a Steiner point in the interior

of ;Z;;;

12

5 Full Steiner Trees

5.1 Initial Pruning

Consider an equilateral point e,, surviving the tests described in Section 4. Let z be a
terminal, z & Z(e,,). A necessary condition for the FST F with e,z as its Simpson line
to be a subtree of an SMT, is that z is located in the wedge region R; (see Subsection 4.5).

Assume that terminals are numbered from 1 to n. Let z,, denote the highest numbered
terminal in Z(e,,). Suppose that z < z,,. Then there exists an equilateral point €’ based
on terminals Z(ep,) U{z} \ {zm} such that F and the FST with €'z, as its Simpson line
are 1dentical. Consequently, when generating FSTs based on e,, and a terminal in Ry,
only terminals with higher numbers than z,, need to be considered as z.

An FST F with e,z as its Simpson line has length |e,,z|. Hence, if a shorter tree spanning
Z(epy) U{z} exists, there is no need to retain F. There are several ways of obtaining such
a tree. We used the following three methods in the optimality test:

e Minimum spanning tree for Z(e,,) U {2z} using bottleneck Steiner distances between
terminals.

e O(nlogn) heuristic for the terminals Z(e,,) U{z} (based on the Delaunay triangu-
lation) [18].

e Concatenation of FSTs with terminals in Z(e,,) U {z}.

The locations of Steiner points of every surviving FST F' can be determined in linear time
and the test based on the lune property are applied to each of the edges of F'.

5.2 Pairwise Compatibility

The set of surviving FSTs F can be reduced further by using the notion of compatibility.
Two FSTs F;, I; are compatible if they may appear simultaneously in an SMT); they are
either connected (share exactly one terminal) or disjoint (share no terminals). If two FSTs
cannot appear simultaneously in an SMT, they are said to be incompatible. Note that two
incompatible FSTs may share any number of terminals, including none. In Subsection
5.3 we generalize the notion of compatibility to any subset F' C F. !

Let F;, F; be two FSTs in F. Let Z(F;) and Z(F;) denote the terminals spanned by F;
and Fj, respectively. If |Z(F;) N Z(F};)| > 1, or F; and Fj intersect each other, they are
incompatible.

If F; and F}; share exactly one terminal z, the angle between the two edges incident with
z must be at least 120°. If this is the case, the optimality test (see Subsection 5.1) is

performed on F; U F;. Finally, the following cut-and-link test is performed. Let F*
and F7* denote trees spanning respectively Z(F;) \ {z} and Z(F};) \ {z}. Let F*? and

1Our compatibility definition is different from (and more general than) the one originally introduced in [10], in which
two FSTs are compatible if they may appear simultaneously in an SMT and share exactly one terminal.

13

qu denote trees spanning respectively Z(F;) U {q} and Z(F;)U {q} for some terminal g,

Lemma 1 If the edges of F; and F; meeting at z make an angle that exceeds 120° and
|F72 |+ [FFY < |F;U Fy| and |F 4+ |F77] < |F; U F}

then F; U F; cannol be a subtree of an SMT.
Proof. Assume that F; U F} is a subtree of an SMT T* (Figure 7a). Since the angle

between the edges meeting at z is strictly more than 120°, no other edge of T™ can be
incident with z.

If we remove one of the edges incident with z, 7™ is split into two subtrees. The terminal
q belongs to exactly one of them. Assume that it belongs to the same subtree as F; does.
Remove the edges in F; and F; from T™* and reconnect all terminals by inserting F;”* and
F;q (Figure 7b). Since |F*| + |Fj+q| < |F; U Fj|, this new tree is shorter than 7*, a
contradiction.

If ¢ belongs to the other subtree when the tree is split, we insert Fit? and F7* instead
(Figure 7c), obtaining a shorter tree once again. Consequently, 7 cannot be an SMT.
|

> 120°

N
N

b) T 0 L

Figure 7: Cut-and-link test

The lengths of the trees F=%, Fit9, F7* and Fj+q are computed as for the optimality test

when pruning FSTs (Subsection 5.1). In addition, only terminals close to z are used as

g. The length of the longest MST-edge was set to be the maximum distance allowed.

