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ABSTRACT

An important decision when implementing languages with polymorphic types, such as Standard
ML or Haskell, is whether to represent data in boxed or unboxed form and when to transform
them from one representation to the other. Using a language with explicit representation
types and boxing/unboxing operations we axiomatize equationally the set of all explicitly boxed
versions, called completions, of a given source program. In a two-stage process we give some of
the equations a rewriting interpretation that captures eliminating boxing/unboxing operations
without relying on a specific implementation or even the semantics of the underlying language.
The resulting reduction systems operate on equivalence classes of completions defined by the
remaining equations K, which can be understood as moving boxing/unboxing operations along
data flow paths in the source program. We call a completion e, formally optimal if every
other completion for the same program (and at the same representation type) reduces to e,y
under this two-stage reduction.

We show that every source program has formally optimal completions, which are unique
modulo F. This is accomplished by first “polarizing” the equations in F and orienting them to
obtain two canonical (confluent and strongly normalizing) rewriting systems. The completions
produced by algorithms from related work are generally not formally optimal in our sense.

The theory is developed for the polymorphic lambda calculus, and extended to treat primi-
tives and data types, but is also shown adaptable to ML-like languages. An efficient algorithm
for finding optimal completions is presented and has been implemented in Standard ML. Our
results show that the amount of boxing and unboxing operations can also in practice be sub-
stantially reduced in comparison to completions produced by other approaches.
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Chapter 1

Introduction

1.1 Representation analysis

When implementing statically typed high-level programming languages types can be very useful
for optimizing the run-time performance of programs. One thing that types can be used for is to
determine the representation of data. In Pascal the exact (monomorphic) type of all expressions
can be determined at compile-time which results in implementations with very efficient repre-
sentation of data at run-time. A problem specific to languages with polymorphic types, such as
Standard ML or Haskell, is how to represent the actual arguments to polymorphic functions.
The polymorphic (generic) parts of arguments to a polymorphic function can be of any type
and such a function will usually be called with actual arguments of many different types. It
is therefore not always possible to determine the exact type of all expressions at compile-time.
There are several possible ways of implementing such polymorphic languages. The predominant
one is to use a Lisp-like data representation where data is represented uniformly, independent
of their actual type, i.e. everything has to fit into one word. There is, however, no need to give
up completely, just because one cannot determine how to represent generic parts of arguments
to a polymorphic functions; there is still many cases in which one can.

Representation analysis seeks to optimize the run-time representation of elements of data
types in high-level programming languages. A representation in which data is represented uni-
formly will be called bozed. A boxed representation of a data structure is usually a pointer to
some area in memory where the actual contents of the data structure reside'. The point of
this representation is that it has the same “size” for all types of data structures. By passing
only generic arguments in boxed representation a (truly) polymorphic function can be correctly
implemented by a single piece of code since it is guaranteed to never actually inspect the data
structure itself. Other operations, however, such as integer addition or a conditional checking
the value of a Boolean expression require access to the contents of the data and are penalized
by the additional level of indirection introduced by boxing, as they first have to unboz the
representation; i.e., dereference the pointer, before they can do their actual operation. Further-
more, boxed representations require more space than unboxed representations thus increasing
the space demand and garbage collection costs. Parameter passing, on the other hand, is gen-
erally more efficient for boxed than unboxed data representations. Thus there are competing

'For elements of “small” data types, such as pointer-sized integers, representations may be considered simul-
taneously boxed and unboxed. In the following we shall think of these as two separate representations with
associated trivial boxing and unboxing operations.
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demands on the representation of data in a program. A boxed representation can, of course, be
transformed to an unboxed representation at run-time, and vice versa. These conversions can,
however, contribute substantially to the run-time cost of a program both in terms of time and
space.

Bozing analysis is a special representation analysis that seeks to minimize the need for run-
time conversions whilst satisfying the representation demands on all data in a program. Boxing
analysis can be facilitated by making representation choices and boxing/unboxing operations
in a program explicit. This amounts to a translation into a language with explicit boxed and
unboxed types and new operations denoting boxing and unboxing operations without, however,
changing the “underlying” program. We shall call these explicit boxing and unboxing operations
(representation) coercions. There are, in principle, many different possible translations for the
same program corresponding to different representation choices for the data structures in the
program and different needs for representation coercions. We shall refer to any one of these
translations as a completion of the underlying program. The question then is: which completion
should be chosen for a given program?

In a naive translation every expression is translated to (a computation of) its boxed repre-
sentation where operations that need to inspect the contents of such a representation use explicit
unboxing operations. The rationale for making boxing explicit is that some boxing/unboxing
operations can be eliminated in the later transformational stages of such a compiler [PJLI1],
as for example in the Glasgow Haskell Compiler. Leroy [Ler92] use a similar naive (canonical)
translation that translate every expression to its unboxed representation where polymorphic
operations that need parts of their arguments to be boxed use explicit boxing operations to en-
sure this. Other translations may elide some of these boxing and unboxing operations directly;
e.g., the type inference based translations of Poulsen [Pou93].

1.2 Coercion calculus

Beyond offering yet another translation we seek to formulate and answer the more fundamental
questions that underlie the very purpose of boxing analysis and, more generally, similar static
analyses: Given two completions for the same program, which of them is better? What does
it mean for one completion to be “better” than another completion in the first place? Which
programs, if any, have “optimal” completions; i.e., completions that are better than any other
for the same program? Can such optimal completions be computed, and how? Of course, it
doesn’t make much sense to compare the quality of completions on the basis of their actual run-
time cost on a specific computer assuming a specific language implementation. In any scenario
where we take the actual semantics of the language fully into account the answer to the last
two questions would be “no” on recursion-theoretic grounds anyway (assuming the language is
universal, of course).

If we can pick any one of a collection of completions for a given program it is a fundamen-
tal assumption that all completions must be coherent; i.e., they have the same observational
behavior. Our approach is to assume that we know nothing else about the programming lan-
guage than that any two completions of the same program are coherent. We have chosen the
polymorphic typed lambda calculus , also called the second-order lambda calculus or Fg, as the
subject language for our investigation, since many compilers for polymorphic functional lan-
guages now use some applied version of this language as intermediate language. For this we
show that coherence can be axiomatized by an equational theory; i.e., a theory of equations of
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the form ¢ = ¢’ where t, t’ are completions of the same program (for a given result representation
type) or coercions with the same domain and range. This axiomatization includes the two basic
equations

box ;unbox =

unbox ;box =

which express that first boxing and then immediately unboxing (or the other way round) a value
(boxed value) is observationally indistinguishable from doing nothing at all to the value (; means
diagramatical composition and ¢ is an identity coercion). We interpret these two equations
as left-to-right rewriting rules in accordance with our expectation that performing a pair of
coercions is operationally more expensive than doing nothing at all. This gives us a rewriting
system modulo the remaining equational axioms. These remaining equations intuitively simply
“push” coercions back and forth — e.g., from actual argument to formal parameter in a function
application — but they do not eliminate them.

The rewriting system gives us a relatively simple — and coarse — notion of quality: if e'=*
€'’ then €' is better than €', and if e’=* €' for all completions €' of a given program then
e’’ is an “optimal” completion (modulo the remaining equational axioms mentioned above).
Unfortunately the resulting notion of reduction is not Church-Rosser; i.e., there exist coherent
completions that have no common reduct and thus only “locally” optimal completions. We will
show that this is due to the fact that a box ;unbox-redex may only be eliminated at the expense
of introducing a unbox ;box-redex, and vice versa.

By giving higher priority to the elimination of unbox;box-redexes over box ;unbox or the
other way round, however, we arrive at two formal optimality criteria for completions. We show
that every program has a formally optimal completion at any given representation type under
each of the two choices of priority. This is accomplished by introducing a second equational
system F, equivalent to F and orienting this as left-to-right or right-to-left rewriting rules
depending on the polarity of the coercions involved. (Any simple-minded orientation of F' leads
to nonconfluence and nontermination of Knuth-Bendix completion.) The resulting two rewriting
systems can be used to compute specific optimal completions.

Formulating boxing analysis in the framework of a formal coercion calculus has the advantage
that the results we obtain are extremely general and robust:

1. They apply to any interpretation whatsoever of the underlying programming language;
e.g., to a call-by-value, call-by-name, or lazy interpretation of our functional language. In
Section 6.7 we will descuss the implications of this for lazy languages.

2. They can be combined with other optimizations unrelated to boxing as the calculus makes
few assumptions about the underlying language or its implementation technology.

3. They admit talking about optimality relative to an explicit, formally specified criterion.
4. They leave a great degree of freedom as optimality is accomplished up to a well-defined

congruence relation on completions; for example, the notion of optimality is not overcom-
mitted by insisting on syntactic uniqueness.
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1.3 A motivating example

Let us first look at a simple informal example to clarify the concept. Consider the polymorphic
identity function id with type Va.a—a defined by (in ML by a let-binding):

AT:o.

and consider the application id 5. In this the argument to id must be boxed and if we further
assume that the final result of the application must be an unboxed integer, we could insert
coercions that ensures that the appropriate changes in representation occur. An explicitly
boxed expressions (completion) corresponding to the application could then look:

((boxjpnt —unboxjpnt)id) 5

where an expression of the form (c)e is an application of a coercion ¢ to an expression e. The
coercions box, and unbox, respectively boxes and unboxes a value of type 7 and the coercion
c—d acting on functions changes an (unboxed) function f into a function that first apply ¢ to
its argument then passes the result of this to f and finally applies d to the output from f.
Informally we can write this as (e=d) f = dofoc.

The completion above is essentially optimal (we do not consider that id could be a no-
op), and one can easily write a translation that produces the completion using the definition
of id with explicit type [Ler92]. Such a translation should for every use (instantiation) of a
polymorphic function f insert a coercion ¢ to make sure that the generic parts of the arguments
are properly boxed and that the expression:

(e)f

has a completely unboxed type (that is, expects unboxed arguments and returns an unboxed
result). But if such a translation only considers instantiations of polymorphic functions locally
it will not in general produce optimal or very efficient completions. Consider, for example, a
slight extension of the expression above id (id 5). Using the simple local completion method
we would get:

(boxipt —unboxint)id ((boxipt —>unboxjpt)id 5)

Writing this out using our informal definition of function coercions we get:

unboxint © id 0 boxipt © unboxjnt © id o boxint(5)

from which it is clear that boxjpt o unboxjpt can be removed altogether. In fact, using
the equational theory for completions described in this thesis we may easily show that the
completion is equivalent to the optimal completion:

(unboxing)(id (id (boxint)5))

The example is of course quite a trivial one and the same result could be obtained by a simple
local (peephole) optimization, but the point is that our method will do similar global optimiza-
tions too. Leroy’s framework [Ler92] does not achieve these kind of optimizations.
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1.4 Computing boxing completions

Although the rewriting-based algorithm gives a way to compute formally optimal completions
it is not the most efficient way to do this. We show that an efficient algorithm exist which uses
a method similar to that of Poulsen’s [Pou93], but which in contrast to Poulsen’s algorithm
always finds optimal completions. This algorithm makes it easy to see that our work is an
improvement Poulsen’s. Together with the fact that also Leroy’s algorithm [Ler92] does not
in general produce optimal completions (see section 1.3) this shows that our framework is an
improvement over both of these related works.

1.5 New results

Although polymorphism is at the heart of the problem we attack, it also introduces new chal-
lenging problems that needs to be solved. We need to be able to show that all congruent
completions are equivalent in the presence of polymorphism. We have solved these problems
and believe that this is the most relevant theoretic contribution of our work. Polymorphism is
not considered in Henglein’s work on dynamic typing [Hen93] and it is possible that the results
of our thesis also may prove useful in this and other similar areas, like for instance subtyping.

The boxing algorithm and the quality of its output is apparently the most immediate and
practically relevant contribution of our work. It could certainly have been presented, together
with the empirical results, independently of the coercion calculus and its formal optimality
criteria. But this would have been unsatisfactory in several respects:

With a proliferation of different algorithms for the same problem there is a clear need for
a systematic comparison between them. Using exclusively empirical data is unsatisfactory for
this purpose as they can only report on system performance where the interaction of boxing
with other system properties changes frequently and is difficult to quantify. Our optimality
criterion is simple, natural and facilitates a completely formal comparison of boxing completions;
furthermore, it makes the basis of comparison explicit and thus, if nothing else, facilitates a
substantive criticism of its rationale.

Our boxing algorithm has been developed from a systematic analysis of the coercion calculus
and its optimality criterion. Without the general framework it would doubtlessly appear ad
hoc. It would also have been impossible to say anything about its “robustness” and global
properties; for example, the algorithm produces the same completion when given either one of
the completions of [PJ1.91, Ler92, Pou93] as its initial input. This follows from the coherence
of all completions and the Church-Rosser and strong normalization properties of the rewriting
systems.

To summarize, the contributions of this work are:

e a general framework and robust criterion for the quality of boxing completions, which
accounts for the costs of boxing/unboxing operations, but abstracts from other language
properties and implementation concerns.

e a proof of the existence of formally optimal (boxing) completions and their uniqueness
modulo an equational theory for moving boxing and unboxing operations along data flow
paths. Our notion of formal optimality is independent of any specific properties of the
underlying programming language.
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e a way to integrate polymorphism and coercion calculus that may turn out to be useful in
other contexts.

e a rewriting-based algorithm for computing formally optimal completions, which are uni-
formly better than those described in [PJLI1, Ler92, Pou93] in our (formal) sense.

e an efficient graph based algorithm for computing formally optimal completions, which
runs linear in the size of the type checking (type inference for ML) derivation, i.e. add
only a constant factor to the this process.

e an experimental implementation of the algorithm and test results for a call-by-value lan-
guage that support empirically that our completions are also better in practice than those
reported in the literature previously.

1.6 Overview

The thesis is divided into two parts. The first part, the chapters 2 to 5, present the theory
of the calculus of coercions and completions used in boxing analysis for 5, and the second
part, the chapters 6 and 7, presents boxing analysis for ML like languages and a prototype
implementation with benchmarks.

The last two chapters 8 and 9 contains a discussion of related work and a conclusion with
suggestions for future work.

1.6.1 Overview over part I

In Chapter 2 we present the basic elements of the calculus of coercions and completions. We
present the syntax of coercion and completions and a type system for completions, as well as an
inference system (Figure 5) for inferring congruent completions. We also present the important
notion of congruence, that formalizes what is meant by two completions being equal, i.e. that
two (closed) completion of the same Fg-expression at same representation type are congruent
(equal).

The goal of boxing analysis is not just to find any completion, but to find one that is in
some sense better that all other. Since coercions are parts of completions, we need to investigate
these as well as completions. We need to find out in what sense we may regard one coercion
as being better than another, if there exist a best one with regard to some way of measuring
quality of coercions, and how to find it (if it exist). So in Chapter 3 we will show how we can
define optimality for coercions formally and how we can find optimal coercions. For now, it is
enough to think of quality of coercions as “the performance of coercions”. We will further define
an equality theory on coercions that equates all coercions that formally have the same quality,
and show that optimal coercions are unique modulo this equality. Finally, we will show some
important properties of coercions that will be needed when we investigate coherence, reduction
and optimality of completions in Chapter 4.

In Chapter 4 we will extend our investigation to include completions. That is, we will
investigate whether there, based on the way of measuring quality of coercions, exist optimal
completions and how to find these (if they exist). We will extend the equality axioms for co-
ercions with equality axioms for expressions to obtain an equality theory on completions. It
is obvious that coercion equality must be part of such an equality, since replacing equal co-
ercions in a completion should not result in a completion with a different performance, and
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such completions should definitely be considered equal by our theory. Intuitively the equal-
ity axioms for expressions “move” coercions around in completions without eliminating them.
From the equality axioms for expressions we will define several different notions of reduction
on completions in a manner similar to what we did for coercions. First we will define ¢i-
reduction on completions as ¢t reduction modulo the completion equality. We will show that
¢1p-reduction on completions is not, as one would have hoped, confluent, but we will, however,
by giving higher priority to the elimination of unbox ;box-redexes over box ;unbox or the other
way round, we arrive at two formal optimality criteria for completions. We show that there
exist reductions systems that may be used in finding such optimal completions and that these
systems, fortunately, are canonical. We also show that the two kinds of optimal completions
are unique modulo completion equality.

In Chapter 5 we demonstrate how to find optimal completions of the kind described in
Chapter 4. We will present two basically different methods to compute optimal completions.
The first one is based on reduction using methods developed in Chapters 2, 3 and 4. We
will do this by showing how to implement the reductions systems described in Chapter 4. The
second method, developed in Chapter 5, is based on transforming the problem of finding optimal
completions into what essentially becomes a graph reachability problem. It is on this second
method that our prototype implementation describe in Chapter 7 is based.

1.6.2 Overview over part II

The theory as well as the algorithm presented in Part | was for the polymorphic lambda calculus
only. The second part of this thesis is concerned with implementation aspect of boxing analysis.
So in Chapter 6 we look at how the framework may be extended to include the most common
elements of ML-like languages, like polymorphic constants (map, @, etc.) and languages primi-
tives, like conditionals, let-bindings, recursive functions, etc. We also discuss how to optimize
the execution efficiency of completions, that is, finding the best completion is the optimal class.

In chapter Chapter 7 we describe the prototype implementation and presents some bench-
marks for this.

1.6.3 Appendixes

Appendix A contains a summary of notation used in this report and we recommend that the
reader consults this before reading the thesis.

The other appendices contains the ML code of the implementation (Appendix B), an ex-
ample of a session with the implementation (Appendix C) and the programs used in the per-
formance test (Appendix D).



Part 1

A coercion theory for polymorphic
lambda calculus






Chapter 2

Polymorphic lambda calculus as a
framework for boxing analysis

The polymorphic typed lambda calculus, also called the second-order lambda calculus or Fy was
invented independently by Girard and Reynolds as an extension of the usual typed lambda
calculus with type abstraction and type application. We use Iy as an "universal” intermediate
languages and will use only little of the calculus of Fy. The idea is that boxing analysis is going
to fit into a compiler somewhere after the type inference phase and is going to be performed
on an explicitly typed language. This makes Fy an excellent starting point for investigating
boxing analysis for polymorphic languages. In this chapter we present the basic elements of
the calculus of coercions and completions. We present the syntax of coercion and completions,
as well as an inference system (Figure 5) for inferring congruent completions. We also present
the important notion of congruence, that formalizes what is meant by two completions being
equal, i.e. that two (closed) completion of the same Fj-expression at same representation type
are congruent (equal).

2.1 The polymorphic A-calculus

The syntactic constructs for pre-expressions and types (type schemes) in Fy are given in Fig-
ure 1. We call a pre-expression e well-formed (or simply an Fy-expression) under type assignment
I, if I'Fe:o is derivable from the inference rules in Figure 2 for some type o. It is easy to see
that there is at most one typing derivation for e, which also determines o.

x € Variable; o € T'ypeVariable

e i==ua | Az:o.e | ee | Aa.e | e{o} Expression

ou=a|o—o | Yoo Type

Figure 1: Syntactic categories of F

10
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I'{z : oy}fFeio, IFer:o—09 Thegio M : o)raio
I'FAz 0. e:01=09 I'kep eq:oq
I'+e:o ifa ¢ FV(I) I'FeVa.o
'FAa.eVa.o I'Fe{o}:o[o1/a]

Figure 2: T'yping rules for Fy

2.2 Explicitly boxed F,

Explicitly boxed Fy is a refinement of Fy in which representation types (boxed/unboxed types)
and conversions between these are made explicit. We start by considering the types.

2.2.1 Representation types

Representation types p are build from the standard type constructors of Iy, together with one
additional type constructor, [_]. Types of the form [p] are called bozed types; they describe
elements that have been boxed. Types with any other top-level type constructor (—or V.) are
called unbozed types; their elements are not boxed. Since doubly boxed representations are
useless we prohibit boxed types of the form [[p]]. Boxed types may otherwise, however, occur
inside both boxed and unboxed types. Type variables denoted by metavariables o therefore
ranges only over boxed types. Abstract syntax definitions of representation types, boxed and
unboxed types are given in Figure 3.

=v|7 Representation types

v = p—p | Ya.p Unboxed types

T ou= a | [vV] Boxed types

Figure 3: Representation types of explicitly boxed Fy

Definition 2.1 (Type erasure) The (underlying) standard type (or type erasure) |p| of repre-
sentation type p is the type arrived at by erasing all occurrences of [_] in p. We say that p
represents |p|. We say p is valid for a (closed) Fa-expression e if e has type p.

Example 2.1 (Type erasure)
The representation types Ya.o—a, Va.[a—a] and [Va.a—a] all have the same type erasure,
namely Vo.o—a.

2.2.2 Coercions

Representation coercions (or simply coercions) are operations that coerce an element from one
representation to another. If a coercion ¢ coerces elements of type p to elements of type p’ then
c is said to have type signature p ~ p'. We will write - ¢:p ~ p’ or simply c:p ~ p’ to state
the fact that ¢ have type signature p ~ p’. The primitive coercions are

e box,: v~ [v], called a box coercion.
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e unbox,: [v] ~ v, called an unboz coercion.

where box, coerces an unboxed element of type v to a boxed representation, and unbox, takes
such a boxed representation and coerces it back to the unboxed representation.

Beyond these primitive coercions we add the identity coercion ¢, (at every type p), compo-
sition of coercions ¢, ¢’ written in diagrammatical order c;¢’ and coercions induced by the type
constructors. In our case these coercions are:

e cc', called a function coercion.

e Ya.c, called an abstraction coercion.

e [c], called a bozed coercion'.

A function coercion e—¢’ applies to functions f by “wrapping” it with the input coercion
¢ and the output coercion ¢’. The result is an unboxed function where ¢ is applied to the
input before it is passed to f and ¢’ is applied to the result of f before it is returned as the
output. An abstraction coercion Va.c is not as one might expect a polymorphic coercion ¢
parameterized over the boxed type variable . Basically, we will require that we may form
coercions from any representation type p to any other representation type p’ as long as the two
representation types have the same type erasure. Indeed this means that we need coercions
from Va.p to Va.p’'. Assume that ¢ is a coercion from p to p’ then Va.c is a coercion from
VYa.p to Ya.p'. A polymorphic coercion by analogy with polymorphic function is a coercion
parameterized over a type. A boxed coercion [e] applies ¢ to the underlying unboxed value of
a boxed representation and returns a boxed representation for the result. We will sometimes
omit subscripts on coercions when these are not important for the presentation.

The rules for forming coercions are displayed in Figure 4. In the following we will use ¢, ¢/,
d, etc. to denote arbitrary coercions.

Feipi/~p1 Fcipys~py Feip~p B ip~p”
F e props ~ piopd’ Fc;c:ip~ p’
Fec:v~ 0

F Lel i [v] ~ [V]

Fi,ip~p

F box, : v~ [v] F unbox,:[v] ~ v

Fcip~p

FVa.c:Va.p ~ Ya.p'

Figure 4: Coercion formation rules

The formation rules for coercions are sufficient to construct coercions that can transform a
value from any one of its representations to any other representation:

Proposition 2.2 Let p, p’ be arbitrary representation types. Then

lol =10 & Be) Feip~ p.

"We know that this is not a very good name, since it can easily be confused with box coercion boXx,, but it
was the best we could come up with and it is consistent with calling the type [v] a boxed type
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Proof:
“only if”: The proof is by structural induction on the common erasure of p and p'.

Base case: |p| = a. Then both p = a and p’ = a and we may therefore choose ¢ to be .

Inductive case: |p| = 71—73. There are four cases that have to be checked according to whether
p is a boxed type or an unboxed type and p’ is a boxed type or an unboxed type: (1) Assume
that p = p1—p2 and p’ = p1—=p2’. Then by induction there exist coercions - dy: py’ ~ p; and
F dy:py ~ p2’ and we may therefore choose ¢ to be di—dy. (2) Assume that p = p—p, and p
= [p1—p2’]. Then by induction there exist coercions F dy : p1’ ~ p; and F da: pg ~ p2’ and we
may therefore choose ¢ to be di—d; ;box,,.y,,. (3) Assume that p = [p—=ps] and p’ = pi'—=p,’.
Then by induction there exist coercions - d;: py’ ~ p; and F dy:py ~ py’ and we may there-
fore choose ¢ to be unbox,,_,,, ;di—=d,. (4) Assume that p = [pr—p2] and p’ = [p1"—p2’]. Then by
induction there exist coercions F dy : p;’ ~ p; and F dy: py ~ py’ and we may therefore choose

c to be [di—d,].

Inductive case: |p| = Ya.7. Like for function types there are again four cases that has to be
checked according to whether p is a boxed type or an unboxed type and p’ is a boxed type or
an unboxed type. These are proven proven analogous to the cases for function types.

?if”: This is proven by induction over the structure of the coercion ec.

Base case: ¢ = ¢,: This will only be the case if the two types p and p’ are the same so the
case is trivial.

Base case: ¢ = box,: This will only be the case if p’ = [p] so obviously |p|=|p’| must hold.
Base case: ¢ = unbox,: This will only be the case if p = [p'] so obviously |p|=|p’| must hold.

Inductive case: ¢ = c—cq: Let ¢g have signature p; ~ p;’ and ¢y have signature py ~ po’
then ¢ has signature p1—ps ~ p1—p2’. By induction |p1|=|p1’| and |p2|=|p2’| and we have |p|

= o' = pa| = |pr'Bpa| = [p1=lp2'| = [pr—= 2! = 10|

Inductive case: ¢ = Va.c;: Let ¢; have signature p; ~ p;’ then ¢ has signature Ya.p; ~»
Va.pi’. By induction |p1|=|pi’| and we therefore have |p| = |Va.p1| = Va.|p1| = Vau|pi/| =
Voup'| = |-

Inductive case: ¢ = ¢q;cy: Let Let ¢; have signature p ~ p’ and ¢, have signature p” ~ p'.
By induction we have [p| = |p"| = |p/|.

Inductive case: ¢ = [c1]: Let ¢; have signature p; ~ p;’ then ¢ has signature [p1] ~ [p1/].
By induction [p1|=[p1’| and we therefore have |p| = [[p]| = [p1] = |ps| = |[p21] = |p'].

Indeed Proposition 2.2 holds even without the [_]-coercion constructor. We have added
[_1 solely to facilitate coercion factoring and simplification “underneath” boxed representations
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for ¥ E;"-reduction modulo ¢ (see Chapter 4), where we may introduce box ; unbox-redexes
in order to eliminate unbox ;box-redexes.
2.2.3 Type inference rules

The type inference system for explicitly boxed F3 (see Figure 5) is almost identical to the
standard type system. There are two noteworthy differences, however.

Mz : pizip %if(y ¢ FV(I)
IFe:Va.p Ikeq:pi—ps Thesipy
I'Fe{n}:p[r/a] I'Feq eq:po
I{z : p1}re:ps  Thep Feip~p
I'FAz:py.e:pr—po I'=(c)e:p’

Figure 5: Typing rules for the explicitly boxed Iy

1. Quantification in types is only over boxed type variables. The fact that these type vari-
ables indeed range over boxed types only is captured in the rule for type application: a
polymorphically typed expression can only be applied to a boxed type, not an unboxed

type.

2. There is an additional rule for applying coercions to expressions: (c)e.

Definition 2.3 (Erasure, completion)

The erasure (or underlying Fy-expression) |e| of an explicitly boxed Fp-expression e is the
(standard) Fy-expression arising from e by erasing all occurrences of coercions (including angled
brackets) and replacing all representation type occurrences p by |p|. We say e is a (bozing)
completion of |e| at type p if e has type p.

Example 2.2 (Fzpression erasure)
The erasure of the explicitly boxed Fa-expression Az :[a—a]. (unbox, )z is Az :a—a. 2.

2.3 Coercion and completion congruence

A given Fg-expression e can have many completions. Without going into the semantics of Fy we
assume that all completions of e at a specific representation type have the same observational
(input/output) behavior, but possibly different performance. In fact we shall for now assume
nothing else about the semantics of explicitly boxed F5, and in fact nothing at all about the
semantics of standard Fg. To express this formally we define the notion of congruence:

Definition 2.4 (Coercion and Completion congruence)

Representation coercions ¢ and ¢’ are congruent, written ¢ 2 ¢/, if they have the same type
signature p ~ p’. Explicitly boxed expressions e and ¢’ are congruent, written e & ¢/, if they
have the same erasure and representation type (under the same type assignment); that is, they
are completions of the same expression at the same representation type under the same type

assignment for the free variables.
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Intuitively congruent coercions perform the same conversion from one representation to
another (determined by their common signature) although two given congruent coercions may
look very different. Similarly congruent completions represent different choices of “internal”
representation for a given Fy expression under the same “external” choice of representation
(the representation types of the free variables and the expression itself).



Chapter 3

Coercion calculus

In Chapter 2 we gave a system (Figure 5) for inferring congruent completions. The goal of boxing
analysis is not just to find one such completion, but to find one that is in some sense better that
all other. So we need to investigate in what sense we will regard one completion better than
another, if there exist a best one with regard to this way of measuring quality of completions,
and how to find it (if it exist). One way that one could consider one completion better than
another is with respect to performance of operations related to representation of data. Since
coercions are one of the important elements in such considerations we will first investigate
coercions by themselves. Since coercions are parts of completions, improving the performance
of the coercions in a completion should at least in principle improve the performance of the
completion. So in this chapter we will show how we can define optimality for coercions formally
and how we can find optimal coercions. For this we develop an equality theory on coercions
that equates all coercions that formally have the same performance properties, and use this to
define a canonical reduction system on coercions. The normal forms for this system are the
optimal coercions. We show these optimal coercions are unique modulo this equality. Finally,
we will show some properties about coercions that we will be using when we look at coherence,
reduction and optimality of completions in Chapter 4.

3.1 Equational axiomatization of coercion congruence

In this section we shall give an equational axiomatization of coercion congruence. T'he axioms
can be grouped into a set of core equations C' and a small group consisting of two axioms that
express that boxing composed with unboxing in either order is equal to the identity coercion. We
shall show how to construct a reduction relation on coercion from the equational axiomatization
and show how this is canonical (strongly normalizing and confluent). We will then using the
reduction relation prove coherence of coercions. Finally we define what we mean by optimal
coercions and show that optimal coercions exist for type signatures.

3.1.1 Coercion equations

Consider the equality axioms in Figures 6 and 7 for coercions. We assume that the coercions
on both sides of an equality are well-formed and have the same type signature. We denote the
single equality axiom box ;unbox = ¢ by ¢, and unbox ;box = ¢ by . The equation in Figure 6
will also be called the core coercion equations and will be denoted C'.

16
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(e;¢');e" = e;(c';c") (Ass)
c;L =c¢ (1)
Lie =c¢ (2)
(e1—=c2); (e’ =) = (e1'5¢1) = (c25¢2’) (3)
L=l =1 (4)
[e1]; [e2] = [egses] (5)
] = (6)
V.o =1 (7)
(Va.er); (Va.ey) = Ya.(cq;cq) (8)
box, ; [c] = ¢;box,, (9)
1

[c] ;unbox, = unbox, ;¢

—_
(e
N

Figure 6: Equality rules for coercions: Core Equations (C)

box, ;unbox, = ¢ (¢)

unbox, ;box, = ¢ ()

Figure 7: The ¢ and v rules for coercions

Definition 3.1 (Coercion equality)

Let A be a set of coercion equality axioms, we say ¢ and ¢’ are A-equal, written A+ ¢ = ¢/,
if ¢ = ¢’ is derivable from the equality axioms A and the core coercion equations in Figure 6
together with reflexivity, symmetry, transitivity and compatibility of = with arbitrary contexts.
If At ¢ = ¢ does not hold we write A F ¢ # ¢'.

If Ain the definition is empty we say ¢ and ¢’ are equal and write F ¢ = ¢’ or just ¢ =
¢’. Note that equality is not just syntactic identity; e.g., we have F 1%, = 1,,,. We will also
speak of A-equality for the equality defined by the set A and talk about A-equivalence classes.

Definition 3.2 (Proper coercions) A coercion that is not equal to an identity coercion is called
proper, that is, a coercion c¢ is not proper if ¢ = &.

Example 3.1 Let us as an example show that [c] is ¢w-equal to unbox;c;box, that is, ¢ F
[c] = unbox;(c;box):

[c] =2 ¢; [e] =y (unbox;box); [e] =45, unbox;(box; [¢]) =9 unbox;(c;box)

so the equality ¢1p = [e] = unbox; (c;box ) then follow from transitivity of ¢pip-equality (we have
also tacitly used compatibility in the second and the last equality).

3.1.2 Coercion reduction

Our goal is to find completions with a minimum of boxing and unboxing operations and therefore
also coercions with a minimum of box- and unbox-coercions. Let us take a look at the equations
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for coercions shown in Figure 6 and Figure 7. In Section 3.1.1 we defined an equality theory
for coercions based on these equations. What we will show later (coherence of coercions)
is that this theory equates all coercions with the same signature. The idea behind coercion
reduction is to regard the ¢ and ¥ rules as left to right rewrite rules and define reduction as
rewriting by these rules modulo the core coercion equations. We want reduction to be canonical
(strongly normalizing and confluent) and such that any two congruent coercions reduce to the
same normal form. The rewrite system that we obtain this way implements what we will call
¢-reduction.

Definition 3.3 (¢v-reduction)

Let now ¢ and ¥ stand for the ¢ and i rules regarded as left to right rewrite rules. We
define ¢tp-reduction to be ¢tp-reduction modulo A-equality! where A is empty. Remember that
equality on coercions always includes the core equations C' from Figure 6.

Clearly, ¢ and 1 eliminate primitive coercions when applied as left-to-right rewriting rules
whereas the remaining coercion equations just express differences in the presentation of a co-
ercion. If we accept that boxing and unboxing coercions are more expensive than the identity
coercion, then reduction will never make coercions more expensive only less or equally expensive.
That is, reduction will in general improve performance of coercions (make them less expensive)
and a normal form coercion will be better than all the coercions that reduce to it.

A ¢ip-normal form is an equivalence class and ¢-reduction is reduction on A-equivalence
classes where A is empty. We will in the following not distinguish between these equivalence
classes and their representatives.

Example 3.2 (¢3)-reduction)
As an example of ¢ip-reduction we show how we may ¢i-reduce unbox;(c;box) to [c]
where ¢ is an arbitrary coercion:

unbox ; (c;box) =g
unbox; (box; [c]) = Ass
(unbox;box);[e]l =y
¢; Le] =2

KJ

If we want to find a rewrite system that implements ¢i-reduction, that is a rewrite sys-
tem that produces equivalence class representatives of ¢i-normal form, we can try to find an
orientation of the equational system in Figure 6. All the equations of the system have been
arranged such that, if we also regard these as left to right rewrite rules then they either simplify
the structure of the coercions or move composition inwards such that the ¢ and % rules may
be applied. Once we have determined an orientation of the equational system, we can attempt
to prove strong normalization and confluence. Strong normalization is straightforward for the
chosen orientation. We use the fact that the total number of coercions constructors decreases
in all rules except rule 3, where the number increases, but in rule 3 the number of function
coercion constructors decreases and no other rule increases this number. So reduction must
terminate. Once we have strong normalization we can show confluence by showing local (weak)

'See Appendix A for a definition of R-reduction modulo E-equality.
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confluence (by Newman’s Lemma, see [Klo87] for a good presentation of term rewriting). This
is done by finding all critical pairs and for these show that they have common reducts. If we
do this we find that the term

unbox;box; [c]

leads to the critical pair (using rules 9 and 1))

unbox; ¢; box
¢; Lel

The second reduces to [c] by rule 1, but there seems to be no way that one may find a common
reduct for the pair if ¢ is a proper coercion. We may then try to complete the system by
Knuth-Bendix completion, i.e. add one of the two rules:

unbox;c;box = [c]
[ec] = unbox;c;box

to the system. The first of these will do just fine, since it fits well with our proof of strong
normalization. In fact this also holds for the second one, since then number of [ ]-constructors
decrease in the rule. But as can be seen from Example 3.2 only the first rule implements
¢-reduction, so we add this rule to our reduction system. If we check all new critical pairs
introduced by adding this new rule we find that they all have common reducts. The resulting
rewrite system is shown in Figure 8, and the proofs are given in Lemma 3.9 and Theorem 3.10.
The rewrite system contains one equality rule: associativity of coercion composition. This
means that coercion reduction is in fact reduction by the named rules of Figure 8 modulo
associativity (See Curien and Ghelli [CG90] for orienting and completing associativity).

Definition 3.4 (Coercion reduction)
Consider the coercion reduction rules in Figure 8 and call these rules R. We say that a
coercion ¢ R-reduces to ¢’ and write write ¢ =%, ¢’ if ¢ reduces to ¢’ by these rules.

The first result that we will prove about R-reduction is weak (local) confluence (Lemma 3.9).
Before we do this we prove a few auxiliary lemmas (Lemmas 3.5, 3.6, 3.7, and 3.8) :

Lemma 3.5 Given a coercion ¢ with signature © ~ v for some types © and vthen there exists
a coercion d such that ¢;box =* d and [box;c] =* d.

Proof:

We prove this by induction on the structure of e. Since the type signature of ¢ is 7 ~ v ¢ must
have one of the forms: (1) unbox, (2) unbox;c’ or (3) [¢'];c”. The lemma is easily verified for
the first two cases. For the third case ¢’ must have the signature 7’ ~ v’ for some types =’
and v’ and and we have by induction that there exist a coercion d’ such that ¢’’;box =* d’ and
[box;c””] =* d’. From this we see that either d’ = ¢ or d’ = [d”]. In the case of d’ =+ we
have:

c;box =[c'];e”;box =*[c']

and
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Figure 8: Coercion reduction (R)

[box;c] =[box;[c'];c”"] = [c';box;c”"] =*[c’;] = [c']

since the only way [box;c’’] =* ¢ is if box;c” =* .
In the case of d’ = [d”] we have:

c;box =[c'];c";box =*[']1;[d"] = [c';d"']

and

[box;c] =[box;[c'];c"] = [c/;box;e’] =*[c’;d"]

since the only way [box;c”’] =* [d”] is if box;c” =* d”.

Lemma 3.6 Given a coercion ¢ with signature v ~ 7 for some types © and vthen there exists
a coercion d such that unbox;c =* d and [c;unbox] =* d.

Proof:

By induction on the structure of e. Similar to Lemma 3.5.

Lemma 3.7 Given a coercions ¢ and ¢’ then there exists a coercion d such that [c;box;c'] =*

d and [c];c’;box =* d.

Proof:

From Lemma 3.5 we know that there exist a coercion d’ such that ¢/;box =* d’ and [box;c']
=* d’. We now have two cases either d’ = ¢ or d’ = [d"’] for some d”. In case d’ = : we must
have box;c¢’ =* + and therefore:
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[c;box;c’] =*[c;e] = [cl
and
[c];c’sbox =*[el; =[]
In the case where d’ = [d’’] we must have box;c’ =* d” and therefore:
[c;box;e’] =% [¢;d"’]
and
[c];c';box =*[c];[d"] = [c;d”’]

Lemma 3.8 Given a coercions ¢ and ¢’ then there exists a coercion d such that [c;unbox;e']
=* d and unbox;c;[c'] =* d.

Proof:
Similar to Lemma 3.7. [ |

Now that we have Lemmas 3.5, 3.6, 3.7, and 3.8 in place we can prove weak (local) confluence
of coercion reduction:

Lemma 3.9 (Weak (local) confluence of coercion reduction). The coercion reduction system
in Figure 8 is weakly confluent.

Proof:

In general a coercion will have the form: ¢y;...;c,,. We look for overlapping redexes in such
terms that may lead to critical pairs. The way the proof is structured is by listing the rules
that overlap, the term and show how the critical pair is resolved. We start by finding overlaps
between Rule C'1 and the rest of the rules from C'1 to ¢, we the look at overlaps between Rule
C?2 and the rules from C'2 to ¢, and so on up to overlaps between Rule 9’ and itself. Only the
rules which may lead to critical pairs are listed.

Rules: C'1 and 9. Term: unbox;¢;box. Critical pair: unbox;box and [:]. (1) unbox;box =
t. (2) [ =cr 0.

Rules: €2 and . Term: unbox;.;box. Critical pair: unbox;box and[:]. As above.

Rules: C3 and C4. Term r—x;e—d. Critical pair: ¢;e—=d and (e;e)=(e;d). (1) t5e=d =¢o e—d.
(2) (c;e)={(e;d) =2 (e5e)-d =1 e—d.

Rules: C'3 and C'4. Term c—d;e—. Critical pair: e=d;e and (¢;¢)=(d;e). Proof similar to other
case for C'3 and C4.

Rules: C4 and C'4. Term c;—d;;co—dy;es—ds. Critical pair: cq;ei—dy:dg;es—ds and e—
di;csieodaids. (1) cgsei—didaes—ds = esic2iei—dydaids. (2) e—=dyjesiea—dads =ca
c3;cg;e—dy;dy;ds.
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Rules: C5 and C6. Term (Va.c);(Va.t). Critical pair: (Va.c);e and Vo (c;e). (1) (Va.c)je
=0 Va.ce. (2) Va.(ct) =¢ Va.c.

Rules: C'5 and C6. Term (Va.1);(Ver.c). Critical pair: ¢;(Ve.¢) and Va. (¢;¢). Proof similar
to other case for C'5 and C6.

Rules: C6 and C6. Term (Va.cq);(Va.cz);(Va.es). Critical pair: (Va.cq;eq);(Va.e3) and
(Va.eq);(Ver.eg5e3). Proof similar to the case C'4 and C4.

Rules: C'7 and C8. Term: [.];[c]. Critical pair: ¢;[c] and [1;e]. (1) ¢;[e]l =2 [el. (2)
[1;e] =¢y Lel.

Rules: C7 and C'9. Term: box;[:]. Critical pair: box;. and ¢;box. (1) box;t =¢1 box. (2)
t;box =9 box.

Rules: C7 and C'10. Term: [+];unbox. Critical pair: ¢;unbox and unbox;.. (1) t;unbox =9
unbox. (2) unbox;t =>¢1 unbox.

Rules: ('8 and C8. Term: [e1];[leg];les]. Critical pair: [eq;eq];[les] and [eq];[es;es].
Similar to the proof of case C'4 and C4.

Rules: C8 and C'9. Term: box;[c];[d]. Critical pair: box;[e;d] and e;box;[d]. (1) box;[e;d]
=09 ¢;d;box. (2) ¢;box;[d] =¢g c;d;box.

Rules: C'8 and C'10. Term: [c];[d];unbox. Critical pair: [c;d];unbox and [c];unbox;d. (1)
[c;d];unbox = unbox;e;d. (2) [e];unbox;d= 1o unbox;c;d.

Rules: C'9 and C10. Term: box;[e];unbox. Critical pair: ¢;box;unbox and box;unbox;e. (1)
c;box;unbox =>4 ¢;t =1 ¢. (2) box;unbox;c=>4 t;c=(2 c.

Rules: (9 and . Term: unbox;box;[c]. Critical pair: unbox;e;box and ¢;[e]l. (1)
unbox;c;box =y [el. (2) ¢;le]l =¢y [el.

Rules: C'9 and ¢'. Term: unbox;c;box;[d]. Critical pair: unbox;c;d;box and [cl;[d]. (1)
unbox;c;d;box =y [e;d]. (2) [el;[d] =¢s [e;d].

Rules: (€10 and . Term: [c]l;unbox;box. Critical pair: unbox;c;box and [elj. (1)
unbox;c;box =y [c]. (2) Lelye = Lel.

Rules: C'10 and ¢’. Term: [c];unbox;d;box. Critical pair: unbox;e;d;box and [c];[d]. (1)
unbox;c;d;box =, [c;d]. (2) [cl;[d] =cs [e;d].

Rules: ¢ and 7. Term: box;unbox;box. Critical pair: ¢;box and box;t. (1) ¢;box =9 box.
(2) box;t =¢y box.

Rules: ¢ and 9. Term: box;unbox;c;box. Critical pair: ¢;¢;box and box;[el. (1) ¢;e;box =0
c;box. (2) box;[e] =¢yg c;box.

Rules: ¢ and ¢'. Term: unbox;c;box;unbox. Critical pair: unbox;c;r and [c];unbox. (1)
unbox;c;t = unbox;c. (2) [e];unbox =1 unbox;ec.

Rules: 9 and ¢'. Term: unbox;box;c;box. Critical pair: ¢;e;box and [box;e]. Resolved by

Lemma 3.5.

Rules: ¥ and 9’. Term: unbox;c;unbox;box. Critical pair: unbox;c;. and [c;unbox]. Resolved
by Lemma 3.6.

Rules: ¢’ and ¢'. Term: unbox;c;box;c’;box. Critical pair: [c;box;e’] and [c];c’;box. Re-
solved by Lemma 3.7.
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Rules: 9’ and ¢'. Term: unbox;c;unbox;c’;box. Critical pair: [c;unbox;c’] and unbox;c;[c'].
Resolved by Lemma 3.8.

|
With this result we can prove the following important theorem about coercion reduction:
Theorem 3.10 The coercion reduction system in Figure 8 has the following properties.
* ! * !

1. Ife =% ¢ thentc =5y € -
2. It is canonical, i.e. strongly normalizing and confluent.
3. If ¢ is a normal form then it has one of the following forms:

(a) ¢ =1, or

(b) ¢ = box, or

(c) ¢ = unbox, or

(d) ¢ = ¢=c", ¢ = (c'=¢");box, or ¢ = unbox;(c=c'’) where ¢’ and ¢ are normal

forms of which at least one is proper, or

(e) ¢ =Va.c', ¢ = (Ya.c');box, or ¢ = unbox; (VYa.c') where ¢’ is a normal form and
proper, or

(f) ¢ = [c'] where ¢’ is a normal form and proper.

Proof:
(1) Since every rule of Figure 8 except ¥’ corresponds to either a ¢/¢-reduction step or an
equality from Figure 6 and since we showed in Example 3.2 that unbox ;(c;box) ¢ip-reduces to
[c] a reduction sequence ¢ =%, ¢’ must correspond to a reduction sequence ¢ =% ¢’ .

q R p 4 2

(2) To show that the system is canonical we have to show that it is confluent and strongly
normalizing. If a reduction system is strongly normalizing then according to Newman’s Lemma
it is sufficient to show local confluence of the system. Since this is shown in Lemma 3.9 all we
have to show is strong normalization of R: The total number of coercions constructors decrease
in all rules except C4. This means that reduction can only fail to terminate if rules C4 can
be applied infinitely many times, but this cannot be the case since C4 decreases the number of
function coercion constructors and no other rule increases this number. Formally we have that
the lexicographical ordering on Z x Z where Z is the non-negative integers is a well-founded
ordering. So the measure (C,I) on coercions, where C' is the number of ; in a coercion and
[ the number of induced coercion constructors, is a well-founded measure on coercions and
the strict partial ordering defined by coercion reduction. This ensures that coercions reduction
terminates.

(3) It is easy to verify that the coercions listed are normal forms by showing that no reduction
rule is applicable to these.

We prove that any normal form ¢ must have one of the forms listed. We show this by
induction on the structure of the normal form coercion ¢:
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Base cases: ¢ =, ¢ = box or ¢ = unbox: Trivial.

Inductive case: ¢ = d—d’: By induction d and d’ must have one of the forms listed and ¢
therefore also have one of the forms listed (d first form).

Inductive case: ¢ = Va.d: By induction d must have one of the forms listed and ¢ therefore
also have one of the forms listed (e first form).

Inductive case: ¢ = [d]: By induction d must have one of the forms listed and ¢ therefore
also have one of the forms listed (f).

Inductive case: ¢ = d;d’: By induction d and d’ must have one of the forms listed. The
following table covers all the possible combination of d and d’ and explains for each combination
why it is either not possible (nnf = not in normal form, nwf = not well formed according to

Figure 4) or what form it corresponds to, e.g d.3 = the third of the forms listed under d in the
theorem:

d\d"[a |b |c d.l [d2 |d3 |el |e2 |e3 |f

a nnf | nnf | nnf | nnf | nnf | nnf | nnf | nnf | nnf | nnf
b nnf | nwf | nnf | nwf | nwf | nnf | nwf | nwf | nnf | nnf
c nnf | nnf | nwf | d.3 | nnf | nwf | e.3 | nnf | nwf | nwf

d.1 nnf | d.2 | nwf | nnf | nnf | nwf | nwf | nwf | nwf | nwf
d.2 |nnf | nwf | nnf | nwf | nwf | nnf | nwf | nwf | nwf | nnf
d.3 | nnf | nnf | nwf | nnf | nof | nwf | nwf | nwf | nwf | nwf
e.l nnf | e.2 | nwf | nwf | nwf | nwf | nnf | nnf | nwf | nwf
e.2 nnf | nwf | nnf | nwf | nwf | nwf | nwf | nwf | nnf | nnf
e.3 nnf | nnf | nwf | nwf | nwf | nwf | nnf | nnf | nwf | nwf
f nnf | nwf | nnf | nwf | nwf | nnf | nwf | nwf | nnf | nnf

Theorem 3.10 guarantees that R-normal form coercions exist. Furthermore, from part 3 of
the theorem one can see that these normal forms are unique for a given signature. This gives
us the following lemma:

Lemma 3.11 For all p, p' with |p| = |p'| there exists a unique R-normal form coercion
Feip~p.