5.3 Subset Compatibility

The notion of pairwise compatibility is generalized to any subset F' of FSTs in F as
follows. Let F* C F be F" augmented with the those FSTs in F \ F’ which are pairwise

14

compatible to every FST in F'; if 7' = (), then F* = F. Remove from FT all FSTs
F; € Ft\F' for which there exists a connected, non-optimal triple F;, F;, Fy, with F}, F}, €
F'. Define G(F*) to be an undirected graph with the set of terminals 7 as its vertices;
two terminals z; and z; of G(F*) are adjacent if and only if there exists an FST in F*
spanning z; and z;.

Let F; be an FST, and let z € Z(F;). If there exists a tree F;7* and a terminal ¢, ¢ € Z(F}),
such that

[F77 1+ |zq] < [F3

then z cannot be a leaf in any SMT containing F; (remove F; and reconnect by inserting
F7% and the edge zq). Such a terminal z, which is known to have degree at least 2 in
every SMT containing F; is called a concatenation terminal of F;.

The subset F' is said to be compatible, if the following conditions are satisfied:

e All FSTs in F' are pairwise compatible.
¢ Every connected triple of FSTs in F' is optimal (Subsection 5.1). 2

e G(F™) is connected; otherwise it is not possible to construct an SMT which contains
F' (this test is a generalization of [10, Test (i), (ii) and (iii)]).
o For every terminal z € Z, either there exists an FST F; € F*t spanning z such

that 2z is not a concatenation terminal of F; or there is a pair of compatible FST's
F;, F, € F* spanning z.

5.4 Pruning using Compatibility

We are now ready to describe the pruning tests based on subset compatibility. During the
pruning of FSTs we try to identify some FSTs which must be in every SMT. We denote
this set of required FSTs by F* and obviously we must have that F* is compatible.

o If the removal of an FST F; € F\ F* from F makes F* incompatible then F; is
required (append F; to F*).

o If the inclusion of an FST F;, € F \ F* to F* makes F* incompatible, then F; can
be deleted from F.

e If the inclusion of two FSTs Fj, F; € F\ F* to F* makes F* incompatible then F;

and F; are (pairwise) incompatible.

These tests are repeatedly carried out until none of them applies. Experience has shown
that the computational overhead caused by these tests is small compared to the savings
in the concatenation phase.

2Tn order to avoid repeated computation, information about connected and optimal triples is stored in a 2-dimensional
array of lists.

15

6 Concatenation

6.1 Problem Decomposition

When the pruning of F has finished, the problem is decomposed by using the method
proposed in [9]: Let F be the list of FSTs surviving all pruning tests. Define G(F) as in
Subsection 5.3. Then each biconnected component of G(F) corresponds to a subproblem
on which concatenation can be done separately.

Because of the effective pruning of FSTs, the graph G(F) is sparse. Therefore this simple
decomposition method is quite effective. Other decomposition methods which are based
on more complicated connectivity properties of G(F) exist [9, 17], and their inclusion is
a possible future improvement to the current implementation.

6.2 Backtrack Search

Each subproblem corresponds to a subset F' C F of the pruned set of FSTs. Let Z’
denote the set of terminals spanned by the FSTs in F'. For each FST F; € F' the
compatibility matrix provides a list ;¥ C F' of FSTs compatible and connected to Fj,
and a list ;7 C F' of FSTs that are incompatible to F; (not including F; itself). For each
terminal z € Z' let F, C F’ denote the set of FSTs spanning z.

Starting with the empty tree T = (), we try to append FSTs to T from a list F*; initially
F* = F,, where z is chosen such that |F,| is minimum over all terminals. When an FST
F; € F* has been is added to T we set F* = (F* U F)\ F7 (removing duplicates).
This guarantees that F*t at any time contains exactly those FSTs that are connected to
some FST in T, and are compatible to all FSTs in 7. Any FST in F* which during
the pruning of FSTs has been identified as required to appear in an SMT is added to
T first and obviously backtracking can be avoided until all other FSTs in F* have been
evaluated.

The subtree T is checked for compatibility as follows: A counter ¢,(7') is dynamically
maintained for every terminal z € Z’. At any point in time, ¢,(7") holds the number of

FSTs spanning z which may be added to T" at a later step, i.e., which are compatible to
all FSTs in T'. Note that ¢,(0) = |F,| for all z € Z".

Let Z(T) C 7' denote the set of terminals which are either not spanned by T, or are
leaves in T'and concatenation terminals of the FSTs in T'. 1If, for a given tree T', there
exists a terminal z € Z(T') for which ¢,(T') = 0, then T' cannot be extended to an SMT; if

c,(T) =1, the only FST F; which may be added necessarily must be added (F; becomes
required during the backtrack search on T').

The information stored about FST triples (Subsection 5.3) is used during backtracking.
Every time an FST F; is added to T' it is verified whether every connected triple including
F; in T is optimal.

Several other tests that could be performed during the backtracking process have been
investigated, but none turned out to be beneficial. One possibility is to use the optimality

16

test on smaller subtrees, e.g., when T' contains less than 20 terminals, but the computa-
tional effort needed to compute the upper bounds surpassed the savings obtained. Another
possibility is to select the FSTs from F* to be added to T' in some strategic fashion (an
example is given in [17]), but we found that even for very simple selection methods the
savings could not match the extra computational effort required. The reason is appar-
ently the strong dynamic compatibility test described above. The backtrack search tree
is pruned so effectively that there is no reason to consider any particular ordering of the
search.

It should also be noted that instead of growing a single tree T', one could grow a forest of
FSTs. One apparent advantage is the following: By adding FSTs with 3 or more terminals
first, it is possible to use a Kruskal-like algorithm when only MST edges are left to add.
However, our experiments with this variant did not seem to make it preferable to the
single tree alternative. Again the explanation seems to be that the dynamic compatibility
test limits the search so strongly that the situation in which only MST edges are left is
only seldomly reached.

7 Computational Experience

The algorithm has been implemented in C4+4 and the performance of the new program
geosteiner96 has been evaluated on a HP9000 workstation®. The class library LEDA-
R-3.3 [15] has been used and the random number generator was the random_source class
in LEDA. Experiments have been made on randomly generated instances, regular lattices
and public library instances.

7.1 Randomly Generated Problem Instances

The overall performance of geosteiner96 has been evaluated on problem instances for
which terminals have been drawn uniformly from a square. One hundred instances were
generated for each size 10,20, ..., 150. In the following we present CPU-time measurements

(all in seconds), FST-counts and various properties related to the optimal solutions *.

Table 1 shows the average CPU-time used for each of the three phases: equilateral point
generation, full Steiner tree generation, and concatenation. Figures 8, 9, 10, 11 present
the same numbers graphically and, in addition, give the maximum CPU-time used for
each problem instance size. Note the logarithmic scaling in Figures 10 and 11.

The first two phases show average quadratic growth, O(n*°") and O(n'??) respectively,
while the concatenation phase clearly is exponential. However, the concatenation time is
negligible for problem instances with less than 100 terminals, but dominates for problem
instances larger than 130 terminals.

3Machine: HP 9000 Series 700 Model 735/99. Processor: 99 MHz PA-RISC 7100. Main memory: 96 MB. Performance:
3.27 SPECint95 (109.1 SPECint92) and 3.98 SPECfp95 (169.9 SPECfp92). Operating system: HP-UX 9.0. Compiler:
GNU C++ 2.7.2 (optimization flag -03).

4Detailed CPU-time measurements are only reported for problem sizes up to 140 terminals, since we were not able to
solve one of the 150 terminal instances within a cut-off time of one week. However, other statistics for 150 terminal instances
are presented, and for this problem size the averages are taken over the 99 solved instances.

17

The single most important factor that determines the running time of the concatenation
phase is, as could be expected, the number of FSTs in the largest subproblem. In Figure
12 the concatenation CPU-time has been plotted as a function of the largest subproblem
FST-count for each 150 terminal problem instance. Notice that the concatenation time
for a majority of the problems is well below one hour - few instances require more than

one CPU day.