Proof:
All the forms listed in Theorem 3.10 part 3 are non overlapping and by listing the signatures
of all the forms one can see that these are all different from each other. This means that a
normal form for a given signature can only match one of the forms and must therefore be unique.
|

Lemma 3.12 R-normal forms are ¢pip-normal forms.

Proof:
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Given an R-normal form ¢ and assume that this is not in ¢i-normal form. Then there exist

a coercion ¢’ such that - e =7, ¢’ and + ¢ # ¢’. But since ¢’ has the same signature as ¢

then by Lemma 3.11 we have ¢/ =% ¢ and by Theorem 3.10 part 1 that - ¢’ =%, € but since

¢-reduction cannot increase the number of box and unbox coercions no ¢ or % step can have

been involved in Fe¢ =7, ¢’ only core equation steps. This contradicts the assumption that
F ¢ # ¢ and ¢ must therefore be in ¢ip-normal form.

|

Lemma 3.13 ¢i-reduction on coercions is canonical; that is, it is strongly normalizing and
confluent.

Proof:

Strong normalization: ¢-reduction is reduction on coercions equivalence classes so a re-
duction step must include one ¢ or i reduction step. Since these rules decrease the number of
box- and unbox-coercions reduction must terminate.

Confluence: This follows from the confluence of R-reduction, since if ¢ have two different
reducts then we can always find a common reduct for these by R-reduction and therefore also
by ¢-reduction (Theorem 3.10 part 1).

|

3.1.3 Coercion coherence

If all congruent coercions are to be semantically equivalent (this is our basic assumption) it
is important to know whether our axiomatization of coercions congruence equates exactly the
congruent coercions. If this is the case we may replace a coercion by any coercion that we can
prove equal to it and be sure that this replacement is semantically safe. Furthermore, if we for
a given fixed semantics want to prove that all congruent coercions are equivalent with respect
to the semantics, it is enough to prove all the axioms sound with respect to the semantics. The
property that all congruent coercions are provably equal is called coherence and we give a proof
of this:

Theorem 3.14 (Coherence of coercions) Coercions ¢ and ¢’ are congruent if and only if they
are ¢p-equal; i.e., c 2 ¢ iff o e = ¢’

Proof:
“if”: This follows trivially from the definition of ¢vb - ¢ = ¢’.

“only if”: From Lemma 3.11 it follows that for all p, p’ with |p| = |p/| there exists a unique
R-normal form coercion F cy:p ~ p', and that both ¢ and ¢’ will R-reduce to this unique
coercion. This means that also both ¢ and ¢’ will ¢»-reduce to this unique coercion. Since for
any coercion d, if -d =%, d’ then ¢¢ - d = d’ it must follow that ¢y - ¢ = ex and ¢9 F
¢’ = ¢y and therefore by symmetry and transitivity of = we have that ¢ - ¢ = ¢'.

|
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Definition 3.15 (Inverse coercions)
Let ¢ be a coercion then we will call a coercion d an inverse coercion of ¢ if ptp - c;d =

and oy F dje = ..

Proposition 3.16 All coercions have an inverse coercion.

Proof:

Let Fc:p~s p’ be an arbitrary coercion then by Proposition 2.2 there exist a coercion
Fd:p' ~ p. Since - ¢c;d:p~ p by Theorem 3.14 we must have ¢ip F ¢;d = ¢. Similarly we
can prove that ¢¥ F d;ec = ¢. This shows that d must be an inverse coercion of c.

|

From the proof of Proposition 3.16 we see that for a given coercion - ¢: p ~ p’ any coercion
d with signature p’ ~ p must be an inverse coercion of ¢, and that all coercions have infinitely
many inverse coercions.

We will in the following use ¢~! to denote some arbitrarily chosen inverse coercion of ¢ if
the choice of this is not important.

3.1.4 Optimal coercions

As discussed in Subsection 3.1.2 on coercion reduction if we accept that boxing and unboxing
coercions are more expensive than the identity coercion, then ¢w-reduction will in general
improve performance of coercions (make them less expensive) and a normal form coercion will
be better than all the coercions that reduce to it. We therefore introduce the following formal
definition:

Definition 3.17 (Formally optimal coercions)
A coercion c¢ is (formally) optimal if all congruent coercions ¢’ 2 ¢ can be reduced to ¢ by
¢-reduction.

From the proof of Lemma 3.11 we see, that given a signature we can easily construct a
optimal coercion with that signature. This is a very useful since in a implementation one may
which to represent (optimal) coercions simply by their signature. We will see how this is useful
in Chapter 5 when we describe how to implement reduction of completion.

Clearly, every coercion equal to an optimal coercion is also optimal. We shall see that, for
every type signature p ~ p’ with |p| = |p'|, then a (formally) optimal coercion c:p ~ p’ exists
and are unique modulo core coercion equality, i.e. Figure 6.

Theorem 3.18 (Eristence of formally optimal coercions) Given a type signature p ~ p' with
lp| = |p'|, then (formally) optimal coercions exist and are unique modulo core coercion equality.

Proof:

Existence: By Proposition 2.2 there exist a coercion with signature p ~+ p’. Let ¢ be an
arbitrary coercion with signature p ~» p’ by Lemma 3.11 there exist a unique R-normal form
cy to which ¢ R-reduces and by Theorem 3.10 this means that c also ¢-reduces to cy. By
Theorem 3.14 ¢ and ey are congruent and cy is therefore a formally optimal coercion with
signature p ~ p'.
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Uniqueness: Let d be another optimal coercion with signature p ~ p’. Since d is optimal
then ¢y ¢w-reduces to d and since ey is also optimal d also ¢-reduces to d. This means
that we have d =%, ey =7, d, but this can only hold if - d = ¢y because ¢i-reduction is
canonical (Lemma 3.13).

3.2 Coercion decomposition

Several results about coercion decomposition will prove useful later. In this section we define
some properties of coercions and show some results about coercions with these properties and
about coercion decomposition.

3.2.1 Prime factorization

The notion of a prime coercion will later prove to be useful. The notion of prime coercions were
also used by Rehof in [Reh95]. A prime coercion is informally a coercion that only contains
exactly one box or one unbox coercion. Let us first define what a prime coercion is:

Definition 3.19 (Prime coercion)
A coercion c is called prime iff

1. ¢ is proper
2. if ¢ =d;d’ then either

(a) Fd=cand Fd' = or
(b Fd=+1and Fd' =c.

It can be verified that the prime coercions can be generated by the following grammar:

w = box|unbox|w—|t 2 w|Va.w|[w]

We have the following important fact about prime factoring of coercions:

Lemma 3.20 (Prime factoring) Any proper coercion ¢ can be factored into a composition of
prime coercions €q,...,Cy, such that = ¢ = ¢y,...;c,.

Proof:
The proof is by structural induction on the coercion ec.

Base cases: ¢ = box: Trivial.

Base cases: ¢ = unbox: Trivial.

Inductive case: ¢ = d—d’: By induction both d and d’ can be prime factored if they are
proper. Let n be the sum of the number of (prime) coercions that d and d’ can be prime
factored into. We factor d into dj;...;d,, where the first m of these coercions are the prime
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factors of d and the rest of the coercion are identity coercions ¢ or if d is not proper then all of
the coercions are identity coercions. We similarly factor d’ into dy’;...;d,,” where the last n —m
coercions are the prime factors of d’ and the rest of the coercion are identity coercions ¢ or if d’
is not proper then all of the coercions are identity coercions. Since at least one of the coercions
d and d’ can be prime factored n must be greater than zero. Then we have:

c =
d—d =
di;..;d,—ds..d,) =

(dn—>d1'); (dy; .. d,_1—dy;..; dn') =

(dp—dy’); .5 (dy—dy)
Since for all the pairs of coercions (dy,d;’),...,(d,,d,’) one of the coercions are a prime coer-
cions and the other the identity coercion all the coercions in the last composition must be prime

coercions. This shows the case.

Inductive case: ¢ = [d]: By induction both d can be factored since d must be proper if ¢ is
proper. Assume that d is factored into dy;...;d,,. We the have:

c =
[d] =
[dy;...;dp] =

(d,1;..;[d,] =

This proves the case since all the coercions [d1],...,[d,] must be prime coercions.
Inductive case: ¢ = Ya.d: Similar to the case for ¢ = [d].

Inductive case: ¢ = d;d’: If both coercions d and d’ are proper the prime factoring of ¢ is
simply the composition of the prime factorings of d and d’. If one of the coercions d and d’
is not proper then the prime factoring of ¢ is simply the prime factoring of the other proper
coercion.

|
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3.2.2 Positive and negative coercions

In this subsection we introduces the notion of coercion polarity which will prove important when
we in the next chapter (Chapter 4) show how to implement ¢i-reduction on completions.

Two kinds of coercions called positive and negative coercions exist and we say that these
have positive and negative polarity.

Definition 3.21 (Positive and negative coercions)
A coercion c is positive if e:+ is derivable from the rules in Figure 9 and negative if c:— is
derivable.

By adding a superscript + or — to a coercion we indicate that a coercion is in fact positive
or negative. (If a coercion occurs in, say a reduction rule, these annotations can be regarded
as side conditions that have to hold before the rule may be applied. So in the equations of
Figure 13 a superscript + (or —) on a coercion means that the coercion has to be positive (or
negative) for the rule to be applicable.) A coercion may be neither positive nor negative, e.g.
box, ;unbox,. The only coercions that may be both positive and negative are the non proper
coercions.

c.— di+ c:+ d:i+ c:+ c:+

L+ Dbox, :+
c—d:+ c;d:+ [e]l:4+ Va.c:+

c+ di— e¢:— d:— c:— c:—
c—d:— c;d:— [c]l:— Va.c:—

L+ . — unbox, : —

Figure 9: Positive and negative coercions

Lemma 3.22 Coercion reduction preserves polarity; that is, if ¢ is positive or negative and
c =% ¢, then ¢’ is also positive, respectively negative.

Proof:
Easily seen by inspecting the rules of R.

Lemma 3.23 Positive and negative coercions are ¢pip-normal forms.

Proof:

A coercion that is not in ¢¥-normal form must at least contain either a ¢- or i-redex, but
such redexes consist of a composition of a positive and a negative coercion and can therefore be
neither positive nor negative. Since a positive or a negative coercion cannot contain such non
polarized coercions they cannot contain any ¢- or ¥-redexes and must therefore be in ¢i-normal
form.

|
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3.2.3 Polarized factorization

As well as the notion of positive and negative coercions will prove useful when we discuss
reduction of completion, so will the notion of polarized factoring and some properties of polarized
factoring. There are two kinds of polarized factoring +/—- and —/+-factoring. Given a coercion
c it will prove important to be able to find an ¢y-equal coercion that is written as a composition
of two coercions, e.g. ¢y ; cq, of opposite polarity. If the first coercion is positive and the second
negative we say that c;;cy is a +/—-factoring of ¢ and, analogously, if the first coercion is
negative and the second positive we say that ¢; ;¢g is a —/+-factoring of ¢. In the following we
shall define polarized factoring and prove some important facts about it.

Definition 3.24 (polarized factoring)
Let ¢, ¢; and ¢ be coercions, then

1. if ¢ e = ¢;T;¢3™ then we call 11 ;¢e3™ a +/—-factoring of c.

2. if ptp F ¢ = ¢;7;¢5T then we call e;%;e,™ a —/+-factoring of c.

The following lemma shows that all optimal coercions can be uniquely +/— and —/+ fac-
tored:

Lemma 3.25 (Factoring of optimal coercion)

1. Every optimal coercion ¢ has a unique +/—-factoring; that is, there exist unique (modulo
core equality) df, dy such that ¢ = df;dj.

2. Fvery optimal coercion ¢ has a unique — /+-factoring; that is, there exist unique (modulo

core equality) dT , d;’ such that + ¢ = d7f ;d;’.

Proof:
We will prove 1. The proof of 2 is similar. The proof is by induction on the structure of optimal
(normal form) coercions (numbers refer to rules of Figure 6):

Base cases: ¢ = ¢, ¢ = box, ¢ = unbox: Trivially shown by use of rules 1 and 2.

Inductive case: ¢ = c'—¢'’: By induction we have F ¢/ = ¢;T;¢e;7 and F ¢ = e3t;e4”
From this it follows:
/ " - - + -
= = (c1+;c2 )—)(c3+;c4 ) =3 (e2—¢3)" 5 (c1—¢yq)
Inductive case: ¢ = ¢’;box: By induction we have F ¢/ = ¢;T;¢e;7. From this it follows:
’, — Tel1 — . t.0.-7 — . +. -
¢’ ;box =g box; [c'] =box; [e;T;e37 ] =4s57 (box; [e;]1)"; [es]

Inductive case: ¢ = unbox;c’: Similar to the case for ¢’;box.

Inductive case: ¢ = Va.c’: By induction we have F ¢’ = ¢;7;ey™. From this it follows:

Va.¢! =Va.e;t;e” =g Va.eyT;Va.co™
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Inductive case: ¢ = [c¢/]: By induction we have F ¢/ = ¢;T;cy™. From this it follows:

[c'] = [e1t;e27] =7 [ey] 5 [end ™
In all cases it is easy to verify that the factoring is unique (modulo coercion equality). m

Notice that polarized factoring is defined with respect to full ¢-equality, but that for
factoring of optimal coercions this is not needed only pure (core) coercion equality, i.e. without

¢ and 1.

From the lemma the following corollary immediately follows:

Corollary 3.26 (Factoring of coercions)

1. let ¢ is an arbitrary coercion then there exist coercions ¢1 and cg such that ¢y is positive
and cz is negative and ¢ - ¢ = cq1;cq.

2. let ¢ is an arbitrary coercion then there exist coercions ¢, and cy such that ¢y is negative
and ¢z is positive and ¢ - ¢ = ¢q;ca.

Proof:
Follows from Lemma 3.25 and the fact that a coercions is ¢-equal to any of its optimal
coercions.
|

An interesting property of polarized factorization is that, if a coercion is a —/4- or +/—-
factoring then we may reduce it to ¢i-normal form using only one of the rules ¢ resp. ¥:

Lemma 3.27 Let ¢,y a ¢p-normal form.

1 If ¢y b ey = ¢ ;d% for some coercions ¢ and d then F ¢~ ;d* =3y Cnf-

2. If ¢ = e,y = €T ;d™ for some coercions ¢ and d then b c*;d~ =% Cuf-

Proof:

We prove (1) here. The proof of (2) is analogous. The proof is by induction on the un-
derlying standard type 7 common to all of the representation types in the signatures of all the
coercions ¢, ¢ and d.

Base case: 7 = «: In this case both ¢ and d is an identity coercion, so the proof is trivial.

Inductive case: T = 71—7,: Since both ¢ and d are normal forms (Lemma 3.23) we know
from Theorem 3.10, the coercion formation rules (Figure 4) and the definition of positive and
negative coercions (Definition 3.21)that either:

Fem=c;75(c2t —e3™)
= d+ = (dl_—)d2+);d3+

where ¢; is either unbox, or ¢, and dj is either box, or ¢, for some representation types v and
v!, or
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Fem = [esT—es™]
Fdt =[d;” —dy*]
We treat the first of these cases first. We have

c;dt —

¢ 5 (cet—es7)s(di T —de ) dsT =

175 ((di7 ) = (ea™;do™))sdst =y (induction)
c1 ;(ea—es) ;dst

where ¢4 and c5 are ¢p-normal forms of d; ™ ; ¢, T respectively e37 ;dy 1. Now we almost finished,
since only if ¢; = unbox, and d3 = box,, is it not obvious that the derived coercion is equal
(equal here means coercion equality) to one of the normal forms listed in Theorem 3.10. If ¢,
= unbox, and d3 = box,s then we may continue as follows:

c17i(ca—cs);ds”T =

unbox, ; (c4—¢5);box,, =g
unbox, ;box, ; [e4—es] =y
ty; [eg—res] =2
[cs—cs5]

Which proves the first case since [cq—e5] is a ¢-normal form. For the second case above we
have:

c;dt =

leot—es™ 1 [dy " —»det] =
[(CQ+—>C3_);(d1_—>d2+)] =3

[(di75e2T) = (e373d2)] =y (induction)
[e4—cs5]

where again ¢4 and c5 are ¢i-normal forms of d; ™ ;c,T respectively e¢37;dyt. Now it is easy
to verify that [es—cs5] is equal to one of the normal forms listed in Theorem 3.10.

Inductive case: 7 = Va.7q: The proof of this case is completely analogous to the case for
functions types.
|

A kind of reverse property of Lemma 3.27 is shown in the following lemma that shows
that an arbitrary coercion may be —/+-factorized by ¢-reduction alone and 4 /—-factorized by
¥-reduction alone:

Lemma 3.28 Let ¢ be an arbitrary coercion, then

1. there exist coercions ¢~ and ¢yt such that + ¢ =7 " seoT

2. there exist coercions ¢1 and c¢y™ such that + ¢ ﬁfp citey”
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Proof:

We will prove (1). The proof of (2) is analogous. If ¢ = ¢ then the lemma is trivial. Other-
wise, there exist a prime factorization of ¢. Let dy;...;d,, be an arbitrary prime factoring of c.
We prove the lemma by induction on the length of such a prime factorization.

Base case: length = 1: in this case the lemma is also trivial (prime coercions are normal
forms).

Inductive case: We have ¢= d;;...;d,,. Since prime coercions are always either positive or
negative there are two cases: d; is negative and the lemma follow directly by induction; d;
is positive, and by induction ds,...;d,, may be reduced by ¢-reduction to ¢;~;cot for some
coercions ¢; and ey. There therefore exist coercions dy~,d,T and ¢, s, where ¢, is in normal
form, such that we have:

c =
dit;..;d, =% (tnduction)
ditiei7 56T =remma 327
Cnfs c2+ —Lemma 3.25

d,7;dy T et

which shows that ¢ can be —/+-factorized by only ¢-reduction. ]

3.3 Representation type hierarchy

The positive coercions alone define a subtype hierarchy on representation types:

Definition 3.29 We define p < p' iff there exists a positive coercion ¢ such that Fc:p~ p'.
We may also give an inductively defined ordering <; on representation types:

Definition 3.30 We define <; as the smallest relation on representation types that satisfy the
following conditions:

Lp<ip

2. if p1 < p2 and py <; p3 then py < p3

3. p < [p]

4. if p1 <; pi’ and py <; py’ then pr—py <; pr'=py’
5. if p1 <; py then Va.p; <; Va.po

6. if p1 <; p2 then [p1] <; [po]

Notice that the function type constructor is covariant in both its arguments. The point that
we will prove shortly is that the two orderings are equal. To show this we start by proving the
following lemma which summarizes some of the important properties of positive and negative
coercions:
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Lemma 3.31 (Positive and negative coercions and <;)

1. let ¢ be a coercion with signature p ~ p' then c:+ implies p <; p' and c:— implies p' <;
p.

2. if p <; p' then there exist a positive coercion with signature p ~ p' and a negative coercion
with signature p' ~ p.

3. given a positive/negative coercion ¢ then there exist an negative/positive inverse coercion

of c.

Proof:
(1) We will show this by induction on the structure of the coercion e.

Base case: ¢ = 1,: This case is trivial since we must have p = p'.

Base case: ¢ = box,: In this case ¢ can only be positive and and we must have p’ = [p]. So
by rule 3 of Definition 3.30 we have p <; p'.

Base case: ¢ = unbox,: In this case ¢ can only be negative and and we must have p = [p'].
So by rule 3 of Definition 3.30 we have p’ <; p.

Inductive case: ¢ = d;—d;: Assume first that ¢ is positive and that p = p;—py and p’ =
p1'—p2’. Then by Definition 3.21 we have that d; must be negative and d; must be positive and
by induction we have p; <; p1’ and py <; pi’. From this we may use rule 4 of Definition 3.30
to conclude p <; p'. If ¢ is negative then the proof of the case is analogous.

Inductive case: ¢ = [c¢]: Follows by induction and rule 6 of Definition 3.30.
Inductive case: ¢ = Va.c': Follows by induction and rule 5 of Definition 3.30.

This concludes the proof of (1).

(2) We prove this by induction on the structure of the common erasure of p and p'. We will
denote the positive coercion by ¢,,s and the negative coercion by c,,.

Base case: |p| = oz Then p = p' = a and we choose both ¢p,s and ¢, to be ¢4.

Inductive case: |p| = T1—7y: There are three case: (a) p = pr—p2 and p’ = py'—py’ for some
types p1, p1’, etc. and py <; p1’ and py <; po’. By induction there exist a negative coercion ¢;
with signature p;’ ~» p; and a positive coercion cy with signature p; ~ py’. From this it follows
that we may choose cp,s to be e¢;—=cy. Similarly, by induction there exist a positive coercion
d; with signature p; ~ p;’ and a negative coercion dy with signature py’ ~ po. From this it
follows that we may choose ¢y, to be di—=dy. (b) p = p1—p2 and p’ = [py"5p,’] for some types
p1, p1’, ete. and p; <; pi’ and py <; po’. Again by induction there exist a negative coercion ¢;
with signature p;’ ~ p; and a positive coercion ¢y with signature py ~ py’. We may therefore
choose ¢, to be box, _,,, ; [e;—=ez]. Similarly, by induction there exist a positive coercion d;
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with signature p; ~ pi’ and a negative coercion dy with signature py’ ~» py and we choose ¢,
to be [e1—ey] ;unbox, . (¢) p = [prp2] and p' = [p1'—py’] for some types p1, pi/, ete. and
p1 <; p1’ and py <; po’. By induction there exist a negative coercion ey with signature p;’ ~ py
and a positive coercion ¢ with signature ps ~ p2’. So we choose ¢,,5 to be [e1—c2]. Similarly,
by induction there exist a positive coercion d; with signature p; ~ p;’ and a negative coercion
d; with signature py’ ~+ py and we choose ¢,., to be [e;—ez].

Inductive case: |p| = Va.r: Similar to the previous case.

(3) Let ¢ a positive coercion with signature p ~ p’. Then by (1) of this lemma p <; p’. By (2)
of this lemma there exist a negative coercion with signature p’ ~+ p and by using coherence of
coercions (Theorem 3.14) it is easy to see that this coercion is an inverse of c.

Notice that we could have given an alternative definition of this ordering using the negative co-
ercions: p < p’if there exists a negative coercion ¢ such that - ¢: p’ ~ p. This is a consequence
of Lemma 3.31 part 3.

Lemma 3.32 The two orderings <; and < define the same partial ordering on representation
types.

Proof:

Follows from Lemma 3.31 parts 1 and 2.

Proposition 3.33 The representation types of any (standard) type T (i.e., representation types
whose type erasure is ) form a finite lattice under <.

Using Definition 3.30 it is easy to give a definition of least upper bound U and greatest lower
bound M in the representation type lattice:

Definition 3.34 We define the least upper bound operation U in the representation type lattice
for a given standard type 7 as follows:

alla = «

(pr=p2) U (p'=pd) = (prUp’)—=(p2U pa)
(Va.p) U (Vaup') = Va.(pUp')

[v]U o = [ouv]

v U ] = [vU

U [v] = [vU]

and we define the greatest lower bound operation M in the representation type lattice for a given
standard type 7 as follows:



36 Chapter 3. Coercion calculus

alla = o
(p1—=p2) T (p1" = p2) (P pr') = (p2 1 p2)

(Va.p) 1 (Vaup') = VYa.(pMp')
[v] o = ovno'

v [v] = ovnv

[v] 7 [v] = [vn]

Since LI and M are only used on representation types that have the same underlying standard
type one can easily prove that these operation are well defined (by induction on the structure
of the standard type).

3.4 Summary

The following diagram summarizes some of the important properties of coercion calculus and
coercion reduction. The names of coercions in this is not to be considered unique, but like meta
variables in a grammar. These will often have conditions on them, like, they have to be positive,
etc. A line in the diagram from one coercion to another means that there exists coercions that
fulfill the conditions and are equal (modulo the core coercion equations). An arrow decorated
with reduction rules from one coercion to another means that there exist coercions such that
these fulfill the conditions and the first one reduces to the second one by the reduction rules
(modulo the core coercion equations).

W) . Wy
P é *
c+;c_ < c c_;c+
¢ W
R| Yo
* **
¢ ;ct Cnf ctie™

Figure 10: Summary of coercion calculus

By combining the several lines and arrow one can read of most of the important properties about
coercion equality and reduction proven in this chapter. For example, by starting a the node ¢
going down to ¢, s and then either left to ¢~ ;¢ or right to ¢ ;¢ one obtains Corollary 3.26.



Chapter 4

Coherence and reduction of
completions

In this chapter we will extend what we did for coercions in Chapter 3 to include completions.
That is, we will investigate whether, based on the way of measuring quality of coercions that
we discussed in Chapter 3, there exist optimal completions and how to find these (if they
exist). Since coercions are parts of completions, improving the performance of the coercions
in completions will at least not make the performance these worse, but most likely improve it.
We will extend the equality axioms for coercions with equality axioms for expressions to obtain
an equality theory on completions. It is obvious that coercion equality must be part of such
an equality, since replacing equal coercions in a completion should not result in a completion
with a different performance, and such completions should definitely be considered equal by
our theory. Intuitively the equality axioms “move” coercions around in completions without
eliminating these. From the equality axioms for expressions we will define several different forms
of reduction on completions in a manner similar to what we did for coercions. First we will define
what we wil call ¢1-reduction on completions as ¢ reduction modulo the completion equality.
We will then show that ¢i-reduction on completions is not, as one would have hoped confluent
and therefore not canonical. But we show that by giving higher priority to the elimination of
unbox ;box-redexes over box ;unbox or the other way round, we arrive at two formal optimality
criteria for completions. We show that there exist reductions systems that may be used to find
such optimal completions and that these systems, fortunately, are canonical. We also show that
the two kinds of optimal completions are unique modulo completion equality.

4.1 Equational axiomatization of completion congruence

In this section we present an equational axiomatization of completion congruence and show that
this is coherent.

4.1.1 Expression equations

We need to extend the equality axioms for coercions with equations for expressions. We should
at least require of these new equations that they are strong enough to prove coherence of
completion equality. Furthermore, it would seem natural that they should not overlap with
coercion equality in the following sense: the equations for expressions should intuitively only

37
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move box- and unbox-coercions around not eliminate or create these. That is, they should at
least not contain any “hidden” ¢ or 9 equality steps. What we mean by this is that the equations
should be just strong enough to prove coherence, but also so weak that there are no case in
which two completions can be proven equal using the extended equality theory (expression
equation and coercion equation) in which one of the rules ¢ or ¥ have been used, that can also
be proven equal not using any of these two rules. This requirement does, however, not seem to
be possible to conform to, except on Al-terms (see Barendregt [Bar84]), since functions may
discard their argument.

Let us now state the new equations and then discuss whether these conform to our require-
ments. We extend the equality axioms for coercions with the equality axioms for explicitly
boxed Fy-expressions in Figures 11 and 12. The expressions on both sides of an equality are
assumed to be well-formed and to have the same type in a single type environment. In other
words, the equations in Figures 11 and 12 should be understood as abbreviations for more
complex rules for typed equality. For example, Equation 11 is an abbreviation for:

I'Fe:p TH (i, ep
IH(,)e =ep

The special coercions pattern used in Equation 17 of Figure 12 is defined as follows:

Definition 4.1 For every representation type p(«), i.e. with free type variable o, we define a
coercion pattern p(c,d) parameterized by the coercion variables (variables ranging over coer-
cions) ¢ and d in the following way:

o/ (e,d) = d, if /=«
= 14, Otherwise

FLI\/_?p? (cvd) = ﬁ(dac%(cvd)

pled) = G(ed)]
Vol.pi(e,d) = Va.pi(tasta) , if /=«

= Vo' .pi(c,d), otherwise

Example 4.1 We will give a few examples of these kind of patterns:

1. let p(a) be Ya.a—a then p(e,d) will be V. 1,14, i.e. the identity coercion equal to tyy.qma-
2. let p(a) be a—{a—a) then p(e,d) will be e—{1,—d)
We can now define completion equality in an analogous way to coercions equality:

Definition 4.2 (Completion equality)

We say e and e’ are A-equal, written A - e = €', if e = €' is derivable from the axioms A
together with equations in Figures 6 and 11 and rules for reflexivity, symmetry, transitivity and
compatibility of =.

An important point to remember from this is that any equality defined in this way on
completions will include the core coercion equations, but that the equations ¢ and % is not part
of completion equality just as they were not part of coercions equality. From now on we will
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refer to the equality axioms of Figure 12 axioms or equations E. So the equality that we are
interested in proving coherence for is F-equality.

Let us now see if the axioms of F and 11 conform to our requirements. If we look at Equations
11,12, 14, 15, and 16 it is clear that these only move box- and unbox-coercions around. Equation
13 may discard, duplicate or even create new box- and unbox-coercions. Consider for example
a function that never used its argument. We may choose the representation type of the formal
parameter of such a function arbitrarily as long as it is a legal representation type of the formal
parameters underlying type. Equation 17 is similar to Equation 13 in this respect. The coercion
c in rule 17 can dependent on the type of the expression e and can therefore either be discarded,
duplicated or introduced by using the rule. That the equations, when restricted to Al-terms,
does not contain “hidden” ¢ip-equalities is fairly easy to see for Equations 11 to 16, only for
Equation 17 this is not obvious. If we were to use the more liberal equation instead of Equation
17:

(e)(e{m}) = () (e{n'})

we could prove completions equal that we would need ¢ equality on coercions to prove if we
were only using Equation 17. Below (in Subsection 4.1.4) we will discuss how Equation 17
is related to parametricity and that what Equation 17 describe is essentially a form of “free”
theorems, so it is likely that also Equation 17 fulfill the requirement that is does not contain
“hidden” ¢v-equalities.

That the equations also fulfill the first requirement that they are strong enough to prove
coherence of completion equality will be shown below in Theorem 4.8.

(e = e (11)
(e)(d)e = (d;c)e (12)

Figure 11: Equality rules for coercion application

(c—>d)Az.e = Az.(d)(e[(c)z/z])
({(c—=d)e) ¢ =
Aa.(c)e =

(e c)e){r} =
(p(e,irn))(edm}) =

Side condition: in equation 17 the type of € is Va.p

Figure 12: Equality rules for explicitly boxed expressions (F)

Both of the equations 16 and 17 of Figure 12 are concerned with type applications, and one
could think that there might be some overlap between these, this is however not the case and
they do in fact work quite differently. We will now discuss this difference in detail.

Let us assume that we are given some subexpression (c)(e{7}) in a completion. Assume that
the type of e is Va.p. Equation 16 changes the representation type of the operator expression
in the type application. On the left hand side of 16 this expressions is (Va.c)e while on the
right hand side it is e. This change is independent of the type argument m which is is also
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unchanged. Equation 17 leaves the representation type of the operator expression in the type
application unchanged, but changes the representation type of the type argument instead. This
shows that the two equations are independent of each other, that is, work on different parts of
the coercions c.

Let us give a few examples that illustrates this difference. As an example of the use of rule
15 and 16 consider the following deduction:

(unboxintyint)qintp{int]) (A (boxase) Az o z){[[int] = [int]]}) =16
((Va.unbox, s ) (Aa. (boxsn ) Az ta. 2)){[[int] = [int]]} =15
(A, (unbox, 0 ) (b0Xasn) Az tv. 2){[[int] — [int]]} =12,411
(A Az . z){[[int] — [int]]}

This shows that rule 16 changes the representation of the polymorphic identity function
Aa.Az:a.z by changing the representation type of the operator expression in the type ap-
plication from Va.[a—a] to Va.a—a.

For an example of the use of rule 17 consider the following:

([unboxjnt —>boxint] — [boxipt —unboxintl)((Aa.Az:a.2){[[int] = [int]]}) =312

(1 — [boxjpt —unboxipnt])(([unboxipt —boxint] =) ((Ae. Az 2){[[int] = [int]]})) =17

[
(¢ — [boxipt —unboxintl)((¢ = [unboxipnt = boxintl) (A . Az:a.z){[int — int]})) =123
[

Cﬂ

)
(¢t — ([unboxjpt —boxiptl; [boxipt —unboxintl))((Aa.Az:a.2){[int — int]}) =

(
(¢t — [(unboxipnt —boxint);(boxint —unboxint)l)((Aa. Az :a.z){[int—1int]}) =
[

(¢t — [(boxipt;unboxing) = (boxing ;unboxing)l)((Aa.Az:a.z){[int —int]}) =,
(t—= L= 1) (A Az o z){[int —int]}) =461
(Ao Az :a.z){[int — int]}

which illustrates that rule 17 only changes the representation of the type argument, in this case
from [[int{int]] to [int—int].

4.1.2 Expression coherence

We assume that all congruent completions are semantically equivalent, and if our axiomatization
is coherent then since any two congruent completions of a Fy-expression are observationally
indistinguishable then the observational congruence of explicitly boxed Ky must satisfy F¢i-
equality, and vice versa. Otherwise one could find two congruent completions with different
observable behavior. So we need to show that our axiomatization of completion congruence is
coherent. This is what we will do next, but first we need the following definition:

Definition 4.3 (Head coercion free)
We call an explicitly boxed Fa-expression head coercion free (c.f. [CG90]) if it is not of the
form (c)e.

and a small lemma that shows that an arbitrary completion is equal to a coercion in which
every head coercion free subexpression has exactly one coercion applied to it:
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Lemma 4.4 Let e be an explicitly boxed Fy-expression, then there exists an explicitly boxed
Fy-expression €' such that E¢y - €' = e and that all coercions in €' are only applied to head
coercion free expressions and every head coercion free subexpression has exactly one coercion
applied to it.

Proof:
Follows from (c){c’)e = (c’;c)e, and e= (¢)e (see Figure 11). ]

We also need a lemma about the coercions in equation 17 and for this we need the following
terminology:

Definition 4.5 An occurrence o in a type p is a subterm in p(we assume that we have some
way to distinguish different textually equal occurrences) and we write o € p if 0 is an occurrence
in p. The n’th occurrence of a type variable « is the n’th textual occurrence of v in p when the
type is scanned from left to right. Occurrences in a type can be given a polarity. We call o a
positive occurrence in p if:

1l.o=p
2. p = p1—p2 and o is a positive occurrence in py or o is a negative occurrence in py.
3. p = Ya.p; and o is a positive occurrence in py.

4. p = [p1] and o is a positive occurrence in p;.
and we call o a negative occurrence in p if:

1. p = p1—p2 and o is a negative occurrence in pg or o is a positive occurrence in py.
2. p = Ya.py and o is a negative occurrence in p;.

3. p = [p1] and o is a negative occurrence in p;.
Definition 4.6 Let a be a type variable and let p’ and p be two (representation) types then we
define p[p1/a—, pa/ay] as the type p where all free positive occurrences of a have been replaced
by py all free negative occurrences of a have been replaced by ps.

We now state and prove the lemma:

Lemma 4.7 Let ¢ be a coercion with signature m ~ 7' and let e be a completion with type
Ya.p, then

1. p(ir,c) has signature p[r /o] ~ plr/a—, 7' [/aL]

2. p(c,ir) has signature p[r'/a—, 7w /ay] ~ plr/a]

Proof:
The proof is by induction on the structure of p.
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Base case: p = o We look at the two cases: (1) we have p(tr,¢) = ¢ which has signature 7
~ " which is what the lemma states since the occurrence of « is positive. (2) we have p(e,tr)
= 1, which has signature © ~+» © which is also in accordance with what the lemma states since
the occurrence of « is positive.

Base case: p = o (&'# «): In this case we have p(ir,¢) = to and p(c,tn) = to which both
have signature o/ ~ o which is what the lemma states.

Inductive case: p = p1—py: We look at part 1 of the lemma, the proof of part 2 is analogous:
we have p(ir,¢) = pi(c,tr)=p2(tr,¢). By induction we have that pj(c,.,), which matches part
2 of the lemma, has signature py[r'/a_,7/ay] ~ p1[r/a] and p3(ir,c), which matches part 1
of the lemma, has signature py[r/a] ~ pa[r/a_, 7’'/ay]. This means that p(ir,¢) must have
signature:

prl/a] = pal o]~ puln'fa_, 7 fors] = palm for_, 7 faus]

But since the positive/negative occurrence of a type variable in p; is a negative/positive occur-
rence in p1—py we have by standard properties of substitution:

(pr—+p2)lm /]~ (pr = pa)lm /a7 fas]

which is what the lemma states for part 1.

Inductive case: p = [p1]: We look at part 1 of the lemma, the proof of part 2 is analogous:
we have p(tr,c) = [pi(tr,c)]. By induction we have that pi(cr,c) has signature pq[r/a] ~
pi[r/a—, 7' /as] and p(ir,¢) must therefore have signature:

[p1[m/a]] ~ [pr[m /s, 7'/ ]]

using standard properties of substitution is equal to:

1]l /o]~ [pa]lm /o, 7' oy

which is what the lemma states for part 1.

Inductive case: p = Va.p;: We look at part 1 of the lemma, the proof of part 2 is analogous:
we have p(tr,e) = Va.pi(ta,te). By induction we have that py(tq,t,) has signature py ~ pg
because by the lemma we should substitute « for itself in p; both for the domain and the range
of the signature and p(r,¢) must therefore have signature:

Ya.pr ~ Ya.py

which using standard properties of substitution this is equal to:

(Vev.p)fr/a] ~ (Vapr)[m /e, 7' fay]

which is what the lemma states for part 1.
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Inductive case: p = Vao'.p; (&/'# a): We look at part 1 of the lemma, the proof of part 2 is
analogous: we have p(tr,c) = Va'.pi(tr,c1). By induction we have that py(sr,cq) has signature
pi[r/a] ~ pi[r/a_, 7" /ai] and p(ir,e) must therefore have signature:

Vol (pr[r/al) ~ Vol (1 [ fa, 7' fory])

from which we get:

(Vo p1)[r/a] ~ (Vo' p1) [ e, 7' fory]

which is what the lemma states for part 1.

We will now prove coherence of completions:

Theorem 4.8 (Coherence of completions) Fxplicitly boxed expressions €' and €'’ are congruent
if and only if they are E¢-equal; i.e.,

e e iff Foy e =€

Proof:
“if”: Assume E¢p - e/ = €'’. By inspection of F we can verify that e’ and e’ have the same

!~

erasure. Since both € and €’ are completions at the same type they are congruent, i.e., ¢/ =
144

€
“only if”: We will prove this by induction on the structure of the common erasure of €’ and €.
From Lemma 4.4 we may without loss of generality assume that in €’ and €'’ coercions are only
applied to head coercion free expressions and that every head coercion free subexpression has
exactly one coercion applied to it.

Now assume that we have I'te’:p and I'Fe’:p for some type p and that ¢’ and €’ are con-
gruent:

Base case: |¢/| = z.

Then ¢ = (¢')z and €’ = (¢"")z for some ¢’ and ¢”. Let p, be the type of . Then both ¢’
and ¢ have signature p, ~ p. So by Theorem 3.14 we must have ¢ - ¢ = ¢’, from which it

follows that E¢y F (¢Yaz = (¢")x.

Inductive case: |¢/| = e {n}.

Then €' = (¢/)(e1'{n'}) and " = (") (e1"'{n"'}) for some ¢/, 1, 7', ¢”, ;" and 7”’. Since €1’ and
e1'" have the same erasure and therefore the same standard type, there must (by Proposition 2.2)
exist a coercion ¢ such that e;” 22 (¢)e;”. Since e;" and (c)e;” are congruent we have by induction
(since |e1’| = [(c)er”| is a subexpression of |¢'|) that E¢y F e = (c)ey”’. Furthermore, since
¢ must have signature Va.p' ~ Va.p'" where Va.p' is the type of € and Va.p" is the type
of e;” there must exist a coercion d with signature p’ ~ p” such that ¢p - ¢ = Va.d (by

Proposition 2.2 and coercion congruence Theorem 3.14). We therefore have:
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(e1'{7"}) =induction
(e 7)) =g
(Va.d)ed"){7'}) =16
(er"{7'})
where d’ = d[r'/a];¢’. So we need to prove that (d")(e;"”{n’'})=(c")(e1"{7"'}). Since e;"{n’}
have type p”’[n’/a] there exist by Lemma 4.7, coherence of coercion equality and Proposition 2.2

coercions d; and d; such that ¢ - d’ = pA”(L,dl) ;dy where d; has signature 7’ ~ 7”'. We can
therefore continue the above deduction:

@9(61"{77'}) =
(" (1,d1)5da) (e "{7'}) =12

(d >< "(d)) (e {7"}) =17

(d2)(p P (d10)) (e {7"}) =12
(P"(d1,0) 3 do) (e {7"})  =Theorem 3.14
(") (ex"{7"}) =

which proves the case.

Inductive case: |¢'| = Aa.ey.

Then ¢ = (¢')Aa.ey’ and € = (¢")Aa.ey” for some ¢/, a, €1/, ¢’ and €;

It must be the case that ¢¢p - ¢’ = (Va.d');c and ¢9 F ¢ = (Yo d”) for some coercions
c, d’ and d” where c is either : or box. This follow from Proposition 2.2 and the formation
rules for coercions (Figure 4), ¢ is box if the type of €’ (of €’’) is boxed and ¢ otherwise. We
now have

~

cAa.ey!
(Va.d');e)Aa.e)’ =19

o)Va.d)YAa.ey =35
c)Aa.(d)e =induction
YAa. (d")ey" =15

o) (Va.dYAa.ey" =13
(Va.d"); )Aoe.el =4.4,C
c’>Aoz.e1” =

o /\/\/\/O\/\/\/\A o

~
~

Inductive case: |¢/| = Az:7, .e;.

Then e = (¢')Az:p’.e1" and €' = ("YAz:p" .e1” for some ¢/, p/, €', c”, p" and e,".

Since ¢’ has type signature p’—p;’ ~ p and ¢ has type signature p”—)pl” ~» p where p;’ is
the type of ;" and p;’ is the type of el” there exist coercions ¢;’, ¢y’, ¢1”/, ¢3’" and ¢ such that
o e’ = ci'=ey’ ;e and ¢ - ¢ = ¢""—ey’’ e, In fact, ¢ is either box, for some unboxed type
v of p is a boxed type or ¢ otherwise. This means that we have
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~

cHAz:p'e =¢,C
cioeyse) zip’ ey =19
Y(ei—e YAz p' e =13

YAz :pg.(ex Ve [(e1Vz /2]  =induction
YAz :pg. (e )e " [(er")a /2] =13
Ver ey YAz p ey S
Clll—)CQH;C>)\£C:p”.€1” = 4.0
,,>A$:p”.61,, =

o6

g}

I 6

B o~~~ o~~~ DD
)

for some type pg which proves the case.

Inductive case: |¢/| = e; e3.
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Then e = (¢/)(e1" e3’) and €' = (") (e, e5"") for some ¢', €1/, €3, ", ;" and ey"". We know
from Proposition 2.2 that there exist a coercion ¢ such that (¢)ey’ and ey” have the same type.
Let ¢! be some arbitrarily chosen inverse coercion of ¢. We then have, under F¢i-equality:

~

€ =
(e)(er" e2) =14
((e")er’) e =p,0,C
(( C$C_])—>C'>€1') o’ =1,3,12
cH)(c” —=x¢)er ) e =14
({(e=)(c™'=c")er') e
(<C_1—)C/>€1/) (<C>62/) —induction
(<c_1_)cl>ell) 62” —induction
( L—>CI,>61,I) 62” =14
<C”>(€1” 62//) =
ell

This proves the case and concludes the proof.

4.1.3 Induced coercions and fn-equality

It is quite illustrative to consider the connection between induced coercions and @#n-equality in

Fy (here we use a little of the calculus of Fy).

Let us first consider the two equations 13 and 14. We could consider either of these as

defining induced function coercions. Take for example equation 14:

((e—=d)e) ' = (d)(e ({c)¢))

If we take this as the defining equation for function coercions, then by using #n-equality we can

show that equation 13 must hold:

(c=ad)Az.e =,
Az.((e—=d)Az.e) 2 =14
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Az (d)((Az.€) (c)z)
Az.(d)(e[(c)z/z])

Similarly we could have taken equation 13 as the defining equation for function coercions and
then proven that equation 14 holds:

((c—=d)e) €' =,
((c—=d)(Az.e z)) ¢ =13
(Az.(d)(e (c)z)) ' =5
(d)(e ({c)e))
n-conversion is of course not safe in general for functional languages because of non-termination,
but holds for F5. Besides that, we are only using n-conversion as a tool to show equality and
the resulting equality may of course still hold in languages where n-conversion is unsafe.
We may also show Equations 15 and 16 of Figure 12 equivalent by using n:, 8¢ (n: and
Bs-conversion for type abstractions) and a-conversion since:

(Va.c)Aa.e =,
Ad . ((Va.e)Aa.e){a'} =6
A’ (el fal) (Aa-e){a'}) =a
Aa.(c)e
and
(Vo)) {r} =,
((Va.) (Aa-e{a})){r) =15
(Aa-(e)(efa}) fr) =5,
(el /al)(efr))
Our theory does not contain gn-equality because we want to use the theory to prove equality
between congruent completions and fn-equality does not equate congruent completions, since

congruent completions must have the same underlying F,-expression. But as we showed above
the equations in Figure 12 are exactly enough to do this.

4.1.4 Parametricity and Equation 17

Equation 17 of Figure 12 may seem quite strange at first, and it might therefore be enlightening
to see its connection to parametricity or what Wadler has termed “free theorems” (see Reynolds
[Rey83] and Wadler [Wad89]). We will not prove this connection in general, but give an example.
Consider the identity function id of type Va.a—a. If we follow Wadler and derive a “free
theorem” we get:

coid; =1idy oc

where ¢ is a function of type m—r’. If we regard ¢ as a representation coercion and introduce
our notation for coercion application and type application we get



Section 4.2. Completion reduction 47

(t—cyid{r} = (c—1)id{r'}

which is identical to the instance of Equation 17 for an expression with the type of the identity
function. On the basis of this kind of observation we conjecture that it should be possible to
deduce Equation 17 from parametricity.

There is an interesting relation between our Equation 17 and the Axiom C described by
Longo, Milsted and Soloviev [LMS93]:

(Axiom C) e{r1} = e{m} for I'Fe:VYa.T and a ¢ FV(r)

If we were to consider coercions as simply Fo-terms then we could change Equation 17 into an
equation involving only Fg syntax. If we defined the pattern 7(ej,ez) on Fo-terms in a similar
way to operation on coercions. This will give us the Fy version of Equation 17:

I'Fe:VYa.r  I'tep:Ti—72

T(ertn)(e{T1}) = T(tryse1) (e{T2})

where ¢, here is the identity function on type 7. For all types 71—75 for which there exist an
Fy-expression of that type we have that Axiom C is then a special case of this equation since

if a¢ FV(7) then T(e1,tr,) will be Bn-equivalent to ¢ and 7(tr,,e1) will be fn-equivalent to ¢r
and we will get:

e{r} = e{m}

from the new equation. Longo, Milsted and Soloviev [LMS93] shows that Axiom C is not
provable in Ky, but is realized by all models that satisfy Reynolds’s parametricity condition.
This clearly indicates the relation between our Equation 17 and parametricity. Despite the
simple appearance of Axiom C some rather powerful results may be derived from it, but since
Axiom C also holds for types 79—72 where there exist no Fy-expression of that types it is not
clear whether our new equation also can be used to derive similar powerful results. In any case
it would be interesting to study the system that one gets from adding the new equation and/or
Axiom C to Fs.

4.2 Completion reduction

In Chapter 3 we demonstrated that optimal coercions exist for all signatures. We did this by
showing how to implement ¢i-reduction on coercions by R-reduction. The idea in ¢i-reduction
on coercions is to regard ¢ and 1 as left-to-right rewrite rule modulo coercion equality. Using
the basic assumption that boxing and unboxing coercions are more expensive than the identity
coercion we argued that reduction will in general improve performance of coercions. It is natural
to try an extend ¢i-reduction to completions and define this in the following way:

Definition 4.9 (¢)-reduction)

Let ¢ and 1 stand for the ¢ and % rules regarded as left-to-right rewrite rules. We define
¢-reduction on completions to be ¢ip-reduction under F-equality. Remember that F-equality
always includes the core equations C' from Figure 6.
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Defined in this way ¢w-reduction will at least improve performance of the coercions in comple-
tions and we could define what we mean by (formally) optimal completion, in a similar way to
optimal coercions, as completions that all other congruent completions ¢i-reduce to.

Unfortunately, ¢i-reduction on E-congruence classes is not (equational) Church-Rosser;
that is, there are congruent completions that have no common reduct. Consider, for example,
the two completions below (in order to give a more readable example we have included two
additional type constructors int and bool, two external primitives + and if and a few constants
true, 2 and 5. The effect of adding such language extensions to Iy will be discussed in details
in Chapter 6. The equational rules needed for the new languages constructs are quite intuitive
and will not be explained here. One can give a pure 5 example, but this will be considerably
larger and much more opaque.):

e1 = (Aid:Va.a—a. (Az:int.z + (unbox)(id{[int]} (box)z))
(if true then 2 else (unbox)(id{[int]} (box)5)))
(Ao Ay:a.y)

€2 = (Md:Va.a—o. (Az:[int]. (unbox)z + (unbox)(id{[int]} z))
(if true then (box)2 else (id{[int]} (box)5)))
(A Ay y)

Neither one of them is reducible to the other by ¢t-reduction modulo E (they are in fact both
in ¢-normal form).