It is hard to make direct CPU-time comparisons to edsteiner89 by Cockayne and Hewgill
[10], the best exact algorithm from the literature. The CPU-time reported in [10] for
equilateral point and full Steiner tree generation also shows quadratic growth, although
the absolute CPU-times are about 25 times ours. This may be explained mainly by the
use of of less powerful hardware. As far as the concatenation phase is concerned, direct
comparison is impossible, since not all instances generated have been solved in [10] (a
cut-off time of 20 hours was used). In particular, Cockayne and Hewgill were not able to
solve a 45 terminal problem within the 20 hour time bound. This may be compared to
the 29 minutes used by geosteiner96 to solve the hardest 100 terminal problem.

Another measure which clearly shows the superiority of geosteiner96 is the number
of FSTs that survive all pruning tests. In Table 2 we see that the FST pruning tests
described in Subsection 5.4 more than halve the number of FST candidates. The average
number of surviving FSTs for 100 terminal instances is 84.7 and this may be compared
to the 200 FSTs surviving the tests used by edsteiner89. Another interesting detail is
that 39.8 of these FSTs already have been identified as being a part of an SMT before the
concatenation commences. This is more than two thirds of the 58.4 FSTs in the optimal
solution.

n | Equilateral | Full Steiner | Concate- Total Total Total
Points Trees nation

(average) (average) (average) (average) | (median) | (max)
10 2.0 1.1 0.0 3.1 2.8 8.7
20 12.2 5.0 0.0 17.3 14.1 95.6
30 29.3 10.2 0.0 39.6 32.5 132.0
40 54.0 15.9 0.0 70.0 66.8 228.9
50 83.7 25.9 0.1 109.6 98.7 302.7
60 123.1 34.0 0.3 157.5 137.7 511.6
70 162.9 48.0 0.7 211.5 196.6 579.9
80 217.0 63.4 1.5 282.0 265.1 633.9
90 274.5 81.2 4.5 360.2 341.8 795.3
100 328.3 103.3 29.5 461.2 419.2 1740.3
110 421.1 136.0 23.9 581.0 533.1 1545.7
120 501.1 174.2 54.9 730.2 648.5 2967.0
130 600.8 225.1 223.0 1048.9 824.9 9231.5
140 704.8 268.5 2530.3 3503.6 943.9 | 121180.8

Table 1: CPU-times for randomly generated problem instances (seconds).

It is well-known that the length of an SMT cannot be shorter than v/3/2 times the length
of the minimum spanning tree (MST), that is, the reduction over the MST is at most
1 —/3/2 ~ 13.4% [13]. The average reduction is much smaller as can been seen from
Table 3. Tt stabilizes around 3.2%, a number which may be compared to the 2.5% — 3.0%

18

Seconds

Seconds

1800

1600

1400

1200

1000

800

600

400

200

600

500

400

300

200

100

T T T T T T T
T
S 1 1 1 1 1 1
0 20 40 60 80 100 120 140
Instance size
Figure 8: CPU-times for the generation of equilateral points (seconds).
T T T T T T T
/*
o Max

2 1 1 1 1

0 20 40 60 80 100 120
Instance size

Figure 9: CPU-times for the generation of FSTs (seconds).

19

140

Seconds

F T T
100000 | One day s
L / Max
10000 |- F
| One hour
L ’///¥/
1000 | e

L // AVg

100 | s
| One minute e

/+‘7/7
10 |
>
1k
A +

Ol ! ‘// 1 1 1 1 1 1

6] 20 40 60 80 100 120 140

Instance size

Figure 10: CPU-times for concatenation of FSTs (seconds).

Seconds

100000 One day a
L / Max
10000 | ya
| one hour -
1000 | Avg
100 | e
| One minyte
10 |
1F
Ol 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140

Instance size

Figure 11: Total CPU-times (seconds).