4.2.1 ¢7-reduction modulo Fv¢ and i "-reduction modulo F¢

So from the example in the previous subsection it would seem that it is impossible to come
up with a notion of optimal completions based on ¢i-reduction. Using only ¢ or @ as a
reduction rule, reduction modulo F-equality would not help either as the example clearly shows.
Examining the example in the previous subsection we see that the main difference between e;
and ey is the representation type of z. In e; it is unboxed whereas in ey it is boxed. By
introducing a box ;unbox-pair in front of the constant 2 in e; we can -reduce e; to e; (modulo
E). Conversely, by introducing an unbox ;box-pair in front of (id{[int]} (box)5) in e; we can
¢-reduce ey to ey (modulo F). Thus we can trade off a box;unbox-redex for an unbox;box-
redex or visa versa. So only by giving higher priority to the elimination of one kind of redex
than to the other we end up with a formal notion of optimality that entails that, for any
given representation type, every source Fg-expression has an optimal completion that is unique
modulo F-equality. We can do this by using one of the rules ¢ or 9 as a reduction rule and the
other as an equality rule. This motivates the following definition:

Definition 4.10 (¢~ -reduction modulo K1 and ¢~ -reduction modulo F¢) Let ¢ and ¢~
stand for the ¢ and v rules regarded as left-to-right rewrite rules. We define ¢ -reduction
modulo E on completions to be ¢~-reduction under FEi-equality. Similarly, we define ¥~ -
reduction modulo K¢ on completions to be ¥y 7-reduction under F¢-equality.

Let us now give an example of ¥ -reduction modulo F¢:

Example 4.2 (¢ -reduction modulo F¢) Let us show how the completion e; (from Section 4.2)
may be reduced to ey (also from Section 4.2) by ¥ 7-reduction modulo F¢. We will use the
following rule for if-expressions:

(c)if e; then ey else e3 = if ey then (c)ep else (c)es (if)
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which will be explained in Chapter 6 Subsection 6.2.1. The reduction sequence is as follows:

er. = (Md:Va.a—a.(Az:int.z 4+ (unbox)(id{[int]} (box)z))
(if true then 2 else (unbox)(id{[int]} (box)5)))
(Aa. Ay: a.y)
=4 (Aid :Yo.a—a.(Az :int.2 4+ (unbox)(id{[int]} (box)z))
(if true then (box;unbox)2 else (unbox)(id{[int]} (box)5)))
(Aa. Ay: ay)
=12 (Aid :Va.a—a.(Az :int.2 + (unbox)(id{[int]} (box)z))
(if true then (unbox)(box)2 else (unbox)(id{[int]} (box)5)))
(Aa. Ay: a.y)
=if (Mid:Va.a—a.(Az:int.z + (unbox)(id{[int]} (box)z))
(unbox)(if true then (box)2 else (id{[int]|} (box)5)))
(Ao Ay: ay)
=14 (Aid :Va.a—a.(unbox—¢)(Az : int.2z + (unbox)(id{[int]} (box)z))
(if true then (box)2 else (id{[int]} (box)5)))
(Aa. Ay: a.y)
=13 (Aid :Va.a—a.(Az : int.(unbox)z + (unbox)(id{[int]} (box)(unbox)z))
(if true then (box)2 else (id{[int]} (box)5)))
(Aa. Ay: ay)
=12 (Aid :Va.a—a. (A2 : int.(unbox)z + (unbox)(id{[int]} (unbox;box)z))
(if true then (box)2 else (id{[int]} (box)5)))

(A Ay: ay)
=y (Mid :Voa.a—a.(Az : int. (unbox)z + (unbox)(id{[int]} z)
(if true then (box)2 else (id{[int]} (box)5)))
(Aa. Ay: ay)

The example above shows that by introducing a redex of one kind (say ¢) we can eliminate a
redex of the other kind (¢/). This is an improvement if redexes of the second kind are considered
arbitrarily more expensive than redexes of the first kind. But it is not obvious which of the two
kinds of redexes should be considered more expensive. Thus we shall pursue two different notions
of optimality. In the first we get rid of all i-redexes first — even at the cost of introducing
additional ¢-redexes — and then getting rid of all ¢-redexes without letting 1-redexes slip back
in. In the second we, dually, get rid of all ¢-redexes first, possibly introducing new -redexes,
and then eliminate all i¥-redexes without readmitting ¢-redexes.

4.2.2 ¢~7-reduction modulo ¥ and ¢ 7-reduction modulo F

To get rid of ¢-redexes without letting t-redexes slip back in we need ¢~ -reduction modulo
F and analogously to get rid of #-redexes without letting ¢-redexes slip back in we need -
reduction modulo E. So we define this now:

Definition 4.11 (¢ -reduction modulo F and ™ -reduction modulo F)

Let ¢ and 9™ stand for the ¢ and % rules regarded as left-to-right rewrite rules. We
define ¢ -reduction modulo F on completions to be ¢~-reduction under F-equality. Similarly,
we define ¥ -reduction modulo F on completions to be ¥ ~7-reduction under F-equality.
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We will introduce the following shorthand notation R/E-reduction or just R/F for R-
reduction modulo F where R is a set of rewrite rules and F a set of equations, e.g. we will write
¢~/ Ep-reduction for ¢ -reduction modulo E1.

In Section 4.4 below we will show how to implement ¢~ /FE-reduction, ¢~ /FE-reduction,
™ /E¢-reduction and ¥~/ E-reduction and then in Section 4.5 we will show how to define the
notion of optimal completions using these reduction systems.

4.3 Polarized equational theory

What we have developed so far is an equational theory for completions which enables us to
prove all congruent completions for a given Fy-expression equal. What we would like to do is
to use this to do ¢/ Ey-reduction, ¢~ /E-reduction, ¥~ /F¢-reduction and 1~ /FE-reduction.
But since it is difficult to reason directly about reduction systems on congruence classes defined
by an equational theory what we would actually like to do is to characterize F-equality by a
canonical term rewriting system that commutes with %-reduction and ¢-reduction such that
we can use this to implement ¢~ /F-reduction and ¢ /F¢-reduction. Finding a confluent
rewriting system for F-equality is not straightforward, however. In particular, the F-equations
cannot simply be oriented in one or the other direction, since they will inevitably lead to critical
pairs without common reducts. Consider for example the rules of Figure 12 oriented from left
to right. In the expression

({(c—d)Az.€) €

both rules 13 and 14 are applicable, and Knuth-Bendix completion appears not to terminate.
Note that by following one reduction path we might fail to eliminate a box/unbox pair using ¢
or ¥ that could be eliminated by following the other path.

In this section we develop a new equational theory that is equivalent to F-equality, but
which can easily be oriented in one or the other direction to yield a confluent rewriting system
together with ¢ respectively w-reduction.

4.3.1 Polarized equational theory

We now define our new axiomatization of completion congruence which takes the polarity of
coercions into account. The main idea is to take each rule of Figure 12 and turn it into two
rules in which the coercions have been assigned different polarity.

Let us first, as an example, consider rule 13 of Figure 12. This will be turned into the two
rules:

((et=d " NAz.e = Az.(d7)(e[{cT)z/z]) (137)
Az (dt)(e[(e)a/z]) = ((e” —=dT))Az.e (13T)

The two rules are instances of Equation 13 of I, so obviously everything that we can prove
with these rules (and the core coercion equations) we can prove with Equation 13 (and the
core coercion equations). That the opposite also holds, in the sense that anything that one can
prove with rule 13 (and the core coercion equations) can also be proven with the two new rules
(and the core coercion equations), will be shown in Theorem 4.13 below.
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Why the rules are oriented as they are, has to do with what happens when the rules are
regarded as reduction rules. The pragmatic reason is: because it works. If the rules are oriented
as they are then we shall see (in Lemma 4.15) that the reduction system becomes confluent.
The more intuitive explanation is this: we want positive coercions to move forward along the
value flow paths in a program and the negative coercions to move backwards. In this way
positive and negative coercions move towards each other and may eventually meet and cancel
out (remember that box- and unboxc-coercions have diferent polarity).

As an example of how the rules move coercions in this way consider rule 13~ above. In this
rule the positive coercion ¢ moves from a position where it is applied to the argument of the
lambda expression to positions where it is applied to all the occurrences of the bound variable
x in e, i.e. the coercion “moves” in the same direction as the argument. Similarly coercion
d, which is negative, moves from a position where it is applied to the result of the lambda
expression to a position where it is applied to the body of the lambda expression. This might
not seem as if this corresponds to any real movement of the coercion backwards along the flow
path, but it is certainly necessary if the coercion is to move further backwards. This should
give some intuition as to why the two rules above are oriented as they are.

/.):<(c —dt))Az.e
)

(137)

) (137)

€')) = ({(ct—=d )e) € (147)
(((e==d))e) e = (dT)(e ((cT)e))  (147)
(Va.c™)Aa.e = Aa.(c7)e (157)
Va.ct)Aa.e (157)
(167)

(167)

(177)

(Var.e™)e){r}
((Var.c*ye){n} = (e*[x/al)e{r)

(
(cT[r/al)e{r} = (
(

(P, e™))eim} = (
(

7

(75 ))ef{r’}

p
ple, e*))e{n’} (177)
~ and 171 the type of e is Va.p.

(pc*,1))efr} =

Side condition: in rules 1

Figure 13: Polarized equality equations for explicitly boxed expressions (E,)

The equations of the new axiomatization, called F),, are shown in Figure 13. These equations
are those of Figure 12 where all equation have been split into two polarized equations with side
conditions on the polarity of the coercions occurring in them. We will discuss the last two rules
of Figure 13 below (Subsection 4.3.2), where we also explain the notation use in these two rules.

But let us first consider why the new system solves the confluence problem above. Assume
that we regard the rules of Figure 13 as left-to-right rewrite rules and we want to rewrite:

((c—=d)Az.e) €

We cannot always expect to be able to use one of the rules 137, 13%, 14~ or 14T immediately.
For the rules to be applicable the coercions must have the right polarity. Let us first assume
that ¢ is positive and d is negative. In that case only rule 137 is applicable and there is no
confluence problem anymore. Then let us assume that the coercions have the reversed polarity,
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then again only one rule, namely 147, is applicable and there is no confluence problem in this
case either. If one or more of the coercions are neither positive nor negative or the coercion just
does not have the right polarity then none of the rules are applicable directly.

So the confluence problem of the rules in £ is not present in £),. One might think that since
the rules are only applicable when the coercions can be assigned polarities then the rules might
be too weak, but this is not the case as we will show below. The reason is that any coercion
can be split into a composition of two polarized coercions which when combined with the rules
of Figure 11 can be used to bring about redexes that fit the rules 137, 13%, 14~ and 14*. For
the example above this means that we may rewrite it to:

(({er™ = daT)(cxt —di7)Az.€)) €
where ¢ ¢ = ¢;7 ;¢ and ¢ Ed = d;7;d,T. In this case both rule 13~ and 141 may be
applicable after the splitting, but not involving the same coercions.

4.3.2 The polarized versions of rule 17

In this subsection we will give an explanation of the polarized versions of rule 17 from Figure 12.
In ML-typable languages, when we do type inference of an expression e containing a let-bound
variable z all we need to know about z is its type. We do not need to know the expression €’
to which the variable z is bound, because the type contains all the relevant information. The
type we infer for e is exactly the same as we would get had we replaced z by €.

Similar to this, when rewriting an expression (c)z{m} we could hope that all the relevant
information we need about z is its type and what we want is that the result we get is as we
would get had we replaced z with any of its potential actual arguments. Let us look at an
example:

(et =) (id{r})

where id is the polymorphic identity function with type Yoa.a—« (in fact id is the only function
of that type). Suppose that we insert the usual definition of id in the expression above:

(et =) ((Aa. Xz a.z){r})

If we perform the type application we get:

(et = )zir.a

which we may rewrite to

(t—et) Az’ 2

using the rules of Figure 13 except 17~ and 17% (in fact only 13~ and 13%.) From this it would
seem natural that we should be able to rewrite the original expression to:

(t— et (id{r'})

So the polarized versions of rule 17 have to be able to do this, in the case where we only know
the type of an expression, and not the actual expression. That such a rule is also applicable in
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the case where we know the expression is fine since this is in fact necessary because we will not
allow the use of #-conversion for types.

Now we know what the polarized versions of rule 17 have to be able to do, so now we will
explain how they do it.

We will call a negative occurrence of a type variable « in a type 7 an input occurrence and
a positive occurrence an output occurrence.

To explain the terms input and output occurrence, let us look at an example of a simple
polymorphic function (apply):

h=Aa.Ad Af:a—d Az:a.fa

this function has type:

Va¥d'.(a—a')—wa—a

Let us forget about the type abstractions and concentrate on the type:

(a—=a)—sa—d

Looking at this type it seems reasonable to call the second occurrence of & an input occurrence,
since it corresponds to the type of an input to the function and to call the second occurrence
of o' is an output occurrence, since it corresponds to the type of the output from the function.
But what about the rest of the occurrences in the type? If we see things from the polymorphic
functions point of view then f with type a—a’ is something external which has to be passed
a value of type o and which will then return a value of type o/. This means that the input
to f is output from the function h and the output from f is input to the function h. If we
generalize this then positive occurrences of type variable are output occurrences and negative
occurrences of type variable are input occurrences. Intuitively, all a polymorphic function can
do with values corresponding to input occurrences is to pass the values to the output (maybe
in multiple copies) or throw the values away. Therefore, if all input occurrences corresponding
to a given type variable are being coerced with the same coercion then we might as well coerce
all the output occurrence corresponding to that type variable with the coercion instead.

This explains the definition of rules 17~ and 17%:

(e, e ))efm} = (p(c™, e ))efn’} (177)
(p(e*,e))efm} = (p(r,eM))e{r’} (177)

since e has type Ya.p and p(c,d) is a coercion that has the same structure as the type p and
where all negative occurrences of o has been replaced by ¢ and all positive occurrences of «
by d. This means that the coercion p(s,¢™) on the left hand side of in rule 17~ will apply ¢
to all output occurrences of @ while the coercion p(c¢™,.) on the right hand side of in rule 17~
will apply ¢ to all input occurrences of a. Therefore, if rule 177 is regarded as a left-to-right
rewrite rule it moves the negative coercion ¢ from the output to the input of e, i.e backwards
and similarly rule 17T will moves the positive coercion ¢ from the input to the output of e, i.e
forwards.
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4.3.3 Equivalence of F,- and F-equivalence

Let F, be the set of equations in Figure 13. We will now show that the polarized equality,
i.e. Ep-equality, is equivalent to E-equality, and therefore of course also that E,¢1-equality is
equivalent to F¢i-equality. To show this we will use the following lemma:

Lemma 4.12 et ¢y, ¢z, dy, elc. be coercions, Ya.p be a representation type and p(c,d) by the
parameterized coercion defined by Definition 4.1. Then the following hold:

Fp(ei;ey,dy;dy) = pleg,dy);p(er, dy)

Proof:
The proof is by induction on the structure of p.

Base case: p = a: p(cr;c¢2,dy;da) = dy;de = peg, dq); pler, da)
Base case: p = o (a# o'): p(er;e,di;da) =0 =1 050 = p(cg,dy); pler, dg)
Inductive case: p = pr—ps:

5(01;02,d1$d2) =

a(dl ;dg, C1;C2) ﬁ@(cl ;€2,dg ;d2) =induction
pi(da, c1);pi(dy, €3) = pa(ez, di); pa(er, dy) =3
(p1(di1, e2) = pa(ca,di)); (pi(dz, €1) = pa(er, dz)) =
plez,d1); p(er, do)

Inductive case: p = [py]:

5(01;027d1$d2) =
[pi(c1;c2,dr;dy)] =induction
[ﬁ?(CQ,dl);ﬁT(Cl,dQ)J =5
(p1(c2,d1)]; [pi(er,da)] =
p(cz,d1); p(er, dy)

Inductive case: p = Va.p;:

,5(01 ;C2,d1 ;d2) =

Va! . pi(e,e) =
L =1
Lyt =

Vo . pi(e,e);Va! . pi(e,e) =
p(cz,d1);p(er, dy)

where the identities marked with a * follows the simple property F p(z,t) = ¢ which can easily
be checked by induction on the structure of p.
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Inductive case: p = Vo'.py:

ﬁ(Cl;CQ,dl;dQ) =

Vo' .pi(er;ceq,dy;dsy) =induction
Ya'.pi(eg,dy);pi(er, da) =8

Vo' . pi(eq, dq);Ve' . pi(er,dy) =
plcz,di); p(er, da)

We then prove the theorem:

Theorem 4.13 For all completions e and €':

Ere=¢ iff EByFe=¢

Proof:
“Only if”: This is trivial since all equations of F, are instances of Equations of F.

“if”: All cases except equation 17 are straightforward. The way we prove the theorem for
the different equations is basically the same. We take an equation R from F. We then prime
factorize all coercions on the left hand side of the equation. This can by Lemma 3.20 be done
with only the core coercion equations which is part of £),. These prime coercions are either
positive or negative so we may use the corresponding equations Rt and R~ to move these in
the same direction as the original coercions were moved by the equation R. Finally, we compose
the coercion using only the core coercion equations and get the original coercions back. We will
show this for equations 14 and 17. First equation 14:

(< > ) —prim factoring
(((e13-.- Cn)—>(d17 sdm))e) € =1,2,3
(e e=dagegi=d)e) € =15 14— 14+
<d17 5d >( (<c17"'a n>6/)) —prim factoring
(d)(e ({c)¢"))

Then we look at Equation 17. This is proven similar to the rest of the equations, except
that we use Lemma 4.12 in the proof:

—prim factoring

—Lemma 4.12

( {77}) =12,17-,17+
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4.4 Polarized reduction

As explained the purpose of the polarized equation system is that we may use it to obtain
two sets of polarized rewrite rules that we will use to implement ¢/FE - and v/ FE¢-reduction.
By regarding the polarized equations as a left-to-right rewrite rules system we obtain a set
of rewrite rules which we will call £? (see Figure 14) which will then be used to implement

E¢/v-reduction and E¢-reduction.

Az (d7)(e[{cT)z/z]) = ((ct—=d7))Az.e ( )
{((e=—=d™))Az.e = Az.(dT)(e[(c™)a/z]) (R13T)
((cF—d7)e) e = (d7)(e ({(eh)e))  (R147)
(dF)(e ((cT)e) = (((e—=dT))e) ¢ (R147)
Aa.(c7)e = (Va.c7)Aa.e (R157)
(Va.ct)Aa.e = Aa.(ct)e ( )
((Va.cT)e){r} = (c7[r/a])e{n} (R167)
(cFlr/a])e{r} = ((Va.cT)e){r} (R167)
(ple™,e))ein'} = (p(r,e7))efm} (R177)

(pe, e ))efn’} = (p(c*,0))e{n} (R17F)
Side conditions: in rules 17~ and 171 the type of e is Va.p
in all rules at least one coercion must be proper

Figure 14: Polarized reduction: E;~

Similarly, by regarding the polarized equation system as a right-to-left rewrite rules we

obtain a set of rewrite rules which we will call E;_ which will then be used to implement
F1/¢-reduction and Fi-reduction.

4.4.1 FE7¢~ reduction modulo ¢

The reduction that implements v /FE¢-reduction is called E;*'z,/)_’ reduction modulo ¢ and is
defined as follows:

Definition 4.14 (E7¢7 reduction modulo ¢)

We define Ep_’zﬁ_’ reduction modulo ¢ as rewriting using Ep_’ modulo ¢ on completions and
¢-reduction on coercions with the restriction that ¢-equality is only used in connection with
a Ep_> reduction step. That is, coercion reduction is not modulo ¢-equality only completion
reduction. Remember that ¢-equality on completions include the core coercions equations
Figure 6 and the equations for coercion application Figure 11.

The condition that -equality is only used in connection with a Ep_’ reduction step ensures
that trivial non-productive (infinite) reductions like:

(box ;unbox ;s)e = (box;unbox)e =4 (box;unbox ;box;unbox)e =, (box ;unbox)e

are excluded.
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Lemma 4.15 (Properties of ™ K" -reduction modulo ¢) ¢ £ -reduction modulo ¢ is canon-
ical; that is, it is strongly normalizing and confluent.

Proof:
Strong normalization: Without loss of generality we may assume that every completion has
exactly one coercion applied to each subexpression in the underlying Fs-expression (Lemma 4.4).

Let (cy,...,cx) be the vector of all coercion occurrences in a completion in some particular
order such that they are in one-to-one correspondence with the subexpressions of the underlying
Fo-expression. Since completion rewriting does not change the underlying Fs-expression, a
completion rewriting step corresponds to a rewriting step on this vector.

A Y7 -reduction step operates on a single element of the coercion vector above. By Theo-
rem 3.10 ¢p-reducing a coercion is strongly normalizing. Thus there can be only finitely many
1-reduction steps at the beginning of the reduction or after an E;)_ step is executed.

An E;)_ step generally operates on several coercions in the coercion vector simultaneously.
Consider the type signatures of the coercions in the coercion vector. An E; step rewrites at
least one coercion F ¢: p ~+ p’ to a new coercion ¢’ that has domain type or range type properly
increased in the subtype hierarchy of Definition 3.29, and an F;~ step never rewrites a coercion
Fc:p~ p’ to anew coercion ¢’ that has domain type or range type properly decreased in the
subtype hierarchy of Definition 3.29.

Let us, as an example, consider rule 137:

Az (d7)(e[(eT)z/z]) = ((cT —=d7))Az.e

We assume without loss of generality that z occurs exactly once in e. The vector of coercions
must have the form (with signatures of each coercion that we consider added):

(coistipe=prs pr—pyee,d” ipa~spet ipa s pr L)

where ¢ is the coercion applied to the abstraction. Rewriting using rule 13~ changes this into:

(ccy(e=d) T ipr1=pans Pu—rpy e L P2 Poy L pLA PL )

Let us examine the changes in the domain types and range types of the three coercions in the
vector that changes. The range type of the second coercion changes from p to pg, but this
corresponds to the signature of an inverse coercion of d, since d has negative polarity we may
choose this to have positive polarity (Lemma 3.31). We therefore have that p<ps. Similarly,
the domain type of the third coercion changes from p, to p; which corresponds to the signature
of the positive coercion ¢ and so we also have p,<p;. Finally, it can also be shown that the
domain type of the first coercion is increased. All other domain or range types are unchanged,
so this means that for rule 13~ at least one coercion in the tuple has its domain type or range
type properly increased in the subtype hierarchy (because at least one coercion is proper) and
no coercions gets its domain type or range type decreased.

This can be shown to hold for all rules in E;?_ and since the subtype hierarchy has only
finite ascending chains (Proposition 3.33) it follows that I~ steps can only be applied a finite
number of times. Thus every 1[7_>E;_—reduction sequence is finite.

Confluence: Since ¢~ F; -reduction modulo ¢ is strongly normalizing it is, by Newman’s
Lemma, sufficient to show local confluence: if e has overlapping redexes and reduces by single
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rewriting steps to e; and ez then there exists a common reduct €’ to which both e; and e
reduce, possibly in several steps.

Let us consider such triples e, ey, e2. By Theorem 3.10 ®¢-reduction on coercions is con-
fluent. Note that t-redexes do not overlap with any Ej -redex due to the polarization and
orientation of the k), rules. We only have to worry about overlaps of K "-rules modulo ¢-
equality. There are only two kinds of overlaps:

1. Application of the same rule to the same subexpression, only with different coercions; let
us look at one of the rules (the other rules handled analogously), e.g. rule R13%:

((er” = ex™)se)Az.e =1z (e)(er” = eaT)Az e = piae () Az (eT) (e[(e17)2/2])

and

((di” —=dyT);dNV\z.e =15 (d')d;” = dy)Az.e = pyar d ;A2 .dy T (e[(dy 7 )2 /7))
where

¢ = (Cl_—>C2+);CI = (dl_—)d2+);dl

In this case it is sufficient to show that

ok =y estieq”
¢|_d, = d3+;d4_

for some positive e3*, d3* and negative ¢4, ds~, where ¢4~ and d4~ are equal (by
core coercion equality), since then we can apply the same rule again to each of the two
different reducts to get a common reduct. By Lemma 3.27 there exist such factorings and
since positive and negative coercions are in ¢t-normal form we have that ¢4~ and d4~
are equal modulo the core coercions equations.

2. Overlaps due to five pairs of adjacent rules in Figure 13: 137/13%, 14~ /14%, 157 /157,
16=/16% and 177 /17%. Let us again consider one of these overlaps 137 /13" (the other
cases are handled analogously):

<c1_—>d1+>)\x.<d2_>(e[<c2+)m/x])
can be rewritten to
<C1_—)d1+><C2+—>d2_>A$.6

and to

Az (dy (o7 (e[(ea ) (e )z /2))
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For the first reduct we get furthermore

(1™ —=diT)(cat —da™ )z e =19

{(eg¥—=dy7);(c1™—=d M)Az e =3

((e175et) = (da™5di M)Az e =7 (Lemma 3.27 and Lemma 3.25)
((esT5e47) = (dst;ds7)) Az e =4

{(ea™ —=d3T);(cst—=dy™)) Az e =1

<c t—ds” ><C4 —dzT )x\m.e = Ee

(

cst —dy ")z . (dsT) (e[ (cs™)z/2])

Similarly, we can rewrite the second reduct to the same final completion above.

Az (diF)(dy7 ) (e[(er ) (erT)z/2]) =1
Az.(dy~ d1+>(6[<c1 ;e )a/a]) ﬁz‘/) (Lemma 3.27 and Lemma 3.25)
Az {dst;dg7 ) (e[(esTseq7 )2 /7)) =12
Az.(dy” ><d%+>(€[<c4 West)z/z])  =pg

This completes the proof. [ |

4.4.2 [E7¢7 reduction modulo v

The reduction that implements ¢/k-reduction is called £7¢™ reduction modulo ¢ and is
defined as follows:

Definition 4.16 (E,7¢™ reduction modulo 1)

We define Ep_’qﬁ_* reduction modulo % as rewriting using Ep_* modulo ¥ on completions and
¢-reduction on coercions with the restriction that ¥-equality is only used in connection with
a E.7 reduction step. That is, coercion reduction is not modulo ¢-equality only completion
reduction. Remember that i-equality on completions include the core coercions equations
Figure 6 and the equations for coercion application Figure 11.

The condition that ¥-equality is only used in connection with a F7* reduction step is intro-
duce here for the same reason as for E;‘lb* reduction modulo ¢.

Lemma 4.17 (Properties of ¢7 k7 -reduction modulo 1) 7 E7 -reduction modulo v is canon-

ical; that is, it is strongly normalizing and confluent.

Proof:
Analogous to Lemma 4.15.
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4.4.3 E¢” reduction

The reduction that implements ¢/FE-reduction is called Ep_’qﬁ_’ reduction and is defined as

follows:

Definition 4.18 (kK*¢™ reduction)
We define F;7¢™ reduction as rewriting using /7 on completions and ¢i-reduction on
coercions.

4.4.4 E; ¢~ reduction

The reduction that implements @ /FE-reduction is called E; 97 reduction and is defined as
follows:

Definition 4.19 (K¢ reduction)
We define K"t reduction as rewriting using £, on completions and ¢y-reduction on
coercions.

4.5 Optimal completions

Recall our discussion at the end of Subsection 4.2.1 on how to find optimal completions. We
conjectured that by using ¢/F1i-reduction we could get rid of all ¢-redexes first — even at
the cost of introducing additional ¥-redexes — and then next by @ /FE-reduction get rid of all
i-redexes without letting ¢-redexes slip back in. Dually, that by using ¢ /F¢-reduction we
could get rid of all i-redexes first — even at the cost of introducing additional ¢-redexes —
and then next by ¢/F-reduction get rid of all ¢-redexes without letting i-redexes slip back in.
In this way we would obtain two kind of ¢¢)-normal forms. In this section we will show that this
scheme for finding ¢t-normal forms is indeed feasible and we will define two kinds of (formally)
optimal completions as being these two kind of ¢¢-normal forms.

4.5.1 <-free and ¢-free completions

The class of normal forms under ¢~-reduction modulo K and ¥ ~-reduction modulo K¢ are
called ¢-free and -free completions and are define as follows:

Definition 4.20 (i-free completions, ¢-free completions)

!~

1. We say a completion e is 1-free if every congruent completion e’ = e 1-reduces to e under

E¢-equality; i.e, E¢ - €' =7 e.

~d

2. We say a completion e is ¢-free if every congruent completion €’ 2 e ¢-reduces to e under
Ey-equality; ie., Ep ke =7 e.

Because of the strong global requirement that all congruent completions must be ¥-reducible
modulo E¢ to e for e to be called t-free it is not even clear that i-free completions (or ¢-free
completions) exist. This can be shown, however, and this is what we will do next.

To prove that ¥-free completions exists we need a few lemmas. First a lemma that shows
commutativity of ¥ and K /¢:
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Lemma 4.21 ¥~ and E;_/qb commutes, that is the following diagram commutes:

.
€ ¢ e/
B /9 B/
— V*
€1 e LA e

Proof:

In the proof we check that ™ commutes with each of the rules of E;~ and with ¢=
(introducing a ¢ redex by ¢-equality does not affect a ¥ redex, so ¥V commutes with ¢-
equality if it commutes with ¢™). For each of the rules of E;~ it is easy to see that 1™ redexes
do not overlap with any K~ due to the polarization of the £~ rules. This means that an ES~
reduction step cannot remove or move a ¥~ redex. We therefore have that ¢ commutes with
each of the rules of £;~. That ™ commutes with ¢ is easy to show. If the redexes are non
overlapping it is trivial, and if the redexes overlap we have two cases:

unbox; box;unbox =4 unbox;+ =; unbox

unbox; box;unbox =, ¢;unbox =, unbox

box;unbox;box =4 ¢;box =3 box

box;unbox;box =, box;. =1 box

which shows that ¥»™ commutes with ¢ and concludes the lemma.

We next prove the lemma that helps us prove the uniqueness of ¥-free normal forms:

Lemma 4.22 Let e and €' be two (congruent) coercions such that e 1/ E¢-reduces to €'. Let €
and €' be ES/¢-normal forms of e and €', then € ES ¢~ [¢-reduces to ¢'. The lemma can be
visualized by the following diagram:

VIES s,
€ e
lE;_M ES /¢
Y EFg7/e T
€ e > 6’

Proof:
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Since E-equality and E,-equality are equivalent (Theorem 4.13) we use E,-equality instead
of F-equality in the proof. We prove the lemma by induction on the length of the 3/F,¢-
reduction of e to €’. Let in the this proof e be the FS~/¢-normal form of e; and = be
syntactical identity.

Let the first reduction step be a ¥~-reduction step and let e; be the reduct of e by the
reduction step. Then by the commutativity of ¢y 7-reduction (LLemma 4.21) and £}~ /¢-reduction
and by induction there must exists a coercion ey’ such that the following diagram commutes:

i FE
. ¥ o0 YE s,
lE;/qs PR L Ei /o
P :
* R XL PR o ' ay A b
T e >€1/ ................................... S Y e >e

from which the result of the lemma follows for this case.

Let the first step be a Fj-equality step, then since F,-equality is obviously the equivalence
relation generated by F;~, we may without loss of generality assume that the this is a £~ step
or Ep_> step. We look at the case where it is a E;,_ step first. Let e; be the reduct of e by the
reduction step. By induction and since E;?_/(b is confluent there exist a coercion e;’ such that
the following diagram commutes:

.

. 2 e MBS
lﬁg,—/qs EE;,‘/qﬁ ES /¢
* _ V* E;)—d)—r/d) . ¥

€ e EETURTTRURRRRI a ................................... > P/

from which the result of the lemma follows for this case.

Next we look at the case where it is a /)7 step. Let e; be the reduct of e by the reduction step
then e; must E;_/¢ reduce to € so by induction the following diagram commutes:

. 23 e WS s,
lE;/qs 2 Ef /¢
- _ veooESun e, Y

€ e P TURTTRIRRRRI a ................................... > e/

from which the result of the lemma follows for this case.

Finally, we look at the case where the first step is a ¢-equality step. Let e; be the reduct of e

by the reduction step then e; must F;~/¢ reduce to € so by induction the following diagram
commutes:
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. ¢ o UES s,
lE;/qs Bl BE (¢
_* = L* Ei‘i_"b_)/(b * _*
€ e € e > €I

from which the result of the lemma follows for this case.

We can now prove that - and ¢-free completions exist and that these are unique modulo
Ep¢-equality:

Theorem 4.23 (Ezistence and uniqueness of -, resp. ¢-free completions) Let e be a (closed)
Fy-expression and let p be a valid representation type for e. Then

1. e has a P-free completion €' at p and €' is uniquely determined up to E¢-equality.

2. e has a ¢-free completion e’ at p and €' is uniquely determined up to Fip-equality.

Proof:

We only give a proof of 1. The proof of 2 is analogous. (It requires lemmas analogous to
Lemma 4.15 and Lemma 4.22.)

Consider all the (congruent) completions of e at p. By Theorems 4.8 and 4.13 we know that
they are all F ¢ip-equal. If we consider two arbitrary completions e; and e, at p then we know
that e; = ey ... = €,_1 = ¢, for some completion ey, ... ,e,_1 where = means equal by one rule
from E,¢1. This means that for each 1 < k < n either K¢ & ex =y ery1 or B F epp1 =y
eg. From this and from the fact that ¢7 k£ "-reduction modulo ¢ is confluent (Lemma 4.15)
it follows that they must all have a common reduct. This proves that any two (congruent)
completions of e at p have a common reduct, so from the fact that ¢~ /"-reduction modulo
¢ is canonical (Lemma 4.15 again) all completions of e at p must have a common normal form
ens Which must then be a v-free completion of e.

Let e. be another i-free completion of e. Let & and &,7 be E;_/qb—normal forms of e, and
€nf. Since e, is i-free we have that e, 19/ E¢-reduces to e, and therefore by Lemma 4.22 that
e Efy™/¢-reduces to &,5. Similarly, since e,f is ¥-free we have that e, ©/F¢-reduces to
eny and therefore by Lemma 4.22 that .7 F;"v/¢-reduces to &. Since F; 1™ /¢-reduction is
strongly normalizing we must have F' I &,7 = & and therefore F¢ I e,f = e..

|

Intuitively, a ©¥-free completion “prefers” to keep data in a boxed representation and unboxes
a representation only when it is sure the unboxed value is required by some operation and not
required boxed anymore. This way passing arguments to polymorphic functions and returning
their results can be expected to be efficient whereas operations requiring unboxed data such
as integer operations may be inefficient due to the cost of unboxing arguments and boxing the
results.

Dual to this, a ¢-free completion prefers to keep data in unboxed representation; it boxes a
value only when it is sure to be required due to a call to a polymorphic function. Thus primitive
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operations will generally be executed fast as no coercions need to be performed for neither the
arguments nor the result, but calls to polymorphic functions may be expensive due to the need
for boxing (parts of) the arguments and unboxing (parts of) the result.

Since the degree of polymorphism in a program tends to be greatest when higher-order
functions are used a ¥-free completion will generally be better for higher-order programs, es-
pecially if there is little “ground type” processing such as arithmetic operations. On the other
hand, ¢-free completions will generally do best where there is little polymorphism and/or lots
of operations on ground types.

4.5.2 Optimal ¢-free and ¢-free completions

The two constructions above for ¥-free and ¢-free completion are canonical since they use a
universal standard representation (maximally boxed or minimally boxed) for all data indepen-
dent of their context. They are not “optimal” since they typically contain many ¢-, respectively
p-redexes modulo Fj,-equality. We shall now set out to construct optimal y-free and ¢-free com-
pletions, which have no remaining (¢ or¢) redexes — and are thus 1¢-normal forms modulo

E.
Definition 4.24 (Optimal v-free/¢-free completions)

1. A completion e is a (formally) optimal 1 -free completion if e is y-free and every congruent
1-free completion e’ ¢-reduces to e modulo F;ie., E € =7 €.

2. A completion e is a (formally) optimal ¢-free completion if e is ¢-free and every congruent
¢-free completion €’ 1-reduces to e modulo F;i.e., F ¢ =7y €

We have shown that i)-free completions are F,¢-equal, and ¢-free completions are F,1)-
equal. As a result we obtain our main theorem:

Theorem 4.25 (FEristence of ¥-free and ¢-free optimal completions) Let e be a (closed) F;-
expression and let p be a valid representation type for e. Then e has both an optimal ¥-free
completion and an optimal ¢-free completion at p. Furthermore, both are unique modulo F.

Proof:

We prove this for ¢-free completions. The proof for i-free completions is analogous.

For the proof we employ again a rewriting system. This time we use Eg_zb*—reduction. This
rewriting system operates on equivalence classes defined by the coercion equations in Figure 6
and the application equations in Figure 11. We shall however only consider £;"%™-reduction
on ¢-free completions. Since all ¢-free completions are F,i-equivalent we have that F; ¢ ~-
reduction on ¢-free completions is closed. To see this, assume that e is a ¢-free completion
and e Ef ¢ -reduces to €’. Then since e is a ¢-free all congruent completions E "1™ reduces
modulo ¢ to e, which means that they also /"¢~ reduces modulo ¢ to €', and therefore that
€' is a ¢-free completion.

We need to prove that K "¢ -reduction ¢-free completions is canonical. That K ¢~-
reduction is strongly normalizing follows from the fact that k"¢ /¢-reduction is strongly
normalizing (Lemma 4.15). So all we need to show is local confluence of FE;"%7-reduction
on ¢-free completions. If we examine the proof of local confluence of K ¢ /¢-reduction
(Lemma 4.15) then the crucial step was to show that if
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dFre=dT;c

then we could show that there existed coercions e;T and ¢4~ such that

¢ =y esties”

and that this factoring was unique (modulo the core coercion equations). What we need to
show here is, that if

Fe=dt;c

then there exist coercions c¢3t and ¢4~ such that

Fe' =y estieq”

But since we are only looking at ¢-free completions we know that if ¢, s is a normal form of ¢
then

= CI :>¢ Cnf

and since normal form coercions can be uniquely 4/—-factorized (Lemma 3.25) then we can take
c3T ;¢4 to be this unique +/—-factoring. This shows local confluence of E;‘t/)_*—reduction on
¢-free completions and therefore also that £~ 7-reduction on ¢-free completions is canonical.
So by the same kind of argumentations as we used in the proof of Theorem 4.23 we may show
that optimal ¥-free completions exist.

To prove uniqueness of optimal -free completions modulo KE-equality we need to prove a
result similar to Lemma 4.22. That is, we should prove that the following diagram commutes:

where e and €’ are 1)-free completions and & and ¢ are E;_—normal forms of e respectively €.
A proof of this can easily be constructed by inspection of Lemma 4.22). We can then prove
uniqueness of optimal ¢-free completions analogously the way we proved uniqueness of ¢-free
completions in Theorem 4.23.

|

4.6 Canonical completions

The rules for )™ KS"-reduction modulo ¢ suggest an explicit construction of ¥-free completions:
take an arbitrary completion and execute the ¥-reduction system until a normal form is reached.
Analogously for ¢-free completions.

An simpler method consists of devising syntax-directed translations that produce a ¥-free or
¢-free completion directly. The canonical construction of a ¥-free completion consists of keeping
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all data in their “maximally” boxed representation (i.e., representing a standard type by the
maximal type in the representation type hierarchy) and boxing a unboxed value as soon as it
is produced by some operation and unboxing it just before it is consumed by some operation.

The canonical construction of a ¢-free completion consists of keeping all data in their “min-
imally” boxed representation where an unboxed value is only boxed just before it is passed
to a polymorphic function and unboxed immediately after it is returned from a polymorphic
function. This is actually the construction described by Leroy [Ler92].

In the following two sections we will present these two kinds of canonical completions: ¢-free
and -free canonical completions .

4.6.1 Canonically boxed completion

The first kind of canonical completions are ¢-free canonical completions. We want to define a
translation from Fy-expressions into ¢-free canonical completion. This amounts to translating
expressions of the form e{o} into (¢)(e’{[p]}) where ¢ is the canonical coercion that makes
sure that the representation type of the translated expression is completely without boxed type
constructors [_] and p is identical to o. We have, however, to be careful when performing this
step since we do not allow boxing of a boxed value. If ¢ is a type variable o then the type [a]
would be an illegal type. What we really have to do is only to box p if this is not already a
boxed type or equivalently o is not a type variable.

The ¢-free canonical completion correspond almost to the same completions that Leroy
obtains from his translation [Ler92]. The only difference is that Leroy does allow boxing of
boxed values. So his translation will always do as the translation described above.

We write @ for the embedding of a standard type ¢ into its syntactically equivalent repre-
sentation type. We extend this type embedding in the natural way to a homomorphism on type
assignments such that: z:7 € T iff z:0 € T.

Furthermore we define an operation [_] that only inserts a boxed type constructor around
a representation type when this is not a boxed type variable:

Definition 4.26 Given a representation type p we define [p] to be the smallest boxed type
larger than p. That is, if p is a boxed type, we have [p] = p and if p is an unboxed type, we

have [p] = [p]

We can now give a formal definition of ¢-free canonical completions:

Definition 4.27 (¢-free canonical completion).

We say that an explicitly boxed Fy-expression e is a ¢-free canonical completion of a F-
expression e if ['Fe:o=e. is derivable from the inference system of Figure 15 for some type
environment I' and some type o.

There are two things that we should show about this definition: first, that ¢-free canonical
completions are really completions and second, that they are indeed ¢-free. We will prove this
in the following two lemmas.

Lemma 4.28 ¢-free canonical completions are well-typed w.r.t. the inference system in Fig-
ure 5, i.e. if [Fe:o0=e, then T'te. .
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[{z : o1}teioy=e
IFAz:0y.e:0—0= A2 : 07 . €

Thej:o1=0e=ey’ Threyioi=ey!

I'e; egio9=>eq’ ey

I'+e:o=¢’
I'FAa.eVa.o=>Aw. e

a ¢ FV(I)

IFeVa.o=e . co[[o7]|/a] ~ 7o7/a]
I'te{oy}:o[o1/a]=(c)e'{[71]}

I'{z: o}rzio=2

Figure 15: ¢-free canonical completion for Fy

Proof:
The proof is by induction on the structure of the Fy-expression e or equivalent on the struc-
ture of the derivation of I'e:o.

Base case: z. From I'{z : o}z:0=2 it is obvious that I'{z : }t2:7 holds.

Inductive case: Az:o,.e;. By induction we have from ['{z : o,}Fej:01=>¢;’ that
I'{z : 5, }e1:o7 which means that we have:

Iz : 57 }eror

Tz 6, .e0:07—0

which proves the case, since 57— = 61—0.

Inductive case: e; e;. By induction we have from I'tej:o9—0=¢ey’ and I'Fesioo=>ey’ that
I'tey":53—= 0 and T'key’:73. This means that we have:

Tte:77—5 Tkey:53

Itey el

since o, —>0 = 090
Inductive case: Ax.e;. By induction we know from I'eq:0;=¢; that T'+e;’:7 and from the
fact that e is well-typed we know that @ ¢ FV(I'). This means that we have:

Tte a7
T'FAa.e Vo571

which proves the case, since Va.o7 = V.o .

a ¢ FV(T)

Inductive case: e;{0;}. By induction we know from Tte;:Va.0,=¢,’ that Tre;":Va.oy from
which we have:
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Tke Va.77
Ute/{[7z1}o([o2]/a]  + e:a1([az]/a) ~ Tilo3/0]
TH(e)er/{[7] iz /o]

which proves the case, since @7[o2/a] = 01[o2/a] and Ya.o7 = Va.o;.
|

Notice that the representation type p of a ¢-free canonical completion is always completely
unboxed, i.e. p = |p|.

Lemma 4.29 ¢-free canonical completions are ¢-free.

Proof:

Since the representation type of all sub-expressions of ¢-free canonical completions are as
unboxed as they can possibly be, ¢-free canonical completions must be normal forms w.r.t.
¢~ B~ -reduction modulo %, since ¢~ E7-reduction modulo ¢ always decreases at least one
representation type of one sub-expression. So ¢-free canonical completions must be ¢-free.

|

4.6.2 Canonically unboxed completion

The second kind of canonical completions are 1-free canonical completions. Again we want
to define a translation from Fy-expressions into t-free canonical completion. To describe this
translation we need the following definition:

Definition 4.30 (Mazimally boxed representation type)
Given a type 0 we define @ to be the largest representation type representing o and which
we extend naturally to a homomorphism on type assignment: 2 :7 € L'iffz:0 € I.

In t-free canonical completion values should kept as boxed as possible. This can be ensured
by boxing values as soon as they are created and not unboxing values before they are consumed
by operations that need unboxed values. In Fy the values are functions (if we consider values
created by type abstractions as functions too). These are produce by abstractions and type
abstractions, which means that the translation should insert an application of a box coercion
on all abstractions and type abstractions. The only places where values are consumed are at
applications and type applications so the translation should insert an application of an unbox
coercion on the operator expression in all these.

Let us consider what happens with ordinary abstraction and application. Since or-
dinary function values are created by abstractions, we should translate Az:0q.e into
<boxﬁ_>a:2>/\m 101 .€ where g1—0, is the type of Az:0¢.e and €' is the translation of e.

Similarly the translation should also insert an application of an unbox coercion at the
operator expression in all application, that is, translate e; e; into ((unbox= =)e") €5’ where
o1—0, is the type of e; and e; is the translation of e;.

Type abstractions and type application is treated similarly as can be seen from Figure 16.
We can now give a formal definition of i-free canonical completions:
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Definition 4.31 (i-free canonical completion).

We say that an explicitly boxed Fy-expression e, is a t-free canonical completion of a Fo-
expression e if I'Fe:o=e,. is derivable from the inference system of Figure 16 for some type
environment I’ and some type o.

I'{z : o }Feoy=€
I'FAz:0; .e:al—mgé(boxﬁ_w:zw\m 101 . €

IFej:o—oe=e;’ [Fegioi=>ey’

I'teq 62:02:>(<unboxﬁ_w:2>e1’) ey’

I'Fe:o=e
I'FAa.eVa.o=(box,, =)Aa ¢’

ifa & FV(I)

I'Fe:Va.o=e
I'te{o1}:0l01/a]=((unbox,  =)e') {77}

I'{z : o}tzio=z

Figure 16: 1p-free canonical completion for Fy

Lemma 4.32 i-free canonical completions are well-typed w.r.t. the inference system in Fig-
ure 5, i.e. if l're:o and Tke:o0=¢€' then T'+eT.

Proof:
The proof is by induction on the structure of the Fo-expression e or equivalent on the struc-
ture of the derivation of I'Fe:o.

Base case: z. From I'{z : o}Fz:0=z it is obvious that f{z‘ : 0 }Fa:7 holds.

Inductive case: Az:o,.e;. By induction we know from ['{z: o}tej:o;=e;’ that
I'{z : 5, }te,":77 which gives us:
?{x o e oy

I'FA\z:o,.e1"i0—01 DOX= = :T,01 ~ [0,—01]

ﬁ—(box%_w:lw\mzazm.e]':[azx—)a:]]
which prove the case since [6,—07]| = 7, > 07 .
Inductive case: _er ez. By induction we have from I'tej:09=0=>€;’ and I'tey:o9=>ey’ that

I'Fey:o3 =50 and ['Fey’:5; which means we have:

The:[o7—0] + unbox= =:[G790] ~ 0,0

TI—(unboxi_)§>el’:U:2—)§ They 75

qQll

ﬁ—(<unboxﬁ_§)el’) e
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which proves the case, since 73 =0 = [630].

Inductive case: Awx.e;. By induction we have from I'teq:01=>¢;’ that ﬁ—el':(le which means
we have:
ﬁ—el':azl
I'FAa.e)' Vo,  + box,, 5=:Ya.o1 ~ [Va.aq]

T+ (box,, =)Aa.e":[Vo.o7]

which proves the case, since [Va.77] = Voo and a ¢ FV(I') = a ¢ FV(T).

Inductive case: e1{o2}. By induction we have from I'te;:Va.o1=re1’ that ﬁ—el’:Va.al which
means we have:

The: Va7 F unbox,  =:[Va.77] ~ Va.or
FI—(<unboxVa.ﬁ>e1 "N:Va.7r

Tk (unbox,, =)e,' {73 }:71[72/ 0]

which proves the case, since Va.oy = [Va.77] and 7163 /a] = o1[02/a].

Lemma 4.33 o-free canonical completions are 1-free.

Proof:
Since the representation type of all sub-expressions of i-free canonical completions are
as boxed as they can possibly be, i¥-free canonical completions must be normal forms w.r.t.
Y7 B -reduction modulo ¢, since ¢~ E"-reduction modulo ¢ always increases at least one
representation type of one sub-expression. So i-free canonical completions must be ¥-free.
|



Chapter 5

Computing optimal completions

We have now established that there exist optimal completions in the form of two F-equivalence
classes: ¢-free optimal completions and 1-free optimal completions. We used a reduction
system to prove these things, but this was still on a fairly theoretical level. In this chapter
we will show how to compute optimal completions. We will present two basically different
methods to compute optimal completions. The first one is based on reduction using methods
developed in Chapters 2, 3 and 4. We will describe how to implement 3~ F;"-reduction on ¢-
free completions to find ¢-free optimal completions and ¢ F*-reduction on ¢-free completions
to find ¥-free optimal completions. The second method is developed in this chapter and is based
on transforming the problem of finding optimal completions into what essentially becomes a
graph reachability problem. It is on this second method that our prototype implementation
describe in Chapter 7 is based.

5.1 Rewriting-based algorithm

The goal of reduction is to find optimal ¥-free or ¢-free completions. We can always find a
congruent ¥-free or ¢-free completion for a given completion, since we can just start from the
underlying Fo-expression and construct the canonically unboxed (i-free) or canonically boxed
(¢-free) completion. These canonical completions are not necessarily the same completions
that we get by E "¢~ -reduction modulo ¢ and FE_*¢7-reduction modulo ¢ on some other
congruent completion. In fact, this will very seldom be the case, since the canonical completions
somehow represents the worst cases (most boxed or most unboxed). But since we have to find
some completion from a given Fy-expression to start with we might as well choose a canonical
one. That a canonical completion is just as good a starting point as any other completion
can be seen by Theorem 4.25: reduction will eventually lead to the same optimal t-free (or
¢-free) completions as the ones that we would have obtained by starting from an arbitrary
completion using first £;797 /¢-reduction followed by FE.?¢-reduction (or first E.7¢7 /-
reduction followed by K~ t¢)7-reduction). This means that kS 77 -reduction modulo ¢ and
k7 ¢~ -reduction modulo % is not something that we need to think about how to do in an
actual implementation.

This means that we only need to work out how to implement F;~t7-reduction and F_7¢~-
reduction.

71
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5.1.1 -reduction on ¢-free completions

Let us consider Ezg_z/)_*—reduction first. The first observation that we may make is that since we
start reduction with ¢-free completions and Fj ™ -reduction never introduces any ¢-redexes
(see the proof of Theorem 4.25), we only need to work out how to do E;_zb_’—reduction on ¢-free
completions. We may therefore use full ¥ ¢-reduction (Figure 8) for coercion. This is a very
useful property that enable us to use type signatures as representations of coercions, in which
case coercion reduction is no longer something we need to do, since we can always regain the
optimal coercions by construction the canonical coercions (see the comment after Lemma 3.11).
We will here outline how £ =3~ -reduction on ¢-free completions could be implemented:

Input: a ¢-free completion e.

1. reduce all coercions in e to ¢ip-normal form using R-reduction. This is legal since no
coercion can contain any ¢-redex because e is ¢-free. Actually, since we use signatures
instead of coercions this operation consists of replacing all coercions by their signatures,
but it is conceptually nice to think of it as doing reduction and as if we are still working
with coercions terms. If we start from the canonical ¢-free completion this step is not
necessary.

2. normalize e such that every head coercion free subexpression in e has exactly one coercion
applied to it. We use equations 11 and 12 for this.

3. +/—-factorize all coercions in e and split all coercion applications into two coercion ap-
plications using Equation 12. This means that every head coercion free subexpression e;
now has exactly two coercion applied to is, as follows:

(e™){(dF)ey
We call completions of this form +/—-normalized.

4. now look for a E;_—l‘edex in e and perform a E;)_—reduction step on e if such a redex is
found. Stop if no redex is found.

5. after the /;-reduction step the completion e may (in the worst case) contain subexpres-
sions of the form

(erF) (e N (diT)(dyT)er
by Equation 12 these are rewritten to

(da75d1T 5007501 )es
and 4/—-factorized using ¥-reduction (Lemma 3.28).

6. goto step 4.



Section 5.1. Rewriting-based algorithm 73

E;~ ¢ -reduction as described here is of course not very efficient. In an efficient implemen-
tation one would not factor all coercions but only the proper ones and then when looking for
F;~-redexes take into account that one can always add identity coercions when needed.

We will in the following look at how to implement the different elements in this process.
Especially, since there are some complications with the rules 137, 17~ and 171, we will consider
how to implement these rules. But first we will consider how to implement +/—-factorization.

Implementing +/—-factorization

When coercions are represented by their type signature +/—-factorization becomes fairly easy.
Assume that ¢ is a coercion that we want to +/—-factorize into ¢;7 ;¢ where both ¢; and
c; are optimal (canonical) coercions and such that ¢ = c;T;ey7. Since also ¢; and ¢y are
going to be represented by their signature all we have to do is to find the representation type
corresponding to the common range type of ¢; and domain have type of cy. Let us call this
type p. Since c¢q has to be positive, p has to be greater than or equal to the domain type p; of
c; and similarly, since ¢, has to be negative, p has to be greater than or equal to the range type
p2 of ca. We cannot make p too large, because we need ¢ = c;T;cy” to hold. If we were to
introduce a boxed subtype in p where the corresponding subtype in neither p; nor p, is boxed
then we need ¢-equality to prove ¢;1; ey~ equivalent to ¢, since ¢-equality is the only way that
a new “intermediate” and “more boxed” type can be introduced, i.e. in box, ;unbox, = ¢, the
range type [v] of box, is more boxed than common domain and range type of ¢,,. This means
that we have to make p the smallest type greater than or equal to py and pg, that is:

p=piUps

Implementing rule 13~

Consider rule 13~

Az (d7)(e[(eT)z/z]) = ((cT —=d7 )z e

Assume that the potential redex looks something like:

Az (d)(...{c;P)w...)

with n occurrences of z in the body of the abstraction with n positive coercions ¢ ... ¢, one
at each occurrence. It might be that these are not all the same and that we therefore cannot
apply the rule. However, if we can find a proper coercion ¢ such that for each of the coercions
c; there exists a positive coercion ¢;’ such that:

Feci=c;c

then we may split each of the coercion applications at the occurrences of z into

(e ) (eT)a

for some coercions ¢;" and then apply rule 137. The largest possible coercion ¢ that fulfills this
criteria can be found in the following way. Let the range type of ¢ be p. If the range type of
the coercion ¢; are p; then we have p, < p < p; for all 2. This means that we may choose ¢ to
be the canonical coercion with the signature:
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Pz~ p1 T py

where p, is the type of x and M is the greatest lower bound in the representation type lattice
(see Proposition 3.33).

Another thing that might seem like a problem with rule 137 is that if 2 does not occur free
in the body of e then it seems like one can keep pulling coercions out from the abstraction. But
this is not the case since for every coercion we pull out, the type of the formal parameter will
decrease, and this cannot go on forever.

Implementing rule 17~ and rule 17+

The way we handle rule 17~ and 171 is similar to rule 137. Let us look at one of them, 177
(the other is handled similarly):

(e, e )e{m} = (plc™,0))e{n"}

In this rule the type of e is Ya.p for some type variable a. If we look at a potential redex for
this rule:

(d¥)e{m}
then it is not likely that d matches p(¢,c) since this demands a lot of the structure of d. So
again we must factor out a proper part of d that has the right form, that is, it matches p(z,c*)
for some proper coercion e¢. Assume that this is possible then we will get a reduction of the
form:
d¥)e{r} =
ple,e®))e{n} =
ple’,1))e{n'} =
<d”+>€{71',}

In the splitting of d we are only allowed to use the pure coercion equality (without ¢ and ¢),
that is:

(
(@)
(@)

Fd= ﬁ(L,C-I-);d,

this also means that, since d is positive then so must d’ be. The coercion ¢ in this equation
will have signature 7 ~» 7/ which means that the coercion p(¢,ct) must have signature p[a/7]
~ pla=/x][at /7] where o~ /a™ are all the negative/positive occurrences of « in p. So the
question of finding the new coercion d” can be rephrased to the question of finding the largest
boxed type 7’ such that d’ is still positive. If the type of the whole expression is p/, then the
condition that 7’ must fulfill can be written:

pla™/xlla* /7] < of

This means that we may go over the two types structurally and collect all constraint on 7’
This will give us a set of constraints of the form:
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' < pi
We may then find the maximal solution to the set of constraints by setting:

!

T =p1 . py

This works because p regarded as a function of « is monotone with respect to our ordering on
representation types. We then perform the reduction if 7’ is different from .
Let us finally give an example to illustrate the use of rule 177. Let id be the identity function
and consider the following expression:
([boxjpt —tint] — [unbox;pt —boxipel)id{[int — int]}

The type of the expression is [[int}=int]5{[int}{int]]. This gives only one constraint on 7’

7' < [[int]—[int]]

which means that we may set 7’ to [[int]-{int]]. Since one may use signature to represent
coercions then the reduction step is now very easy, because d’ is now simply the canonical

coercion from [[int}{int]}{[int}5{int]] to [[int]int}{[int}{int]], that is, the coercion
LpintyoXint = [intfint])-
5.1.2 ¢-reduction on y-free completions

¢~ E7-reduction is implemented completely analogue to E "%~ -reduction we just use ¢~
instead of ¢, ;7 instead of F;~, —/+-factorization instead of +/—-factorization, U instead of
M and M instead of L.

5.1.3 An Example

Let us look at a small example of F;~¢7-reduction. The example is the following I';-expression:

id{int} (id{int} 5)
where id is the polymorphic identity function Aa.Az:a.z. The ¢-free canonical completions
of this is:
((pox —unbox)id{int}) (((box —unbox)id{int}) 5)

We will now describe what happens when we apply reduction to this. There is no need to reduce
the coercions to normal form (Step 1), since all coercions are in normal form, so this leaves the
completions unchanged. If we perform step 2 and 3 we get the —/+-normal form:

(1)(+)(((box—unbox)(s)id{int}) (+)(t)(({(box —unbox)(r)id{int}) (+)(1)5))

If we look for a £;"-redexes in this term we find two 14~ -redexes. If we performs the first one
of these we get:

(¢)(¢)(unbox)(({¢)id{int}) (box)(t)(¢)(((box — unbox)(:)id{int}) (¢)(¢)5))

If we —/4+-normalize this completion (step 5) we get:
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(unbox) (¢)(({¢)(¢)id{int}) (+)(box)(((box —unbox)(s)id{int}) (+)(:)5))

We the go to step 4 and find one more R147-redex. After the reduction step we get:

(unbox) (¢)(({¢)(¢)id{int}) (+)(box)(unbox)(((box —unbox)(:)id{int}) (box)(t)(¢)5))

After yet another —/+4-normalization we get:

(ambox) (1)(((1) (1) 1d{1nt}) (1) (1) (((1)id{int}) (1) (box)$))
which contains no E;)_—redexes. The normal form completion is the found by “cleaning up” this
completion using rule 11 and 12 (in this case 11 is enough):

(unbox)((id{int}) ((id{int}) (box)5))

5.1.4 Complexity analysis

Let us reason about the complexity of a possible implementation of reduction of completion
based on the description above. In the part of the proof of Lemma 4.15, where we show strong
normalization of ¢~ F5"-reduction modulo ¢, we showed that an £~ step rewrites at least one
coercion - ¢:p ~ p' to a new coercion ¢’ that has domain type or range type properly increased
in the subtype hierarchy of Definition 3.29. The same argument holds for ¢~ £;"-reduction (not
modulo ¢) as well as ¢~ E;7-reduction (not modulo ), which is actually the kind of reduction
that an implementation should perform. Now this is the same as saying, that for an E;,_ step
the representation type of at least one subexpression of the term that is rewritten, is properly
increased. If the program size is n measured in terms of the number of subexpressions in the
program (not including the size of type annotations) and the maximum size of any type of a
subexpression in the program is m, then the maximal number of £~ step that can be performed
is O(nm). Before each step one has to find the next redex. We expect that it may be possible
to do this in constant time given a work list of pending redexes. Furthermore, one might also in
the worst case have to perform ©(k) LU/M-operations (to do 4+/— or —/+ factorization, finding
the coercion to “pull out” of an abstraction, etc.) before doing the next £~ step, where & is the
maximum number of non-defining occurrences of each variable in programs, e.g. free variables
z in bodies of abstractions Az.e. Each of these operations may take time ©(m) in the worst
case. This gives a another factor ©(km) which should be multiplied with the number of £}~
steps giving the total worst case time complexity @(nkm?). The factor k£ may in the worst case
be proportional to n so one may also express the worst case time complexity less informatively
by ©(n*m?).

If we are performing reductions on programs that correspond to ML-typable programs then
the size n used above is also the size of the corresponding ML-programs. It is a well-known
fact that ML-typing can produce types that are at least exponential in the size of the programs
that are being typed. This means, that m may be exponential in n and that time complexity of
k" -reduction modulo ¢ for MI-programs may be exponential in the size of the ML-programs.
On the other hand, ML-programmers know that this worst case behaviour hardly ever occurs
in real programs, only in contrived examples. In general m will be quite small and so will the
number k of Ll-operations which have to be performed for each £~ step also be. So one should
expect that the actual time complexity would be more like ©(nm?) or ©(n), if we regard m as
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a small constant factor independent of the size of programs (that types in large programs are
not more complex than types in small programs).

We may also consider the space complexity of a possible implementation of completion
reduction. Since coercions are represented by signatures (pairs of representation types), the
size of a the terms that we do reduction on may be of the order ©(nm). So the worst case space
complexity for the reduction approach must be ©(nm), but is in the average case more likely

to be O(n).

5.2 Graph-based algorithm

In this section we will present a different algorithm for finding optimal completions. The
algorithm is not based on a rewrite system as the ones described in Section 5.1, but on finding
an assignment of so called box values to a set of box variables extracted from a Fy-expression.

The algorithm can be summarized as follows. First a principal completion® is generated
from the Fo-expression. This is a special kind of completion parameterized over variables called
box wvariables. In a principal completion every head coercion free expression has a coercion
applied to them and coercions are represented by their type signatures. The first type in these
signatures corresponds to the type of the head coercion free expression itself, while the second
type corresponds to the type of the expression with the coercion. In all types in the principal
completions all type constructors are annotated with a unique box variable b or a boz value (U
or B). When box values are substituted for the box variable in a principal completion a new
expression is obtained, which is equivalent to a given completion of the original Fe-expression.
If a type constructor is annotated with U/B then the constructed type is unboxed/boxed
respectively. Given an Fg-expression e and a completion € (with only canonical coercions) of e
at some given type, it is always possible to find a substitution ¢ such that we may obtain & by
applying ¢ to the box variables in the principal completion of e.

From the principal completion of an Fy-expression e we generate a graph, called a repre-
sentation graph, where the box variables correspond to the nodes and an edge in the graph
corresponds to a change in representation.

Representation graphs are used to find an assignment of box values to the set of box variables,
by minimizing the number of edges that correspond to an actual change in representation. These
assignments are substitutions which when applied to the principal completion of e result in an
expression equivalent to an optimal completion of e. We will show how to find assignments of
box values that correspond to both optimal i-free completions and optimal ¢-free completions.

5.2.1 Principal completions

Before we describe how to obtain principal completions we need to explain the notation used in
principal completions. The syntax of representation types and coercions in principal completions
is slightly different from representation types and coercions in ordinary completions. Principal
representation types p are ordinary Fo-types with a box annotation on all type constructors.
Box annotations are either a boz value 3 €{U, B} = BoxVal or a box variable b. Box variables
range over box values. The syntax of types in principal completions is shown in Figure 17.

"This name is borrowed from Poulsen [Pou93] although our principal completions are somewhat different than
those of Poulsen; they serve the same purpose.
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We say that a principal representation type is ground if it contains no box variables. All
representation types can be represented by ground principal representation types. Boxed rep-
resentation types [v] are represented by a type having a B annotated on the topmost type
constructor of the representation of v, and coercions are represented by their type signatures.
For example, if p; is represented by the type g;, then the type [pi—p2] is represented by 01— 0y,
and the coercion box;p¢ is represented by int” ~+ int®.

Type erasure for principal representation types is defined similarly to type erasure for ordi-
nary representation types (we use the same notation).

a € TypeVariable; 5 € BoxVal ; b € BoxVariable

0 u=a | p—*"p | Y'a.po Principal representation types
g=U|B Box value
pa=0b|p Box annotation

Figure 17: Principal representation types

Expressions in principal completions have the same syntax as explicitly boxed Fy-expressions
except that the types are now principal representation types and that coercion application is
written < o ~+ o' > e. If both types are ground, then < o ~» o’ > e is the application of the
optimal coercion ¢ with signature p ~ p’ to e, where p and p’ are the types represented by p
and o’. In Chapter 3 Theorem 3.18 we showed that for a given signature optimal coercions are
unique (modulo core coercion equality) and therefore type signatures can be used to represent
coercions, since we have a way of finding optimal coercions from these. This is what we will
do here. Of course < o ~+ o' > e will in general be parameterized over box variables, but
when we substitute primitive box annotations for these we get an application of a given optimal
coercion. By substituting /’s and B’s for all box variables in a principal completion one obtains
a representation of a completion for the original Fg-expression. The point is, that this will not
give us the completion directly, but if we replace all types o by the type they represent and
replace type signatures by their corresponding canonical coercions, then we obtain a real Fg-
completion.

[z : 0,}F< 0, ~ 0 >0 - lém  or}iéie -
I'F<o, =Y 0~ o' >Aw:p0,.6:0

[Fé:0,—U0 ey, I'Fé:p
Th<o~ o' > (¢1 &3):0 TF<VWa.0~ o' >Aa.é:p'
I'~é:vVa.p

IH<o[of/a] ~ o' >e{oP}:0’

Side condition: all distinct types in a derivation have distinct box variables.

Figure 18: Inference rules for generating principal completions

Figure 18 shows an inductive system for generating principal completions. In this figure ex-
pressions €, etc. are principal completions. A principal representation type o with a superscript
U/B, e.g. 017, is a principal representation type where the box annotation on the topmost type
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constructor is U/B respectively. If the principal representation type is a type variable « then
the is no topmost type constructor and arB = a.

Definition 5.1 (Principal Completions )
Let e be a Fy-expression with typing judgement I'e:o then € is a principal completion of e
if |é] = e and if:

[ké:o
is derivable from the rules of Figure 18, where I' is a type assignment obtained from I' by
replacing every type assumption z:0, in I' by z:0, where g, is a copy of o, where all type
constructors have been annotated with box values. Similarly, ¢ is a copy of o where all type
constructor have been annotated with box values.

A few comments on this definition are in order. Principal completions, as we have defined
them here, are defined with respect to fixed assumptions on the representation type of the
completion and its free variables. We could have used boxed variables instead of box values in
[ and p to get an alternative definition. This is probably what one would want to do if one
were interested in using boxing analysis in separate compilation, but we have chosen to use the
slightly simpler approach, since we are not concerned with separate compilation in this thesis.

For a given Fay-expression e we will from now on write € for one of its principal completions
(if the choice of type assignment and representation type is not important). If ¢ is a box
value assignment for which the set of box variables in € is a subset of dom(s) we write ¢(¢é)
for the corresponding completion obtained by applying ¢ to all box variables in é, replacing
the principal representation types by ordinary representation types and inserting canonical
coercions for the type signatures in €. That ¢(€) is a completion for any ¢ is straightforward
to verify, but can all completions be obtained by applying some substitution ¢ to the principal
completion? The answer is: yes, but only if we limit what we mean by “all completions”. In
the completion obtained by substitution all coercions will be optimal coercions. So we cannot
obtain completions with non optimal coercions in them, but since we are really not interested
in these completions this is not a problem and we might as well limit the completions that
we want to consider to the ones with only optimal coercions. Any of these completions is
completely determined by the types of all its subexpressions and in the derivation of a principal
completion all types of subexpressions have fresh box variables on all type constructors (the
first type in all type signatures). Therefore, we may choose the representation type of each
subexpression completely independently of the representation type of all other subexpressions
for a given expression. We therefore have the following proposition:

Proposition 5.2 Let e be a Fy-expression with principal completion € and let € be a completion
of e in which all coercions are canonical. Then there exists a substitution ¢ such that ¢(é) = €.
Conversely, for every substitution ¢ such that ¢ is defined for all box variables in é then ¢(€) is
a completion of e.

5.2.2 The representation graph

The purpose of the algorithm is to find optimal completions, which minimize the changes in
representation that can occur at run-time. If we were to state this in relation to principal
completions, it means that in all subexpressions of the principal completion of the form < g ~»
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o' > € the two types p and o’ should be as close to each other as possible. This means that in all
signatures ¢ ~+ o’ in the principal completion we should find all pairs of box variables occurring
at the same position in the two types (on the same type constructor) and collect these into a
set of ordered pairs §. We should then find a substitution for the box variables such that the
number of pairs that are mapped to different box values is minimal.

We will use a directed representation graph G instead of the set S, where there is a node in
G for every box variable in § and there is an edge in G between two nodes corresponding to box
variables b and ', if the pair (b,') is in the set S. A node G is a pair of a box variable and a
value in BoxzVal| and there is at most one node in G for each box variable. This means that the
set of node NV in the graph corresponds to a partial function from box variables to box values.
For each pair (i,b) in S, where g is a box value, we generate a new fresh node n in G, add an
edge from n to the node corresponding to b, set the value of n to u, and collect all these new
nodes into a set A, called the sources of the graph. Similarly, for each pair (b,x) in S, where p
is a box value, we generate a new fresh node n in G, add an edge from the node corresponding
to b to n to G, set the value of n to u, and collect all these new nodes into a set Z, called the
sinks of the graph. We will say that ¢ is a box value assignment to a representation graph, if ¢
assigns a box value to every node in the graph and it extends A regarded as a function, that
is, if for every node (b,4) € N we have ¢(b)>f3. By setting the value (the second component)
of all the remaining nodes in a graph with undefined values to box values we can use graphs
to represent box value assignments to the set of box variables in the corresponding principal
completion. In the following we will not distinguish between nodes and their corresponding box
variables when it is clear from the context what we are referring to.

Definition 5.3 (Representation graph, sources and sinks)

Let € be a principal completion w.r.t. a type assignment I and a representation type g. The
representation graph G corresponding to € is a four tuple (V,£,A,Z) where

1. NV is the set of nodes of the graph, where a node is a pair of a box variable and a value in
BozVal, and there is only one node in A for each box variable. We will use the notation
b, to denote (b, L1).

2. & is the set of (directed) edges of the graph, represented by pairs of nodes.
3. AC N is aset of nodes called the sources of the graph.

4. Z C N is a set of nodes called the sinks of the graph.

and?

(N,E,A,Z): U C(,O,,O’)

<pfv>p’>é’EE(§)

where

*Here the operator U is extended in the natural way to work on tuples of sets, e.g. (Si,S52) U (Ss,S4) =
(Sl U 53752 U 54)7 etc.
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c(p1 =P pa, pi! —V p2') = ({br, 0L}, {(bL,0.")}0,0) Ue(pr's pr) Uelpz, p2')
c(pr =" pa,pt’ =7 p2) = ({br,n},{(br, )}, 0, {n})Uc(p, p1) U c(p2, p2’)
where n is a fresh node with value
c(pr =7 pa,pi' =" p2) = ({br,n}, {(n,b0)}, {n}, 0) U c(pr’, p1) U c(pa, p2)
where n is a fresh node with value
e(Vap, ¥ ap) = ({bL, 60"} {(bL,60.")},0,0) U c(p, ')
e(Va.p, ¥oa.p') = ({bL1,n},{(bL,n)},0,{n}) U c(p,p')
where n is a fresh node with value 3
e(VWa.p,Ya.p') = ({br,n},{(n,01)},{n},0) U c(p, p')
where n is a fresh node with value
c(o, @) = (0,0,0,0)

Besides source and sink nodes “internally” in the principal completion the sets A and Z
also contain source and sink nodes corresponding to the input and output of the principal
completion. When we talk about a given principal completion it is always assumed that this
is with respect to a given type assignment I and a given type p. We may then regard all the
types in I' as input types and p as the output type of the principal completion and all the nodes
corresponding to the box variables of these types (input and output types) are then source or
sink nodes. One of these input/output nodes is a source node if there is an outgoing edge from
the node and a sink node if there is an incoming edge to the node in the representation graph.
In an actual implementation we have to assign values to the input/output nodes by annotating
o and the types in I' with box values. Actually, there is no limitation on how to do this, but
in our implementation we have chosen to assume that the “world” is unboxed (e.g. to output
values one need these to be unboxed). That is, all values that are part of the input or the output
of a Fg-expression must be unboxed. This assumption is fair as long as we are only considering
representations in single entities like a single Fy-expression. If we were to extend our framework
to work under some form of separate compilation we should probably use another assumption
and modify the framework slightly.

In the following we will often show pictures of representation graphs or parts of these. The
following lemma will help motivate the way we present graphs graphically:

Lemma 5.4 Given a box value assignment ¢ to a principal completion é then to every edge
(by,b2) in the corresponding representation graph where < (by )#< (by), there corresponds exactly
one proper primitive coercion ¢ ing(€). If

box

e ¢(by)=U and s(by)=B then ¢
e ¢(by)=B and ¢ (by)=U then ¢ = unbox

Proof:
We will prove the lemma when ¢(b1)=U and ¢(b2)=B. The proof for ¢(b1)=B and ¢(b2)=U

is similar. Assume that (by,b2) € c(p,p’).2 where <p ~» p’ > € is a subexpression of . We will
prove the statement by induction on the structure of the common erasure of p and p'.

Case: |p| = a. Cannot be the case.
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Case: |p| = 7. Let p = p1—Pps and p’ = pi/—? po/, there are now three different possibilities,
either (1) b = by and b’ = by in which case it is easy to see that the canonical coercion ¢, ,:p
~+ p' ( Theorem 3.10) must have the form c;box so the statement holds for this case, (2 and
3) (b1,b2) € c(p1’,p1).2 or (b1,b2) € c(p2,p2’).2 in which cases the statement follow by induction
and from the fact that the canonical coercion ¢, ,i:p ~ p’ is equal to either ¢,/ ,—¢,, ,,/;box
OF Cpy 7 p—¥Cp, ot Where ¢,1 5 is the canonical coercion with signature p;’ ~ p; and ¢, ,, the
canonical coercion with signature py ~ p'.

Case: |p| = Va.r. Proven similar to the case for function types.

We may therefore show nodes and edges of a representation graph graphically as follow:
bi:f———by:f3

where 3 and 3’ are box values of the two nodes respectively and ¢ is the corresponding coercion
as explained by Lemma 5.4. If the coercion is an identity coercion we will leave it out. An
example could be:

by U box

bQZB

where we annotate the nodes by and by with their box values in the assignment and we annotate
the edges with the corresponding primitive coercion.

5.2.3 Finding optimal completions

There are of course many ways that one might attack the problem of finding the best box value
assignment to the set of box variables generated from a principal completion just as there are
many forms of assignments that may rightly claim to be optimal, since as described in Chapter 4
the resulting optimal completion that we get from the reduction systems is a representative
for an equivalence class of ¢i-normal forms. So any algorithm that gives as result another
representative for the same equivalence class as that given by one of the reduction systems, is
in principal just as good (but not in practice).

Poulsen [Pou93] calls the edges in his graph “constraints” and he uses the following criteria
for finding the best assignment: among the substitutions that solve the most constraints by
equality choose the one that assigns U to most of the box variables in the constraint set.

We shall in this section describe two ways that will lead to assignments corresponding to
optimal - respectively ¢-free completions. The two ways are in a sense dual in that the one
is obtainable from the other by interchanging U and B, and we shall only describe the one in
detail.

5.2.4 Finding optimal ¢-free completions

Before presenting the algorithm in Subsection 5.2.7 we will give a specification of its input and
output, and prove that the output will in fact be an optimal i-free completion. The specification
is:

1. Let the input to the algorithm be the representation graph G generated from the principal
completion é.
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2. The output from the algorithm is ¢(€) where ¢(b) = B, if a node b lies on the path between
a source with box value B and a sink with box value B, otherwise ¢(b) = U.

We will first show that the output of the algorithm is a ¥ ¢-normal form.

Given a principal completion é and a box value assignment ¢ we refer to ¢(€) as the cor-
responding completion. Given a completion e and a principal completion é we refer to the
assignment ¢, where e=¢(€), as the corresponding assignment. We say that we have changed
an assignment ¢ in a single-step to ¢’, if the value of ¢ and ¢’ only differ in one box variable and
we say that a single-step change to an assignment is legal if the two corresponding completions
are F-equivalent.

Lemma 5.5 Let e be an Fy-expression with principal completion é, ¢' an assignment of box
values to the box variables in € and €' the corresponding completion. Any use of an E-equality
step e'=pe' in a derivation can be split up into a sequence of E-equivalences

e=e1=...=¢,=¢"

such that corresponding sequence of assignments

/ "
SRR ERETRV RN

consists of single-step changes.

Proof:

Consider a coercion ¢ in a completion with only optimal coercions. By Lemma 3.20 we know
that we can factorize ¢ into prime coercions: F ¢ = ¢;;¢3;...;¢,.

If we look at a given E-equality step e’=gre’, we may split all the coercions in €’ that are
moved by R into compositions of prime coercions. Assume that there are n of these. We may
then use Equation 11 of Figure 11 to make sure that applications of these coercions contains
only prime coercions. We can then by use of Equation 10 of Figure 11 and n usages of R in
which only one prime coercion is moved show that e’ is F-equal to €.

Let us, as an example, look at Equation 13 of Figure 12:

({(e—d)e) €' = (d)(e ({c)¢))

we may show that:

({c—d)e) ' =
((t—=d))..{t—=di)(c; —e)...{ep—1)e) € =
d)(((e—=dir)...c=di) (e —=1)..(er—1)e) €) =
(dy)...{d1)(({e1—=¢)...{cx—1)e) €') =
(d)(((ep—rt)...{c;—1)e) €) =
(d)(({e2—1)..(ex—re)e) ((er)e”)) =
(d)(e ((ex)--(er1)e')) =
(d)(e ((c)e))
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Moving a coercion with only one proper primitive coercion corresponds to changing the
values of just one box variable in the corresponding box value assignment. [ |

Theorem 5.6 The completion found by the algorithm is a ¥¢-normal form.

Proof:

If the output from the algorithm is not in normal form then the corresponding completion
must be F-equivalent to a completion which contains a % or ¢-redex. This means that we
should be able to change the corresponding assignment in single-step changes (only changing
the assignment in one variable at a time) to an assignment corresponding to that completion.
Actually, no such assignment exist, since we use canonical completions, but instead there must
exist an assignment where in the graph there are nodes and edges like:

unbox box

by:B————=0by:U

bg:B

or
box unbox

by U by:B——220% U

where changing the box value of by will correspond to performing one (or several) ¥ /¢-reduction
step(s). What we have to show is that there is no way that we can change the output from the
algorithm in legal single-step changes to an assignment that contains one of the two configura-
tions shown in the diagrams above. If this is the case then there is no completion with a i or
a ¢-redex that is F-equivalent to the completion corresponding to the assignment.

Consider a path in the graph from a source b; to a sink b, both with box value B. We will,
without loss of generality, assume that the subgraph that we are considering has the form:

b:U b U
Y{ uny
b]:B bQB%bgB ............................ b’)’L—l:B an

There may be more edges than we have shown and the nodes b and b’ are not necessarily sources
or sinks. We will first look at the part of the graph that lies on the path between b; and b,.
The only situations where we may have an edge with different box values at its ends are the
two shown. First we will look only at the part of the graph shown in the picture. It can be seen
that is not possible the change the box values of any of the nodes by to b,, by a legal single-step
change. Imagine that we change the box values of by to U. We would then get the graph:

b:U b:U
\ unby’
bl ‘B unbox bg . U box 63 B bn—l B bn :B

This will introduce a new coercion unbox somewhere in the corresponding completion, but there
is no K-rule that can introduce a primitive coercion not already present in a completion (£-rules
only move coercions around).

We will then look at the subgraph not including the path. Let us look at the node b. All
the nodes in the part of the graph that come before b must have box value U. We could try to
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“push” the box-coercion backwards by setting the value of b to B. This might be possible as
long as there are no outgoing edges to a node with value U. Assume that this is the case for b.
Then this would look like:

b:U o' U
Y{
bz:B

If we set the value of b to B we will introduce an unbox-coercion on the edge from b to 4" and
as we argued above this cannot correspond to a legal single-step change. If the values of b were
B or there were no outgoing edge from b except to by then there is no problem in setting the
values of b to B because no ¢ /¢-redex is introduced, and if we try to “push” the box-coercion
further backwards from b we may use the argument as we have just used to inductively show
that we cannot introduce any 1 /¢-redex by legal single step changes. A similar argument can
be used to show that this is also the case for the node #’, and this means the original graph
must correspond to a ¥¢-normal form. [ |

Notice that in the proof we only use the fact that some possible changes to the assignment
cannot correspond to F-equalities between completions, but not that the possible changes do
correspond to a F-equalities between completions. This seems to be much harder to show, but
fortunately this is not needed.

We will give an informal proof of the following:

Theorem 5.7 (Correctness of the algorithm) The completion found by the algorithm is an
optimal ¥-free completion.

Proof:
We will show that the completion € corresponding to the assignment produced by the algo-
rithm is a normal form under %-reduction modulo ¢. Since the completion is also a ¢¥-normal
form, it must be an optimal -free completion. Assume that we introduced a box;unbox pair
somewhere in the completion €. In the graph this would correspond to changing a part of the

graph of the form:
b1 U

bQIU

bg:U

into
box unbox

bllU b2:B

bglU

since one can only use ¢-equality at points where the type is unboxed. One can then try to
move the box coercion backwards in the graph and the unbox coercion forward in the graph
(using F-equality) in the hope that they both get eliminated by -reduction steps. Moving a
coercion might duplicate it or even eliminate it. We will assume for now that the coercions are
not eliminated by pure F-equality and treat this special case later. There cannot be both boxed
sources before by in the graph and boxed sinks after by in the graph, because then by would
have box value B. Therefore, at least all of the graph after by or before b, must be unboxed.
This means that in moving the coercion we can only hope to eliminate one of them. Assume,
without loss of generality, that we succeed in eliminating the box coercion. This will happen if
it meets an unbox coercion (or several, if it is duplicated), the original unbox coercion cannot be
eliminated and we may move it back the same way that we moved it forward and then further
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back the same way as we moved the box coercion to the point where the box coercion was
eliminated by a unbox coercion. This shows that we cannot by using ¢-equality obtain a new
completion that is not K equivalent to the original completion. Similarly, we may show that
using ¢-equality several times before moving the coercions will achieve nothing either, since if a
coercion, say box, created by one use of ¢-equality gets eliminated by an unbox coercion from
another coercion pair box;unbox created by another use of ¢-equality, it is, in a sense, just
replaced by the box coercion from this pair. Finally, if the coercions can be eliminated by pure
FE-equality nothing is gained either, since if we can eliminate a coercion by E-equality we can
also introduce it again by F-equality. This shows that the completion produce by the algorithm
is a normal form under ¥-reduction modulo ¢ and therefore also ¥-free. [ |

5.2.5 Finding optimal ¢-free completions

The specification of the algorithm that finds optimal ¢-free completions is completely dual to
the one for the algorithm that finds optimal i-free completions. All one does is to replace B
by U, U by B in the specification and one gets the specification for the algorithm that finds
¢-free optimal completions.

Similarly we have the theorem:

Theorem 5.8 (Correctness of the algorithm) The completion found by the algorithm is an
optimal ¥-free completions.

5.2.6 An example

We have chosen a small example to show a principal completion, its corresponding representation
graph and how the different assignments can be found. The example is the following -
expression:

id{int} (id{int} 5)

where id is the identity function which we assume is defined as a primitive. The principal
completion is then:

(int’ ~ intbs)(((intBte) 5bsintBbs) s intb7U(be) intbs)
(WP a.a=bra ~ YW )a.a—ba)id){intP}))
((inths ~ inth7)(((intPt1) 501040 Bti2) o jnghie U G1) jpghis)
(Vo a.a—=Pa ~ YW a.a—0%)id){intF}))
(intV(16) s inth11)5))

where I' is {id:VU(bl)a.a%U(bo)a} and the type of the completion # is int”(*18). The box
variables in parenthesis after box values represents the nodes generated for the corresponding
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sources and sinks. This gives the following representation graph:

bi:U b1 bi1:B
bi2:B bis b17 b7 by: B
bs: B bs big:U
b U b:0 bi3:U bo:U by:U
\
\bg bg:U by:U

Any assingment must have:

C(bo) = C(b1) = C(b2) = C(be) = G(bg) = §(b13) = C(b16) = C(bls) =U

S(ba) = c(bs) = c(b11) =<(bi2) = B

Any optimal assignment ¢ to this set must have ¢(b3)=U and <(b;0)=U as well as ¢(b7)=B,
§(b15)=B and ¢(bi7)=B. This leaves us with four possible assignments according to the four
possible assignments of box values to bg and b14. If we solve the set by the algorithm for finding
optimal i-free completions we get:

s(b3) = U, <(b:0) = U, <(b7) = B, <(bis) = B, s(bi7) = B, <(bs) = U, s(b14) =U
which corresponds to the completion:

({tint —unboxint)(id{int})) (({(boxint —¢int)(id{int})) 5)

If we solve the set by the algorithm for finding optimal ¢-free completions we get:

C(ba) = U7 G(blo) = Ua G(b7) = B, C(515) = B, C(bl7) = B, C(bs) = B, §(bl4) =B
which corresponds to the completion:

(unboxjpt)(id{int} (id{int} (boxjpn+)5))

The example does unfortunately not show the more intriguing problems involved in finding an
assignment, but we hope that it at least give some insight into the mechanisms involved.
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5.2.7 Description of a simple algorithm for finding node assignments

We will describe an algorithm for finding assignments corresponding to optimal ¥-free comple-
tions. The job of the algorithm is to find those node that lie on a path between a source node
and a sink node with box value B. This can be done in two phases. In the first phase one
starts at all source nodes with box value B and visit all nodes that can be reach from these
source nodes following all edges in the forward direction giving these nodes a mark indicating
that they lie on a path coming from a source node with box value B. In the second phase one
one starts at all sink nodes with box value B and visit all nodes that can be reached from these
sink nodes following all edges in the backward direction giving these nodes a mark indicating
that they lie on a path leading to a sink node with box value B. After this a node is assigned
box value B if it has been marked with both kinds of marks and U otherwise.

An algorithm for finding assignments corresponding to optimal ¢-free completions works
analogously to the one for optimal ¥-free completions. One simply replace B with U/ and replace
U with B in the above description and then the algorithm finds optimal ¢-free completions.
Finding the final assignment can be done during the second phase of the algorithm.

Marking the graph can be done by a simple reachability algorithm. Since the graph may
contain cycles one needs some form of visited mark that indicates that a node has already been
visited to make the algorithm terminate, but since the algorithm already marks all the node it
visit with a mark, this can be used.

5.2.8 Complexity analysis

The time complexity of the algorithm depends on two things: the time complexity of the graph
generation and the time complexity of the reachability algorithm. The time complexity of the
graph generation is linear in the size of the graph. We will therefore first work out the size of
the graph.

Size of the representation graph

We will work out the size of the representation graph in terms of the size n of the program
being analyzed and the maximum size m of the type of any subexpression in the program. The
number of nodes in the representation graph must be of the order ©(nm) since we generate a
node for each type constructor in the type of each subexpression in the program. In the worst
case the number of edges in a graph can be quadratic in the number of nodes in a graph, but
this will not be the case here. The number of outgoing edges from a node is of the order O (%),
where k£ is the number described above in Subsection 5.1.4. So the number of edges in the
representation graph can in the worst case be of the order ©(nkm).

Complexity of reachability algorithm

The algorithm presented is linear in the size of the graph (in fact the number of edges in the
graph). The generation of the graph is linear in the size of the generated graph. The two phases
of the algorithm have the same complexity. In each phase a given node in the graph will be
visited at most as many times as there are incoming edges to the node. The time complexity
of the algorithm is therefore ©(n,q4) Where nq4 is the number of edges in the graph, since all
other operations performed by the algorithm can be performed in constant time.
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Complexity

Since the number of edges in the representation graph in the worst case can be of the order
©(nkm) the worse case time complexity of the algorithm is ©(nkm).

If we again (like in Subsection 5.1.4) consider what happens when we run the algorithm on
programs that corresponds to ML-typable programs, then the number of edges in the graph will
in general be much smaller. The maximal out- or in-degree of nodes in the graph will depend
on the maximal number of non-defining occurrences of a given variable in the program and one
will therefore expect the number of edges in the graph to be of the order ©(nm). So one should
expect that the actual time complexity would be more like ©(nm) or ©(n), if we regard m as
a small constant factor independent of the size of programs.

The space complexity of the graph based algorithm is given by the size of

the graph, so it must be ©(nkm) in the worst case. But the average case space complexity
is more likely to be ©(nm) or ©(n) based on the same assumptions as were used for the time
complexity.

5.3 C,-completions

In this section we will discuss a subclass of completions called C,.-completions. These com-
pletions have some very nice properties and it turns out that by a slight modification we can
make our algorithm from Section 5.2.7 produce Cp.-completions. It is therefore interesting to
know something more concrete about these completions, like for instance, does there always
exist such completions, does there exist optimal Cp.-completions, etc.

5.3.1 A classification of completions

Henglein [Hen92] has given a classification of completions in dynamic typing. He divides com-
pletions into four classes according to where coercions may be placed within the completions
and the form of these coercions. This classification can also be use to classify our completions.
The four classes are:

e C,7, the class of completions with only primitive (p) coercions placed at fixed (f) positions
in the completions, namely only at constructor (e.g. abstractions) and destructor points
(e.g. applications).

o (s, the class of completions with only primitive coercions, but where these can be placed
anywhere () in the completions.

o C.5, the class of completions with arbitrary () coercions, but where these are placed at
fixed positions in the completions (same places as in Cpy).

e C,., the class of completions with no constraint on either the coercions or where these can
be placed.

We will call a completion in class C where C is one of the classes above a C-completion. The
optimal completions considered so far is in general C,,-completions, but the subclass Cp. of C..
is also interesting as we will explain now.
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5.3.2 Significance of C,.-completions

We have not yet discussed how coercions can be implemented , but in general the primitive
coercions box and unbox are the only coercions that can be implemented directly. The coercion
box is implemented as a primitive operation that converts values from the unboxed representa-
tion to the boxed representation, and the coercion unbox is implemented as primitive operation
that converts values from the boxed representation to the unboxed representation. The iden-
tity coercion does not give rise to any operation in the implementation. Induced coercions,
however, introduce an extra overhead in the implementation in terms of new abstractions and
applications (stub code in Leroy’s terminology). For example, to get rid of function coercions
one would use the following rule:

(c—d)e = 1let f:p/,—p=eindz:p,.(d)(f ((c)z))

which introduces a new abstraction and a new application. Similarly, to get rid of Va.¢ one
would use the rule:

(Va.c)e = 1let f:Ya.p =€ in Aa.{c)(f{a})

which also introduces new code. The last kind of induced coercion [e¢] is eliminated using
the equality unbox;c;box = [e] and rule 12 from Figure 11. So when one implements C -
completions extra (stub) code will usually have to be inserted. This is not the case with
Cps-completions. Furthermore, C,.-completions will contain no coercions on recursive data
structures, like map(unbox), which are also undesirable as we will discuss later in Subsec-
tion 6.4.

5.3.3 Existence of C,.-completion

It is not obvious that there always exists a C,.-completion for a given Fy-expression. In fact, if
we insist on a fixed representation type of a completion there exist Fo-expressions that have no
completion in Cp,. Take for instance the identity function, this has no Cp.-completion at type
int—int. But we know from Section 4.6 that canonical i-free completions only have primitive
coercions, so these must be in C,.. This means that if we insist on having fixed assumptions on
the representation type of a completion of a given closed ly-expression e, then all we can be
sure of is that there exist a completion of the form (c)e where € is a Cp.-completion of e. We
therefore have the following:

Proposition 5.9 (FEzistence of Cp.-completion)
1. Any Fy-expression has a completion in Cy.

2. If e is a closed Fy-expression and p any valid representation type for e, then there exist a
completion € € Cpu and a coercion ¢ such that (¢)€ is a completion of e at p.

It is even less obvious whether the classes of optimal completions will always overlap Cp. The
following example shows that there exists ¢-free optimal completions that are not F-equivalent
with any term in Cp, (we will use integers and pairs in the example to make it simpler; one can
easily come up with a similar pure Fy example, but it would be somewhat larger):
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(Af :Va.(a—a)so—a. Agint—int . (f{int} ¢ 5,9 5))
(Ao Ah:o—a . Az o h x)
(Az:int.z)

The ¢-free optimal completion of this term at representation type intxint is:

(Af :Va.(a—a)—o—a.
Ag:int—int . ((unbox)(f{[int]} ((unbox—box)g) ((box)5)),q 5)
(Aa. Ah:a—o . Az h x)
(Az:int.z)

There is no way that we may get rid of the induced coercion unbox—box in this completion
by using F-equality alone. It is, however, very often the case that the optimal classes of
completions contains elements from Cp.. Even if this is not the case one would expect that
the best completion in Cp, often is just as good or better than the optimal completion (any
in the optimal class), because the completions in Cp, has no extra stub code inserted. Only
experiments with a real implementation may show this.

5.3.4 The class of C,.completions

Since we cannot be sure that there always exist Cp.-completions at a given type we will study
the following class of completions instead:

Cpx = {(c)e e € Cpsx A e closed A ¢ optimal}

If an expression e is not a closed expression one may close it by adding a lambda-abstraction
to e for all free variables in e. One may then apply our approach to this closed expression instead.
Afterwards one may then have to move some induced coercions into e (using rule 13 from FE)
before removing the lambda-abstractions again. Cp.-completions may only contain stub code
related to boxing and unboxing external objects. This could be boxing and unboxing of input
and output values or of input and output to primitives (introduced as free variables). We could,
therefore, say that Cp.-completions have no internal stub code.

5.3.5 Simple representation graphs

An interesting fact is, that we by a slight modification of our algorithm, can make it produce
optimal C.-completions. As explained in Section 5.2.2, if we are given a box value assignment
¢ to the box variables in a given principal completion €, then to every edge in the corresponding
representation graph there corresponds a primitive coercion in the ¢(é€). It is not hard to
determine which edges in a representation graph will correspond to coercions which will be part
of an induced coercion in ¢(€é) for any ¢(e.g. ¢ is not directly applied to some sub-expression é’ in
é. If one removes all such edges from the representation graph and for each edge merge the two
node into one new node by setting the outgoing edges from the new node to be the union of the
outgoing edges from the two original node (except possibly the edge that we removed) and the
incoming edges to the new node to be the union of the incoming edges to the two original node
(again, except possibly the edge that we removed), then the remaining edges of the graph will
correspond to only applications of primitive coercion. If we use the algorithm that finds optimal
-free completions on the reduced graph we will call the completions that we find optimal -
free Cp.-completions and if we use the algorithm that finds optimal ¢-free completions on the
reduced graph we will call the completions that we find optimal ¢-free C,.-completions.
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5.3.6 Complexity analysis

Now the graph is much smaller, since it will only contain one node for each program point
(subexpression) of the original Fg-expression. This means that the reachability algorithm will
run in time ©(n), where n is the size of the program as defined in Subsection 5.1.4. It is,
however, not clear whether it is possible to construct the graph in a time proportional to its
size, since the number of edges that have to be contracted may be as large as for C,-completions.
So the complexity of the algorithm for Cp.-completions may be as bad as for C..-completions,
but we conjecture that it should be possible to do better for C,«-completions.
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Chapter 6

Representation analysis for ML

Although F, is a elegant theoretical polymorphic language it is not specially well suited as an
actual programming language, because it has some less attractive properties [Wel94]: both type
inference (given an ordinary lambda expression e, is there an Fp-expression €’ typable in Fy
with |e’|=e), and type-checking (given an ordinary lambda expression e, a type assignment T
and a type 7, is there a typing in Fy ending in I'te’:7 where |¢/|=¢) is undecidable. If we are
given a Fy-expression and remove all type related syntax (type abstraction, type application
and type annotations) we will get an ordinary lambda expression. There exist no algorithm
that can in general reconstruct a principal Fy-expression that we may instantiate to the original
Fy-expression. This is, however, the case for a subset of I¥5 for which the underlying expressions
(where all type related syntax is erased) corresponds to pure core part of MLL with no primitive
types. In [HJ94] we presented a boxing analysis for a small ML like language, that was not
based on boxing analysis for Fg, but was developed directly for that language.

Today many implementations of SML use an intermediate language very close to I extended
with certain language primitives such as recursion, case-expression, exceptions, etc. So it is our
belief that integrating our boxing analysis, as presented in the thesis, into such systems should
be possible. In this chapter we will look at how adding new languages features to Iy affects our
framework, especially, coherence and reduction. The features that we will look at are the most
common elements of ML-like languages.

6.1 ML and explicit boxing

Boxing analysis of ML should be performed sometime after type inference in a compiler. The
input language of the boxing analysis should be an explicitly typed form of ML that is con-
structed by the type inference module of the compiler and the core of this language should be
Fy. The essential problem that has to be solved is how adding primitives like +, sqrt, if, fix,
etc. to Iy affects our framework. That is, how does this affect coherence, reduction, etc.