20

Seconds

T T T T T T
L <&
<
100000 £ one day o
L <& <&
10000 | e %o
| One hour ¢ <&
<& ¢ ©
1000 | %o ¢y
° o o
<@ >
100 - o ¢
E °
| One minute o ©
< °
<&
3 o
o o o °
10 | 8@ . @
o °§ o
O 5 ©
<& &> <&
1 o %o ¢ °
% 8% o
> g &2 <
<& <&
P & g@ &
Ol 1 1 1 1 1 1
0 20 40 60 80 100 120

Number of FSTs in largest subproblem

Figure 12: Concatenation CPU-time versus largest component size.

n Before | After Required | Optimal

pruning | pruning solution

10 17.8 5.7 4.9 5.3

20 39.2 13.7 9.8 11.4

30 61.6 22.4 13.7 17.3

40 83.9 31.5 16.8 23.1

50 107.1 39.7 21.2 28.8

60 129.0 49.3 24.7 34.8

70 151.5 58.9 27.8 40.8

80 174.5 66.3 32.5 46.3

90 195.4 76.4 34.9 52.1

100 216.0 84.7 39.8 58.4
110 240.0 93.9 43.9 64.6
120 263.8 104.0 46.5 70.1
130 287.4 114.5 49.3 75.9
140 309.1 125.2 52.1 81.8
150 331.5 135.0 55.3 87.7

Table 2: Average number of FSTs for randomly generated problem instances.

21

savings typically obtained by different types of heuristics. In addition, the variation of
the reduction becomes smaller for larger instances, something which indicates that 3.2%
actually may be close to the asymptotic average value for this point distribution.

Another issue, which is also relevant for the construction of heuristics, is the FST-size
distribution (number of terminals in FSTs of the optimal solution). A common assumption
made by heuristic algorithm designers is that the average FST-size is low and few FSTs
are particularly large. Our experiments show that the average FST-size stabilizes very
clearly around 2.7 (Table 3). On the other hand, the average size of the largest FST
occurring in optimal solutions grows slowly and is 5.4 for problem instances with 150
terminals. This slow growth is due to a small number of relatively large FSTs - the
largest among all 1500 instances has 10 terminals - but the distribution is still centered
around 2-4 terminals without any observable shifting tendency: One half of the FSTs has
two terminals (MST-edges), one third has three terminals, 1/8 four terminals and 1/40
five terminals. Less than 1% of the FSTs have six or more terminals. In an SMT spanning
150 terminals there are on average two FSTs with five terminals and less than one FST
with six or more terminals.

n Reduction Average Maximum
over MST FST-size FST-size
(percent) (#terminals) | (#terminals)

10 | 3.02 165|277 +£039| 387 =+0.80
201 3.02 £097] 269 £0.20|428 +0.64
301315 £080|269 £0.19 455 +£0.76
40 | 3.16 +0.61 | 270 +0.14 | 4.75 £ 0.77
50 | 3.23 £0.55 271 £0.14 | 481 +0.77
60 | 3.26 £0.58 | 271 £0.13]486 +£0.78
70 [3.18 £0.56 | 270 £0.11 | 5.15 +£0.93
80 | 3.18 £045| 271 £0.10]5.06 =+0.72
90 | 3.18 £0.41 271 £0.09 | 511 +0.68
100 | 3.20 £0.44 | 270 +0.09 | 522 +£0.76
110 | 3.23 £0.38 269 +0.09 529 +0.87
120 | 3.21 £039| 270 £0.08 522 =+0.95
130 | 3.22 £039| 270 £0.08 524 =+0.88
140 | 3.23 £ 037|270 £0.08 534 =+0.86
150 | 3.23 +£033 270 +£0.07|544 =+ 0.80

Table 3: Randomly generated instances. Reduction over MST, average FST-size and maximum FST-sizes
in optimal solutions. Second numbers in each column are standard deviations for the respective averages.

7.2 Regular Lattices

Properties of SMTs for terminal sets with special configurations have been studied for a
long time. Problem instances with the terminals arranged at corners of regular lattices of
unit squares have received considerable attention, but for some time only the ladder case
(2 x m terminals) had been solved completely [8]. Conjectures on the structure of SMTs
for larger instances, in particular quadratic m x m instances were given [7]. Only very
recently the general case was solved completely [4, 5, 6].

This means that there is no point in using a general program like geosteiner96 to solve

22

these types of instances, since special polynomial-time algorithms can be constructed.
Still, since these instances are known to present a major challenge to general algo-
rithms [10], we present CPU-times needed to solve some small regular lattice instances
(Table 4). It should be noted that we have made no algorithmic modifications to take
advantage of the known structure of these problems, i.e., geosteiner96 solves these prob-
lems as if they had been randomly generated problems.