6.1.1 Generating coherence conditions for ML

Extending our work to handle language primitives and polymorphic constants is straightforward
and elegant. We will show how one can derive very natural equations for language primitives
and polymorphic constants directly from equation 17 of Figure 12. Assume first that p is a
polymorphic constant of type o, then the typing rule for p is:

95
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I'Fp:o

If we add assumptions for all the polymorphic constants of a language to the initial type assign-
ment in typing derivations, then there is no difference in the way that polymorphic constants
and free variables are typed and our proof of coherence still holds. If one assumes that poly-
morphic constants are always fully instantiated, like in ML, then all we need is Equation 17
for polymorphic constants. That is, polymorphic constants (::,@,map etc.), and therefore also
monomorphic constants (+,-,*,sqrt etc., since these are just special cases of polymorphic
constants), can be treated by Equation 17 of Figure 12.

If P is a language primitive (like if or fix) instead of a polymorphic constant, we could try
also to use Equation 17 directly, but this would be too conservative. While we may assume that
polymorphic constants are essentially free variables with a given polymorphic type o, which we
may type with the rule above, then language primitives P usually have their own typing rule:

I'ey:oq ... T'te,ion,
IEP(er,...,en):09

Then for language primitives, like conditionals, we would be free to choose any representation
type for the arguments of P, even for what corresponds to the generic part of the arguments

(those parts that would be boxed had P been a polymorphic constant). So if we use equation 17
directly on P, regarding P as a polymorphic function instantiated to some type(s) and applied
to n arguments, then we would not always be able to prove coherence. Assume for the sake of
argumentation that we can give P a type Va.(7y * ... * 7,,) =7 for some types 7, 71, up to 7,.
Then if we regard P as a free variable with that type and if P always occurs instantiated and
fully applied in programs, we may introduce the following equivalence:

(P{r'})(e1, .y en) = Pler, .., €)
Then when we have a typing of
I'EP(eq,...,en): T[T/ a]
with the rule above, then we also have an equivalent typing of

IH(P{7'}) (e1,...,en):7[T" /0]

without the specific typing rule for P. Since we want to allow 7/ to have any representation,
also unboxed, we may use equation 17 without the restriction of 7/ to boxed types. In this way
we obtain an equation for P:

(Ple,1p))(P{p1}) = (plepr, )Y (P{p1'})

which is equivalent to

((e1, - €n) =€) (P{p1}) = (€, ..., €f) =) (P{p})
for some coercions ¢y,...,¢,, ¢, ¢},...,c,, and ¢’. Form which we may deduce an equation for P
of the form:

(e)P((er)er; - (en)en) = () P((eh)er, .., (€] )en)
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There is nothing in the proof of coherence (Theorem 4.8) that depends on the argument type p
in a type application e{p} having to be boxed, this is only a requirement from the typing rules,
that is, on completions. This means that the proof of coherence of completions will also work
in the presence of language primitives.

In this way one can develop specific equations for language primitives like conditional, fix-
point operator, pairing, and primitive operations and be sure that coherence is preserved in the
presence of these. We will give some examples below in Subsection 6.2.

6.1.2 Extension of completion reduction to new language features

Extending completion reduction to new language features is now almost trivial, since we know
how to obtain the polarized versions of Equation 17. We simply repeat what we did for Equation
17 for the two polarized equations 17~ and 171. We will also give some examples of this below.

6.2 Recursive and non-recursive definitions

Let us now give an example of the method outlined above for generating coherence conditions
and reduction rules (polarized equations) for language primitives.

6.2.1 Conditionals

The first example is the conditional. The type of the conditional if _ then _ else _ is
Va.(bool * & x ) = . We assume for the example the existence of a base type bool and a
tuple type. Treating the conditional the way describe above yields

(thootsptep' —+ €)(if _then _else ){p'} = ((thoot, ¢, ) —¢,)(if _then _else ){p}

for any coercion ¢ : p' — p. Applying both sides of the equation to argument (eq, ey, e3) we
obtain the natural equation

(c)(if e; then ey else e3) = if e; then (c)ey else (c)ey

Doing the same for equations 17~ and 17% we obtain the natural polarized equations for
conditionals:

(¢7)if ey then ey else e3 = if e then (¢ )ez else (¢ )es

if e; then (cT)e, else (cT)ez = (cT)if €; then ey else e

Since these equations follow from Equation 17 and the other equations of E then all the results
that we proved for completions reduction also hold for a language extended with conditions and
the equations above.

Note that case-expressions can be handled by using the following equivalence:

case z of {C(T) => ec}c
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if C17(z) then C1(T) => ec[Ci-i(z)/x;] else if Cy?(z) then ...

Where C'7 is a primitive testing whether the argument is a value the kine constructed by C e.g.
nil? test whether its argument is an empty list and C'-i a primitive selecting the ¢th argument
of a value C'(v), e.g. cons-1 is the same as hd'. Since we already know how to handle such
primitives it is easy to see that case-expressions can be handle directly within our framework
using the above equivalence.

6.2.2 Let-expressions

Let-expressions can be handled by a simple equivalence

let 2:7 = ¢ iney = (Az:7.€3)€y

By using this equivalence and the equations of F one can derive the following equation for
let-expressions:

(d)let z = (c)e in ¢’ = let z = ¢ in (d)(¢'[(c)z/z"])

A different and more complicated equation was used by Henglein and the author in [HJ94] since
we did not have abstraction coercion, i.e. Y. ¢, in our framework.

6.2.3 Fix-expression

We derive an Equation for (fix z e) in the same way that we derive a rule for conditionals.
The type of fix regarded as a primitive is Va.(a—a)—a so using rule 17 we get:

{((e—=1)—=e)fix = ((t—c) —i)fix
if we apply fix to some abstraction Az.e we get:
(e)(fix (c—t)Az.e) = fix (L —c)Az.e
which gives us the equation:

(c)(fix z e[(c)z/z]) = (fix z (c)e)

for the other syntax of £ix. Similarly, we may derive the following polarized equations for fix:

(cT)(fix z e[(c)z/z]) = (fix z (c7)e)
(fix z (cT)e) = (cT)(fix z e[(ct)z/z])

'In general we will not use these forms for common data types like list, etc. but rather the usual names, like

hd, t1, etc.
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6.3 Data type constructions

Adding new type constructors, like int, bool, *, etc. to a language will in general imply adding
new coercion constructors in order to ensure coherence of coercions. The way we add new
constructors is through datatype declarations. A datatype declaration has the form:

datatype aq..a, T =Ci71 | v | Ty

where T is the type constructor defined and C; are the value constructors of the type (used to
construct value of the type). The types define in this way may even be reflexive, i.e. the type
constructor may have contravariant arguments (see Subsection 6.4.2 below). If we add a new
type constructor 7', such that T'(7y,...,7,) is a type constructed by this, then we will have to
add a new coercion constructor T, such that T(cy,...,c,) is a coercion constructed by this. If
we do this we have to add a new formation rule for the new coercion constructor:

Feiipi~ pif
F T(ctyeen) : T(p1yeeespn) ~ T(p1seeispn’)

The equations that we have to add to the equations for coercions in Figure 6 are the following
(functorial) equations:

T(cyy...,¢,);T(dy,...,ds) = T(ey;3dy, ..., c3d,)

In terms of category theory type constructors can be seen as functors, and the equations above
are simply the two conditions that must hold for a functor. Put in a different way the coercion
constructor T is just the polytypic function[Jeu95] usually called map. That is, the analogue
function of the function map from the datatype list on any datatype.

We need to check that it is sensible to add new data type constructors in this way. That
is, we have to check that the results about coercions from Chapter 2 and Chapter 3 still holds
after adding the new coercion constructor. The means checking Proposition 2.2:

Proposition 6.1 (Proposition 2.2 for a language extended with data types) Let p, p' be arbi-
trary representation types. Then

lpl=1p'l & @) Feip~p.

Proof:
“only if”: The proof is by structural induction on the common erasure of p and p’. All other
cases are as in Proposition 2.2:

Inductive case: |p| = T'(71,...,7,). Like for function types there are again four cases that have
to be checked according to whether p is a boxed type or an unboxed type and p’ is a boxed type
or an unboxed type. These are proven proven similarly, to the case of function types.
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?if”: This is proven by induction over the structure of the coercion c. All other cases are as in
Proposition 2.2:

Inductive case: ¢ = T(cy,...,c,): Let ¢; have signature p; ~ p;/ then ¢ has signature
T(p1y-espn) ~ T(p1's-.,pn"). By induction |p;|=|p;’| and we therefore have |p| = |T(py, ..., pn)|

= T(lpalseslpnl) = T(pr'l-slpnl) = [T (15 ooy pa) = 10l
|

To be able to perform coercion reduction in the presence of new induced coercion construc-
tors one simply adds the two equation for induced coercion constructors as left to right rewrite
rules (see Figure 19) to R (see Figure 8).

T(Ly.nt) = ¢ (C11)
T(cyy...,¢,); T(dy,...,ds) = T(cy;dy,...,cn3dy) (C12)

Figure 19: Coercion reduction

We should then check Lemma 3.9 (weak confluence) and Theorem 3.10. First the new
version of Lemma 3.9:

Lemma 6.2 (Weak confluence of coercion reduction). The coercion reduction system in Fig-
ure 8 extended with the rules in Figure 19 is weakly confluent.

Proof:

There can be no critical pairs involving the two new rules and any of the old rules since none
of the old rules contain the new coercion constructor T. So any critical pairs have to involve
the two new rules (and associativity).

Rules: C11 and C12. Term T(cy,...,¢s);T(¢y...pt).  Critical pair:  T(cq,...,c,);¢ and
T(cyistysnit). (1) T(eq,..h€p)it =1 T(€1ysn). (2) T(erse,.cenit) =c1 T(eq,.,enit) =c1
e =01 T(e1,,Ch).
Rules: C11 and C12.  Term T(¢,...,t);T(ey,...,cs). Critical pair: ;T (eq,...,c,) and
T(s;¢1,5t5¢0). (1) 6;T(€1,e,en) =02 T(e1,y€n). (2) T(L5€1,00,L5€0) =02 T(C1,.0t5€,) =02
e =02 T(eq,.nney).
Rules: (12 and C12.  Term T(cy,...,c,);T(er's..ie);T(ey”..0e/'). Critical pair:
T(ci;er’s...,eni¢n’);T(er”,...,e'") and T(cy,...,cn);T(ei’;e1”,...,¢0"5¢,"). Proof similar to the
case C'4 and C4 in Lemma 3.9.

|

Before we can prove coherence of coercions with data types we need to prove Theorem 3.10
for the combined coercion reduction system R’ (Figure 8 and Figure 19). Parts 1 and 2 of
Theorem 3.10 are unchanged except that we replace R by R’. In Part 3 of Theorem 3.10 we
just need to add one more alternative to the characterization of normal forms:

e ¢c=T(cy,...,cs), ¢ = T(cy,...,¢c,) ;box, or ¢ = unbox; T(cy,...,c,) where ¢y,...,c,, are normal
forms of which at least one is proper.

We will now give some examples of the effect of adding new type constructors.
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6.3.1 Integers

For base types like int the two equation for induced coercions degenerates into two equations
like:

mt = tin¢

int = int;int

where the second one obviously follows from the first one. So int is an example of a type that we
do not need a new coercion constructor for. Similar equations holds for other nullary type con-
structors, e.g. real, string and unit. The equations for expressions are trivial instantiations
of Equation 11, e.g.:

(ting)1=1
6.3.2 Products
For composite types like pairs we get the slightly more interesting but quite intuitive equations:

(Los Lpt) = Loyt

(c1;dy, c2;d2) = (e1, €2);(d1, do)

The equations for expression will be:

(e (£st ¢) = tst(((c, 1))e)
(e)(snd ¢) = snd(((1, €))e)
<(Ca d)>(€1 ,€2) = (<C>€1 ,<d>€2)

6.3.3 Sums
Base types like integers, reals, etc. can essentially also be considered as sumtypes. If we assume
that the boolean type bool is the sumtype defined as:

bool = true + false
That is, the boolean type can be considered a sumtype with the two nullary type constructors

true and false. Then boolcan be treated the same way as integers. So we get the equations:

bool = 1p501
bool = bool;bool

which is completely analogue to the equations for integers. But not all sum types are as simple
as the booleans, so let us look at a datatype well known to many ML programmers:
datatype o option = Some of « | None

According to the general treatment of datatypes there should be a coercions constructor option
for this type. The equations that holds for this should be:
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option(,) = ¢, option

option(c);option(d) = option(c;d)
It could be illustrative to look at how option should be implemented:

option(c) = Av.case v of
Some z => Some(c(z))
| None => None

So for sum types the case-expressions naturally pops up in the implementation of the coercions
constructor. This is not strange, because this is what one needs to implement “map” on sum
types. This may be generalized to any non recursive sum type.

The equations for expressions are straightforward:

(option(c))None = None
(option(c))(Some ¢) = Some ((c)e)

6.4 Recursive data types

Leroy [Ler90] pointed out that recursive data types may introduce an efficiency problem. If we
introduce lists then the corresponding coercion constructor to the list type constructor is map.
If we allow elements of lists to be unboxed, which is completely legal in our approach, then we
might end up having coercions of the form map(box) in our completions. Such coercions do not
seem very practical, since copying a list is not a very efficient process.

There are two reasons why Leroy wanted to exclude recursive coercion constructors from his
framework. One is that it could be incorrect when recursive data structures can be physically
updated (mutable data structures) and the other is that Leroy can only place coercion at in-
stantiation points which make it impossible for him to avoid such inefficient coercions. For these
reasons Leroy requires that generic components of recursive data structures be systematically
boxed (wrapped in Leroy’s terminology). In our approach there is no need to be so restrictive,
since a language like ML, has no mutable data structures. Furthermore, in our framework we
are not restricted in where we may place coercions, so we may, as a last resort, place these
where the recursive data structures are created and consumed to avoid recursive coercions.

However, if we choose to require that generic components of recursive data structures be
systematically boxed, then there is a very simple method to do this in our approach: we just
make the primitive operations working on recursive data structures polymorphic constants. In
the case of list this could amount to the following assignments of types:

Va.ax o list— o list

nil : VYa.a list
hd : VYoo list— o
tl : Voo list =« list

null : VYe.a list—bool

There is however one slight problem associated with this method. Since we assume that the
world is unboxed, any type of a completion should be completely unboxed and this should hold
for completions with a recursive data type as well. This means that in order to produce well
typed completions in such cases we have to insert a coercion that unboxes the components of the
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recursive data type. This coercion could be placed as the outermost coercion in the completion
and one may then regard the work performed by this coercion as the work that some implicit
print routine needs to perform in order to present the output to the outside world, e.g. the user.
A similar problem occurs when programs can take recursive data structure as input.

There are obviously cases where recursive data types with unboxed components, e.g. lists
of unboxed integers, would be more efficient, e.g. in monomorphic programs, and below (in
Subsection 6.4.3) we will explain how to avoid expensive induced coercions altogether.

6.4.1 Lists

As an example of a recursive data type let us consider lists. If we add a new type constructor
list for lists we also have to add a new constructor on coercions. This constructor is for list
essentially map, since if e evaluates to a list then (list(c))e will correspond to applying the
coercion ¢ to each of the elements of the list that e evaluates to. We have to extend Figure 6
with some new equations for this new coercion constructor as explained in Section 6.3. For list
these equations are

list(¢,) = ¢p tist
(list(c)); (list(d)) = list(c;d)

These equations should be well-known for the ordinary map function on lists and the equations
for expressions involving the primitives above are:

(c)(hd e) = hd((list(c))e)
(list(c))(tl e) = hd((list(c))e)
(list(e))[1 = (1
(list(c))(e1::e2) = (c)ey::(list(c))eq
null((list(c))e) = nulle

6.4.2 Reflexive types
We will now show that all of our theory for datatypes also holds for reflexive types. Consider
the datatype defined as follows:

datatype oy ag fun = Func of o -> ay

This type constructor is contravariant in its first argument (o). If we write down the formation
rule for the corresponding coercion constructor it is:

Fciipr~ p1’' Feaipa~ pof
F fun(es,ez) : fun(py,ps) ~ fun(pi’,p2’)

ones first thought is that this is wrong because it should be similar the formation rule for
function coercions. But in effect we have not defined fun and we can define this a follows:
(fun(c,d))(Func e) = Func({c™' = d)e)

which is essentially the equation that we will deduce for the constructor Func using the method
describe in Section 6.1. There is of course one small problem with this definition and that is
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that the inverse of a coercion is not unique, but first of all we may just choose this to be any
arbitrarily chosen inverse, and second as we will explain in the next subsection, we actually do
not need induced coercion like fun(e,d) and there is therefore no need to worry about how to
implement these.

Let us round of with a slightly more involved example. Consider the datatype declaration:

datatype o dyn = Atom of « | Func of a dyn -> o dyn
This gives us the coercion equations:

dyn(s,) = ¢, dyn
dyn(c;d) = dyn(c);dyn(d)

and the equation that we get for Atom and func are:

(dyn(c))(Atom e) = Atom ({c)e)
(dyn(c))(Func €) = Func ((dyn(c)™' —dyn(c))e)

This means, for instance, that we can prove the following:

(dyn(c))(Func (Az.z)) = Func ((dyn(c)~' —dyn(c))(Az.x))
Az .(dyn(c))(dyn(c)™!)z)
{(dyn(c)"' s dyn(c)z)
Az.(L)x)
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6.4.3 C(C,.-treatment

In general induced coercions may be very expensive, like we explained for list above, so it would
seem that there is a problem with these. But there is a very simple way to get rid of this problem.
Cp«-completions cannot contain any coercion on recursive data types, since these would then not
be primitive. An algorithm that finds C,.-completions would therefore ensure that completions
have no expensive recursive coercions in them. The only induced coercions that would remain
in a Cp«-completion are then the ones related to input and output, and as explained above in
Subsection 6.4 these are unavoidable, and in fact make explicit the operations that an actual

implementation should perform on input and output.

6.5 Imperative language features

At first, one would think that introducing imperative features in a language, should break co-
herence, since Equation 17 follows from parametricity and imperative features should restrict
parametricity. But since all we require is that all congruent completions are semantically equiv-
alent, then we could still use the general framework in the presence of imperative features, this
would just demand more of the concrete semantics that one intends to use. Since the primitive
coercions are not imperative, Up*—completions will not contain any imperative coercions, and
we can then use any semantics that only assigns meaning to Cp«-completions, but is equivalent
to a full semantics (for C..-completions) on Cp.-completions. In this way the semantics on
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Cp«-completions may be much simpler than the full semantics, since it does not have to assign
meanings to induced coercion, and especially, to imperative coercions. We will give one example
of how to handle an imperative feature in ML, polymorphic references. Other examples could
be exceptions.

6.5.1 Polymorphic references

In Standard ML reference types are written 7 ref and the primitive function ref, with type
¥V’ _a.’ o _a ref constructs elements of this type. Furthermore, ML, contains the assignment
operator :=, that has the type V’ a.’ @ refx’ a—unit and the de-refence function !, that has type
V' a.’a ref—’ a. If we treat reference types and the associated primitives in a similar manner
as discussed in Section 6.2 we should add a new coercion constructor ref (c) corresponding to
the reference type constructor. We would the have rules for composition of reference coercions
and the identity coercions on references similar to the rules for list types. Furthermore, we
would have to add the following rules which may be deduced the same way as, say, the rules
for if-expressions and fix-expressions:

ref ((c)e) = (ref(c))(ref ¢)
<ref(c)>e:=<c>e' —e:=¢
I(ref(c))e = (c)('e)

These rules work fine as long as we do not consider the semantics of coercions. The problem
occurs when one starts to consider what meaning to assign to a reference coercion ref (e). The
natural way is to think of ref(c) as a coercion that operates on a reference by changing the
representation of the object that the reference points to. This is, however, not a good interpre-
tation of the action of ref(c), since the presence of references breaks referential transparency.
Consider the following completion:

let z = ref (box)3 in (z':='!z;!z)

This can we rewritten, by using the rules above and the rules of F, to:

let z = ref 3 in (:v':=! ((ref (box))z);! ((ref (box))z))

Here in the second application of ref(box) to z the value coerced is already represented
boxed, since the first application of ref (box) to x has changed the value of z from an unboxed
value to a boxed value. A better interpretation, due to Henglein, of ref(c) is that (ref(c))e
evaluates to the pair of the coercion ¢ and the reference computed by evaluating e. In such an
interpretation also the action of ! should be interpreted in a slightly non-standard way. That
is, if e evaluates to (¢, v) then !e evaluates to [c](v), where [¢Jis the interpretation of ¢. This
shows that it is possible to give ref (¢) an interpretation, although this might not be an efficient
one. If one restricts completions to be C,«-completions then these will not contain any reference
coercions, since Cp.-completions contains only primitive coercions, then a referenced values
cannot “change” representation. If we restrict a semantics with the interpretation of ref(c)
as discussed above to only C.-completions then we may disregard the fact that references are
interpreted as a pair of a coercions and a standard interpretation of a reference, since the
coercion will always be the identity coercion, and just represents references.
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6.6 Optimizing the execution efficiency of completions

Until now all we have assumed about execution efficiency of completions is that for coercions the
composition of an unbox- and a box-coercion in either direction is less efficient than a identity
coercion ¢. This does not take into account what happens in a realistic implementation of a
polymorphic functional language. In this section we will discuss some of these aspects of boxing
analysis.

The position of coercions in a completion may effect the execution efficiency of completions
in many ways. A placement of a coercion in a loop may cause the coercion to be executed
billions of times more than had it been placed outside the loop, so where coercions are placed
in a completion may have a direct effect on execution efficiency. But also other factors than
how often a coercions is performed matters for execution efficiency. If too many unboxed values
are live at the same time, then this may effect register allocation in a negative way and may
therefore degrade performance of completions. Also other factors have influence on choosing
the right completion in a concrete implementation and in the remaining part of this section we
will discusses some of these.

6.6.1 Completion equivalence is not efficiency equivalence

In a class of optimal completions the execution efficiency of the completions may differ con-
siderably in an actual implementation. Consider for example, Equation 13 of Figure 12, this
may, if used from left to right, duplicate coercions when z occurs free more than once in e, or
it may throw coercions away if  does not occur free inside e. If a coercion is duplicated it may
degrade execution efficiency, if the coercion ends up being performed more than once. As our
argumentation shows completion equivalence and efficiency equivalence is not the same thing.
But since it is, on recursion-theoretic grounds, impossible in general to find optimal completions
with respect to execution efficiency, our theory does at least tell us that there are two classes of
formally optimal completions and that the only way that we may change execution efficiency in
these is by moving coercions around. This reassures us that, if we for other efficiency reasons,
choose to move coercions, we cannot introduce new coercions (if we are careful with the use of
Equations 13 and 17). So the important consideration in optimizing the execution efficiency of
completions is to find out where to place the remaining coercions, or picking the best equivalence
class representative.

6.6.2 Picking an equivalence class representative

Choosing the best completion with respect to execution efficiency is not a trivial job. First of
all this depends on what one wants to optimize with respect to and on the kind of execution
model one has in mind. But in any case boxing analysis makes sure that all directly unnecessary
representation shifts are removed. It could then be up to a subsequent phase (on the basis of
F-equivalence) to find the best completion by using other criteria.

On the one hand, one might expect that boxing as late as possible will decrease the pressure
on memory, since boxed values take up more space. On the other hand, this might put more
pressure on the use of registers, since unboxed values may take up more registers, e.g. an
unboxed pair of integers may use two registers, while a boxed pair only take up one.

By the same reasoning unboxing as early as possible should decrease the pressure on memory
and increase the pressure on registers, while unboxing as late as possible should have the opposite
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effect.

Accessing an unboxed value may be considerably faster that accessing a boxed value (spe-
cially in todays computers where accessing a register is much faster, to say the least, than
accessing a value in memory). This should indicate that if one wants a completion that is best
with respect to execution efficiency, then one should choose a completion that keeps values
unboxed for as long as possible, as long as this does not affect register allocation too much.

This discussion should indicate that it is not a trivial job to pick the best equivalence class
representative, and that this may depend on many factors. Below, in Subsection 6.6.6 we will
discuss more about doing this in a concrete compiler. In the next three subsections we will
discuss some more ideas on how to optimize execution efficiency.

6.6.3 Moving coercions out of loops

In an implementation of our analysis for a realistic language one should take the actual semantics
of the considered language into account. For example, our analysis does not distinguish between
FE-equivalent completions so any of these are equally good choices for an optimal completion.
This can in some situations lead to a very poor choice of representation. Let us for the rest of
the discussion assume that we are considering a language with call-by-value semantics. Consider
the function fromto used in the sieve program shown in Appendix D. Here written in SML
syntax:

fun fromto f t=
if £ > t then
(]
else
f :: (fromto (f + 1) t)

This function takes two integers £ and t as argument and returns the list of integers from £
and up to t. If we call this function in the following way fromto 1 (id 1000) then we may
either insert an unbox coercion unboxing the result of (id 1000) immediately or we may place
the unbox coercion inside fromto where we test whether f is greater than t which controls
termination of the function. In the first case the unbox coercion is performed only once, while
in the second case it is performed 1000 times. The two corresponding completions are k-
equivalent, but it makes quite a difference which one we choose.

6.6.4 Taking control flow information into account

The graph used by the graph based algorithm described in Section 5.2 is essentially a value-
flow graph and does not take control flow information into account. Consider the following
completion:

(c—d)A\z.if e then ey else e3

by equation 13, this is equivalent to

Az.(d)(if e; then ey else e3)[c/z]

If 2 occurs exactly once in both e; and ez but not in e; then “moving” ¢ in to the applied
occurrences of x by Equation 13, cannot make the execution efficiency of the completion worse
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(only better, since there may exist execution paths in ez and/or e3 that do not contain ¢),
since the new occurrences of ¢ will lie on different execution paths. To recognize this one needs
control flow information, so the representation graph as it is, is not adequate for this kind of
optimization. One way to add this kind of information could be to annotate nodes as being
conjunctive (respectively disjunctive), where for a conjunctive node the successor nodes may
lie on the same execution path for some execution, and for a disjunctive node this cannot be
the case. The annotation of nodes should then be based on control flow information of the
corresponding completion (or underlying expression).

In some cases one could imagine that common subexpression elimination could eliminate
the problem.

6.6.5 Comparison with Peterson’s minimum cut based optimization

Another way to take the actual semantics into account is to use a method similar to [Pet89].

One could devise algorithms for computing optimal boxing completions, which also take
account of control dependencies and carefully place coercions at points where they get executed
with minimum run-time frequency. We expect that an analyses such as Peterson’s could be used
for this purpose. Our representation graph is essentially the same as Peterson’s cost graph if
we assign cost factors to all edges. These factors could be computed as the cost of the coercion
corresponding to the edges (box, unbox or ¢) times some appropriate execution frequency of
the edges. The total cost is then the sum of the costs of all the edges. This can be found by
cutting the graph into two parts: one part where the nodes have box value B and one where
the nodes have box value U. All the edges connecting nodes in the same part of the graph will
have cost 0 (if we assume that the cost of + is 0) and only the cost of the edges that connects
node from the two parts will contribute to the total cost of the representation. Finding the best
cut can be accomplished by a well known graph algorithm, mincut.

A scheme for finding the execution frequency of edges may take many different things into
account, such as strictness or neededness of arguments or occurrence counting similar to that
used by the partial evaluator Similix [Bon90].

6.6.6 Boxing analysis in the ML-kit compiler

The ML-kit compiler[BRTT93] is a prototype SML compiler under construction at DIKU based
on Talpin and Tofte’s [T'T94, TT93] region inference. Region inference provides the basis for
a stack-allocation like implementation of typed call-by-value functional languages. The stack-
like behaviour is expressed by the fact that all the values in a program, including function
closures, are put into regions at runtime, that are then allocated and deallocated in a stack-like
manner. Region inference infers the scope of regions and for all value constructing expressions,
like 5, (2,3), Az.€, etc., what region to put the value in. After region inference programs
are annotated by inserting two special target language constructs. The first one of these is the
letregion-expression

letregion p € end

which marks the scope of a region (g) and the second one is the at-expression:

e at p
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which indicates into which region (g) the values computed by e is going to be put at runtime.
The idea is then that boxed values go into regions while unboxed values does not, i.e. may go
into registers or on the stack.

An implementation of boxing analysis is currently being inserted into the ML-kit compiler.
In the ML-kit compiler we have in the present version decided that the boxing analysis is to be
placed after the region inference phase. One reason for this was that it did not seem that there
was anything to be gained by putting before the region inference phase, and since the boxing
analysis is being added to a version of the compiler that was all ready working, it would seem a
waist of effort to have to modify the region inference phase essentially for notthing. Putting the
boxing analysis after the region inference phase does, however, mean that one has to be careful,
since adding box-coercions or moving box-coercions around in a program may change where
at-expressions are placed, since box-coercions are value creating. Even worse, moving coercions
around may cause the information inferred by the region inference to be incorrect. The region
inference infers what is called effects. For an expression e, this corresponds intuitively to the
effect on regions when the expression is executed, that is, whether a value has been put into the
region or the region has been accessed to get a value from it. So moving coercions around may
affect this information.

To ensure that no such problem occurs we have chosen to compute a special kind of comple-
tions. These completions are Cp.-completions where box-coercions can only be placed at fixed
positions in a program, namely at value creating expressions (sources), but unbox-coercions
can be placed anywhere. The implementation of course infers the best positions for the unbox-
coercions, by placing these as early as possible and if a value never is needed boxed, then no
box-coercion is inserted on the place where it is constructed. These kind of completions are
of course not in general optimal (since this is already the case for Cp-completions), but the
conflict between boxing operations and region inference is gone. If boxing analysis finds out
that no box-coercion needs to be inserted at some value creating point in a program, then this
corresponds to not having an at-expression at that point. But since it is safe to remove regions
that are never used (by an at-expression), removing an at-expression is also a safe operation.

We expect to get fairly good results with the outlined method, since it has the following
nice properties:

1. it does not box more than the present implementation, since box-coercions are only in-
serted where values were already being created boxed anyway. This will mean that per-
formance of programs are not being made worse by boxing analysis.

2. for completely monomorphic (parts of) programs no box-coercions and unbox-coercions
are inserted.

3. for monomorphic parts of programs where there is no use of boxed values later in the
lifetime of a value this value is unboxed for the rest of its life.

There is a very simple algorithm for finding the completions used by the ML-kit compiler;
one simply by default sets all box values in the representation graph to U and then do a
backwards reachability analysis from all boxed sinks, marking the reached node with box value
B.

The addition of boxing analysis has made it necessary to change parts of the back-end of the
compiler and this work is not completed yet, and we do therefore not have any result showing
the effect of boxing analysis in the MIL-kit compiler. When such results are available we hope
to report on the successful effect of boxing analysis in a region based compiler.
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6.7 Lazy evaluation and explicit boxing

At first sight it seem that explicit boxing combined with lazy evaluation would not lead to any
optimization since in principal all values would be closures and therefore always represented
uniformly. This does not change the fact that our framework is independent of the implemen-
tation of the underlying programming language, only that the benefit may be bigger in some
languages than in others.

However, if combined with a strictness analysis boxing analysis is able to describe exactly
the same optimizations as described by Peyton Jones and Launchbury in [PJL91], without
changing the underlying structure of programs. But our framework also goes beyond this,
because boxing analysis can do further optimization in the presence of polymorphism. Let
us look at an example of this. In the framework of Jones and Launchbury type constructor,
e.g. Int, are used as constructors of boxed values, that is as box coercions, e.g. Int is their
equivalent of our coercion boxjp¢. Similarly their equivalent of our unbox coercions are case
expression of the form:

case e of Int t# -> t#

which for this case is equivalent to our coercion unboxjp¢. Consider the following simple
program:

f xyz = fst(id(x+y,True))*z

Now if the strictness analysis has told us that f is strict in all its arguments, the definition of
f above is in Jones and Launchbury’s framework equivalent to:

f xyz = case x of
Int x# -> case y of
Int y# —-> case z of
Int z# > f# x# y# z#

f# x# y# z# = let x = x#

y = y#

z = z#

in
fst(id(x+y,True) )*z

where the annotation # on variables serve the purpose of making the presentation clearer by
indicating that these will be bound to unboxed values, but are otherwise ignored. The function
f# can by their transformations (essentially deforestation of the constructors and destructors
of boxed values) be translated into:

f# x# y# z# = case id (Pair (case (#x +# y#) of #t -> Int #t,True)) of
Pair p# -> case #p of
(f,_) -> case f of
Int t# -> case (t# *# z#) of
r# -> Int r#

This is not optimal, since the result of the addition is boxed and then unboxed again (£) before
multiplied with z#. With our framework would be able to obtain the following result:
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f# x# y# z# = case id (Pair (case (#x +# y#) of #t -> #t,True)) of
Pair p# -> case #p of
(t#,_) -> case (t# *# z#) of
r# -> Int r#

which is optimal, since this is equivalent to:

f# x# y# z# =(box)fst((unbox)(id (box)(#x +# y#,True)))*# z#

which is the result that our analysis will be able to produce.

Another utilisation of boxing analysis for lazy languages would be to be able to have both
boxed and unboxed closures and thereby save space in an implementation. We will not pursue
this idea further here, but leave this to further research.

6.8 A larger example

The examples used so far has deliberately been keep minimal in order to make the presentation
as clear as possible. In this section we will present an example that combines and illustrates
many of the ideas presented in this chapter. We will use a slightly different syntax, namely
the one use in our implementation. That is, we will use Fn a => e for type abstraction and
fn a => e for ordinary abstraction. To further simplify the presentation we will leave out types
from coercions. The program that we will use contains a function assoc that will look up an
element in an association list using a predicate p to test for success. The entire program looks
as follows:

case ((Fn a =>
Fn b =>
fix (fn assoc:a->b list->(a->b->Bool)->b option =>
fn x:a =>
fn 1:b list =>
fn p:a->b->Bool =>
if null 1 then

None
else if p x (hd 1) then
Some (hd 1)
else

assoc x (t1 1) p))
{int} {int*int}
5 [(5,42)] (fn x:int => fn y:int*int => x = fst y))
of
None => 0
Some p => snd p

What the output of this program is is left to the reader to figure out. Now a possible completion
for this program at type int would be:

case <unbox>
((Fn a =>
Fn b =>
fix (fn assoc:a->b list->(a->b->Bool)->[b option] =>
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fn x:a =>
fn 1:b list =>
fn p:a->b->Bool =>
if null 1 then
<box>None
else if p x (hd 1) then
<box>(Some (hd 1))
else
assoc x (t1 1) p))
{[int]} {[[int]*[int]1}
(<box>5) [<box>(<box>5,<box>42)]
(fn x:[int]=>fn y:[[int]#*[int]]=><unbox>x=<unbox>fst(<unbox>y)))
of
None => 0
Some p => <unbox>snd(<unbox>p)

We will demonstrate how we can prove this equal to the optimal completion:

case (Fn a => Fn b =>
fn assoc:a->b list->(a->b->Bool)->b option =>
fn x:a =>
fn 1:b list =>
fn p:a->b->Bool =>
if null 1 then

None
else if p x (hd 1) then
Some (hd 1)
else

assoc x (t1 1) p)
{[int]} {[int*int]}
(<box>5) [<box>(5,42)]
(fn x:[int]=>fn y: [int*int]=><unbox>x=fst(<unbox>y))
of
None => 0
Some p => snd(<unbox>p)

This completions does not box 5 and 42 and unbox the final result as the original completion
does. Furthermore, it does not box the “return” values (None and Some (hd 1)) in the body
of Assoc and unbox these again in the case-expression which the original completion does.

We will use the following abbreviations for parts of the program to make the presentation
easier:
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Assoc = Fn a => Fn b => fix F

F = fn assoc:a->b list->(a->b->Bool)->[b option] =>
fn x:a =>
fn 1:b list =>
fn p:a->b->Bool =>
If

If = if null 1 then
<box>None
else if p x (hd 1) then
<box>(Some (hd 1))
else
assoc x (t1 1) p

The program can then be written:

case <unbox>(Assoc {[int]} {[[int]*[int]]}
(<box>5) [<box>(<box>5,<box>42)]
(fn x:[int]=>fn y:[[int]*[int]]=><unbox>x=<unbox>fst(<unbox>y)))
of
None => 0
Some p => <unbox>snd(<unbox>p)

We concentrate on this part first. Now from equation 17 we have the following equality:

(Assoc {[int]}) {[[int]l#[int]]}} =
<i=->list([(unbox,unbox)])->(i->[(box,box)]->i)->[option([(box,box)]1)]>
((Assoc {[int]}) {[int*int]1}})

Which used on our program after a few applications of Equation 14 and 11 gives:

case <unbox><[option([(box,box)])]>
((Assoc {[int]} {[int*intl})
(<box>5) (<1list([(unbox,unbox)])>[<box>(<box>5,<box>42)])
(<i=>[(box,box)]->i>(fn x: [int]=>
fn y:[[int]l*[int]]=>
<unbox>x=<unbox>fst (<unbox>y))))
of
None => 0
Some p => <unbox>snd(<unbox>p)

We consider the parts of this one by one starting with:

<list ([(unbox,unbox)])>[<box>(<box>5,<box>42)] =Def.
<list ([(unbox,unbox)])>(<box>(<box>5,<box>42)::[]) =..
<[(unbox,unbox)]><box>(<box>5,<box>42)::<1list ([(unbox,unbox)])>[] =19

<box; [(unbox,unbox)]>(<box>5,<box>42)::<list([(unbox,unbox)])>[] =g
<(unbox,unbox) ;box>(<box>5,<box>42) : : <list ([(unbox,unbox)])>[] =19
<box><(unbox,unbox)>(<box>5,<box>42): :<list ([ (unbox,unbox)])>[] =rule for pairs
<box>(<unbox><box>5,<unbox><box>42) : :<list ([(unbox,unbox)])>[] =12,6
<box>(5,42)::<1ist([(unbox,unbox)])>[] =17
<box>(5,42)::[] =Def.

[<box>(5,42)]
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and then:

<i->[(box,box)]->i>

(fn x:[int]=>fn y:[[int]*[int]]=><unbox>x=<unbox>fst(<unbox>y)) =13
fn x:[int]=>

<[(box,box)]->i>(fn y: [[int]*[int]]=><unbox>x=<unbox>fst(<unbox>y)) =13
fn x:[int]=>fn y:[int*int]=><unbox>x=<unbox>fst(<unbox><[(box,box)]>y) =19
fn x:[int]=>fn y:[int*int]=><unbox>x=<unbox>fst(<[(box,box)];unbox>y) =10
fn x:[int]=>fn y:[int*int]=><unbox>x=<unbox>fst (<unbox;(box,box)>y) =19
fn x:[int]=>fn y:[int*int]=><unbox>x=<unbox>fst(<(box,box)><unbox>y) —fst
fn x:[int]=>fn y:[int*int]=><unbox>x=<unbox><box>fst(<unbox>y) =12,6
fn x:[int]=>fn y:[int*int]=><unbox>x=fst(<unbox>y)

If we apply these results in the program we get:

case <unbox><[option([(box,box)])]>(Assoc {[int]} {[(int,int)]}
(<box>5) [<box>(5,42)]
(fn x:[int]=>
fn y:[int*int]=><unbox>x=fst(<unbox>y)))
of
None => 0
Some p => <unbox>snd(<unbox>p)

This can by using Equation 10 and 12 further be proven equal to:

case <option([(box,box)])>
<unbox>(Assoc {[int]} {[(int,int)]}
(<box>5) [<box>(5,42)]
(fn x:[int]=>fn y:[int*int]=><unbox>x=fst(<unbox>y)))
of
None => 0
Some p => <unbox>snd(<unbox>p)

Using a rule for case-expressions one can show this equal to:

case <unbox>(Assoc {[int]} {[(int,int)]}
(<box>5) [<box>(5,42)]
(fn x:[int]=>fn y: [int]=><unbox>x=fst(<unbox>y)))
of
None => 0
Some p => <unbox>snd(<unbox><[(box,box)]>p)

We then consider the second branch of the case-expression:

<unbox>snd (<unbox><[(box,box)]I>p) =19
<unbox>snd (<[(box,box)];unbox>p) =qg
<unbox>snd (<unbox; (box,box)>p) =13
<unbox>snd(<(box,box)><unbox>p) “cnd
<unbox><box>snd(<unbox>p) =12,¢
snd (<unbox>p)

and apply this in the program:
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case <unbox>(Assoc {[int]} {[(int,int)]}
(<box>5) [<box>(5,42)]

(fn x:[int]=>fn y:[int*int]=><unbox>x=fst(<unbox>y)))
of

None => 0
Some p => snd(<unbox>p)

We will now concentrate on the “test”-expression of the case-expressions and by using Equa-
tion 11 and 14 we prove that this is equal to:

(<i->i->i->unbox>(Assoc {[int]} {[(int,int)]1}))
(<box>5) [<box>(5,42)]
(fn x:[int]=>fn y:[int*int]=><unbox>x=fst(<unbox>y))

We then handle the type applications as follows:

<i->i->i->unbox>(Assoc [int] [(int,int)])

=16
(<Vb.i->i->i->unbox>(Assoc [int])) [(int,int)] =16
(<Va.Vb.i->i->i->unbox>Assoc) [int] [(int,int)] =Def.
<Va.V¥b.i->i->i->unbox>(Fn a => Fn b => fix F) [int] [(int,int)] =15
(Fn a => <Vb.i->i->i->unbox>(Fn b => fix F)) [int] [(int,int)] =5
(Fn a => Fn b => <i->i->i->unbox>(fix F)) [int] [(int,int)]
Then using the rule for fix we have:

<i->i->i->unbox>(fix F) =,11,12,3,4

<i->i->i->unbox>(fix <(i->i->i->unbox)->i><(i->i->i->box)->idF) =—¢ix

fix <i->(i->i->i->unbox)><(i->i->i->box)->i>F =123

fix <(i->i->i->box)->(i->i->i->unbox)>F
Inserting the definition of F we get:

<(i->i->i->box)->(i->i->i->unbox)>
(fn assoc:a->b list->(a->b->Bool)->[b option] =
fn x:a =>
fn 1:b list =>
fn p:a->b->Bool => If)

A\

which we by using Equation 13 several times can change into:

(fn assoc:a->b list->(a->b->Bool)->b option =>
<i->i->i->unbox>
fn x:a =>

fn 1:b list =>

fn p:a->b->Bool =>

if null 1 then
<box>None
else if p x (hd 1) then
<box>(Some (hd 1))
else

(<i->i->i->box>assoc) x (tl 1) p)
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The if-expression:

if null 1 then
<box>None
else if p x (hd 1) then
<box>(Some (hd 1))
else
<box>(assoc x (t1 1) p))

is by the equations for conditionals equal to:

<box>(if null 1 then

None
else if p x (hd 1) then
Some (hd 1)
else

assoc x (t1 1) p)

Call the new if-expression If’ we can by several applications of Equation 13 show that:

fn assoc:a->b list->(a->b->Bool)->b option =>
fn x:a =>
<i->i->unbox>
fn 1:b list =>
fn p:a->b->Bool =>
<box>If’

is equal to

fn assoc:a->b list->(a->b->Bool)->b option =>
fn x:a =>
<i->i->unbox>
fn 1:b list =>
fn p:a->b->Bool =>
<unbox><box>If’

and by use of Equation 12 and ¢ we further that it is equal to:

fn assoc:a->b list->(a->b->Bool)->b option =>
fn x:a =>
<i=>i->unbox>
fn 1:b list =>
fn p:a->b->Bool =>
If’

So we finally obtain the optimal completion:
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case (Fn a => Fn b =>
fn assoc:a->b list->(a->b->Bool)->b option =>
fn x:a =>
fn 1:b list =>
fn p:a->b->Bool =>
if null 1 then

None
else if p x (hd 1) then
Some (hd 1)
else

assoc x (tl1 1) p)
{[int]} {[int*int]}
(<box>5) [<box>(5,42)]
(fn x:[int]=>fn y: [int*int]=><unbox>x=fst(<unbox>y))
of
None => 0
Some p => snd(<unbox>p)



Chapter 7

Implementation of completion
inference

In this chapter we describe the algorithm used in the prototype implementation. The two
phase reachability algorithm explained in Subsection 5.2.7 is implemented as a depth first
search algorithm. In this the graph is traversed depth first by a recursive function and a node
is updated (assigned boxed values) when the function has returned from all the successors of
the node. After the description of the algorithm (Section 7.1) we presents some benchmarks of
the prototype implementation (Section 7.2).

7.1 Description of the algorithm

In this section we present the algorithm implemented by the prototype implementation. The
algorithm implements the two reachability phases describe in Section 5.2.7 as a depth first
search algorithm.

In the implementation of the algorithm a node (box variable) is represented by node struc-
ture. Kach node structure contains a value field containing the box value of the node, a successor
field containing a list of nodes representing the outgoing edges from the node, and a wvisited field
containing a boolean. So we use the graph to represent the box value assignment. To start
with, all nodes get assigned an initial box value. This value depends on what kind of optimal
completions we want to find. If we are generating #-free optimal completions the initial value
will be U and if we are generating ¢-free optimal completions it will be B. The visited field
indicates whether a node has not been examined (visited) before and is initially set to false for
all nodes except source and sink nodes.

Figure 20 shows an efficient algorithm for finding w-free optimal completions that works
for pure Fg. We will in the next subsection discuss what changes are needed to the algorithm
when we add primitives to F3. For nodes the three fields that contains the current box value,
the list of outgoing edges and the visited tag are called v, succ and seenB4. The function
lub is the least upper bound operation on the 2-point domain UCB. The function generate
generates the representation graph and a principal completion from the input Fy-expression in
the following way:

e it generates a principal completion in which the box variables are represented by node
structures. This is done by slightly modifying a type checking algorithm for F5 such that

118
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it implements the inference rules of Figure 18.

e instead of generating the pair (b,0'), i.e. an edge in the representation graph, it adds &’ to
b.succ.

e for all source and sink nodes it sets the v field to the corresponding value of the node and
collects the source nodes with value B in a list Ap.

e it sets the v field to U for all other nodes.

e it sets the seenB4 field to false except for all sources and sinks for which it is set to true.

generate;
worklist := Ap;
while worklist <> [] do
remove b from worklist;
for b’ in b.succ do findB b’;
end while

function findB b =
if not(b.seenB4) and b.succ <> [] then
b.seenB4:=True;
b.v := foldr lub U (map findB b.succ)
end if;
return b.v
end function

Figure 20: Efficient algorithm for finding ¥-free optimal completions

When the algorithm terminates it is easy to generate the optimal completion from the
principal completion. It is also fairly easy to see that the efficient algorithm implements the
algorithm described in Section 5.2.3, so we will not show this here, but following the presentation
below of the complete algorithm (including primitives) we will give an informal proof of this for
the complete algorithm.

In the special cases where a node, that is not a source or a sink node, does not have any
source and/or any sink nodes the algorithm will set the value of the node to the default value.
This is just fine since in the two cases data is either never created or never used, which means
that the choice of representation is irrelevant. However, there are cases where a different choice
than the default value might be better. Suppose we are finding ¥-free optimal completions for
the expression:

(Az:int.1) (¢d{int} 5)
we will then find the optimal completion:

(Az:int.1) ((boxjpt —>unboxjpt)id{int} 5)

but if we are allowed to set the representation type of z to [int] the we would get the following
more efficient completion:
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(Az:[int].1) ((boxint —¢)id{int} 5)

That we only get the former completion is in complete agreement with our definition of formally
optimal completions, since the two completions are F-equivalent and are therefore both in the
optimal equivalent class. If we want the algorithm to gives us the more efficient completion, we
have to take further properties into account, like the actual semantics of the language.

7.1.1 The effect of adding recursive primitives

The algorithm described above works for pure Fy and also works if we extend Fy with some
primitives (non-recursive). The problem is that the algorithm assumes that when a node in the
graph has been visited then its box value field has also been updated. This works fine when
there are no cycles in the graph and this will be the case as long as we stick to pure F.

If we add recursive primitives like fix, map, etc. then this is no longer the case and the
algorithm has to be modified. The simplest way to do this is to use a union/find based method.
We add an equivalence class pointer to each node such that we have to follow this pointer (using
the usual path compression used in union/find) in order to find the box value of a node. In
this way certain nodes will be equivalence class representatives and hold the box values of their
class. We will change the function £indB such that it no longer returns a box value, but an
equivalence class pointer. In a similar way we will change 1ub such that it works on equivalence
class pointers, and return the one of the input pointer which points to a node with a box value
which is equal to the least upper bound of the box values of the two nodes that the input pointer
points to, and if both input nodes have box value U then if one of the nodes has been visited
this node is returned. The function £indB will also be change such that it is not b.v that is
updated for each node, but the equivalence class pointer b.ecrp of the node. The modified
algorithm is shown in Figure 21. The definition of 1ub might seem a little strange. If one of the
nodes has box value B then this node is returned. This is what one would expect, but if none
of the nodes has box value B then if one of the nodes has been visited (seenB4 field = Visited),
but not updated (seenB4 field = Updated) then this node is returned. The reason for this is
that this node must lie on a part of the graph that we are at the moment computing findB for
(meaning that there is a cycle in the graph) and that this node will eventually be assigned the
right box value that will be given to all nodes on the cycle. A node that has either not been
visited or is updated must belong to a part of the graph that has no influence on the part of
the graph that contains the cycle.

7.1.2 Correctness of the algorithm

We will not formally prove the correctness of the algorithm in Figure 21 with respect to the
specification given in Section 5.2.3, but present an informal argument for this:

1. Termination of the algorithm. Initially all nodes, except sources and sinks, have
seenB4 = NotVisited. Every time £indB is called seenB4 is either already different from
NotVisited or will be set to Visited. This can only happen as many time as there are
nodes in the graph. The algorithm will therefore terminate.

2. Correctness. By the specification, if a node b lies on the path between a source and
a sink with box value B then ¢(b) = B, otherwise ¢(b) = U. The algorithm starts from
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generate;
worklist := Ap;
while worklist <> [] do
remove b from worklist;
for b’ in b.succ do findB b’;
end while

function findB b =
let b = find b in
if b.seenB4 = NotVisited and b.succ <> [] then
b.seenB4 := Visited;
let (bl::bs) = b.succ in
b.ecrp := foldr lub (findB bil) (map findB bs);
b.seenB4 := Updated
end
end if;
find b
end
end function

function find b =
if b.ecrp = b then b
else
b.ecrp = find(b.ecrp);b.ecrp
end if;

end function

function lub b b’ =
let b1 = find b and b1’ = find b’ in
case (bl.value,bl’.value) of
(B,_) => b1
| (_,B) => b1’
| _ => if bl.seenB4 = Visited then bl else b1’ end if
end
end function

Figure 21: Efficient algorithm for finding 1 -free optimal completions with primitives

a worklist Ap containing all the sources with box value B. It calls findB on all the
immediate successor nodes of these (contained in the succ field) and £indB in turns calls
itself on each immediate successor node of these nodes unless the node has been visited
(or updated). This means that when findB is called on a node then this node must lie
on a path leading from a source with box value B. Four things can happen when findB
is called on a node.

(a) The node has seenB4 = NotVisited, but no immediate successors, in which case the
node is either a sink node or a node corresponding to a value that is discarded. In
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both cases the nodes equivalence class representative is returned (ecr), which should
be the node itself, as a representation of its box value.

(b) The node has seenB4 = Visited, in which case the node has been visited before on
the path from the source node who’s successors are currently being treated. In plain
English: there is a cycle in the graph. Since the seenB4 field is Visited and not
Updated it means that at some later point it will be updated with the box value that
all the node on the cycle should have (all nodes on a cycle have the same successors
and predecessors) and also here we return the ecr of the node.

(c) The node has seenB4 = Updated, in which case the node has either been visited
before on the path from some other source node or is a sink node. In both case we
return the ecr of the node since it represents the final box value of the node.

(d) The node has seenB4 = NotVisited and has one or several immediate successors.
Since we know that the node lies on the path from a source with box value B, its
own box values should be set to B, if just one of its immediate successors have box
value B, because if one of the nodes immediate successors has box value B this can
only be because of two things. Either the node is a sink node with box value B or
its box values has been set to B because it lies on the path between a source and a
sink with box value B. In both cases the node we are considering must also lie on
such a path too and should therefore have its box value set to B. This is done by
setting the ecr of the node to one of its immediate successors that have box value
B. If no immediate successor nodes have box value B it could be that one of them
has been visited on the way to the current node and could later be updated to B (if
there are more than one they will all be updated with the same value). We should
therefore choose this node as the ecr for the current node and not a node which has
box value U. All this is ensured by the definition of 1ub.

This shows that when the algorithm terminates all the node that lies on a path from a
source node with box value B will have its box value updated (indirectly through its ecr)
to B if it has among its successors a sink with a box values B.

7.1.3 The prototype implementation

The prototype implementation is essentially an ML implementation of the algorithm describe
in Section 7.1.1. The ML source code of the implementations is shown in Appendix B. The
implementation consists of a parser, a type checker, and an implementation of the algorithm in
Figure 21. The type checker is combined with the function generate from Figure 21, so when
it checks that the Fy-expression is well formed (have correct type annotations) it also generates
the graph.

7.2 Benchmarks

The implementation can analyze arbitrary Fy-expressions and output optimal completions for
these, but we have no way to run these. We could have written an instrumented interpreter
that records statistics while interpreting completions, but what we have done instead is to
only run performance tests on Fy-expressions that corresponds to SMlL-expressions. This is
what one would do in an ML compiler that uses Iy as an intermediate language. When run
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on an Fg-expression our implementation will output an SML-expression corresponding to the
completion where type application and type abstraction has been ignored. The SML-expression
will contain operations corresponding to the box and unbox operations of the completion, but
these operations will not actually box and unbox values, all they will do when they are executed
is to record the fact that a box or an unbox operation has been performed and return the
argument unchanged. The SML-expression will also contain operations that will count the
stub code operations performed by the completion, e.g. extra closures, pairs, etc. created, extra
applications, projections on pairs, etc. performed. The result of running the SML-expression
will be a pair of the actual result of running the completion and the statistical information.
Eight programs, shown in Appendix D, were selected for the experiments. These were:

e mi-sort, a insert sorting program where the insert function is monomorphic.
e insert-sort, a insert sorting program where the insert function is polymorphic.
o flip-list, which “flips” the elements of a list of pairs of integers.

e leroy, which is an almost “pathological” program for which Leroy’s benchmark shows a
major slow-down compared to a fully boxed implementation.

e poulsen, a program for which Poulsen [Pou93] reports that his algorithm gives very poor
results (606/903 box/unbox-operations).

e sieve, which computes the prime numbers between 1 and 100.

e horner, evaluates a polynomial by constructing a list of functions (from Thiemann

[Thi95]).

e mogensen, a program that contains a lot of polymorphism which causes Leroy’s comple-
tions to do a lot of extra boxing and unboxing.

The example programs mi-sort, insert-sort, flip-list, leroy, poulsen were all taken from
[Pou93]. The example mogensen is based on an idea by Torben Mogensen.
We have performed several different tests describe in the following.

7.2.1 C,.-completions with polymorphic data structures

For all eight programs we have generated two kinds of C..-completions, the optimal -free
normal form and the optimal ¢-free normal form. We have run the two completions and counted
the number of box and unbox operations performed and counted the stub code performed as
explained above. All data structures are polymorphic, that is, cons, hd, t1, pair, fst, snd,
etc. were given polymorphic types and treated as primitives.

Figure 22 shows the results. Since we require that the world is completely unboxed the
examples include unbox operations to insure that this is the case. The operations corresponds
to the operations that a print routine in an interpretive implementation of a language like ML
will have to perform. We only show performance results for the stub code for closures (cl) and
applications (app). Some of the examples also performed stub code for pairs and lists, but this
code was only involved in unboxing the output, so is not really essential in judging the quality
of the completions.
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opt. ¥-free norm. opt. ¢-free norm.
coercions stub code coercions stub code
Program box ‘ unbox cl. app. box ‘ unbox cl. app.
mi-sort 17 171 188 188 17 171 308 308
insert-sort 17 171 196 348 17 171 308 308
flip-list 20 20 54 86 20 25 60 60
leroy 269 269 14 542 446 446 22 880
poulsen 6 6 14 14 6 6 4 8
sieve 99 847 302 1074 99 847 || 1644 1644
horner 41 41 234 270 50 50 126 144
mogensen 6 7 58 58 6 7 16 16

Figure 22: Performance: benchmarks for C.. with polymorphic data structures

The results indicate, as one would expect, that there is no clear winner of the two kinds
of completions and that it depends on the given program which is best. Also the two kinds of
completions produce by the algorithm are formally optimal and represent an equivalence class
of completions, which formally are considered equally good. This means that the choice made
by the algorithm will not always be the best, in fact, since the algorithm in a sense chooses
extremes in the equivalence classes, there could often be a better completion which puts the
coercions at just the right places (compare the test results for horner with the one obtained for
the C,.-completions in Figure 24).

7.2.2 C(C..-completions with in-lined primitives

The next test is similar to the one with polymorphic data structures, except that we now allow
data structures to be also monomorphic, e.g. lists of unboxed integers. We do this by making
cons, hd, t1, pair, fst, snd, etc. in-lined (language) primitives. We performed the same tests
and the results are shown in Figure 23.

An interesting observation is that, even though data structures are allowed to be monomor-
phic, none of the generated completions had coercions with recursive coercion constructors
(map) in them, except for a an outermost application of map(unbox) which corresponds to the
unboxing that will be performed by a print routine. This indicates that it is advantageous to
allow recursive data structures with unboxed components and not exclude these as Leroy[Ler90]
does. Notice that the monomorphic program mi-sort now performs no coercions at all. This
will be the case for all monomorphic programs.

7.2.3 C(C,.-completions

The last test shows the quality of the variant of our algorithm that produces Cp.-completions.
We have tested this with the same programs as were used in the two previous tests, that is,
with polymorphic data structures and with “free” data structures. The results are presented in
Figure 24. Since there is no internal stub code in Cp.-completions (which the test also showed)
there are no performance figures for this.
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opt. ¥-free norm. opt. ¢-free norm.
coercions stub code coercions stub code
Program box ‘ unbox cl. app. box ‘ unbox cl. app.
mi-sort 0 0 0 0 0 0 0 0
insert-sort 17 171 162 314 17 171 308 308
flip-list 20 20 6 14 30 35 64 72
leroy 269 269 14 542 446 446 22 880
poulsen 3 3 6 6 3 3 4 8
sieve 99 1283 104 876 872 848 878 926
horner 41 41 198 234 50 50 126 144
mogensen 6 7 58 58 6 7 16 16

Figure 23: Performance: benchmarks for C., with in-lined primitives

Polymorphic data structures In-lined data structures

'¢7—€p* norm. ¢—€p* norm. 'zp"v—ap* norm. ¢-€p* norm.
Program box | unbox box ‘ unbox box | unbox box | unbox
mi-sort 17 171 17 171 0 0 0 0
insert-sort 17 171 17 171 17 171 17 171
flip-list 20 25 20 25 20 25 20 25
leroy 270 786 270 786 270 786 270 786
poulsen 6 6 6 6 3 3 3 3
sieve 99 847 99 847 99 436 99 847
horner 41 41 50 50 41 41 50 50
mogensen 6 7 6 7 6 7 6 7

Figure 24: Performance: benchmarks for C .

It is interesting to notice, first of all that the performance figures for C,.-completions is
not much worse than the performance figures for C,,-completions, and in some cases even
better. If one takes into account that no stub code is inserted into the Cp.-completions it
makes the difference even smaller. In some cases Cp.-completion is in fact K-equivalent to the
corresponding C,.-completion (seen by inspecting the completions).

7.2.4 Comparison with other approaches

We conclude by comparing our approach with other approaches. We compare with Leroy’s,
Poulsen’s and Thiemann’s approach. The figures are shown in Figure 25.

Since Leroy does not present his performance results in a similar way to ours (he presents real
performance figures from a compiler) the results presented here were produced by generating
completions the way Leroy’s approach specifies, and translating them into SML as with our
completions and running them. This does not include the kind of simplifications that Leroy’s
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system does, but since these mostly have effect on the amount of stub code inserted, we believe
that it should not have much influence on the number of representation coercions performed.

Poulsen gives several performance figures in [Pou93], but these are not very transparent. The
problem is that his framework allows creation of boxed values (e.g. integers) directly which is
then counted as a boxed value construction and not as a performed box coercion as it does in our
framework. Furthermore, he counts the access to a boxed value as a boxed value reference and
not as a performance of an unbox coercion. He only inserts coercions when the representation is
changed and not referenced immediately, but saved for later use. So just counting the number of
coercions performed will give a wrong picture of the quality of his completion. The performance
figures that we present for his approach is of the form ¢/r where ¢ is the number of box/unbox
coercions performed, and r is either found by adding up the number of constructions of different
boxed values (con.), or found by adding up the number of references to different boxed values
(ref.). Since Poulsen does not specify precisely what he means by a reference to a value it is
not clear how many references to boxed values corresponds to an unbox operation, but clearly
some references must, as may be seen from the flip-list example which did not perform any
box/unbox coercions at all. We also suspect that Poulsen’s numbers do not include the number
of unbox operations needed to produce an unboxed result.

Thiemann’s numbers are taken almost directly from [Thi95] except that a number of unbox
operations have been added that correspond to the number of unbox operations needed to
produce an unboxed result.

Leroy Poulsen Thiemann
Program box | unbox | box/con. ‘ unbox /ref. box ‘ unbox ‘
mi-sort 17 171 0/0 0/0 0 0
insert-sort 17 171 0/17 154/778 17 169
flip-list 20 20 0/20 0/35 20 20
leroy 445 445 || 256/270 | 256/1300 269 269
poulsen 6 6 | 300/303 300/603 3 3
sieve 99 847 - - 99 436
horner - - - - 31 31
mogensen 12 13 - - - -

Figure 25: Performance: compared benchmarks

7.2.5 Conclusion from tests

The tests show that our formally optimal completions are generally not better than Leroy and
Thiemann. This is however not unexpected, since these corresponds to some fixed choice of
element in an equivalence class and in some sense is an extreme (box/unbox as early/late as
possible). There will of course be lots of cases where choosing something in between, like a C.-
completion, is better. Comparing with Poulsen is hard, but at least for the example poulsen
where Poulsen reports that his algorithm gives a bad result we get a much better result. At
least one test shows the ability of our algorithm to optimize completions. The mogensen test
shows an example where our algorithm gives a considerably better result than Leroy’s, because
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repeated boxing and unboxing of data that is not referenced is eliminated.

The test also shows what the optimal completions perform a considerable amount of stub,
although this could be considerably reduced by using FK-equivalence to remove a lot of the
induced coercions similar to what Thiemann [Thi95] does.

Also our Cp.-completions with in-lined primitives compare well with Leroy’s and Thiemann’s
completions even if we do not consider that their completions may perform some amount of
internal stub code where our Cp.-completions perform none.

A thing that cannot be seen directly from the test results is that in several of the tests the

Cp«-completions were F-equivalent to the optimal completions.
Finally, we may conclude that the algorithm that finds C.-completions seems to be a good
choice for a representation analysis in a real implementation, since it has the following advan-

tages:

1. It inserts no stub internal code and thus produces smaller completions.

2. It seems to produce completions of good quality not much worse than the formally optimal
ones.

3. It runs faster and uses less space than the one that produces formally optimal completions.
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Related work

There is essentially two different areas of related work. One area is representation analysis in
general, but not necessarily with boxing and explicit coercions. The other area is proof theory
for languages with explicit coercions, that is, coercion calculus, equational axiomatization of
coherence, etc. In this chapter we will discuss some related work in these two areas.

8.1 Representation analysis

The substantial cost of manipulating data in boxed representation, especially for numeric pro-
grams, has been observed in both dynamically typed high-level languages like LISP and stati-
cally typed polymorphic languages such as Standard ML, and Haskell.

Most of the efforts in LISP implementation have focused on optimizing number represen-
tations by keeping them in unboxed form [Ste77, BGS82, KKR*86]. Peterson [Pet89] uses
an elaborate execution-frequency based criterion for the cost of representation coercions. In
this setting he shows how the optimal placement of coercions can be reduced to a well-known
network flow problem. Common to all these efforts is the intent to optimize representations
of atomic data, particularly numbers. Indeed in Peterson’s framework operations on pairs and
lists simply require boxed arguments. Steenkiste and Hennessy, however, have found that in a
suite of ten LISP programs up to 80% of the representation coercions are list tagging/untagging
operations.

Peyton Jones and Launchbury [PJLI91] and Leroy [Ler92] suggested making representation
types and boxing and unboxing operations explicit in programs. Even though there are some
technical differences, the languages they use are at the core similar: a functional language with
explicit boxing/unboxing coercions.

Peyton Jones and Launchbury do not provide a method of inferring a completion, but
concentrate on the semantics of their explicitly boxed language and on optimization of boxing by
program transformation. Those optimizations are, for example, a form of common subexpression
elimination that cannot be formalized in our framework as the transformations may change the
underlying program.

Leroy describes a translation of Core-ML expressions to explicitly boxed Core-MI. expres-
sions. This translation is not deterministic as it depends on the specific typing derivation of
the underlying Core-ML expression, but every translation of such a source Core-MIL expression
is a completion in our sense (not the other way round, however). The experimental results of
incorporating his boxing analysis in the Gallium compiler for CAML Light show that the re-
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sulting performance can be drastically different from the original compiler that uses canonically
boxed representations. The results, though, are not uniformly better. The canonically boxed
completions are ¥-free whereas Leroy’s is ¢-free in our terminology. The results are in line
with our general considerations that indicate that monomorphic programs should generally fare
better with a ¢-free completion whereas highly polymorphic programs are likely to be better off
with a i-free completion. Our rewriting system for ¢-free completions will improve the result
of Leroy’s completion by eliminating all ¢-redexes, and our rewriting system for 1-free comple-
tions will improve the canonically boxed completion by eliminating all ¢-redexes. A problem
with Leroy’s approach is that since he only boxes at points where variables with polymorphic
types are instantiated (type applications in our terminology) he gets many induced coercions
which means that there are many additional abstractions and applications (stub code) in his
completions as explained in 5.3.2.

Using Leroy’s framework Poulsen [Pou93] presents a more involved translation, but draws
on “constraint solving” to eliminate more boxing/unboxing operations than Leroy’s translation
in many, but not all cases. The interesting aspect of Poulsen’s completions is that they, just
like our optimal completions, are not required to have a canonically defined representation type
for the types occurring in type applications as in Leroy’s work, but determines an appropriate
representation type as part of the constraint solving process. On the other hand it appears that
some boxing/unboxing operations are built into the constructors of the language and are not
accounted for in the question of optimizing the boxing in the program.

Henglein and the author [HJ94] presented a boxing analysis for a small ML like language
called core-XML. The approach was the same as in the present work, except that the language
is different.

Given an explicitly typed expression for an ML-like language with type 7 the result of a
boxing analysis depends on the particular typing derivation chosen. Leroy’s completion uses
implicitly the derivation obtained by Algorithm W [Mil78] since his translation performs type
inference and boxing simultaneously where let-bound variables receive the principal type of
the bound expression. Peyton-Jones/Launchbury and Poulsen also appear to assume that type
inference is performed in the style of Algorithm W. The principal type of a function is the “most”
polymorphic type and thus imposes the most boxing demands on the arguments to the function.
A “more” monomorphic derivation, on the other hand, could still yield the same type for the
whole expression, but using more monomorphic types for the local variables. Bjgrner gives
an algorithm called M for finding a minimally polymorphic typing derivation [Bjg92, Bjg94].
Minimally polymorphic derivations do not always exist, but his algorithm generally lowers the
local degree of polymorphism in comparison to Algorithm W. Note that our boxing analysis,
if restricted to an MI.-typable subset, does not presuppose a specific typing derivation for
expression, but interfaces with any of its type derivations, which is represented by an explicitly
typed expression.

Shao and Appel describes a type-based compiler for Standard ML in [SA94] and their
approach to boxing is also based on Leroy’s. They use the minimal typing derivations of Bjgrner
to eliminate unnecessary boxing. The compiler converts programs into CPS style before doing
optimizations and one of the optimizations that they perform is the elimination of box;unbox
and unbox;box pairs. To what degree they can eliminate unnecessary boxing and unboxing
is hard to say, but they present interesting performance results showing a reduction in heap
allocation by 36% and an improvement of 19% compared to a old non-type-based version of the
compiler.

Harper and Morrisett [HM95] propose a different technique for implementing polymorphism
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than the traditional one where data is represented uniformly. By passing types, that are un-
known at compile-time, at link-time or run-time, primitive operations can analyze types and
select the appropriate specialized operations for the types. This approach allow monomorphic
code to use efficient data representations, just as ours, Leroy’s and Poulsen’s, but without the
need for representation shifts (through coercions) when data is passed to a polymorphic func-
tion. This may probably lead to considerable space savings due to the better representation of
data and time savings due to the lack of coercions, but this may be out weighed by the time
and space costs due to the passing of type arguments at run-time. The practical implications
of this is not clear. Their approach can also handle mutable objects like arrays and references,
which is something which may be problematic with a coercion approach.

Recent work by Thiemann [Thi95] also uses an explicitly typed core ML language (like
Core-ML) for his representation analysis. He defines a translation from Core-ML expressions
into Core-XML, explicitly boxed Core-ML. His translation uses fixed places where coercions
can be placed, but the places are different from Leroy’s, since it allows only coercions on the
operator expression in applications, asin (c)e €¢’. He uses unification to optimize these coercions.
Expressions that we in our work demand to be unboxed, will in his work get a type, written
7Y that can have any representation, and generic parts of polymorphic functions get a type,
written 78, that must be boxed. Two types 7 and 78 are unified to 75. This means that the
completions that he generates are ¥-free. He follows his generation phase with a simplification
phase that makes sure that the resulting expression contains only primitive coercions. This
phase essentially uses Equation 13 from Figure 12, the two rules in Figure 11, and the following
two rules:

(c=>d)Az:p.e = Az:p'.let z:p=(c)z in (d)e (12"
esd)e = (\ipospAaepu () (D) e (17)

where precedence is given to rules in the following order: (13) before (12’) before (17) to get rid
of induced coercions. This method will, exactly like Leroy’s method, not always produce com-
pletions completely free of internal stub code, but it does this in a much more limited way, and
the experimental result presented by Thiemann (see Section 7.2) indicate that the method is
quite useful. An interesting point in Thiemann’s work is his use of order-sorted types to distin-
guish between types that have to be either always boxed (argument to polymorphic functions)
or unboxed and types that may be free to be either boxed or unboxed (arguments in language
primitives). Thiemann also introduces some further optimizations. For example, an optimiza-
tion which may be used to eliminate some coercions in case the underlying implementation does
tail call elimination.

Tofte’s and Talpin’s region inference [TT94] is an alternative approach to implementing
polymorphism. At run time data is placed in regions and the store consists of a stack of regions.
Region inference determines statically which regions to put data in. In the implementation an
analysis is used to determine the size of regions at compile-time. If this is possible for a region it
can be placed directly on the stack and the data in the region can the be accessed directly and
not through a pointer. In this way regions for which the size may be determined at compile-
time can be represented “unboxed” on the stack, while regions for which this is not possible
have to be represented “boxed” on the stack (by a reference). Experiments presented in [TT94]
indicate that this implementation scheme in many cases may lead to much less use of memory
that traditional methods.
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8.2 Coherence and equivalence

The notion of coherence appeared first in computer science literature in the work of Breazu-
Tannen, Coquand, Gunter, Scedrov [BTCGS91, BTGS90] and Curien, Ghelli [CG90, Ghe90].
They use it to give interpretations of subtype based systems, where application of the subtyping
rule is interpreted by an (explicit) coercion. Since a given program with subtyping may have
many different translations it is integral to prove that all of them are coherent for the given
semantics (via arbitrary translation and interpretation of the target program) to be well-defined.

Thatte describes a method for inferring very powerful implicit coercions between isomorphic
types in a type inference system enriched with coercions between arbitrary isomorphic types.
Our application can be viewed as simple variant of this problem as arbitrary representation
types of the same standard type — and only those — can be coerced to each other. On the
other hand Thatte does not deal with optimizing the coercions required in this fashion.

8.3 Dynamic typing

The notion of completion and its congruence theory is inspired and closely related to the work
on dynamic typing by Henglein reported in [Hen93], which explicates type tagging and untag-
ging (type checking) operations in dynamically typed languages. The purpose of doing so is
completely analogous to boxing analysis: to eliminate most statically type tagging and untag-
ging operations and to implement only the remaining ones while still obtaining “safe” program
execution; i.e., well-defined program behavior. See also the work by Cartwright, Fagan and
Wright on soft typing [CF91, WF92] or the work of Henglein and Rehof [HR95] on safe poly-
morphic type inference for Scheme. Rehof [Reh95] has in his work on polymorphic dynamic

typing also studied the class of completions which he calls C,..
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Conclusion and Future Work

We have presented a calculus, formal optimality criteria and rewriting-based algorithms for
finding good representations of data as boxed or unboxed data in a polymorphically typed
programming language. The word “good” here is to be understand in a very general and
broad sense. What has been left out is a detailed analysis of specific language properties and
implementation considerations that have an effect on the actual performance. This has been
done to make the results “universal” and applicable in different settings, even different semantics
of the same language.

We have furthermore presented a simpler and more direct algorithm based on a different
idea than the rewriting-based algorithms. Judging by experimentation with some small Fs-
expressions corresponding to simple Standard ML programs our “formally” optimal completions
also tend to be consistently better in practice than previously described boxing analyses, if we
count only the number of boxing/unboxing operations executed. Since no implementation
decisions are made at the time the boxing analysis is conducted its output should combine well
and without much interference with later implementation phases.

The general framework of treating boxing analysis as a translation of a program to a lan-
guage with explicit boxing and unboxing operations, due to Leroy [L.er92] and implicit also in
Peyton Jones and Launchbury [PJL91] encapsulates boxing analysis as a single phase. The
representation type of an explicitly boxed program specifies its interface and should thus in
principle allow separate compilation of program modules.

Our work has several advantages over related work presented in the literature, these are:

e It has a general framework and robust criterion for the quality of boxing completions,
which accounts for the costs of boxing/unboxing operations, but abstracts from other
language properties and implementation concerns, and contains notion of (formal) opti-
mality. Neither Leroy’s nor Poulsen’s nor Thiemann’s work contains such a notion, and
only Thiemann’s completions are optimal (i-free) in our sense.

e Our framework admits recursive data structures with unboxed components by including
methods to ensure that costly recursive coercions are not inserted in completions (in Cpx-
completions). This is specially noticeable in monomorphic programs. Leroy’s framework
does not allow this.

e By using C,.-completions we ensure that no internal stub code will be inserted without
readmitting too many representation coercions. This could save both space and time at
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run-time as well as it make target programs smaller. All the related work will insert
internal stub code in some completions.

e We present an efficient and flexible algorithm that can be used to find both optimal (C.x)

completions and C,.-completions. It also seems to be easy to incorporate Peterson’s ideas
in the algorithm.

There are several problems with making full use of boxing-optimized programs:

1.

Garbage collection often requires “tagging” of heap-allocated data with explicit type and
size information. Thus an unboxed representation may well have to be tagged (= boxed)
anyway to accommodate the garbage collector. This would not be a problem in the ML-kit
compiler, but the implementation of polymorphic equality might be.

. A boxed representation is the result of an evaluation. In lazy languages often boxed

representations are required since the evaluation of an expression is not statically known
to terminate or to be advantageous. Thus an expression determined to be best kept in
unboxed form by our boxing analysis may still have to be boxed at run-time.

9.1 Future work

Future could include a plan to extend the efficient algorithm for computing optimal boxing
completions, to also take account of control dependencies and carefully place coercions at points
where they get executed with minimum run-time frequency. As we have pointed out before we
expect that one could use analyses such as Peterson’s [Pet89] for this purpose.

Otherwise, the work presented in this thesis can be extended in several directions:

1.

Work out a proof that F-equality for completions only “moves” coercions around. One
might assume certain properties about coercions like totality and strictness and show that
the equations of Figure 12 are sound with respect to all interpretations of the primitive
coercions in any parametric model.

. Work out the relationship between Equation 17 of our equational system and parametric-

ity.

. Work out the relationship between the 1/¢-free optimal completions found by reduction

and the ones found by the graph based algorithm.

. Write an efficient implementation of the reduction based algorithm and investigate how

it performs compared to the graph based algorithm.

. Work out an efficient algorithm that takes the semantics into account by using control

dependencies to carefully place coercions at points where they get executed with minimum
run-time frequency.

. Work out how to integrate our boxing analysis into the region-based implementation of

Standard ML currently underway at DIKU (see [T'T94]). The use of region-based memory
management also obviates the need for global garbage collection and thus the first of the
two restrictions above.
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7. Investigate what kind of results holds for C,.-completions, especially, whether there exist
optimal C.-completions.



Appendix A

Notation and terminology

It has been our primary goal, when ever possible, to use notation that is, if not standard,
then widely used. This is of course not an easy task, especially in computer science where
the standards are being set as we write this, but the notation that we feel is not completely
standard and that we will use without further explanation will be described in this section.

The notation #[t;/z'] means substitute #; for the i’th occurrence of z in #”, for some fixed
ordering of occurrences of z in t. We will also use the term t[t;/2'] as a pattern. If a term ¢/
matches this pattern then the part of ¢’ that matches the i’th occurrence of z in ¢ will have to
match ;. Ordinary substitution ¢[t'/z] will also be used as a pattern in a similar way, except
that then all the occurrences of # will have to match the same expression.

If e is an expression, the notation X(e) means the set of all subexpression in e.

Free indices are always assumed universally quantified, i.e. if we write 2;=¢t; this means for
all 7: z;=t; and the range of ¢ is assumed given by the context.

If t is a tuple or a term evaluating to a tuple £.f is the n’th element of the tuple. If £ is a
record or a term evaluating to a record ¢.fis the field with name f.

We use = for syntactic equality to distinguish it from provable equality =.

Often we will define an operator on some domain and we then extend this in the natural way
to an operation (homomorphism) on a structural domain that contains the original domain. We
will then not distinguish between the operator on the original domain and the operator on the
structured domain if it is clear from the context, usually the domain of the argument, which
operator we are using. If o is an operation on types, then we write o(7) when we use o on a
type 7, we may similarly write o(2:7) when we use o on a type assumptions z:7 where o(z:7) =
z:0(7), and o(T") when we use o on a type assignment I' = {z;:71,...} where o(I') = {o(z1:71),...}.

Definition A.1 R-reduction(R-reduction) Let R be a set of rewrite rules and E be a set of
equations.

1. We say that a term t R-reduces in one step to ' under E-equality, written K &t =g t/,
if there exist terms r and r' such that E+t —=1r, E+t = r' and r reduces to r' under R.

2. We say that a term t R-reduces to t' under E-equality, written F' =t =%, t', if t R-reduces
in N steps, where N>0, to t'.

If F is empty we will simply say that a term ¢ R-reduces to t' if that a term ¢ R-reduces to
t' under F-equality. If R is a set of rewrite rules and F is a set of equations then the process of
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rewriting defined in 2 above is called R-reduction modulo E-equality. Often R will be a set of
equations F oriented uniformly from left to right or from right to left, in which case we shall

write £~ or F*, respectively.



Appendix B

Implementation of Boxing Analysis

This appendix contains the complete code of an experimental implementation of the algorithm
presented in Chapter 7. The program is written in SML and has been run using Standard ML,
of New Jersey with the Edinburgh Library.

B.1 Signature: EXPRESSION

The file below contains the signature EXPRESSION. This is the signature of the functor
Expression (shown in the next section) which contains definitions of the most important data
structures:

e node : the node of the representation graph

e f2type : Iy types

e bf2type : I, representation types

e coercion : coercions

o f2exp : Fy expressions

e bf2exp : explicitly boxed Iy expressions (completions)

and operations on these data structures.

signature EXPRESSION =

sig
eqtype id (* identifiers *)
eqtype tyvar (* type variables *)
eqtype nodeid (% used for debugging *)
eqtype tc (* type constructor name *)

datatype boxval = B | U (* box values %)

=V (x visited %)
| NV (* not visited *)
| VU (% visited and updated *)

datatype mode

datatype node = Node of nodeid * (* node id (for debuging) *)
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node ref * (* next node (for debuging) *)
node ref * (* ecr pointer *)
boxval ref * (* box value *)

node list ref * (* successors %)
node list ref * (* predecessors *)
mode ref

| Wil

datatype f2type =
VARf2type of tyvar |
CONf2type of node * tc * f2type list |
FUNf2type of node * f2type * f2type |
FORALLf2type of node * tyvar * f2type

datatype bf2type =
VARbf2type of tyvar |
CONbf2type of tc * bf2type list |
FUNbf2type of bf2type * bf2type |
FORALLbf2type of tyvar * bf2type |
BOXbf2type of bf2type

datatype coercion =
IDcoer of bf2type |
CONcoer of tc * coercion list |
BOXcoer of bf2type |
UNBOXcoer of bf2type |
INBOXcoer of coercion |
FUNcoer of coercion * coercion |
FORALLcoer of tyvar * coercion |
COMPcoer of coercion * coercion

datatype pmode = P | O

datatype ’a flexp =
IDENTf2exp of ’a * id * ’a |
PRIMf2exp of ’a * id * f2type * f2type list * pmode
IFf2exp of ’a * ’a f2exp * ’a f2exp * ’a f2exp |
ABSf2exp of ’a * id * f2type * ’a f2exp |
APPf2exp of ’a * ’a flexp * ’a f2exp |
TABSf2exp of ’a * tyvar * ’a flexp |
TAPPf2exp of ’a * ’a flexp * f2type

datatype ’a bf2exp =
IDENTbf2exp of ’a * id |
PRIMbf2exp of ’a * id * f2type * f2type list * pmode |
IFbf2exp of ’a * ’a bfl2exp * ’a bfl2exp * ’a bf2exp |
ABSbf2exp of ’a * id * bf2type * ’a bflexp |
APPbf2exp of ’a * ’a bf2exp * ’a bf2exp |
TABSbf2exp of ’a * tyvar * ’a bf2exp |
TAPPbf2exp of ’a * ’a bf2exp * bf2type |
CAPPbf2exp of ’a * coercion * ’a bf2exp

val mkid : string -> id

val id2string : id -> string

val mktyvar : string -> tyvar

val changetyvar : tyvar * string -> unit
val tyvar2string : tyvar -> string
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val mktc : string -> tc

val tc2string : tc -> string
val mknodeid : int -> nodeid
val nodeid2int : nodeid -> int

val replacef2type : f2type * f2type f2exp -> f2type f2exp
val getf2type : f2type f2exp -> f2type
val getbf2type : bf2type bf2exp -> bf2type

val printtypes : bool ref

val printtypesOn : unit -> unit

val printtypesOff : unit -> unit

val layout_boxval : boxval -> string
val getnodeid : node -> int

val equaltyvar : tyvar -> tyvar -> bool

val equaltype : f2type -> f2type -> bool
val equalbtype : bf2type -> bf2type -> bool
val screen : string->unit

val pp_SML : (string->unit) * bf2type bf2exp * string -> unit
val pp_source : (string->unit) * f2type f2exp -> unit

val pp_target : (string->unit) * bf2type bf2exp -> unit

val pp_type : (string->unit) * f2type -> unit

val pp_btype : (string->unit) * bf2type -> unit

end;

B.2 Functor: Expression

The file below contains the functor Expression. This contains contains definitions of the most
important data structures used in the program. It also contains different kinds of operation on
these data structures. The most important of these are:

e pp_SML which prints a completion out as a ML, program with operation to perform statis-
tics. This was used to obtain the performance results presented in Section 7.2.

e pp_source, pp_type, pp_target and pp_btype that pretty-prints expressions and types
for debug purposes. The pretty-printer use is the one written by Tofte and is essentially
identical to the one used in the ML-Kit [BRTT93].

e printtypesOn and printtypes0ff that switches printing of types during debuging on
and off.

functor Expression() : EXPRESSION =
struct
structure PP = PrettyPrint();
open PP

type id = string (% identifiers *)
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type tyvar = string ref (% type variables %)
type nodeid = int (¥ used for debugging *)
type tc = string (* type constructor name *)

exception ThisCannotHappen (# for situation I know for sure cannot happen *)
exception ThisShouldNotHappen (* for situation that should not happen *)

datatype boxval = B | U (% box values %)
v (* visited %)

| NV (% not visited %)
| VU (% visited and updated *)

datatype mode

datatype node = Node of nodeid * (* node id (for debuging) *)
node ref * (* next node (for debuging) *)
node ref * (* ecr pointer *)
boxval ref * (* box value *)

node list ref * (* successors %)
node list ref * (* predecessors *)
mode ref

| Nil

datatype f2type =
VARf2type of tyvar |
CONf2type of node * tc * f2type list |
FUNf2type of node * f2type * f2type |
FORALLf2type of node * tyvar * f2type

datatype bf2type =
VARbf2type of tyvar |
CONbf2type of tc * bf2type list |
FUNbf2type of bf2type * bf2type |
FORALLbf2type of tyvar * bf2type |
BOXbf2type of bf2type

datatype coercion =
IDcoer of bf2type |
CONcoer of tc * coercion list |
BOXcoer of bf2type |
UNBOXcoer of bf2type |
INBOXcoer of coercion |
FUNcoer of coercion * coercion |
FORALLcoer of tyvar * coercion |
COMPcoer of coercion * coercion

datatype pmode = P | O

datatype ’a flexp =
IDENTf2exp of ’a * id * ’a |
PRIMf2exp of ’a * id * f2type * f2type list * pmode
IFf2exp of ’a * ’a f2exp * ’a f2exp * ’a f2exp |
ABSf2exp of ’a * id * f2type * ’a f2exp |
APPf2exp of ’a * ’a flexp * ’a f2exp |
TABSf2exp of ’a * tyvar * ’a flexp |
TAPPf2exp of ’a * ’a f2exp * f2type

datatype ’a bflexp =
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IDENTbf2exp of ’a * id |

PRIMbf2exp of ’a * id * f2type * f2type list * pmode |
IFbf2exp of ’a * ’a bf2exp * ’a bf2exp * ’a bf2exp |
ABSbf2exp of ’a * id * bf2type * ’a bf2exp |
APPbf2exp of ’a * ’a bf2exp * ’a bf2exp |

TABSbf2exp of ’a * tyvar * ’a bf2exp |

TAPPbf2exp of ’a * ’a bf2exp * bf2type |

CAPPbf2exp of ’a * coercion * ’a bf2exp

fun mkid s = s

fun id2string s = s

fun mktyvar s = ref s

fun changetyvar(tv,s) = tv:=s
fun tyvar2string (ref s) = s
fun mktc s = s

fun tc2string s = s

fun mknodeid i = i

fun nodeid2int i = i

(s ke ok ok ok ok ok ok ok ok sk ok ok ok ok 3 ok ok sk ok ok sk ok 3 ok ok s ok ok ok ok ok sk ok ok sk ok ok ok ok ok ok ok sk ok ok ok ok 3k ok ok s ok 3k sk ok 3k ok ok sk ok k sk ok )

(* Operations on expressions: *)
(ks o ok koo sk ook skok koo ok ook skok ok sk ook sk ok ok ok sk ok sk ok ok ok o ook ko o ok o ook okok ok sk ook sk ok ok ok sk ok ook ok ok ok )
fun replacef2type(t,IDENTf2exp(_,x,tx)) = IDENTf2exp(t,x,tx)

| replacef2type(t,PRIMf2exp(_,n,t’,ts,m)) = PRIMf2exp(t,n,t’,ts,m)

| replacef2type(t,IFf2exp(_,el,e2,e3)) = IFf2exp(t,el,e2,el)

| replacef2type(t,ABSf2exp(_,x,tx,e)) = ABSf2exp(t,x,tx,e)

| replacef2type(t,APPf2exp(_,e,e’)) = APPf2exp(t,e,e’)

| replacef2type(t,TABSf2exp(_,tv,e)) = TABSf2exp(t,tv,e)

| replacef2type(t,TAPPf2exp(_,e,t’)) = TAPPf2exp(t,e,t’)

fun getf2type(IDENTf2exp(t,_,_)) = t

getf2type (PRIMf2exp(t,_,_,_,_)) =t
getf2type (IFf2exp(t,_,_,_)) = t
getf2type (ABSf2exp(t,_,_,_)) =t

getf2type (APPf2exp(t,_,_)) = t
getf2type(TABSf2exp(t,_,_)) = t
getf2type(TAPPf2exp(t,_,_)) =t

fun getbf2type (IDENTbf2exp(t,_)) = t
)

getbf2type (PRIMbf2exp(t,_,_,_,_)) =t
getbf2type (IFbf2exp(t,_,_,_)) = t
getbf2type (ABSbf2exp(t,_,_,_)) = t

getbf2type (APPbf2exp(t,_,_)) = t
getbf2type (TABSbf2exp(t,_,_)) = t
getbf2type (TAPPbf2exp(t,_,_)) =
getbf2type (CAPPbf2exp(t,_,_))

|
o

]
ot

(ke ok sk ook kok ok ok ook ok skok o koK sk ok ok ok sk ok sk ok ok ok ok ook o skok o ko okok o ok sk ook ok ok ok ok ok ok ok o )
(* Equality of types: *)
(oot ki kok sk ok ok s skok sk koo sk ok sk ok ok sk ok skok s skok s kol sk ok sk ok sk sk sk sk soksk ok o )
fun equaltyvar (x:tyvar) (y:tyvar) = tyvar2string x=tyvar2string y

fun equaltypelist [] [] _ = true
| equaltypelist (t::ts) (t’::ts’) tveq =
equaltype’ t t’ tveq andalso equaltypelist ts ts’ tveq
| equaltypelist _ _ _ = false
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and equaltype’ (VARf2type tv) (VARf2type tv’) tveq =
equaltyvar tv tv’ orelse
List.member (tyvar2string tv,tyvar2string tv’) tveq
| equaltype’ (CONf2type(_,c,ts)) (CONf2type(_,c’,ts’)) tveq
c=c’ andalso equaltypelist ts ts’ tveq
| equaltype’ (FUNf2type(_,t,t’)) (FUNf2type(_,t1,t1’)) tveq
equaltype’ t t1 tveq andalso equaltype’ t’ t1’ tveq
| equaltype’ (FORALLf2type(_,tv,t)) (FORALLf2type(_,tvl,t1)) tveq =
equaltype’ t t1 ((tyvar2string tv,tyvar2string tvl)::tveq)

| equaltype’ _ _ _ = false
fun equaltype t t’ = equaltype’ t t’ []

fun equalbtypelist [] [] _ = true
| equalbtypelist (t::ts) (t’::ts’) tveq =
equalbtype’ t t’ tveq andalso equalbtypelist ts ts’ tveq

| equalbtypelist _ _ _ = false

and equalbtype’ (VARbf2type tv) (VARbf2type tv’) tveq =
equaltyvar tv tv’ orelse
List.member (tyvar2string tv,tyvar2string tv’) tveq
| equalbtype’ (CONbf2type(c,ts)) (CONbf2type(c’,ts’)) tveq
c=c’ andalso equalbtypelist ts ts’ tveq
| equalbtype’ (FUNbf2type(t,t’)) (FUNbf2type(tl,t1’)) tveq
equalbtype’ t t1 tveq andalso equalbtype’ t’ t1’ tveq
| equalbtype’ (FORALLbf2type(tv,t)) (FORALLbf2type(tvi,tl)) tveq =
equalbtype’ t t1 ((tyvar2string tv,tyvar2string tvl)::tveq)
| equalbtype’ (BOXbf2type t) (BOXbf2type t’) tveq =
equalbtype’ t t’ tveq
| equalbtype’ = false

fun equalbtype t t’ = equalbtype’ t t’ []

(ko sok sk ook kok ok ko ok ok skok o skok sk ok ok ok sk ok sk ok ok ok ok ook o skok s sk ok okok o ok ok ook ok ok ok ok ook ok o )
(% Pretty printing: *)
(oot ki kok sk ok stk s skok s koo sk ook sk ok ok sk ok skok s skok s kol sk ok sk ks k sk sk sk ook sk oo )
val printtypes = ref false

fun printtypesOn() = printtypes := true

fun printtypesOff () = printtypes := false

fun layout_boxval B "B"
| layout_boxval U = "U"

fun getnodeid n = case n of
Node(id, _,_,_,_,_,_) =>id
| _ => "1 (% default value negative *)

fun empty_block(i,ch) =
NODE{start="",finish="",indent=1i,childsep=NONE, children=ch}

fun layout_typeass(c,tt) =
NODE{start="",finish="",indent=0,childsep=RIGHT ":",children=[c,tt]}

and layout_def (x,tx,e) =
NODE{start=x = ": ",finish="",indent=0,childsep=RIGHT " = ",
children=[layout_f2type tx,layout_f2exp e]}

and layout_f2type (VARf2type tv) = LEAF (tyvar2string tv)
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and

and

layout_£f2type (CONf2type (bv,cn,ts)) =
if ts=[] then
LEAF (cn =~ "#" ~ Int.string (getnodeid bv))

else
NODE{start=cn ~ "#" ~ Int.string (getnodeid bv) ~ "(",
finish=")", indent=2,
childsep=RIGHT ",",children=map layout_f2type ts}

layout_f2type (FUNf2type (bv,t,t’)) =
NODE{start="(",indent=1,
childsep=RIGHT (" ->#" ~ Int.string (getnodeid bv) =~ " "),
children=[layout_f2type t,layout_f2type t’],finish=")"}
layout_f2type (FORALLf2type (bv,tv,t)) =
NODE{start="(A ",indent=2,
childsep=RIGHT (".#" ~ Int.string (getnodeid bv) =~ " "),
children=[LEAF (tyvar2string tv),layout_f2type t],finish=")"}

addf2type(t,c) =
if !printtypes then
layout_typeass(c,layout_f2type t)
else
c

layout_f2exp (IDENTf2exp(t’,x,_)) = addf2type(t’,LEAF x)
layout_f2exp(PRIMf2exp(t’,name,t,_,_)) = addf2type(t’,LEAF name)
layout_f2exp(IFf2exp(t’,el,e2,e3)) =
addf2type(t’,empty_block
(0, [NODE{start="if ",finish="",
indent=3,childsep=LEFT " then ",
children=[layout_f2exp el,layout_f2exp e2]},
NODE{start=" else ",finish="",
indent=3,childsep=NONE,
children=[layout_f2exp e3]1}]))
layout_f2exp(ABSf2exp(t’,x,t,e)) =
addf2type(t’ ,NODE{start="(fn ",finish=")",indent=4,childsep=RIGHT "=>",
children=[layout_typeass (LEAF x,layout_f2type t),
layout_f2exp el})
layout_f2exp (APPf2exp(t’,e,e’)) =
(case e of
ABSf2exp(t’’,x,tx,e’’) =>
addf2type(t’ ,NODE{start="1et ",
finish=" end",
indent=4,
childsep=LEFT " in ",
children=[layout_def(x,tx,e’),
layout_f2exp e’’]})
| _ =>
addf2type(t’ ,NODE{start="(",finish=")",indent=1,childsep=RIGHT " ",
children=[layout_f2exp e,layout_f2exp e’]}))
layout_f2exp(TABSf2exp(t’,tv,e)) =
addf2type(t’ ,NODE{start="(FN ",finish=")",indent=4,childsep=RIGHT "=>",
children=[LEAF (tyvar2string tv),layout_f2exp el})
layout_f2exp (TAPPf2exp(t’,e,t)) =
addf2type(t’ ,NODE{start="",finish="",indent=0,childsep=NONE,
children=[layout_f2exp e,
NODE{start="{",finish="}", indent=1,
childsep=NONE,
children=[layout_f2type t]}]1})
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fun layout_bdef (x,tx,e) =
NODE{start=x ~ ": ",finish="",indent=0,childsep=RIGHT " = ",
children=[layout_bf2type tx,layout_bf2exp e]}

and layout_bf2type (VARbf2type tv) = LEAF (tyvar2string tv)
| layout_bf2type (CONbf2type(cn,ts)) =
if ts=[] then