The apparently bad performance may be explained by several factors:

e The bottleneck based pruning test in the equilateral point generation phase fails,
since all bottleneck distances are 1. The result is a large number of equilateral
points and full Steiner trees.

e The compatibility tests used when pruning FSTs also fail, since all terminals are
“equally” close.

e The problems cannot be decomposed into subproblems by the theorem in [9] or for
that matter by any other known decomposition theorem. This gives a very fast
exponential growth for the running time of the concatenation phase.

In order to evaluate how sensitive geosteiner96 is to changes in the extremely regu-
lar structure of these problems, we tried to solve a number of perturbed regular lattice
instances. Fach terminal is randomly repositioned within a square centered around its
original location. The side of the square is 2¢ where € is a parameter which limits the
maximal perturbation. Results for the 5 x 5 regular lattice are presented in Table 5. Tt
can be seen that only a very small perturbation considerably reduces the number of FSTs
surviving the pruning test, and herby the total running time. Also, the reduction over
the MST decreases as the perturbation level increases.

7.3 Public Library Instances

Finally, we present optimal solution values for the 46 library instances by Soukup and
Chow [19] in Table 6 (problem instances can be obtained from OR-Library [1]). All

problem instances have been solved in less than 13 minutes by geosteiner96.

In Table 7 we give CPU times for another series of problem instances from OR-Library.
These are randomly generated problem instances with 10 to 100 terminals, 15 instances
for each size (see also [2, 3]). All problem instances have been solved in less than 14
minutes by geosteiner96. The average CPU-times are similar to the average values
found for our own randomly generated problem instances (Table 1). It should be noted
that none of Beasley’s problem instances were previously solved to optimality.

23

Instance | FST-count Opt. sol. Reduction CPU-time
after pruning value over MST (%) | (seconds)

2x2 1 2.7321 8.93 0.1
2x3 1 4.6252 7.50 1.9
2x4 5 6.4641 7.66 9.9
2xH 1 8.3451 7.28 28.6
2x6 14 10.1962 7.31 63.8
2x7 1 12.0725 7.13 126.3
3x3 11 7.4641 6.70 33.9
3x4 42 10.1962 7.31 120.9
3x5H 82 12.9282 7.66 292.1
3x6 136 15.6603 7.88 575.2
3x7 193 18.3923 8.04 1106.3
4 x4 106 13.6603 8.93 434.3
4xH 184 17.4465 8.18 1051.5
4 x6 298 21.0562 8.45 2577.8
4x7 391 24.7495 8.34 5961.2
5x5 306 | 22.1244 7.82 3323.1
5x6 468 26.5885 8.32 19810.0
5x 7 632 31.2136 8.19 445005.2

Table 4: Regular lattice problems. FST-count, optimal solution value and total CPU-time.

Maximal FST-count Opt. sol. Reduction CPU-time
perturbation (¢) | after pruning value | over MST (%) | (seconds)
0.40 27 19.85 4.32 105.8

0.20 48 20.95 5.11 301.2

0.10 75 21.57 5.99 602.9

0.05 124 21.86 6.76 1027.6

0.00 306 22.12 7.82 3323.1

24

Table 5: Perturbed 5 x 5 regular lattice problem. Averages over 10 instances for each perturbation level.