LEAF cn
else
NODE{start=cn ~ "(",finish=")", indent=2,
childsep=RIGHT ",",children=map layout_bf2type ts}

| layout_bf2type (FUNbf2type(t,t’)) =
NODE{start="(",indent=1,childsep=RIGHT "->",
children=[layout_bf2type t,layout_bf2type t’],finish=")"}
| layout_bf2type (FORALLbf2type (tv,t)) =
NODE{start="(A ",indent=2,childsep=RIGHT ".",
children=[LEAF (tyvar2string tv),layout_bf2type t],finish=")"}
| layout_bf2type (BOXbf2type t) =
NODE{start="[",indent=0,childsep=NONE,
children=[layout_bf2type t],finish="]"}

and layout_coer(IDcoer t) =
(if !'printtypes then
NODE{start="",finish=")", indent=1,childsep=RIGHT " (",
children=[LEAF "i",layout_bf2type t]}

else
LEAF "i")
| layout_coer(CONcoer(c,cs)) =
NODE{start="_" ~ ¢ ~ ”_(”,finish=”)”,indent=2,chi1dsep=RIGHT RN

children=map layout_coer cs}

layout_coer (BOXcoer t) =
(if !printtypes then
NODE{start="",finish=")", indent=1,childsep=RIGHT " (",
children=[LEAF "box",layout_bf2type t]}
else
LEAF "box")
layout_coer (UNBOXcoer t) =
(if !'printtypes then
NODE{start="",finish=")",indent=1,childsep=RIGHT " (",
children=[LEAF "unbox'",layout_bf2type t]}

else
LEAF "unbox")
layout_coer (INBOXcoer c) =
NODE{start="[",finish="]", indent=1,
childsep=NONE,children=[layout_coer c]l}
layout_coer (FUNcoer(c,c?’)) =
NODE{start="(",finish=")", indent=1,childsep=RIGHT "->",
children=[layout_coer c,layout_coer c’]}
layout_coer (FORALLcoer(tv,c)) =
NODE{start="(A",finish=")",indent=2,childsep=RIGHT ".",
children=[LEAF (tyvar2string tv),layout_coer c]}

layout_coer (COMPcoer(c,c’)) =
NODE{start="(",finish=")", indent=1,childsep=RIGHT ";",
children=[layout_coer c,layout_coer c’]}

and addbf2type(t,c) =
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if !printtypes then
layout_typeass(c,layout_bf2type t)
else
c

layout_bf2exp (IDENTbf2exp(t’,x)) = addbf2type(t’,LEAF x)
layout_bf2exp (PRIMbf2exp(t’,name,t,_,_)) = addbf2type(t’,LEAF name)
layout_bf2exp (IFbf2exp(t’,el,e2,e3)) =
addbf2type(t’,empty_block
(0, [NODE{start="if ",finish="",
indent=3,childsep=LEFT " then ",
children=[layout_bf2exp el,layout_bf2exp e2]},
NODE{start=" else ",finish="",
indent=3,childsep=NONE,
children=[layout_bf2exp e3]1}]1))
layout_bf2exp (ABSbf2exp(t’,x,t,e)) =
addbf2type (t’ ,NODE{start="(fn ",finish=")",indent=4,childsep=RIGHT "=>",
children=[layout_typeass(LEAF x,layout_bf2type t),
layout_bf2exp el})
layout_bf2exp (APPbf2exp(t’,e,e’)) =
(case e of
ABSbf2exp(t’’,x,tx,e’?’) =>
addbf2type(t’ ,NODE{start="1let ",
finish=" end",
indent=4,
childsep=LEFT " in ",
children=[layout_bdef (x,tx,e’),
layout_bf2exp e’’1})
| _ =
addbf2type(t’ ,NODE{start="(",finish=")",indent=1,childsep=RIGHT " ",
children=[layout_bf2exp e,layout_bf2exp e’]1}))
layout_bf2exp (TABSbf2exp(t’,tv,e)) =

addbf2type(t’ ,NODE{start="(FN ",finish=")",indent=4,childsep=RIGHT "=>",

children=[LEAF (tyvar2string tv),layout_bf2exp el})
layout_bf2exp (TAPPbf2exp(t’,e,t)) =
addbf2type (t’ ,NODE{start="(",finish="}",indent=0,childsep=RIGHT "){",
children=[layout_bf2exp e,layout_bf2type t]})
layout_bf2exp (CAPPbf2exp(t’,c,e)) =
addbf2type(t’ ,NODE{start="<",finish="",indent=1,childsep=RIGHT ">",
children=[layout_coer c,layout_bf2exp e]l})

(*************************************************************)

(* Translation into SML *)
(ko ok ok oK oK oK oK 3K ok ok ok ok o ok K Kok ok ok o ok ok ok ok ok ok ok ok ok ok oK K Kok ok ok ok o K Kok ok ok ok o ok ok ook K K ok ok ok ok kK K )

fun

ctosig(IDcoer t) = (t,t)

ctosig(CONcoer (tc,cs)) =

let val sigs = map ctosig cs in
(CONbf2type(tc,map #1 sigs),CONbf2type(tc,map #2 sigs))

end

ctosig(BOXcoer t) = (t,BOXbf2type t)

ctosig(UNBOXcoer t) = (BOXbf2type t,t)

ctosig(INBOXcoer c) =

let val (t,t’) = ctosig c in
(BOXbf2type t,BOXbf2type t’)

end

ctosig(FUNcoer(c,d)) =

let val (tc,tc’) = ctosig c

145
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val (td,td’) = ctosig d
in
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(FUNbf2type (tc’,td) ,FUNbf2type (tc,td’))

end
| ctosig(FORALLcoer(tv,c)) =
let val (t,t’) = ctosig c in

(FORALLbf2type (tv,t) ,FORALLbf2type (tv,t’))

end

| ctosig(COMPcoer(c,d)) = (#1(ctosig c),#2(ctosig d))

fun toptypecon(VARbf2type _) = "tyvar"
toptypecon (CONbf2type(tc,_)) = tc
toptypecon (FUNbf2type _) = "fun"

fun AppCoer(IDcoer _,e) = e
| AppCoer(CONcoer(tc,cs),e) =

toptypecon (FORALLbf2type _) = "all" (* should not occur *)
toptypecon(BOXbf2type _) = "box" (* should not occur *)

NODE{start="(" -~ "(insstat \'"make:" ~ tc ~ "\";" ~ tc,
finish="))", indent=1,childsep=RIGHT " ",

children=(map (fn c =>

NODE{start="(fn x => (insstat \'"access:" ~ tc ~ "\";",
finish="))",

indent=1,

childsep=NONE,
children=[AppCoer (c,LEAF "x")]1})

cs)
o [el}
| AppCoer(BOXcoer (FORALLbf2type _),e) = e
| AppCoer(BOXcoer t,e) =
NODE{start="(box(\"" ~ toptypecon t ~ "\",",

finish="))", indent=6,childsep=RIGHT " ",

children=[e]}

| AppCoer (UNBOXcoer (FORALLbf2type _),e) = e
| AppCoer (UNBOXcoer t,e) =
NODE{start=" (unbox(\"" " toptypecon t "~ "\",",

finish="))",indent=1,childsep=RIGHT " ",

children=[e]}
| AppCoer (INBOXcoer c,e) =
let val (t,t’) = ctosig c
in

AppCoer (BOXcoer t’,AppCoer (c,AppCoer (UNBOXcoer t,e)))

end
| AppCoer(FUNcoer(c,d),e) =

NODE{start="(",finish=")", indent=1,childsep=RIGHT " ",

children=

[NODE{start="(fn £ => (insstat \"cl\";" ~
"(fn x => (insstat \"app\"; (",
finish=")))))",indent=1,

childsep=NONE,

children=
[AppCoer(d,NODE{start="(f ",
finish=")",
indent=1,

childsep=RIGHT " ",
children=[AppCoer (c,LEAF "x")1})]1},

el}
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fun

val

fun

AppCoer (FORALLcoer (_,c) ,e) = AppCoer(c,e)
AppCoer (COMPcoer(c,d) ,e) = AppCoer(d,AppCoer(c,e))

bf2exp2SML (IDENTbf2exp(_,x)) = LEAF x
bf2exp2SML (PRIMbf2exp(_,name,_,_,_)) = LEAF name
bf2exp2SML (IFbf2exp(t,el,e2,e3)) =
empty_block (0, [NODE{start="if ",finish="",
indent=3,childsep=LEFT " then ",
children=[bf2exp2SML el,bf2exp2SML e2]},
NODE{start=" else " ,finish="",
indent=3,childsep=NONE,
children=[bf2exp2SML e3]}])
bf2exp2SML (ABSbf2exp(_,x,_,e)) =
NODE{start="(fn ",finish=")",indent=4,childsep=RIGHT "=>",
children=[LEAF x,bf2exp2SML e]}
bf2exp2SML (APPbf2exp(t,e,e’)) =
(case e of
ABSbf2exp(_,x,_,e’’) =>
NODE{start="let val ",
finish=" end",
indent=8,
childsep=LEFT " in ",
children=[NODE{start="",finish="",
indent=0,childsep=RIGHT " = ",
children=[LEAF x,bf2exp2SML e’]},
bf2exp2SML e’’]}
| _ =
NODE{start="(",finish=")",indent=1,childsep=RIGHT " ",
children=[bf2exp2SML e,bf2exp2SML e’]})
bf2exp2SML (TABSbf2exp(_,_,e)) = bf2exp2SML e
bf2exp2SML (TAPPbf2exp(_,e,_)) = bf2exp2SML e
bf2exp2SML (CAPPbf2exp(_,c,e)) = AppCoer (c,bf2exp2SML e)

screen = (print:string->unit)

pp_SML(device,e,com) =
(device ("(x " ~ com ~ " *)\n");
device "exception hderror;\n";
device "exception tlerror;\n";
device "let val stat = ref([]:(string * int) list)\n";

device " fun insstat tc =\n";

device " let fun £ [] = [(tc,1)]\n";

device " | £ ((tc’,n)::s) =\n";

device " if tc=tc’ then\n";

device " (tc,n+1)::s\n";

device " else\n";

device " (tc’,n)::f s\n";

device " in\n";

device " stat := f (!stat)\n";

device " end\n";

device " fun fix £ x = £ (fix f) x\n";

device " fun box(tc,x) = (insstat (\"box:\" ~ tc); x)\n";
device " fun unbox(tc,x) = (insstat (\"unbox:\" ~ tc); x)\n";
device " fun mkpair x y = (x,y)\n";

device " fun fst (x,y) = x\n";

device " fun snd (x,y) = y\n";

device " fun cons x y = x :: y\n";
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device " fun hd (x::_) = x\n";

device " | hd xs = raise hderror\n'";
device " fun hd (x::_) = x\n";

device " | hd xs = raise hderror\n";
device " fun t1 (_::t) = t\n";

device " | t1 xs = raise tlerror\n";
device " fun null [] = true\n";

device " | null _ = false\n";

device " fun plus (x:int) y = x + y\n";
device " fun sub (x:int) y = x - y\n";
device " fun mult (x:int) y = x * y\n";
device " fun gt (x:int) y = x > y\n";
device " fun eq (x:int) y = x = y\n";
device " fun noteq (x:int) y = x <> y\n";
device " fun modulo (x:int) y = x mod y\n";
device " fun print x = x\n";

device " (* coercion constructors *)\n'";
device " val list = map\n";

device " fun pair ¢ d x = mkpair (c (fst x)) (d (snd x))\n";

device "in\n(";
outputTree 200 device (bf2exp2SML e);
device ", !stat)\nend")

fun pp_source(device,e) = outputTree 80 device (layout_f2exp e)

fun pp_target(device,e) = outputTree 80 device (layout_bf2exp e)
fun pp_type(device,t) = outputTree 80 device (layout_f2type t)
fun pp_btype(device,t) = outputTree 80 device (layout_bf2type t)

end;

B.3 Signature: PARSE

The next file shown below contains the signature PARSE of the parser functor Parse.

signature PARSER =
sig
structure Expression : EXPRESSION
open Expression

datatype ’a res = Some of ’a | None

val parse : string -> ((id * f2type) list * unit f2exp) res
end;

B.4 Functor: Parse

The file below contains the functor Parse. This is a hand-written top-down recursive decent
parser. The important function in this is parse which parses a string containing a program
and returns either None if parse error have occured or Some of a pair of a type assignment and
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a f2exp data structure containing the parsed Iy expression. The type assignment contains the
free variables (primitives) of the I3 expression and the types of these. These free variables must
be declared in the source file with an extern declaration before the I, expression according to

the syntax shown in the comment first in the file.

(integers (of type int()))
(variables)

(abstractions)

(applications)

(type abstractions)

(type application/instantiation)
(in-line primitives of type t)
(let—expression)

(conditional)

(parenthesized expression)

(type variable)

(function type)

(type quantification)

(type constructor application)

(empty sequence of types)
(sequence of types)

(*
Syntax:
Programs:
p ::=decls e
Declarations:
decls ::=
| extern x : t ; decls
Expressions:
e ::=n
| x
| fn x:t => e
| e e
| Fn a=>¢e
| e{t}
| xx{ts}
| let x:t = e in e end
| if e then e else e
| (e)
Types:
t 1= a
| t >t
| A a.t
| c(ts)
ts =
| t ts
*)

functor Parser (structure Expression :

struct

EXPRESSION) : PARSER =

structure Expression = Expression

open Expression

datatype ’a res = Some of ’a | None

exception TokenError

val input_list = ref ([]:string list)

val next_char = ref ""
fun read_char() =
(case !input_list of
[1 => next_char := ""

| (c::ip) => (next_char:=c; input_list:= ip))
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datatype Token =

fun

EndOf Input
ColonSym
SemiColonSym
AbsSym
FatArrowSym
TypeAbsSym
CLeftParen
CRightParen
LeftParen
RightParen
ArrowSym
ForallSym
DotSym
LetSym
InSym
EndSym
ExtSym
IfSym
ThenSym
ElseSym
EqSym
StarSym
StartComSym
EndComSym

(* :
(* ;

(*
(*
(%
(%
(%
(*
(%
(%
(*

(% .

(%
(%
(*
(*
(*
(%
(*
(%

(%

end *)
extern %)
if %)
then *)
else %)
= *)

* %)

Number of string

Identifier of string
UnknownChar of string

pp_token t =
(case t of

EndOfInput => "EQOF"
| ColonSym => ":"
| SemiColonSym => ";"
| AbsSym => "fp"
| FatArrowSym => "=>"
| TypeAbsSym => "Fn"
| CLeftParen => u{n
| CRightParen => "}"
| LeftParen => u(n
| RightParen => ")"
| ArrowSym => noyn
| ForallSym  => "A"
| DotSym => " v
| LetSym => "let"
| InSym => "in"
| EndSym => "end"
| ExtSym => Yext"
| IfSym => "if"
| ThenSym => "then"
| ElseSym => Yelge"
| EqSym => t=n
| StarSym => g
| StartComSym => '"(x"
| EndComSym => k)
| Number n =>n

Appendix B. Implementation of Boxing Analysis
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| Identifier s => s
| UnknownChar s => s)

keyword("extern") = Some ExtSym

fun keyword("fn") = Some AbsSym
| keyword("Fn") = Some TypeAbsSym
| keyword("A'") = Some ForallSym
| keyword("let'") = Some LetSym
| keyword("in") = Some InSym
| keyword("end") = Some EndSym
| keyword("if") = Some IfSym
| keyword("then") = Some ThenSym
| keyword("else") = Some ElseSym
I
I

keyword _ = None

val idfstsymbols =

explode "abcdefghijklmnopqrstuvwxyzABDXEFGHI JKLMNOPQRSTUVWXYZ_’"
val digits = explode "1234567890"
val idsymbols = idfstsymbols @ digits

fun read_identifier() =
let val ¢ = !next_char
in
if List.member ¢ idsymbols then
(read_char () ;
¢ ~ read_identifier())
else

end

fun read_number() =
let val ¢ = !mext_char
in
if List.member c digits then
(read_char () ;
c¢ " read_number())
else

end

fun lex() =
(case !'mext_char of
=3 End0f Input
" v => (read_char(); lex())
"\t" => (read_char(); lex())
"\n" => (read_char(); lex())
":" => (read_char () ;ColonSym)
U;" => (read_char () ;SemiColonSym)
"= => (read_char();
case !mext_char of
">" => (read_char();FatArrowSym)
| _ => EqSym)
| "(" => (read_char();
case !mext_char of
"x" => (read_char();StartComSym)
| _ => LeftParen)
| "' => (read_char();RightParen)
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| "{" => (read_char() ;CLeftParen)
| "}" => (read_char();CRightParen)
| "." => (read_char() ;DotSym)
| %" => (read_char();
case !mext_char of
")" => (read_char() ;EndComSym)
| _ => StarSym)
| v-n =
(read_char();
case !mext_char of
">" => (read_char () ;ArrowSym)
| ¢ => (read_char() ;UnknownChar c))
| ¢ =>
if List.member c idfstsymbols then
let val s = read_identifier()
in
case keyword s of
Some token => token
| None => Identifier s
end
else (if List.member c digits then
let val n = read_number()
in
Number n
end
else
(read_char() ;UnknownChar c)))

exception ParseError
val next_token = ref EndOfInput

fun skipComment level =
let val nt = lex()
in
case nt of
StartComSym => skipComment (level+1)
| EndComSym =>
if level = 1 then read_token() else skipComment (level-1)
| _ => skipComment (level)
end

and read_token() =
let val nt = lex()
in
case nt of
StartComSym => skipComment (1)
| UnknownChar c =>
(print ("Parse error: unknown character: " ~ ¢ ~
" found immediately before: \n\n" "
(implode (!'input_list)));
raise TokenError)
| _ => next_token := nt
end

fun expect(tok) =
if tok = 'next_token then
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read_token()
else
(print ("Parse error: token " ~ pp_token tok ~ " expected but " ~
pp_token (!mext_token) ~ " found immediately before: \n\n" ~
('next_char) " implode (!input_list));
raise ParseError)

val gte = ref ([]:(id * f2type) list) (* global type assignment *)
fun lookup_in_te(i,(i’,t)::te) = if i=i’ then t else lookup_in_te(i,te)
| lookup_in_te(i,_) =
(print ("Parse error: unknown variable or primitive: " ~ id2string i ~ "\n\n");
raise ParseError)
val init_tv_env = fn i => mktyvar i
fun lookup(i,r) = r i
fun update(i,tv,r) = fn i’ => if i=i’ then tv else r i’

fun mkApp []
mkApp [e] e
mkApp (e::e’::es) = mkApp ((APPf2exp((),e,e’))::es)

(print "Parse error: error in mkApp\n\n";raise ParseError)

fun parse_ident() =
(case !'mext_token of
Identifier s => (read_token(); s)
| _ =
(print ("Parse error: identifier expected immediately before: \n\n" ~
('next_char) ~ implode (!input_list));
raise ParseError))

fun parse_type(r) =
(case 'next_token of
ForallSym =>
(read_token() ;
let val i = parse_ident()
val tv = mktyvar i
in
expect (DotSym) ;
FORALLf2type (Nil, tv,parse_type(update(i,tv,r)))
end)
| Identifier s =>
let val i = parse_ident()
val t =
case !'nmext_token of
LeftParen =>
(read_token();
let val t = CONf2type(Nil,mktc i,parse_type_list(r))
in
expect (RightParen) ;

t
end)
_ => let val tv = lookup(i,r)
in
VARf2type tv
end

in
case !next_token of
ArrowSym =>
(read_token();
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FUNf2type (Nil,t,parse_type(r)))
| =t
end
| LeftParen =>
(read_token() ;
let val t = parse_type(r)
in

expect (RightParen) ;
case !next_token of
ArrowSym =>
(read_token();
FUNf2type (Nil,t,parse_type(r)))
| =t

end)
_ => (print ("Parse error: syntax error in type immediately before: \n\n" ~
('next_char) " implode (!input_list));
raise ParseError))

and parse_type_list(r) =
(case 'mext_token of
ForallSym => parse_type(r)::parse_type_list(r)
| Identifier s => parse_type(r)::parse_type_list(r)
| LeftParen => parse_type(r)::parse_type_list(r)
| - =>[D

fun parse_appexp(r) = mkApp (parse_appexp’(r))

and parse_appexp’ (r) =
(case !'mext_token of
LeftParen =>
(read_token();
let val e = parse_exp(r)
in
expect (RightParen) ;
parse_appexp’’ (e,r)
end)
| Identifier s =>
let val i = mkid(parse_ident())
in
case !next_token of
StarSym =>
(read_token();
let val ts = case !'mext_token of
CLeftParen =>
(read_token();
let val ts = parse_type_list(r)
in
expect (CRightParen) ;
ts
end)
| - =>1[
in
parse_appexp’’ (PRIMf2exp(() ,1i,lookup_in_te(i, (!gte)),ts,0),r)
end)
| _ => parse_appexp’’ (IDENTf2exp((),i,()),r)
end
| Number s =>



Section B.4. Functor: Parse 155

(read_token() ;
parse_appexp’’ (PRIMf2exp(() ,mkid s,
CONf2type(Nil,mktc "int",[]),[],P),r))
[ - =>[D

and parse_appexp’’(e,r) =
(case !'mext_token of
CLeftParen =>

(read_token() ;

let val t = parse_type(r)

in
expect (CRightParen) ;
(TAPPf2exp((),e,t)): :parse_appexp’ (r)

end)

| _ => e::parse_appexp’ (r))

and parse_exp(r) =
(case !'mext_token of
AbsSym =>
(read_token() ;
let val i = mkid(parse_ident())
in
expect (ColonSym) ;
let val t = parse_type(r)
in
expect (FatArrowSym) ;
ABSf2exp((),1i,t,parse_exp(r))
end
end)
| TypeAbsSym =>
(read_token();
let val i = parse_ident()
val tv = mktyvar i
in
expect (FatArrowSym) ;
TABSf2exp (() ,tv,parse_exp(update(i,tv,r)))
end)
| LetSym =>
(read_token();
let val i = mkid(parse_ident())

val _ = expect(ColonSym)
val t = parse_type(r)
val _ = expect(EqSym)

val el = parse_exp(r)
val _ = expect (InSym)
val e2 = parse_exp(r)
in
expect (EndSym) ;
APPf2exp (() ,ABSf2exp((),i,t,e2),el)
end)
| IfSym =>
(read_token();
let val el = parse_exp(r)

val _ = expect(ThenSym)
val e2 = parse_exp(r)
val _ = expect(ElseSym)
val e3 = parse_exp(r)
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in
IFf2exp((),el,e2,e3)

end)
| LeftParen => parse_appexp(r)
| Identifier s => parse_appexp(r)
| Number s => parse_appexp(r)
| _ =
(print ("Parse error: syntax error in expression immediately before: \n\n" ~

('next_char) ~ implode (!input_list));
raise ParseError))

fun parse_prog te =
(case 'mext_token of
ExtSym =>
(read_token() ;
let val i = mkid(parse_ident())
val = expect (ColonSym)

val t = parse_type(init_tv_env)
val _ = expect(SemiColonSym)

in
parse_prog ((i,t)::te)

end)

| _ => (gte := te;(te,parse_exp(init_tv_env))))

fun parse s =
(input_list := explode s;
read_char();
read_token() ;
let val e = parse_prog([])
in
expect (End0f Input) ;
Some e
end)
handle ParseError =>
(print "\n\nParse Error(s) detected\n\n";
None)
end;

B.5 Signature: BOXINGANALYSIS

The next file contains the signature BOXINGANALYSIS of the functor BoxingAnalysis which
contains the actual analysis.

signature BOXINGANALYSIS =
sig
structure Expression : EXPRESSION
open Expression

val isources : node list ref
val edges : (node * node) list ref
val sources : node list ref
val sinks : node list ref
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val debug : bool ref
val debugOn : unit -> unit
val debugOff : unit -> unit
val cpstar : bool ref
val cpstarOn : unit -> unit

val cpstar0ff : unit -> unit

val nodecount : int ref
val lastnode : node ref

val print_edges : (node * node) list -> unit

val print_nodes : node list -> unit

val debug_print_edges_sources_and_nodes: unit -> unit

val debug_print_sol : unit -> unit

val txt : string ref

val f2exp2bflexp : f2type f2exp -> f2type-> bf2type bf2exp

exception Typecheck

val setpsi : unit -> unit
val setphi : unit -> unit

val init : unit -> unit
val generate : (id * f2type) list * ’a f2exp -> f2type f2exp * f2type

val propagate : node list -> unit
end;

B.6 Functor: BoxingAnalysis

The functor BoxingAnalysis, shown below, contains the actual implementation of the algo-
rithm presented in Chapter 7. It contains the following important functions:

e generate that calls typecheck to type check the source expression and generate the
reprsentation graph. It also add sources and sinks for the type of the expression and for
the types of the free variables in the type assignment.

e propagate that performs the solving. This corresponds to the code shown in Figure 21.
e init that initialized the internal data structures use by the program.

e f2exp2bf2exp that converts the annotated Fy expressions (principal completions) into
optimal completions when the analysis has been performed.

It also contains several function for use when debugging and the following function that may
be used to change the behaviour of the program:

e setpsi set the algorithm to produce -free completions.

e setphi set the algorithm to produce ¢-free completions.
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e debugOn switches the debug mode on.

e debugOff switches the debug mode off.

functor BoxingAnalysis(structure Expression : EXPRESSION) : BOXINGANALYSIS =
struct
structure Expression = Expression;
open Expression

exception ThisCannotHappen (* for situation I know for sure cannot happen *)
exception ThisShouldNotHappen (* for situation that should not happen *)

(ks ok ok koo sk ook skok koo ok ook skok ok skok ook sk ok ok ok sk ok sk ok ok ok ok ook sk o ok o ook skok ok sk ook sk ok ok sk ok ook ok ok ok )
(* Some elementary functions: *)
(ks sk sk sk sk sk sk sk ok sk ok o ook ok Kok sk o ook ok ok sk ok sk ok ok ook sk sk ok sk ok o ook Kok ok ok ok o o ok ok ok ok ok ok ok ok ook sk sk ok sk ok ok ok ok )
fun zip [1 [0 = [

| zip(x::xs) (y::ys) = (x,y)::zip xs ys

| zip _ _ = raise ThisShouldNotHappen

fun unzip(ps:(’a * ’b) list) = (map #1 ps,map #2 ps)

fun concat [] = []
| concat (xs::xss) = xs @ (concat xss)

(ko sk ok o sk ok ok sk ok skok stk sk skok stk sk skok sk ok skok sk sk ok skok sk sk ok skok sk sk sk ks sk sk ks sk sk ook sk sk ook )
(* Options: *)
(oo o koo sk ook ok sk o ook ko ok sk ook sk ok ok ok sk ook sk ok ok ok o ok sk o ok o ook skok sk ok sk ok ok ok sk ook ok ok ok )

val debug = ref false

fun debug0On() = debug := true
fun debug0ff () = debug := false
val cpstar = ref false

fun cpstarOn() = cpstar := true
fun cpstar0ff() = cpstar := false

(kKoK ok ok ok ok ok Kok skok o ook ok Kok ok o ok ok ok ok sk ok sk ok ok ook sk sk ok sk ok ok ook Kok ok ok ok o ok ok ok ok sk ok sk ok ok ok ok sk sk ok sk ok ok ok ok )
(* Sources and sinks: *)
(ks sk sk sk sk sk ok skok skok o ook ok Kok skok o ook ok ok sk ok sk ok ok ook sk sk ok sk ok o ook Kok ok ok o o ok ok ok sk ok sk ok ok ok ok sk sk ok sk ok ok ok ok )
val isources = ref ([]:node list)

val edges = ref ([]:(node * node) list) (* for debug *)

val sources ref ([]:node list)

val sinks = ref ([]:node list)

(ks ok ok koo sk ook sk ok ook ok ook skok ok skok ook sk ok ok ok sk ook sk ok ok ok o ook ko o ok ok ok sk ok ok ok sk ook sk ok ok ok sk ook ok ok ok )
(* Function on nodes : *)
(ks sk sk sk sk sk ok skok skok o ook ok Kok skok o ook ok ok sk ok sk ok ok ook sk sk ok sk ok o ook Kok ok ok o o ok ok ok sk ok sk ok ok ok ok sk sk ok sk ok ok ok ok )
fun find n =

(case n of

Node(_,_,ecrp,_,_,_,_) =>
(if 'ecrp = n then
n
else

let val n’ = find('ecrp)
in

ecrp :=n’;

n)
end)
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=> (print "internal reference 10";
raise ThisCannotHappen))

fun lub nl1 n2 =
let val n1 = find ni1
val n2 = find n2
in
case (n1,n2) of

(Node(_,_,_,ref B,_,_,_),_) => nl
| (_,Node(_,_,_,ref B,_,_,_)) => n2
| (Node(_,_,_,_,_,_,ref V),_) => nil
| => n2

fun glb nl n2 =
let val nl = find nil
val n2 = find n2

in
case (n1,n2) of
(Node(_,_,_,ref U,_,_,_),_) => nl
| (_,Node(_,_,_,ref U,_,_,_)) => n2
| (Node(_,_,_,_,_,_,ref V),_) => ni
| _ => n2
end

fun mark m n = case n of

Node(_,_,_s_s_s_,rm) => rm:=m
I - => 0
fun setboxval n b = case n of
Node(_,_,_,br,_,_,_) => br:=b
I - => 0

fun getboxval n = case find n of
Node(_,_,_,b,_,_,_) => b
| Nil => (print "internal reference 1";
raise ThisCannotHappen)

fun getnode (CONf2type(bv,_,_)) = bv
| getnode (FUNf2type(bv,_,_)) = bv
| getnode(FORALLf2type(bv,_,_)) = bv
| getnode _ = Nil

(********************************************************************)

(% Default wvalues : *)
(ks sk sk sk sk sk sk sk ok sk ok o ook ok Kok sk o ook ok ok sk ok sk ok ok ook sk sk ok sk ok o ook skok ok ok o ok ok ok sk sk ok sk ok ok ok ok sk sk ok sk ok ok ok ok )
val dbv = ref U (* the default box value *)

val sbv = ref B (* the box value of the initial sources *)
val dop = ref lub (* the default operation used by findB *)

val txt = ref "Psi-free mode"

fun set (ndbv,nsbv,ndop,ntxt) =

(dbv:=ndbv; sbv:=nsbv; dop:=ndop; txt:=ntxt)
fun setpsi() = (set(U,B,lub,"Psi-free mode") ;print('txt))
fun setphi() = (set(B,U,glb,"Phi-free mode") ;print(!txt))

(********************************************************************)
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(* Generation of nodes : *)
(i ke ok ok ok ok ok ok ok ok sk ok 3k ok ok 3k ok ok sk ok ok sk ok 3k ok ok sk ok ok ok 3k ok sk ok ok ok ok ok ok ok ok ok ok ok Kk ok ok 3k ok K sk ok ok sk ok 3k ok ok sk ok Kk k ok )
(* Generation of numbers *)

val nodecount = ref 0

fun get_new_no() = let val n = !nodecount in nodecount:=n + 1; n end

(% Generation of nodes *)
val lastnode = ref Nil (¥ for debugging: keeps all nodes
in one linked list *)
fun new_node() =
let val n’ = ref Nil
val n = Node(mknodeid(get_new_no()),ref (!lastnode),n’,ref(!dbv),
ref [],ref [],ref NV)

in
n’ := n;
lastnode := n;
n

end

(ks ok sk sk ok ok ok Kok skok o ook ok Kok ok o ook ok ok sk ok sk ok ok ook sk sk ok skok ok ook Kok ok ok ok o ok ok ok ok sk ok ok ok ok ok ok sk sk ok sk ok ok ok ok )
(* Debug functions: *)
(ks ok ok koo sk ook skok ok ook ok ook skok ok sk ook sk ok ok ok sk ok sk ok ok ok ok ook sk ok ok o ook okok ok sk ook sk ok ok ok sk ok ook ok ok ok )
fun print_edges eds =
(map (fn (n,m) => print (Int.string (getnodeid n) =~ "=>" -
Int.string (getnodeid m) ~ ","))
eds;

O)

fun print_nodes ns =
(map (fn n =>
print (Int.string (getnodeid n) =~ "=" ~
layout_boxval (getboxval n) ~ ","))
ns;

O)

fun debug_print_edges_sources_and_nodes() =
(print "\nEdges:\n\n";
print_edges ('edges);
print "\n\nSources:\n\n";
print_nodes (!sources);
print "\n\nISources:\n\n";
print_nodes (!isources);
print "\n\nSinks:\n\n";
print_nodes (!sinks))

fun debug_print_sol’ n =
case !n of

Node (id,next,_,_,_,_,_) =>
let val Node(id’,_,_,_,_,_,_) = find(!n)
in

(print (nodeid2int id); print "=(";
print (nodeid2int id’); print ")'";
print (layout_boxval (getboxval(!m))); print ",";
debug_print_sol’ next)
end
| NIL => ()
fun debug_print_sol() = debug_print_sol’ lastnode
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(o ke ok ok ok ok ok ok ok ok sk ok ok ok ok 3 ok ok ok ok ok sk ok 3k ok ok sk ok 3k ok ok ok sk ok ok ok ok ok ok ok ok ok ok sk Kk okok 3k ok ok sk ok 3k sk ok 3k ok ok sk ok Kk k ok )

(* Graph generation: *)
(ko ok ko skook sk ook ko o skok sk ook skok o skok ook sk ok ok ok sk ook sk ok ok ok ok ook skok ok ok o ook skok ok sk ook sk ok ok ok sk ok ok ok ok ok ok )
fun assym_union(b,b’) = (* make the first one the ecr *)
let val Node(_,_,ecrp,_,succ,pred,_) = b
val Node(_,_,ecrp’,_,succ’,pred’,_) = b’
in
(* print (Int.string(getnodeid b?) = "->" ~
Int.string(getnodeid b) ~ ","); *)
ecrp’ := b;
succ :=
List.dropFirst (fn x => x = b’) (!succ) @ (% We don’t know *)
List.dropFirst (fn x => x = b) (!succ’); (* which comes *)
pred := (% first! *)

List.dropFirst (fn x => x = b’) (!pred) @
List.dropFirst (fn x => x = b) (!pred’)
end

fun union(b,b’) =
let val Node(_,_,_,ref bv,_,_,ref m) = find b
val Node(_,_,_,ref bv’,_,_,ref m’) = find b’
in
case (m,m’) of
(vu,vu) =>
(if bv = !sbv then
assym_union(b,b’)
else
assym_union(b’,b))
VU,_) => assym_union(b,b’)

I (

| (_,VU) => assym_union(b’,b)
| (V,_) => assym_union(b,b’)
I

=> assym_union(b’,b)

end

fun ¢’ £ fr (CONf2type(n,_,ts),CONf2type(n’,_,ts’)) =
let val n = find n
val n’ = find n’
in
(case (n,n’) of
(Node(_,_,_,_,succ,_,_) ,Node(_,_,_,_,_,pred,_)) =>
(succ :=n’ :: (!succ);
pred :=n :: (!pred);
edges := (n,n’) :: ledges;
(map (¢’ fr fr) (zip ts ts’));
O
| - => 0);
f(n,n’)
end
c’ f fr (FUNf2type(n,t,t1) ,FUNf2type(n’,t’,t1’)) =
let val n = find n

val n’ = find n’
in
(case (n,n’) of
(Node(_,_,_,_,succ,_,_),Node(_,_,_,_,_ ,pred,_)) =>
(succ :=n’ :: ('succ);

pred :=n :: (!pred);
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edges := (n,n’) :: !edges;
c’ fr fr (t’,t);
c’ fr fr (t1,t1’))
I - => 0);
f(n,n’)
end
| ¢’ £ fr (FORALLf2type(n,_,t) ,FORALLf2type(n’,_,t’)) =
let val n = find n
val n’ = find n’
in
(case (n,n’) of

(Node(_,_,_,_,succ,_,_) ,Node(_,_,_,_,_,pred,_)) =>
(succ :=n’ :: (!succ);
pred :=n :: (!pred);
edges := (n,n’) :: !edges;

c’ fr fr (t,t’))
| - => 0);

f(n,n’)
end
| > 2 2 (L,2) = 0O
fun c(t,t’) =
¢’ (fn _ => ()) (if !cpstar then union else (fn _ => ())) (t,t?)

fun conecttypes(t,t’) =c’ (fn _ => ()) (fn _ => () (t,t’)
fun uniontypes(t,t’) = ¢’ union union (t,t’)

fun ioSourceAndSinks (CONf2type(bv,_,ts)) =
let val (so,si) = let val (x,y) = unzip(map ioSourceAndSinks ts)
in
(concat x,concat y)

end
in
(bv::so0,si)
end
| ioSourceAndSinks (FUNf2type (bv,t,t’)) =
let val (si,so) = ioSourceAndSinks t
val (so’,si’) = ioSourceAndSinks t’
in
(bv :: s0o @ so’, si @ si’)
end

| ioSourceAndSinks (FORALLf2type(bv,_,t)) =
let val (so,si) = ioSourceAndSinks t

in
(bv :: so, si)
end
| ioSourceAndSinks _ = ([],[1)

fun addtosources(n,b) =
let val n = find n

in
(mark VU n; setboxval n b; sources :=n :: !sources;
if b = !sbv then
isources :=n :: !isources
else
0)
end

fun addtosinks(n,b) =



Section B.6. Functor: BoxingAnalysis 163

let val n = find n
in

(mark VU n; setboxval n b; sinks :=n :: !sinks)
end

(ks ok ok koo sk ook skok koo ok ook skok ok sk ook sk ok ok ok sk ook sk ok ok ok ok ook sk o ok o ook skok ok sk ook sk ok ok ok sk ok ook ok ok ok )
(% Substitution and instantiation: *)
(ks sk sk sk sk ok ok sk ok skok ok ok ok ok Kok skok o ook ok ok sk ok sk ok ok ook sk sk ok skok ok ok sk Kok ok sk ok o o ok ok sk sk ok ok ok ok ook sk sk ok sk ok ok ok ok )
val tvcount = ref 0

fun get_new_tv(tv) =

let val n = !tvcount
in

tvcount:=n + 1;

tyvar2string tv = "$" ~ Int.string n
end

(* find free type variable in f2 types *)
fun ftvf2type(VARf2type tv) = Set.singleton tv
| ftvf2type(FUNf2type(_,t1,t2)) =
Set.union equaltyvar (ftvf2type t1) (ftvf2type t2)
| ftvf2type(FORALLf2type(_,tv,t)) =
Set.remove equaltyvar tv (ftvf2type t)
| ftvf2type _ = Set.empty
(* substitution on f2 types %)
fun subst(tv,t,VARf2type tv’) =
if equaltyvar tv tv’ then t else VARf2type tv’
| subst(tv,t,CONf2type(bv,c,ts)) =
CONf2type(bv,c,map (fn t’ => subst(tv,t,t’)) ts)
| subst(tv,t,FUNf2type(bv,tl1,t2)) =
FUNf2type (bv,subst (tv,t,t1) ,subst(tv,t,t2))
| subst(tv,t,FORALLf2type(bv,tv’,t’)) =
if equaltyvar tv tv’ then
FORALLf2type (bv,tv’,t?)
else
(if Set.member equaltyvar tv’ (ftvf2type t) then
(changetyvar(tv’,get_new_tv(tv’));
FORALLf2type(bv,tv’,subst(tv,t,t’)))
else
FORALLf2type (bv,tv’,subst (tv,t,t’)))

exception Instantiate
fun instantiate(FORALLf2type(_,tv,t),tl::ts) =
instantiate(subst(tv,t1,t),ts)
| instantiate(t,[]) = t
| instantiate(_,_) = raise Instantiate

(* find free type variable in representation types *)
fun ftvbf2type (VARbf2type tv) = Set.singleton tv
| ftvbf2type (FUNbf2type(tl,t2)) =
Set.union equaltyvar (ftvbf2type t1) (ftvbf2type t2)
ftvbf2type (FORALLbf2type (tv,t)) =
Set.remove equaltyvar tv (ftvbf2type t)
ftvbf2type (BOXbf2type t) =
ftvbf2type t
ftvbf2type _ = Set.empty
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(* substitution on representation types *)
fun substb(tv,t,VARbf2type tv’) =
if equaltyvar tv tv’ then t else VARbf2type tv’
| substb(tv,t,CONbf2type(c,ts)) =
CONbf2type(c,map (fn t’ => substb(tv,t,t’)) ts)
| substb(tv,t,FUNbf2type(t1,t2)) =
FUNbf2type (substb(tv,t,t1) ,substb(tv,t,t2))
| substb(tv,t,FORALLbf2type(tv’,t’)) =
if equaltyvar tv tv’ then
FORALLbf2type (tv’,t)
else
(if Set.member equaltyvar tv’ (ftvbf2type t) then
(changetyvar(tv’,get_new_tv(tv’));
FORALLbf2type (tv’,substb(tv,t,t’)))
else
FORALLbf2type(tv’,substb(tv,t,t’)))
| substb(tv,t,B0Xbf2type t’) =
BOXbf2type (substb(tv,t,t’))

(* substitute on coercions %)
fun substoncoer (tv,t’,IDcoer t) = IDcoer(substb(tv,t’,t))
| substoncoer(tv,t’,CONcoer(tc,cs)) =
CONcoer(tc,map (fn ¢ => substoncoer(tv,t’,c)) cs)
substoncoer (tv,t’,B0Xcoer t) = BOXcoer(substb(tv,t’,t))
substoncoer (tv,t’,UNBOXcoer t) = UNBOXcoer(substb(tv,t’,t))
substoncoer (tv,t’,INBOXcoer c) = INBOXcoer (substoncoer(tv,t’,c))
substoncoer (tv,t’,FUNcoer(c,d)) =
FUNcoer (substoncoer (tv,t’,c),substoncoer(tv,t’,d))
substoncoer (tv,t’,FORALLcoer(tv’,c)) =
if equaltyvar tv tv’ then
FORALLcoer(tv’,c)
else
(if Set.member equaltyvar tv’ (ftvbf2type t’) then
(changetyvar(tv’,get_new_tv(tv’));
FORALLcoer (tv’ ,substoncoer(tv,t’,c)))
else
FORALLcoer (tv’,substoncoer(tv,t’,c)))
| substoncoer(tv,t’,COMPcoer(c,d)) =
COMPcoer (substoncoer(tv,t’,c) ,substoncoer(tv,t’,d))

(ko sk ok ok oK oK oK 3K ok ok ok o ook K KoK oK ok o o ok ok ok oK ok ok ok ok ok oK K Kok ok o o ok K Kok ok ok o ok ok ok KoK K K ok ok ok ok kK K )
(* Function related to the generation of completions %)
(kb sk ok sk ok ok ok skok s skok ok okok skok ok skok ok sk ok ok ok ok ok sk ok ok o ok skok sk ok ok skok kok ok ok ok K kK K )
(% Generate canonical coercions %)
exception CCError
fun cc(t,t’) =
if equalbtype t t’ then
IDcoer t
else
case (t,t’) of
(BOXbf2type t,BOXbf2type t’) =>
INBOXcoer(cc(t,t’))
| (t,BOXbf2type t’) =>
if t=t’ then
BOXcoer (t)
else
COMPcoer (cc(t,t’) ,B0Xcoer(t’))
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| (BOXbf2type t,t’) =>
if t=t’ then
UNBOXcoer (t)
else
COMPcoer (UNBOXcoer(t) ,cc(t,t’))
| (CONbf2type(c,ts),CONbf2type(_,ts’)) =>
CONcoer(c,map cc (zip ts ts’))
| (FUNbf2type(t1,t2),FUNbE2type(t1’,£27)) =>
FUNcoer(cc(t1’,t1),cc(t2,t2?))
| (FORALLbf2type(tv,t) ,FORALLbf2type(tv’,t’)) =>
FORALLcoer(tv,cc(t,t’))
| _ => raise CCError

(* Translate annotated f2-expressions into explicitly *)
(* boxed f2-expressions *)
fun f2type2bf2type (VARf2type tv) = VARbf2type tv
| f2type2bf2type (CONf2type(n,cn,ts)) =
if getboxval(n) = B then
BOXbf2type (CONbf2type (cn,map f2type2bf2type ts))
else
CONbf2type (cn,map £f2type2bf2type ts)
| £2type2bf2type (FUNf2type(n,t,t’)) =
let val tf = FUNbf2type (f2type2bf2type t,f2type2bf2type t7)
in
if getboxval(n) = B then BOXbf2type tf else tf
end
| £2type2bf2type (FORALLf2type(n,tv,t)) =
let val t’ = FORALLbf2type(tv,f2type2bf2type t)
in
if getboxval(n) = B then BOXbf2type t’ else t’
end

(ke ke s ok sk sk ok ok ok ook s ko ok okook sk ok sk ok ok ok ok K K K o ok ok ok ok o ok ok s ok sk ok sk ok ok skok sk ok ok Kok ok K kK K )
(* Generate completions from annotated expressions %)
(ke sk ok sk s ok sk ok sk ok sk ok sk ok o okok 3ok s ok ok 3ok sk sk ok koK ok sk sk ok ke k sk ok ok sk ok 3ok o ok ok 3ok ok sk ok kK ok sk sk ok )
fun insertcoercion(tbx,tb,be) =
(case cc(tbx,tb) of
IDcoer => be

| ¢ => CAPPbf2exp(tb,c,be))

fun f2exp2bf2expl (IDENTf2exp(t,x,tx)) =
let val tbx = f2type2bf2type tx
in
insertcoercion(tbx,f2type2bf2type t,IDENTbf2exp(tbx,x))
end
| f2exp2bf2expl (PRIMf2exp(t,name,t’,ts,m)) =
let val tb’ = f2type2bf2type (instantiate(t’,ts))
in
insertcoercion(tb’,f2type2bf2type t,PRIMbf2exp(tb’,name,t’,ts,m))
end
| f2exp2bflexpl (IFf2exp(t,el,e2,e3)) =

let val bel = f2exp2bflexpl el
val be2 = flexp2bf2expl e2
val be3 = flexp2bf2expl e3

val tb = f2type2bf2type t
val t1 = getbf2type bel
val t2 = getbf2type be2
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val t3 = getbf2type be3

in
IFbf2exp (tb, insertcoercion(t1,CONbf2type (mktc "bool'",[]) ,bel),
insertcoercion(t2,tb,be2),
insertcoercion(t3,tb,be3))
end

| £2exp2bf2expl (ABSf2exp(t,x,tx,e)) =
let val be = f2exp2bflexpl e

val tbe = getbf2type be
val tbx = f2type2bf2type tx
val tba = FUNbf2type (tbx,tbe)

in
insertcoercion(tba,f2type2bf2type t,ABSbf2exp(tba,x,tbx,be))
end
f2exp2bf2expl (APPf2exp(t,e,e’)) =
let val be = f2exp2bflexpl e
val te = getf2type e

in
case te of
FUNf2type(_,ta,_) =>
let val tbe = getbf2type be
val be’ f2exp2bf2expl (replacef2type(ta,e’))
val tbe’ = getbf2type be’

in
case tbe of
FUNbf2type (_,tbr) =>
insertcoercion(tbr,f2type2bf2type t,
APPbf2exp(tbr,be,be’))
| _ => (print "internal reference 6";
pp_target (screen,be);
raise ThisCannotHappen)
end
| _ => (print "internal reference 7'";
raise ThisCannotHappen)
end
| f2exp2bf2expl (TABSf2exp(t,tv,e)) =
let val be = f2exp2bflexpl e
val tbe = getbf2type be
val tbta = FORALLbf2type(tv,tbe)
in
insertcoercion(tbta,f2type2bf2type t,TABSbf2exp(tbta,tv,be))
end
| f2exp2bf2expl (TAPPf2exp(t,e,t?)) =
let val be = f2exp2bflexpl e
val tbe = getbf2type be
val tb’ = f2type2bf2type t’
val (tv,tbb) = case tbe of
FORALLbf2type (tv,tbb) => (tv,tbb)
| _ => (print "internal reference 8'";

raise ThisCannotHappen)
val tbta = substb(tv,tb’,tbb)
in
insertcoercion(tbta,f2type2bf2type t,TAPPbf2exp (tbta,be,tb’))
end

fun f2exp2bflexp e t =
let val e’ = f2exp2bflexpl e
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val te’ = getbf2type e’
in

insertcoercion(te’,f2type2bf2type t,e’)
end

(s kokok ok ok sk ok ok ko ok ok sk ok skok ko ok skok ko ok skok sk ok ok skok sk sk ok skok sk sk ok skok ok sk ok sk sk ok skok sk sk ok sk ok ok ok ok ok )
(* Type checker that also generates the representation graph *)
(kokok ko ook ok okokok dokok ok ok okok ok ok ok ok skokskokokskok skok ok skok skokok sk sk ok sk ok ok ok sk ok ok )
exception Typecheck

r X
fn x’ => if x=x’ then t else lookup(x’,r)

fun lookup(x,r)
fun update(x,t,r)

fun copytype(VARf2type tv) = VARf2type tv
copytype (CONf2type (_,c,ts)) = CONf2type (new_node() ,c,map copytype ts)
copytype (FUNf2type (_,t,t’)) =
FUNf2type (new_node() ,copytype t,copytype t’)
copytype (FORALLf2type (_,tv,t)) =
FORALLf2type (new_node() ,tv,copytype t)

fun typecheck (IDENTf2exp(_,x,_),r) =
let val t = lookup(x,r)
val tc = copytype t
in
c(t,tc);
(IDENTf2exp(tc,x,t),tc)
end
typecheck (PRIMf2exp (_,name,t,ts,m),_) =
let val tc = copytype t
val tbs = map copytype ts
val (so,si) = ioSourceAndSinks tc
val t’ = instantiate(tc,tbs)
val tc’ = copytype t’

in
(if m=P then
map (fn t =>
let val bv = getnode t

in
case bv of
Nil => ()
| _ => (addtosources(bv,B) ;addtosinks(bv,B))
end)
tbs
else
[1;
c(t’,tc’);

map (fn bv => addtosources(bv,U)) so;
map (fn bv => addtosinks(bv,U)) si;
(PRIMf2exp(tc’,name,tc,tbs,m),tc’)
end
| typecheck(IFf2exp(_,el,e2,e3),r) =
let val (el’,t1) = typecheck(el,r)
val (e2’,t2) = typecheck(e2,r)
val (e3’,t3) = typecheck(e3,r)

in
if equaltype t1 (CONf2type(Nil,mktc "bool",[]))
then
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(if equaltype t2 t3

then
let val tc = copytype t2
in
uniontypes(t2,t3); (% make the demand on the boxing
of the branches the same %)
c(t2,tc);
addtosinks (getnode t1,U);
(IFf2exp(tc,el’,e2’,e3’),tc)
end
else

(print "**x Type error: types:\n";
pp_type(screen,t2);
print "\nand\n";
pp_type(screen,t3);
print "\nof branches don’t agree.";
raise Typecheck))
else
(print "#x* Type error: type:\n";
pp_type(screen,tl);
print "\nof test is not bool.";
raise Typecheck)
end
| typecheck(ABSf2exp(_,x,tx,e),r) =
let val txc = copytype tx
val (el,t1) = typecheck(e,update(x,txc,r))
val bv = new_node()
val t = FUNf2type(bv,txc,tl)
val tc = copytype t
in
c(t,tc);
addtosources (bv,U);
(ABSf2exp(tc,x,txc,el),tc)

end
| typecheck (APPf2exp(_,e,e’),r) =
let val (el,t) = typecheck(e,r)
val (el’,t’) = typecheck(e’,r)

in

case t of
FUNf2type(bv,t1,t2) =>
(if equaltype t1 t’ then
let val t’’ = copytype(t2)
in
c(t2,t’);
c(t’,t1);
addtosinks (bv,U);
(APPf2exp(t’’,el,el?),t’?)
end
else
(print "**x Type error: type:\n";
pp_type(screen,t’);
print "\nof actual argument:\n'";
pp_source(screen,el’);
print "\ndoes not match type:\n";
pp_type(screen,tl);
print "\nof formal argument in:\n'";
pp_source (screen,el);
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raise Typecheck))
| _ =>
(print "#x* Type error: type:\n";
pp_type(screen,t);
print "\nis not a function type.";
raise Typecheck)
end
| typecheck (TABSf2exp(_,tv,e),r) =
let val (el,t) = typecheck(e,r)
val bv = new_node()
val t’ = FORALLf2type(bv,tv,t)
val tc = copytype t’
in
c(t’,tc);
addtosources (bv,U) ;
(TABSf2exp (tc,tv,el) ,tc)
end
| typecheck (TAPPf2exp(_,e,t),r) =
let val (e’,t’) = typecheck(e,r)
in
case t’ of
FORALLf2type (bv,tvi,t1) =>
let val pi = copytype t
val bvpi = getnode pi
val t?° = subst(tvl,pi,tl)
val tc = copytype t’’

in
c(t’’,tc);
case bvpi of
Nil => ()
| . =
(addtosources(bvpi,B);
addtosinks (bvpi,B));
addtosinks (bv,U) ;
(TAPPf2exp(tc,e’,pi) ,tc)
end
| _ =
(print "x** Type error: type:\n";
pp_type(screen,t’);
print "\nis not forall type.";
raise Typecheck)
end
fun init_env x = (print ("#** Error: unknown variable: " ~
(id2string x) ~ "\n\n");
raise Typecheck)

fun mk_env [] = init_env
| mk_env ((i,t)::a) =
let val ct = copytype t
val (so,si) = ioSourceAndSinks ct
in
map (fn bv => addtosources(bv,U)) so;
map (fn bv => addtosinks(bv,U)) si;
(if !'debug then
(print ("External " ~ id2string i ~ " of type:");
pp_type(screen,ct);
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print "\n")
else

0);
update(i,ct,mk_env a)

end
fun init () = (isources := []; edges := []; sources := []; sinks := [];
lastnode := Nil; nodecount := 0; tvcount := 0)
fun succ(Node(_,_,_,_,ref s,_,_)) = s
| sucec _ =[]
fun pred(Node(_,_,_,_,_,ref p,_)) = p
| pred _ = []

(koo ok sk ook ko o kol sk ook ko sk skokskok skl sk ok sk skokok ok sk ok sk sk ko sk ok skok ok skok sk ok ok skok o )
(* Remove paths to and from terminal nodes that are not *)

(* sources or sinks. *)

(ks ok ok skook sk ook ko ok ok sk ok sk skok ok ok sk sk okok ok ok sk ok sk ok ok ok ok ook sk o ok sk ook ko ok Kok ok ok ok okok ok )
fun compress(n,nn,od) =
case nn(n) of
[n’] => let val n’ = find(n’)
in
assym_union(n’,n);
if od(n’)=[] then
compress (n’,nn, od)

else
O
end
I - =>0
fun cleanUp n =
case n of
Nil => ()
| Node(_,next,_,_,_,_,_) =>

let val n = find n
in
case n of
Node(_,_,_,_,_,ref [],ref NV) =>
(* no pred. and not a source node *)
(compress (n,succ,pred) ;cleanUp(!next))
| Node(_,_,_,_,ref [1,_,ref NV) =>
(* no succ. and not a sink node *)
(compress (n,pred,succ) ;cleanUp(!next))
| _ => cleanUp(!next)
end
(koo sk sk ok ok sk Kok okok o ook ok Kok ok o ok ok ok sk sk ok sk ok ok ook sk skok skok o ok ok sk sk ok ok ok ook sk skok sk ok ok ok kK )
(* Type check program and generate graph, etc. *)
(ks o ook ook ok sk ook ko ok ook sk ook ook ok ko sk ok sk sk ok ok ok o ok sk ok ok ok sk ook sk ok o ok ok ook skok ok skok ok ok ok ok ok )
fun generate (a,e) =
let val r = mk_env a
val (e’,t’) = typecheck(e,r)
val tc’ = copytype t’
val (si,so) = ioSourceAndSinks tc’
in
conecttypes (t’,tc’);
map (fn bv => addtosources(bv,U)) so;
map (fn bv => addtosinks(bv,U)) si;
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cleanUp(!lastnode);
(e?,tc?)
end

(ks sk kokskook s ook ko o kok sk ook ko o kok sk sk ok ok ok ok sk sk ok ok ok s ook sk o kok sk ok skok o ok ok ok ok )
(¥ The core of the algorithm *)
(ks o o koo ok ook ko ok ko sk ook skok ok ko sk ok sk ok ok ok ok sk ok sk ok ok ok sk ook sk o ok sk ook skok o kok sk ok ok okok ok )
(* propagate from sources *)
fun propagate(is) =
let val dop = !dop
fun findB n =
let val n = find n
in
(case n of
Node(_,_,ecrp,_,_,_,ref NV) =>

(mark V n;
case (succ n) of
[1=0
| (nl::ns) =>
assym_union(List.foldR dop
(findB n1)
(map findB ns),
n);
mark VU n)
I _=> 0);
find n

end
fun foreachnode [] = ()
| foreachnode (n::ns) =
(findB n;foreachnode ns)
fun foreachsource [] = ()
| foreachsource (n::ns) =
(foreachnode(succ (find n));
foreachsource ns)
in
foreachsource is
end
end;

B.7 Main Program

The last file contains the functions the puts the whole thing together and defines functions to
run examples. It contains the following two function to do this:

e run that take a string containing a source program as inputs and run the analysis on it.

e runOnFile that reads a source program from a file and runs the analysis on it outputting
a ML program.

The following shows an example of a session with the program:

- runOnFile "test/fromthesis";
Processing file: test/fromthesis.f2.



172

Initializing...done!

Parsing...done!

Run-time: 0.010000

Solving...Run-time: 0.0

done!

Writing to file:
use "test/fromthesis.sml";

val it = () : unit

Appendix B. Implementation of Boxing Analysis

The program expect the file “fromthesis” to have extension “f2” and it outputs the result on a
file “fromthesis.sml”. One can run the program “fromthesis.sml” as follows:

- use "test/fromthesis.sml";
[opening test/fromthesis.sml]

exception hderror
exception tlerror
val it = (4,[("box:int",1), ("unbox:int",2),("cl",1),("app",1)])

int * (string * int) list

val it = () : unit

The output from this is a tuple consisting of first, the actual output of the program. The second
is a list containing the number of box and unbox operations that were performed sorted by the
topmost type constructor of the type of the box operations, in this case only "int". The list
also contains information on how many “stub code” closures were created and how many extra
applications these closures gave rise to. A more complete example of a session with the program
is shown in Appendix C.

(* main.sml *)

structure Expression = Expression();
structure Parser = Parser(structure Expression

= Expression);

structure BoxingAnalysis = BoxingAnalysis(structure Expression = Expression);

open Expression Parser BoxingAnalysis

val
fun
fun

fun

analyse = ref true
analysisOn() = analyse:=true
analysisOff() = analyse:=false

input_file fileName =
let val file = open_in fileName
fun getstring() =
case input(file,1) of

"n => "oy
| ¢ =>c " getstring()
val s = getstring()

in
close_in file;
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end

B.7. Main Program

(* Run small examples *)

fun run

s =

(print "Initializing...";
init () ;
print "done!\n\n";

print "Parsing...";
case parse s of

Some p =>

(print "done!\n\n";
let val (e’,t’) = generate p
in

print "Source expression (with node no.):\n'";

pp_source(screen,e’);
pp_type(screen,t’);

(if 'debug then debug_print_edges_sources_and_nodes() else ());

print "\n\nSolving...";
propagate (!isources) ;
print "done!\n\n";

(if 'debug then debug_print_sol() else ());

print ("\n\nResult(" =~ !'txt ~ ")\n");

let val c = f2exp2bflexp e’ t’
in
pp_target (screen,c);
print "\n\n"
end
end
handle Typecheck => ())

| None => ())

fun timeit f =

let

in

end

open SML_NJ.Timer

val t = start_timer()
val r = f()

val t’ = check_timer t

print "Run-time: ";
print (makestring t’);
print "\n\n";

r

(* Run examples from a file *)

fun runOnFile fileName =

let

in

val f2FileName = fileName ~ ".f2"
val s = input_file f2FileName
print ("Processing file: " ~ f2FileName ~

print "Initializing...";
init () ;
print "done!\n\n";

" \II\I].”) ;
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print "Parsing...";
(case parse s of
Some p =>
(print "done!\n\n";
let val (e’,t’) = timeit (fn () => generate p)
in
(if !'debug then
(print "Source expression (with node no.):\n";
pp_source(screen,e’) ;
pp_type(screen,t’);
debug_print_edges_sources_and_nodes () ;
print "\n\n")
else

0)s

(if 'analyse then
(print "Solving...";
timeit (fn () => propagate(!isources));
print "done!\n\n")

else

(¥ do nothing = canonical completion *)

0)s

(if 'debug then
debug_print_sol()
else

0)s

let val ¢ = f2exp2bf2exp e’ t’
in
(if 'debug then
(print ("\n\nResult (" ~ !'txt =~ ")\n");
pp_target (screen,c);
print "\n\n")
else
let val SMLFilename = fileName ~ ".sml"
val file = open_out SMLFilename
fun device s = output(file,s)

in
print ("Writing to file: \nuse \"" ~
SMLFilename ~ "\";\n\n");
pp_SML(device,c, !txt) ;
close_out file
end)
end
end
handle Typecheck => ())
| None => ())

end
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An Example

This appendix shows a session with the system. The example program is the one that we used
(in Chapter 4) to show that ¢i-reduction on F-congruence classes is not Church-Rosser. The
program is here shown in the source syntax of our system:

extern true:bool();
extern plus:int ()->int ()->int () ;

let id:A a.a->a = Fn a => fn x:a => x
in
(fn x:int() =>plus x (id{int()} x))
(if true then 2 else id{int()} 5)
end

The extern definition corresponds to adding primitives to the initial type assignment I’
like explained in Section 6.2. In this example the program is set to produce Cp.-completions
(cpstarOn()), and print debug information.

- debuglin();

val it = () : unit

- setpsi();

Psi-free modeval it = () : unit
- cpstarOn();

val it = () : unit

- runOnFile "test/fromthesis";
Processing file: test/fromthesis.f2.

Initializing...done!
Parsing...done!

External plus of type:
(int#1 ->#0 (int#3 ->#2 int#4))

External true of type:
bool#5

Run-time: 0.010000

Source expression (with node no.):
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let id: (A a.#6 (a ->#7 a)) = (FN a=>(fn x:a=>x))

in let x: int#8 = if true then 2 else (id{int#36} 5)
in  ((plus x) (id{int#20} x))
end

end

int#56

Edges:
55=>56,54=>35,53=>6,49=>55,51=>54,52=>53,50=>51,44=>49,48=>35,47=>6,45=>46,
43=>8,30=>44,42=>43,33=>42,41=>39,39=>42,40=>41,36=>39,38=>36,35=>37,19=>35,
6=>34,32=>33,5=>31,26=>30,29=>8,27=>28,25=>3,4=>26,24=>23,23=>25,8=>24,
20=>23,22=>20,19=>21,7=>19,6=>18,14=>1,4=>17,16=>3,2=>15,8=>14,4=>13,12=>3,
2=>11,10=>1,0=>9,

Sources:

52=U,50=U,45=U,40=U,39=B,32=U,27=U,23=B,5=U,4=U,2=U, 0=U,

ISources:

39=B,23=B,

Sinks:

56=U,46=U,28=U,31=U,37=U,34=U,39=B, 15=U,21=U, 18=U,23=B, 9=U, 3=U, 1=U,
Solving...Run-time: 0.0

done!

56=(56)U,55=(55)U,54=(35)U,53=(53)U,52=(52)U,51=(35)U,50=(50)U,49=(49)U,
48=(35)U,47=(6)U,46=(46)U,45=(45)U,44=(49)U,43=(23)B,42=(23)B,41=(41)U,

40=(40)U,39=(39)B,38=(39)B,37=(37)U,36=(39)B,35=(35)U,34=(34)U,33=(23)B,
32=(32)U,31=(31)U,30=(30)U,29=(23)B,28=(28)U, 27=(27)U,26=(30)U,25=(3)U,

24=(23)B,23=(23)B,22=(23)B,21=(21)U,20=(23)B, 19=(35)U,18=(18)U, 17=(4)U,

16=(3)U, 15=(15)U,14=(1)U,13=(4)U,12=(3)U,11=(2) U, 10=(1)U,9=(9)U,8=(23)B,
7=(35)U,6=(6)U,5=(5)U,4=(4)U,3=(3)U,2=(2)U,1=(1)U,0=(0)U,

Result (Psi-free mode)
let id: (A a.(a->a)) = (FN a=>(fn x:a=>x))

in let x: [int] = if true then <box>2 else ((id){[int]} <box>5)
in ((plus <unbox>x) <unbox>((id){[int]} x))

end
end
val it = () : unit
- setphi();
Phi-free modeval it = () : unit

- runOnFile "test/fromthesis";
Processing file: test/fromthesis.f2.

Initializing...done!
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Parsing...done!

External plus of type:
(int#1 ->#0 (int#3 ->#2 int#4))

External true of type:
bool#5

Run-time: 0.010000
Source expression (with node no.):

let id: (A a.#6 (a ->#7 a)) = (FN a=>(fn x:a=>x))

in let x: int#8 = if true then 2 else (id{int#36} 5)
in ((plus x) (id{int#20} x))
end

end

int#56

Edges:
55=>56,54=>35,53=>6,49=>55,51=>54,52=>53,50=>51,44=>49,48=>35,47=>6,45=>46,
43=>8,30=>44,42=>43,33=>42,41=>39,39=>42,40=>41,36=>39,38=>36,35=>37,19=>35,
6=>34,32=>33,5=>31,26=>30,29=>8,27=>28,25=>3,4=>26,24=>23,23=>25,8=>24,
20=>23,22=>20,19=>21,7=>19,6=>18,14=>1,4=>17,16=>3,2=>15,8=>14,4=>13,12=>3,
2=>11,10=>1,0=>9,

Sources:

52=U,50=U,45=U,40=U,39=B,32=U,27=U,23=B, 5=U, 4=U,2=U,0=U,

ISources:

52=U,50=U,45=U0,40=U,32=U0,27=U,5=U,4=U,2=U,0=U,

Sinks:

56=U,46=U,28=U,31=U,37=U,34=U,39=B, 15=U,21=U, 18=U,23=B, 9=U, 3=U, 1=U,
Solving...Run-time: 0.0

done!

56=(56)U,55=(56)U,54=(21)U,53=(18)U,52=(52)U,51=(21)U,50=(50)U,49=(56)U,
48=(21)U,47=(18)U,46=(46)U,45=(45)U,44=(56)U,43=(1)U,42=(1)U,41=(39)B,
40=(40)U,39=(39)B,38=(39)B,37=(37)U,36=(39)B,35=(21)U,34=(34)U,33=(1)U,
32=(32)U,31=(31)U,30=(56)U,29=(1)U,28=(28)U,27=(27)U,26=(56)U,25=(25)B,
24=(23)B,23=(23)B,22=(23)B,21=(21)U,20=(23)B,19=(21)U,18=(18)U,17=(4)U,
16=(3)U, 15=(15)U,14=(1)U,13=(4)U,12=(3)U,11=(2)U,10=(1)U,9=(9)U,8=(1)U,
7=(21)U,6=(18)U,5=(5)U,4=(4)U0,3=(3)U,2=(2)U, 1=(1)U,0=(0)U,

Result (Phi-free mode)
let id: (A a.(a->a)) = (FN a=>(fn x:a=>x))

in let x: int = if true then 2 else <unbox>((id){[int]} <box>5)
in  ((plus x) <unbox>((id){[int]} <box>x))
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end
end

val it

O

: unit

Appendix C. An Example



Appendix D

Test Programs

This appendix contains the test programs described in Section 7.2.

D.1 Monomorphic insert-sort example

(* Monomorphic insert-sort example
Corresponds to Poulsen’s example 1.

*)

extern cons A b.b->1list(b)->1ist(b);
extern hd : A a.list(a)->a;

extern tl : A a.list(a)->list(a);
extern nil : A b.list(b);

extern pair : A a.A b.a->b->pair(a b);
extern null : A a.list(a) -> bool();
extern fst : A a.A b.pair(a b)->a;
extern snd : A a.A b.pair(a b)->b;
extern plus : int ()->int ()->int () ;
extern gt : int () ->int () ->bool () ;
extern fix : A a.(a—>a)->a;

let insert:int()->(list(int())->1list(int())) =
fixx{int O->(1ist (int())->1list(int ()))}
(fn f:int O->@ist (int ())->1ist(int())) =>
(fn e:int () =>
(fn 1:1ist(int()) =>
if (null{int(Q} 1)
then
cons{int ()} e nil{int ()}
else
(if (gt e (hd{int(} 1))
then
cons{int ()} (hd{int ()} 1) ((f e) (t1{int()} 1))
else
cons{int()} e 1))))
in
let sort:list(int())->(1ist(int())->list(int())) =
fixk{list (int ())->(1list(int O)->1ist(int () ))}
(fn f:1list(int())->(1ist(int())->1list(int())) =>
(fn 1:1ist(int()) =>
(fn a:list(int()) =>
(if (mull{int ()} 1)
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then
a
else
in

sort (cons{int()} 2
(cons{int ()} 4
(cons{int ()} 1
(cons{int ()} 8

(cons{int ()}
(cons{int ()}
(cons{int ()}
(cons{int ()}
(cons{int ()}

N B O w o

(cons{int ()} 1

(cons{int ()} 345

(cons{int ()} 12

(cons{int ()} 2

(cons{int ()} 4

(cons{int ()} 6

(cons{int ()} 3

(cons{int O} 1 nil{int()})))))))))))))))))
nil{int O}

end
end

D.2 Polymorphic insert-sort example

(* Polymorphic insert-sort example

Corresponds to Poulsen’s example 2

*)

extern cons
extern hd
extern tl
extern nil
extern pair
extern null
extern fst
extern snd
extern plus
extern gt
extern fix

let insert:A a.a->(list(a)->((a->(a->bool()))->1list(a))) =

Fn a =>

.b->1list (b)->1list (b);
.list (a)->a;
.list(a)->1list(a);
.1list(b);

.A b.a->b->pair(a b);
.list(a) -> bool();
.A b.pair(a b)->a;
a.A b.pair(a b)->b;

: int ()->int ()->int () ;

: int ()->int () ->bool () ;

: A a.(a—>a)->a;

= o o o = b
o 0 op TP P O

fixk{a->(1ist (a)->((a->(a->bool()))->list(a)))}

(fn f:a-

>(1list(a)->((a->(a->bool()))->1list(a))) =>

(fn e:a =>

(fn 1:

list(a) =>

(fn gt:a -> (a -> bool()) =>

if

(null{a} 1)

then

cons{a} e nil{a}

else

(if (gt e (hd{a} 1))
then

Appendix D. Test Programs
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in

let sort:A a.list(a)->(1ist(a)->((a->(a->bool()))->1list(a))) =

Fn a =>

fixx{list(a)->(1list (a)->((a->(a->bool()))->list(a)))}
(fn f:list(a)->(list(a)->((a->(a->bool()))->1list(a))) =>

cons{a} (hd{a} 1) ((f e) (tl{a} 1) gt)

else

cons{a} e 1)))))

(fn 1:1ist(a) =>
(fn a:1list(a) =>
(fn gt:a->(a->bool()) =>

(if (nullf{al} 1)

in

let gt:int()->int()->bool() = fn x:int() => fn y:int() => gt x y

in

then
a
else

(f (t1{a} 1) (insert{a} (hd{a} 1) a gt) gt))))))

sort{int ()}

(cons{int()} 2
(cons{int()} 4
(cons{int ()} 1
(cons{int()} 8
(cons{int()} &5
(cons{int()} 3
(cons{int()} 0
(cons{int()} 4
(cons{int()} 2
(cons{int()} 1

(cons{int ()} 345

(cons{int ()} 12
(cons{int()} 2
(cons{int()} 4
(cons{int()} 6
(cons{int()} 3

(cons{int ()} 1 nil{int()})))))))))))))))))
nil{int O}

gt
end
end
end

D.3 Flip-list example

(* Flip-list example

Correspods to Poulsen’s example 4

*)

extern cons
extern hd
extern tl
extern nil

extern mkpair :

extern null
extern fst
extern snd

oo b o o

Mo P YT PO

.b->1list (b)->1list(b);
.list (a)->a;
.list(a)->list(a);
.1list (b);

.A b.a->b->pair(a b);
.list(a) -> bool();
.A b.pair(a b)->a;

.A b.pair(a b)->b;
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extern plus : int()->int ()->int();
extern gt : int () ->int () ->bool () ;
extern fix : A a.(a->a)->a;

let map:A a.A b.(a->b)->list(a)->list(b) =
Fn a =>
Fn b =>
fix*{(a->b)->list(a)->1list (b)}
(fn map: (a->b)->list (a)->1list(b) =>
fn f:a->b =>
fn 1:1ist(a) =>
if (null{a} 1) then
nil{b}
else
cons{b} (f (hd{a} 1)) (map f (t1{a} 1)))

in
let flip:A a.A b.pair(a b)->pair(b a) =
Fn a =>
Fn b =>
fn p:pair(a b) =>
((mkpair{b}){a}) (((snd{a}){b}) p) (((£st{a}){b}) p)
in
(map{pair(int() int())}){pair(int() int())}
(£flip{int O} {int O}
(cons{pair(int () int())} ((mkpair{int()}){int()} 1 2)
(cons{pair(int () int())} ((mkpair{int()}){int()} 3 4)
(cons{pair(int () int())} ((mkpair{int()}){int()} 5 6)
(cons{pair(int () int())} ((mkpair{int()}){int()} 7 8)
(cons{pair(int() int())} ((mkpair{int()}){int()} 9 10)
nil{pair(int() int())})))))
end
end

D.4 Leroy’s example

(* Leroy’s example

Corresponds to Poulsen’s example 5
*)
extern plus:int ()->int ()->int () ;

let double:A a.(a->a)->a->a = Fn a => fn f:a->a => fn x:a => (f (f x)) in
let quad:A a.(a -> a) -> a -> a = Fn a => double{a->a} double{a} in
let f:int()->int () =
quad{int ()->int ()} quad{int ()} (fn x:int() => plus x 1)
in
f 1
end
end
end

D.5 Poulsen’s example

(* Poulsen’s example
Corresponds to Poulsen’s example 6.
*)
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extern cons : A b.b->1list(b)->list(b);

extern hd : A a.list(a)->a;
extern tl : A a.list(a)->1list(a);
extern nil : A b.list(b);

extern sub : int()->int()->int();
extern plus : int()->int()->int();
extern eq : int ()->int () ->bool () ;
extern fix : A a.(a->a)->a;

let id:A a.a->a = Fn a => fn x:a => x in
let f:int()->int () =
fixk{int ()->int ()}
(fn f:int ()->int () =>
(fn x:int () =>
if (eq x 0) then
0
else
plus (f (sub x 1)) 2))
in
(cons{int ()} (f (id{int()} 100))
(cons{int ()} (f (id{int()} 100))
(cons{int ()} (f (id{int()} 100))
nil{intO}))
end
end

D.6 Sieve example

(* Sieve example *)

extern cons A b.b->1list(b)->1list(b);
extern hd : A a.list(a)->a;

extern tl : A a.list(a)->1list(a);
extern nil : A b.list(b);

extern pair A a.A b.a->b->pair(a b);
extern null A a.list(a) -> bool();
extern fst : A a.A b.pair(a b)->a;
extern snd : A a.A b.pair(a b)->b;
extern plus : int()->int ()->int();
extern gt : int () ->int () ->bool () ;

extern noteq : int()->int()->bool();
extern modulo : int()->int()->int();
extern fix : A a.(a—>a)->a;

let filter:A a.(a->bool())->list(a)->list(a)
Fn a =>
fix*{(a->bool())->list(a)->list(a)}
(fn filter: (a->bool())->1list(a)->list(a)
fn t:a->bool() =>
fn 1:1ist(a) =>
if null{a} 1 then
nil{a}
else
let e:a = hd{a} 1 in
if t e then
cons{a} e (filter t (t1{a} 1))
else
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filter t (tl{a} 1)
end)
in
let fromto:int()->int ()->list(int()) =
fixk{int ()->int ()->1ist(int())}
(fn fromto:int()->int ()->1list(int()) =>
fn f:int () =>
fn t:int () =>
if gt £ t then
nil{int ()}
else
cons{int ()} £ (fromto (plus f 1) t))
in
let sieve:list(int())->1list(int()) =
fix*{list (int())->1list(int())}
(fn sieve:list(int())->list(int()) =>
fn 1:1ist(int()) =>
if null{int()} 1 then
nil{int ()}
else
let h:int() = (hd{int ()} 1)
in
cons{int ()}
h
(sieve
(filter{int ()}
(fn x:int () =>
noteq (modulo x h) 0)
(t1{int O} 1)))

end)
in
sieve (fromto 2 100)
end
end
end

D.7 Horner example

(* Horner example
Example from Thiemann
*)

extern cons A b.b->1list(b)->1ist(b);
extern hd : A a.list(a)->a;

extern tl : A a.list(a)->list(a);
extern nil : A b.list(b);

extern pair : A a.A b.a->b->pair(a b);
extern null : A a.list(a) -> bool();
extern fst : A a.A b.pair(a b)->a;
extern snd : A a.A b.pair(a b)->b;
extern plus : int ()->int ()->int () ;
extern mult : int ()->int ()->int () ;
extern gt : int ()->int () ->bool () ;
extern fix : A a.(a->a)->a;

let map:A a.A b.(a->b)->list(a)->list(b) =
Fn a =>
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Fn b =>
fix*k{(a->b)->1list(a)->1list(b)}
(fn map: (a->b)->list(a)->list(b) =>
fn f:a->b =>
fn 1:1ist(a) =>
if (null{a} 1) then
nil{b}
else
cons{b} (f (hd{a} 1)) (map f (tl{a} 1)))

in
let b:A a.A b.A c.(a->b)->(c->a)->c->b =
Fn a =>
Fn b =>
Fn ¢ =>
fn f:a->b => fn g:c->a => fn x:c => (f (g x))
in

let horner:list(int())->int()->int() =
fn coeffs:list(int()) =>
fn x0:int () =>
let funs:list(int()->int()) =
(map{int O }) {int ) ->int () }
(fn c:int () =>
((CPLint OP{int O P {int O })
(fn y:int() => (plus y c))
(fn y:int () => (mult y x0))))
coeffs
in
((fix*{list (int ()->int())->int()—>int ()}
(fn eval:list(int ()->int())->int ()->int () =>
fn fs:list(int()->int()) => fn sofar:int() =>
if (null{int()->int ()} fs) then
sofar
else
(eval (t1l{int()->int()} fs)
((hd{int ()->int ()} fs) sofar))))
funs 0)
end
in
(horner
(cons{int()} 1
(cons{int ()} 2
(cons{int ()} 3
(cons{int ()} 4
(cons{int ()} 5
(cons{int ()} 6
(cons{int )} 7
(cons{int ()} 8
(cons{int()} 9
(cons{int )} 10 nil{int()}))))))))))
1)
end
end
end
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D.8 Mogensen example

(* Example constructed from an original
idea from Torben Mogensen.

*)

extern mkpair : A a.A b.a->b->pair(a b);
extern fst : A a.A b.pair(a b)->a;
extern snd : A a.A b.pair(a b)->b;
extern plus : int ()->int )->int () ;
extern sub : int ()->int ()->int () ;

extern real2int : real()->int();
extern int2real : int()->real();

let cpair:A a.A b.A c.A d.(a->b)->(c->d)->pair(a ¢)->pair(b d) =
Fn a =>
Fn b =>
Fn ¢ =>
Fn d =>
fn f:a->b =>
fn g:c->d =>
fn p:pair(a c) =>

((mkpair{b}){d} (£ ((fst{a}){c} p)) (g ((snd{a}){c} p)))

in
let fpair:A a.A b.A c.(a->b)->(a->c)->a->pair(b ¢) =
Fn a =>
Fn b =>
Fn ¢ =>
fn f:a->b =>
fn g:a->c =>
fn x:a => ((mkpair{b}){c} (f x) (g x))
in
let flip:A a.A b.pair(a b)->pair(b a) =
Fn a =>
Fn b =>
fn p:pair(a b) =>
((mkpair{b}){a}) (((snd{a}){b}) p) (((fst{a}){b}) p)
in
let subl:int()->int() = fn x:int() => sub x 1
in
let addil:int()->int() = fn x:int() => plus x 1
in
let uncurry:A a.A b.A c.(a->b->c)->pair(a b)->c =
Fn a =>
Fn b =>
Fn ¢ =>
fn f:a->b->c =>
fn p:pair(a b) =>
f ((fst{a}){b} p) ((snd{al}){b} p)
in
((uncurry{int O ) {int O }){int O }
plus
((((epair{int OH){int O} {real O} {int O}
subl
real2int

((flip{real O {int O}
(((fpair{int () }){real ) }){int ()} int2real addl 5)))
end

Appendix D. Test Programs
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end
end
end
end
end



Appendix E

Dansk sammenfatning

En vigtig design beslutning ved implementation af programmeringssprog med polymorfe typer,
sa som Standard ML eller Haskell, er hvordan data skal repraesenteres. En polymorf funktion
skal opfgre sig uniformed (ens) for inddata verdier af uendelig mange forskellige typer. En
polymorf funktion der arbejder pa lister, sasom reverse, der vender en liste om, skal kunne
virke for alle typer af lister, f. eks. lister af heltal (eng: integers), lister af reelle tal (eng:
floating point numbers), lister af lister af heltal, o.s.v. Da den maskinnare repreesentation af
disse kan vaere meget forskellig, f. eks. kan et heltal fylde et maskinord, mens et reellet tal
maske fylder to maskinord, ma man i en implementation derfor sikre sig at sadanne funktioner
virker korrekt for alle korrekte argument typer. Den traditionelle metode til at sikre dette,
er at repreesentere alle vaerdier pa en uniform made f. eks. som hagter (eng: pointers) til
objekter i den maskinnaere repraesentation. Denne metode betyder, at der introduceres ekstra
kgretids omkostninger ved udfgrelse af simple basale operationer, som f. eks. addition af tal.
Ved udfgrelsen af en addition af to tal skal et program forst “fglge” to haegter for at fa fat i
de to tal i deres maskinnare reprasentation, hvorefter den egentlige addition kan finde sted,
og til sidst skal endnu en heegte, der peger pa resultatet, oprettes. Uniform repraesentation
af veerdier betyder ogsa ekstra forbrug af lager, da f. eks. repraesentationen af tal bade bestar
af den egentlige (maskinnaere) repraesentation af tallet savel som hagten til denne. Verdier,
der er repraesenteret uniformt, kaldes boksede (eng: bozed) og veerdier, der er reprasenteret ved
deres maskinnaere repraesentation, kaldes uboksede (eng: unbozed).

En anden metode til implementation af polymorfi giver afkald pa kravet om at data skal
reprasenteres uniformt, men den pris man sa ma betale er at polymorfe funktioner pa kgretid
ma bruge typer til at kunne behandle data korrekt. Dette betyder sa at disse typer skal veere
tilstaede pa kgretid og overfgres til polymorfe funktioner som argumenter. Dette giver derfor en
forggelse af bade kgretid og lagerforbrug i forhold til implementationer der ikke bruger typer
pa kgretid.

E.1 Boxanalyse

Denne afhandling beskriver en alternativ metode til implementation af polymorfi, kaldet box-
analyse (eng: bozing analysis), hvor det statisk, d.v.s. pa oversattelsestid, bestemmes hvordan
veerdier skal repraesenteres pa kgretid og hvornar vaerdier skal sendres fra en repraesentation til
en anden. Denne metode blev fgrst brugt af Leroy [Ler92], men resultaterne i denne afhan-
dling forbedre metoden i forhold til Leroy’s og giver et fast teoretisk grundlag for metoden,
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som bl. a. inkludere et formelt optimalitets begreb og viser at Leroy’s resultater ikke er op-
timale med hensyn til dette begreb. Operationer der sndre reprasentation af vaerdier kaldes
(repraesentations) coercions. Operationer der @ndre vardier fra deres boksede reprasentation
til deres uboksede reprasentation kaldes box coercions og operationer der @ndre veerdier fra
deres uboksede repraesentation til deres boksede reprasentation kaldes unbox coercions.

Ved at bruge et sprog med eksplicite reprasentations typer og box/unbox coercions har
vi fundet en axiomatisering af en lighedsteori over mangden af programmer med eksplicit
box/unbox coercions, ogsa kaldet completions. Denne lighedsteori har vi kaldt E-ekvivalens.
Ved at give axiomerne i denne teori forskellige fortolkninger som udtryksomskrivningsregler
(eng: term rewriting rules) har vi udviklet fire kanoniske (eng: canonical) omskrivningssystemer
kaldet: ¥/ E¢, v/ F, ¢/F og ¢/F, som opererer pa ekvivalence klasses of completions. Disse
muliggr elimination of ungdige par af box/unbox coercions i completions, og dermed ungdige
skift af repraesentation. Dette ggores ved fgrst at anvende ¢/ F¢ indtil en normalform for dette
system er fundet og derefter anvende ¢/F indtil en ogsa en normalform for dette system er
fundet. Den herved fundne normalform er en F-ekvivalens klasses og denne indeholder ingen
completions med eliminerbare par af box/unbox coercions og elementerne kaldes -free optimale
completions. Ligeledes kan man, ved forst at anvende ¢/FE% indtil en normalform for dette
system er fundet og derefter anvende /K indtil en ogsa en normalform for dette system er
fundet, finde en anden F-ekvivalens klasses af completions der heller ikke indeholder nogen
completions med eliminerbare par af box/unbox coercions. Denne klasses af complecions kaldes
P-free optimale completions.

Vi har vist at et hvert kildeprogram bade har en i-free optimal completion og en -free
optimal completion og at disse hver iszr er unike modulo F-ekvivalens. Desuden har vi demon-
streret hvordan man kan implementer de fire omskrivningssystemer ¢/ F¢, ¢ /F, ¢/E og ¢/ F
ved hjxlp af fire andre omskrivningssystemer som virker direkte pa ekvivalensklasserepraesen-
tanter istedet for pa ekvivalensklasser, og vi har udviklet en effektiv algoritme til at finde ¥-free
og ¢-free optimal completion.

Denne teory er udviklet for den polymorfe lambda kalkyle, ogsa kaldet Fy og udvidet tit
ogsa at kunne handtere sprog med datatyper og (rekursive) primitiver, saledes at metoden skulle
veere anvendelig ved implementation af ML lignende sprog.

E.2 Nye resultater beskrevet i denne afhandling

Selvom det problem som er lgst i denne afhandling skyldes tilstaedevaerelsen af polymorfi, sa
introducerede dette ogsa nye og udfordrende problemer som ogsa skulle Igses. For eksemple
betgd dette at vi skulle vise “coherence” for “completions” under tilstzedevaerelsen af polymorfi.
Vi har Igst dette problem og vi tror at dette kan vise sig at vaere det vigtigste teoretiske resultat
i denne afhandling, da det kan vise sig at vaere relevant ogsa i andre sammenhaenge, hvor man
vil vise “coherence” under tilstzedevaerelsen af polymorfi, f. eks. dynamisk typning [Hen93] eller
“subtypning”.

Folgende opsummere nogle af de vigtigste resultater preesenteret i denne afhandling:

e Bt generelt og robust kriterie for qualiteten of “boxing completions”, som redeggr for de
enkelte box/unbox operations omkostninger, men abstrakthere fra andre sprog egenskaber
og implementations hensyn.
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Et bevis for at der eksistere formelle optimale (box) completions og at disse er unike
modulo med hensyn til en given equivalence teori.

En metode til at integrere polymorfi og coercion kalkyle der kan vise sig brugbar i andre
sammenhange, som f. eks. dynamisk typning [Hen93] eller “subtypning”.

En omskrivnings (eng: rewriting) baseret algoritme til at beregne formelle optimale com-
pletions, som er bedre en dem beskrevet i [PJL.91, Ler92, Pou93] med hensyn til vores
formelle optimalitets begreb.

En effektiv graph baseret algoritme til at beregne formelle optimale completions.

En eksperimentel implementation af den graph baserede algoritme for et “call-by-value”
sprog.



Bibliography

[Barg4]

[BGSS2]

[BJ93a]

[BJ93b]

[Bjg92]

[Bjp94]

[Bon90]

[BRTT93]

[BTCGS91]

[BTGS90]

[CF91]

[CG90]

[Ghe90]

H. P. Barendregt. The lambda calculus, its syntaz and semantics. North-Holland,
2. edition, 1984.

R. Brooks, R. Gabriel, and G. Steele. An optimizing compiler for lexically scoped
LISP. In Proc. SIGPLAN 82 Symp. on Compiler Construction, Boston, Mas-
sachusetts, pages 261-275, June 1982. SIGPLAN Notices, Vol. 17, No. 6.

Anders Bondorf and Jesper Jgrgensen. Efficient analyses for realistic off-line partial
evaluation. Journal of Functional Programming, special issue on partial evaluation,
3(3):315-346, 1993.

Anders Bondorf and Jesper Jgrgensen. Efficient analyses for realistic off-line par-
tial evaluation: extended version. Technical Report 93/4, DIKU, University of
Copenhagen, Denmark, 1993.

Nikolaj Bjgrner. Minimal typing derivations. DIKU Student Report, July 1992.

Nikolaj Bjgrner. Minimal typing derivations. In ACM SIGPLAN Workshop on
ML and its Applications, pages 120-126. INRIA, 1994.

Anders Bondorf. Self-Applicable Partial Fvaluation. PhD thesis, DIKU, University
of Copenhagen, Denmark, 1990.

Lars Birkedal, Nick Rothwell, Mads Tofte, and David N. Turner. The ML kit (ver-
sion 1). Technical Report DIKU-report 93/14, Department of Computer Science,
University of Copenhagen, Universitetsparken 1, DK-2100 Copenhagen, 1993.

V. Breazu-Tannen, T. Coquand, C. Gunter, and A. Scedrov. Inheritance as implicit
coercion. Information and Computation, 93(1):172-221, July 1991. Presented at
LICS ’89.

V. Breazu-Tannen, C. Gunter, and A. Scedrov. Computing with coercions. In
M. Wand, editor, Proc. ACM Symp. on Lisp and Functional Programming (LFP),
Nice, France, pages 44—60, 1990.

R. Cartwright and M. Fagan. Soft typing. In Proc. ACM SIGPLAN 91 Conf.
on Programming Language Design and Implementation, Toronto, Ontario, pages
278-292. ACM, ACM Press, June 1991.

P. Curien and G. Ghelli. Coherence of subsumption. In A. Arnold, editor, Proc.
15th Coll. on Trees in Algebra and Programming, Copenhagen, Denmark, pages
132-146. Springer, May 1990.

G. Ghelli. Proof Theoretic Studies about a Minimal Type System Integrating Inclu-

sion and Parametric Polymorphism. PhD thesis, Universita di Pisa, Dipartimento
di Informatica, March 1990.

191



192

[GJ94a]

[GJ94b]

[Hen92]
[Hen93]

[HJ94]

[HMO5]

[HR95]

[Jeu95]

[KKR+86]

[K1087]
[Ler90]

[Ler92]

[LMS93]

[Mil78]

[Pet89]

[PJLO1]

BIBLIOGRAPHY

Robert Gliick and Jesper Jgrgensen. Generating optimizing specializers. In IEEE
International Conference on Computer Languages, pages 183-194. IEEE Computer
Society Press, 1994.

Robert Gliick and Jesper Jgrgensen. Generating transformers for deforestation and
supercompilation. In B. Le Charlier, editor, Static Analysis. Proceedings, volume
864 of LNCS, pages 432—-448, Namur, Belgium, 1994. Springer-Verlag.

Fritz Henglein. Dynamic typing. In Proc. Furopean Symp. on Programming
(ESOP), Rennes, France, pages 233-253. Springer, Feb. 1992. LNCS, Vol. 582.
Fritz Henglein. Dynamic typing: Syntax and proof theory. Science of Computer
Programming, 1993.

Fritz Henglein and Jesper Jgrgensen. Formally optimal boxing. In 21st Annual
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages.
Portland, Oregon, pages 213226, Jan 1994.

Robert Harper and Greg Morrisett. Compiling polymorphism using intensional
type analysis. In Proc. 22nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), San Francisco, California. ACM,
ACM Press, Jan. 1995.

Fritz Henglein and Jakob Rehof. Safe polymorphic type inference for Scheme:
translating Scheme to ML. In Proc. Conf. on Functional Programming Languages
and Computer Architecture (FPCA), 1995.

Johan Jeuring. Polytypic pattern matching. In FPCA’95, Conference on Func-
tional Programming and Computer Architecture, La Jolla, California, USA, pages
238-248. ACM, June 1995.

D. Kranz, R. Kelsey, J. Rees, P. Hudak, J. Philbin, and N. Adams. ORBIT:
An optimizing compiler for Scheme. In Proc. SIGPLAN ’86 Symp. on Compiler
Construction, pages 219-233, 1986.

Jan Willem Klop. Term rewriting systems: a tutorial. Bulletin of the Furopean
Association for Theoretical Computer Science, 32:143-182, June 1987.

Xavier Leroy. Efficient data representation in polymorphic languages. Technical
Report 1264, INRIA, August 1990.

Xavier Leroy. Unboxed objects and polymorphic typing. In Nineteenth Annual
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages.
Albuquerque, New Mezico, pages 177-188, January 1992.

Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev. The genericity theorem
and parametricity in the polymorphic A-calculus. Bulletin of the Furopean Asso-
ciation for Theoretical Computer Science, 119:323-349, October 1993.

R. Milner. A theory of type polymorphism in programming. .J. Computer and
System Sciences, 17:348-375, 1978.

J. Peterson. Untagged data in tagged environments: Choosing optimal representa-
tions at compile time. In Proc. Functional Programming Languages and Computer
Architecture (FPCA), London, England, pages 89-99. ACM Press, Sept. 1989.
Simon Peyton Jones and John Launchbury. Unboxed values as first class citizens.
In Proc. Conf. on Functional Programming Languages and Computer Architecture
(FPCA), Cambridge, Massachusetts, pages 636-666. Springer, Aug. 1991. LNCS,
Vol. 523.



BIBLIOGRAPHY 193

[Pou93]

[Reh95]

[Rey83]

[SA94]

[Ste77]

[Thi95]

[TT93]

[TT94]

[Wad89]

[Wel94]

[WF92]

Eigil Poulsen. Representation analysis for efficient implementation of polymor-
phism. Master’s thesis, DIKU, University of Copenhagen, 1993.

Jacob Rehof. Polymorphic dynamic typing. Master’s thesis, DIKU, University of
Copenhagen, Denmark, March 1995.

J. Reynolds. Types, abstraction and parametric polymorphism. Information Pro-
cessing, pages H13-523, 1983.

Zhong Shao and Andrew W. Appel. A type-based compiler for Standard ML. Tech-
nical Report CS-TR-477-94, Department of Computer Science, Princeton Univer-
sity, November 1994.

G. Steele. Fast arithmetic in MacLisp. In Proc. 1977 MACSYMA Users’ Confer-
ence, NASA Scientific and Technical Information Office, Washington, D.C., July
1977.

Peter J. Thiemann. Unboxed values and polymorphic typing revisited. In FPCA’95
Conference on Functional Programming Languages and Computer Architecture.

ACM, ACM Press, June 1995.

Mads Tofte and Jean-Pierre Talpin. A theory of stack allocation in polymorphically
typed languages. Technical Report DIKU-report 93/15, Department of Computer
Science, University of Copenhagen, 1993.

Mads Tofte and Jean-Pierre Talpin. Implementation of the typed call-by-value X-
calculus using a stack of regions. In Proc. 21st Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL), Portland, Oregon.
ACM, ACM Press, Jan. 1994.

P. Wadler. Theorems for free! In Proc. Functional Programming Languages and
Computer Architecture (FPCA), London, Fngland, pages 347-359. ACM Press,
Sept. 1989.

J.B. Wells. Typability and type checking in the second-order A-calculus are equiv-
alent and undecidable. In Proc. Logic in Computer Science (LICS), 1994.

A. Wright and M. Fagan. Soft typing and global representation optimization.
Manuscript, July 1992.



Index

¢-redex, 49, 60

¥-redex, 49, 60

-reduction, 72

¢~ Ky -reduction modulo ¢, 65
Cpxy 104

Fy, 2,10

Fy-expression, well-formed, 10
Fy types, 10

Appel, Andrew W., 129

Bjgrner, Nikolaj, 129
booleans, 101

boxed representation, 1
boxing, 1, 128

boxing analysis, 2

box annotation, 77

box values, 77

box variables, 77
Breazu-Tannen, V., 131

CAML Light, 128
Cartwright, R., 131
case expressions, 97
category theory, 99
coercions
coercions, formation rules for, 12
coherence of, 25
composition of, 12
congruence of, 25
equality of, 17
factoring of, 30
formally optimal, 26
head free, 40
identity, 12
implementing, 90
induced, 12
inverse, 26
negative, 29
normal form, 23

194

optimal, 78
polarity of, 50
positive, 29
primitive, 11
proper, 17
reduction, 19
representation, 2, 11, 128
coherence, 131
completions, 2, 14, 131
completions, 4+/—-normalized, 72
¢-free canonical, 66
-free canonical, 66, 68
Cix, 89
Cyy, 89
Cpxy 89
Cpr, 89
canonical, 64
coherence of, 2
coherence of, 43
congruence of, 14, 50
equality of, 38
maximally boxed, 64
minimally boxed, 64
optimal, 2, 82
principal, 77
conditional expressions, 97
congruence, 14, 131
Coquand, T., 131
critical pairs, 50
Curien, P., 131

datatype declarations, 99

erasure, 14
explicitly boxed Fg, 11

Fagan, M., 131

fix-point operator, 97, 98
free theorems, 46
functor, 99



INDEX

Ghelli, G., 131
Girard, J.-Y., 10
Gunter, C., 131

Harper, Robert, 129

Haskell, 1, 128

head coercion free, 72
Henglein, Fritz, viii, 129, 131

integers, 101
Jones, Neil, viii
Knuth-Bendix completion, 3

language primitive, 95
Launchbury, John, 110, 128

lazy evaluation, 110

Leroy, Xavier, 2, 66, 123, 125, 128
let-expressions, 98

LISP, 128

lists, 103

Mogensen, Torben, 123
Morrisett, Greg, 129

occurrences, 135

parametricity, 104
Peterson, J., 108, 128
Peyton Jones, Simon, 110, 128
polarized expression equations, 51
polymorphic constant, 95
polymorphic typed lambda calculus, 2, 10
polytypic function, 99
Poulsen, Eigil, 2, 123, 125, 129
pre-expressions, 10
primitives, 95

recursive, 120
principal completion, 78, 79
products, 101

R-reduction, 135

Rehof, Jakob, 131
representation analysis, 1, 128
representation graph, 77, 80
Reynolds, John C., 10, 46

Scedrov, A., 131

second-order lambda calculus, 2, 10

semantics, of I, 14
Shao, Zhong, 129
sinks, 80

SML, 1, 105, 128
soft typing, 131
sources, 80

stub code, 90
substitution, 135
subtype hierarchy, 33
sumtypes, 101
syntactic equality, 135

Talpin, Jean-Pierre, 130
Thiemann, Peter, 123, 125, 130
Tofte, Mads, 130
types
boolean, 101
boxed, 11
erasure of, 11
integer, 101
list, 103
maximally boxed, 68
principal representations, 77
product, 101
recursive data, 102
reference, 105
reflexive, 103
representation, 11
signature, 14
standard, 11
standard constructors, 11
unboxed, 11
type constructor, 99
type assignment, 10
type erasure, 78
type signature, 72

unboxing, 1, 128
union/find, 120

Wadler, Philip, 46
Wright, A., 131

195