Problem | n | Optimal Total Problem | n | Optimal Total

number solution | CPU-time number solution | CPU-time
1 5 1.6644 0.29 24 4 0.2528 0.06
2 6 1.5005 1.10 25 3 0.1990 0.01
3 7 2.0777 0.96 26 3 0.1243 0.00
4 8 2.1388 0.79 27 4 1.1782 0.03
5 6 2.0441 0.86 28 4 0.2044 0.06
6| 12 2.1842 5.67 29 3 1.4660 0.03
7112 2.2053 5.08 30 | 12 1.0198 210.52
8| 12 2.1778 5.00 31 | 14 2.3322 2.14
9 7 1.5594 9.60 32 | 19 2.8142 49.62
10 6 1.5988 1.58 33 | 18 2.2258 22.27
11 6 1.2741 0.12 34 | 19 2.1381 21.37
12 9 1.6483 3.70 35 | 18 1.3554 17.48
13 9 1.2734 1.59 36 4 0.8789 0.07
14 | 12 2.2049 2.38 37 8 0.7660 1.40
15 | 14 1.2304 1.04 38 | 14 1.4248 1.68
16 3 1.1668 0.02 39| 14 1.4312 1.26
17 | 10 1.6428 0.98 40 | 10 1.4180 7.77
18 | 62 3.8176 734.92 41 | 20 1.9767 7.24
19 | 14 1.7065 11.88 42 | 15 1.3153 2.74
20 3 1.0396 0.01 43 | 16 2.3308 37.86
21 5 1.8182 0.69 44 | 17 2.1869 10.06
22 4 0.5033 0.07 45 | 19 1.9310 27.25
23 4 0.5130 0.06 46 | 16 1.3660 352.69

Table 6: Soukup and Chow’s library problem instances. Numbers in bold indicate previously unsolved
problem instances.

n Equilateral | Full Steiner | Concate- Total Total Total
Points Trees nation

(average) (average) (average) (average) | (median) | (max)
10 1.5 1.3 0.0 2.8 2.4 6.4
20 10.7 3.9 0.0 14.6 14.9 25.3
30 30.5 8.4 0.0 38.9 37.8 71.9
40 62.2 22.9 0.1 85.3 75.7 163.4
50 74.8 23.7 0.0 98.6 92.4 149.2
60 111.5 34.3 0.1 145.9 135.0 257.5
70 157.6 46.2 0.4 204.2 185.9 335.8
80 212.3 63.8 0.5 276.5 255.2 444.8
90 240.6 78.6 0.4 319.6 298.7 419.3
100 392.7 110.0 17.3 519.9 496.8 782.1

Table 7: CPU-times for Beasley’s library problem instances (seconds).

25

8 Concluding Remarks

The overall strategy of geosteiner96 is very similar to that of geosteiner [20] and
edsteiner89 [10]. A relatively small set of FSTs that can appear in an SMT is determined
during the first phase. Generated FSTs are concatenated using backtrack search to obtain
an overall SMT during the second phase.

The generation of FSTs is similar to that used in geosteiner and edsteiner89°. How-
ever, some of the pruning tests have been modified so that they are more powerful and/or
faster. Furthermore, they have been presented in a more unified manner. Computational
experience indicates that the generation of FSTs cannot be improved much more for
randomly generated problem instances as the number of surviving non-optimal FSTs is
indeed very small. FSTs are generated approximately 25 times faster by geosteiner96
than by edsteiner89. Also, fewer FSTs survive the pruning tests of geosteiner96, al-
though the difference (at least for small problem instances) is not spectacular. However,
even a small decrease of the number of surviving FSTs has tremendous impact on the
concatenation phase.

The concatenation of FSTs in geosteiner96 is much more efficient than in geosteiner
and in edsteiner89. The stronger notion of pairwise compatibility (originally introduced
in [9], and the notion of subset compatibility (introduced in our paper), together with
a very powerful preprocessing of surviving FSTs, makes it possible to solve randomly
generated problem instances with up to 140 terminals within one hour. This is indeed
a significant improvement compared with edsteiner89. In particular, geosteiner96
was able to find optimal solutions to all public libraries instances. Apart from obtaining
optimal solutions for relatively large problem instances, geosteiner96 will also be use-
ful to test approximation algorithms and heuristics using larger problem instances than
previously possible.

The concatenation of FSTs remains the bottleneck of geosteiner96 as it was the case
for geosteiner and edsteiner89. We believe that in order to solve even larger problem
instances, one of the following three approaches should be followed. The first one is to
strengthen the notion of compatibility; one possibility is to compute lower bounds by using
mathematical programming. The second is to apply stronger decomposition methods (see
e.g., [17]). The third is to avoid the concatenation by using the luminary algorithm [14].
This approach requires however that the generation of Steiner trees for topologies with
all terminals is made more efficient and comparable to our generation of FSTs for full
topologies of all subsets of terminals.

The ideas presented in this paper can be applied to more general problems where an SMT
is either required to be inside a simple polygon or must avoid a set of polygonal obstacles.
Furthermore, the new notion of compatibility can be adapted to the rectilinear Steiner
tree problem. This would most likely yield an exact algorithm capable of solving larger
problem instances than those tackled by the best exact algorithm [17].

5 Generation of FSTs in edsteiner89 was basically the same as in geosteiner. edsteiner89 primarily focused on better
concatenation of FSTs.

26

References

[1] J. E. Beasley. OR-Library: Distributing Test Problems by Electronic Mail. Journal
of the Operational Research Society, 41:1069-1072, 1990.

[2] J. E. Beasley. A Heuristic for Euclidean and Rectilinear Steiner Problems. Furopean
Journal of Operational Research, 58:284-292, 1992.

[3] J. E. Beasley and F. Goffinet. A Delaunay Triangulation-Based Heuristic for the
Euclidean Steiner Problem. Networks, 24:215-224, 1994.

[4] M. Brazil, T. Cole, J. H. Rubinstein, D. A. Thomas, J. F. Weng, and N. C. Wormald.
Minimal Steiner Trees for 2% x 2F Square Lattices. Journal of Combinatorial Theory,

Series A, 73:91-110, 1996.
[5] M. Brazil, J. H. Rubinstein, D. A. Thomas, J. F. Weng, and N. C. Wormald. Full

Minimal Steiner Trees on Lattice Sets. Preprint.

[6] M. Brazil, J. H. Rubinstein, D. A. Thomas, J. F. Weng, and N. C. Wormald. Min-
imal Steiner Trees for Rectangular Arrays of Lattice Points. Technical Report 24,
Department of Mathematics, University of Melbourne, 1995.

[7] F. Chung, M. Gardner, and R. L. Graham. Steiner Trees on a Checkerboard. Math-
ematics Magazine, 62(2):83-96, 1989.

[8] F. R. K. Chung and R. L. Graham. Steiner Trees for Ladders. Annals of Discrete
Mathematics, 2:173-200, 1978.

[9] E. J. Cockayne and D. E. Hewgill. Exact Computation of Steiner Minimal Trees in
the Plane. Information Processing Letters, 22:151-156, 1986.

[10] E. J. Cockayne and D. E. Hewgill. Improved Computation of Plane Steiner Minimal
Trees. Algorithmica, 7(2/3):219-229, 1992.

[11] E. N. Gilbert and H. O. Pollak. Steiner Minimal Trees. SIAM Journal on Applied
Mathematics, 16(1):1-29, 1968.

[12] F. K. Hwang. A Linear Time Algorithm for Full Steiner Trees. Operations Research
Letters, 4(5):235-237, 1986.

[13] F. K. Hwang, D. S. Richards, and P. Winter. The Steiner Tree Problem. Annals of
Discrete Mathematics 53. Elsevier Science Publishers, Netherlands, 1992.

[14] F. K. Hwang and J. F. Weng. The Shortest Network under a Given Topology. Journal
of Algorithms, 13:468-488, 1992.

[15] K. Mehlhorn and S. Nabher. LEDA - A Platform for Combinatorial
and Geometric Computing. Max Planck Institute for Computer Science
http://www.mpi-sb.mpg.de/LEDA/leda.html, 1996.

[16] Z. A. Melzak. On the Problem of Steiner. Canad. Math. Bull., 4(2):143-148, 1961.
[17] J. S. Salowe and D. M. Warme. Thirty-Five-Point Rectilinear Steiner Minimal Trees
in a Day. Networks, 25(2):69-87, 1995.

27

[18] J. M. Smith, D. T. Lee, and J. S. Liebman. An O(nlogn) Heuristic for Steiner
Minimal Tree Problems on the Euclidean Metric. Networks, 11:23-29, 1981.

[19] J. Soukup and W. F. Chow. Set of Test Problems for the Minimum Length Connection
Networks. ACM/SIGMAP Newslett., 15:48-51, 1973.

[20] P. Winter. An Algorithm for the Steiner Problem in the Euclidean Plane. Networks,
15:323-345, 1985.

28

