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Abstract

The practical performance of randomized chain-hashing and double-hashing schemes is studied.
The results of this study show that, if the keys are integers, by using multiplicative hash functions
a double-hashing scheme is obtained, for which the observed (worst-case) cost of an access
operation is the same as the corresponding (average-case) cost achieved by the chain-hashing
scheme, which has been the fastest access method according to earlier experiments. The observed
(amortized expected) cost of insert and delete operations for a dynamic double-hashing scheme
is comparable to the corresponding (worst-case) cost for balanced search trees, whereas the
behaviour of dynamic chain hashing is still better on an average. If the keys are strings, dynamic
chain hashing with random-table hash functions outperforms clearly balanced search trees.

1 Introduction

Let S be a set of n items each consisting of a key and some information associated with that key.
It is assumed that no two items of S can have the same key. A computer representation D of S is
called a dictionary if it supports the following operations:

dictionary construct(S) Construct a dictionary containing all the items of S; if S is empty,
create an empty dictionary.

item lookup(D,z) Return the item in D with key z; if no such item exists in D, return
a null item.

item insert(D,x,d) Insert a new item with key xz and information d into D, and return
the item created; if this operation cannot be carried out, return a
null item.

item delete(D,z) Delete the item with key z from D and return the item just deleted;

if no such item exists, return a null item.

A dictionary is static if it only supports the operations construct and lookup, and dynamic if it
also supports the update operations insert and delete.

Numerous data structures for implementing a dictionary have been proposed in the computing
literature (see, e.g., [11, 13, 16]). In addition to this, ready-to-run programs can found from different
libraries of data structures and algorithms (e.g., LEDA [17, 18]). For the sake of simplicity, assume
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Static data structure Lookup Construct Extra space Reference
Sorted array O(logs n) | O(nlogyn) o(1) e.g. [16, Section T11.3.1]
a) Hash table (chaining) o(1) O(n) O(n) e.g. [16, Section T11.2.4]
Hash table (double hashing) o O(n) O(n) [10]
Dynamic data structure Lookup Update Extra space Reference
Balanced search trees O(logsn) | Of(logyn) O(n) e.g. [1,12]
b) Randomized search trees O(log, n) O(log, n) O(n) (20, 22, 23]
Hash table (chaining) o) o(1) O(n) e.g. [16, Section 111.2.4]
Hash table (double hashing) o(1) 0(1) O(n) 8]

Table 1: The theoretical behaviour of various data structures implementing a) a static dictionary
and b) a dynamic dictionary for n items with integer keys. Here O(f(n)) denotes the worst-case per-
formance, O(f(n)) the (amortized) expected performance, and O(f(n)) the expected performance
guaranteed with high probability. The extra space used is counted in words.

that the keys are integers. If the size of the key universe, U, is small, the dictionary should be
implemented by using a direct-access array. With this structure the lookup, insert and delete
operations can all be carried out in O(1) worst-case time. A structure for n items can also be
constructed in O(n) time even though the whole structure uses O(n+ U) storage locations (see, for
example, [16, Section 111.8.1]). If U is large, a dictionary could be implemented by using a sorted
array, different kinds of trees, or a hash table. The theoretical performance of some common data
structures is summarized in Table 1.

In this paper the practical performance of randomized hashing is compared to other known
methods. In deterministic hashing a fixed hash function h is selected, space for a hash table of size
m is allocated, and function A is used to map the given items to various locations in that table.
The disadvantage of deterministic hashing is that there always exist data collections for which
many different items are mapped to the same locations. Since many collisions may degenerate the
performance of this strategy, Carter and Wegman [4] introduced a randomized hashing strategy,
called universal hashing. Here one chooses randomly a function A from a universal class H of hash
functions and then proceeds as in the deterministic case. A class H is said to be c-universal if only
a fraction ¢/m of the functions leads to a collision for any distinct pair of keys. Several function
classes are known to be c-universal for a constant ¢ (see, e.g., [4, 6, 7, 14, 15]).

Various methods for collision handling have been proposed (more than a dozen of those are
described in [11]) but the simple chaining method, which keeps the colliding items in a linked list,
has turned out to provide the fastest operation in most situations (cf. the experimental results
reported, for example, in [11, Table 3.20] and [13, pp. 538-540]). When the load factor n/m is
kept equal to ©(1) in chain hashing, the expected cost of a lookup operation is O(1), the amortized
expected cost of an update operation O(1), and the expected cost of a construct operation O(n)
(see, e.g. [16, Section 111.2.4]). These bounds are guaranteed for any input, since the randomization
is done by the algorithm.

The ultimate goal in hashing is to construct a perfect hash function, which maps distinct items
to distinct locations in the table. After the discovery of a perfect hash function, a lookup operation
simply evaluates the value of the function and reports the item (if any) stored at the corresponding
location in the table. Unfortunately, such functions are rare in the set of all functions and therefore
difficult to discover [13, pp. 506-507]. A natural idea is to relax the definition of a perfect hash
function to that of a near-perfect hash function, which is allowed to cause a small number of collisions
at each location in the table. After finding a near-perfect hash function, the items colliding at any



given location can be rehashed into a secondary hash table using a perfect hash function. Fredman
et al. [10] showed that there exists a double-hashing scheme that can handle integer keys within the
following bounds: a) the data structure can be constructed in O(n) (randomized) expected time,
b) stored in O(n) space, and c) with it a lookup operation can be carried out in O(1) worst-case
time. A dynamic version of this static dictionary structure, described by Dietzfelbinger et al. [8],
uses O(1) worst-case time for lookup operations and O(1) amortized expected time for update
operations. Both these constructions work with any universal class of hash functions.

We programmed two randomized hashing schemes: dynamic chain hashing and dynamic double
hashing. Our programs rely on two types of hash functions: multiplicative hash functions and
random-table hash functions, the properties of which are recalled in Section 2. The implementation
details of chain hashing are described in Section 3 and those of double hashing in Section 4. The
performance of the programs were compared to the dictionary structures available in LEDA (version
R 3.4). The results of our study show that in the case of integer keys by using multiplicative
hash functions a double-hashing scheme is obtained, for which the observed (worst-case) cost of
a lookup operation is the same as the corresponding (average-case) cost achieved by the chain-
hashing scheme. The observed (amortized expected) cost of update operations for dynamic double
hashing is comparable to the corresponding (worst-case) cost for balanced search trees, whereas
the behaviour of chain hashing is in this respect still much better on an average. On the other
hand, by using random-table hash functions string keys can be handled efficiently. Even for string
keys dynamic chain hashing outperforms clearly balanced search trees. The experimental results
are reported in Section 5. Finally, some concluding remarks are given in Section 6.

2 Universal hashing

In this section we define the universal classes of hash functions used in our implementations. The
properties of these function classes are also discussed.

2.1 Multiplicative hash functions

Assume that the keys of the items are integers. The good features of the multiplicative hash
functions were already discussed in the book by Knuth [13, p. 508 ff.]. The basic idea in the
multiplication method is simple: the given integer key is multiplied by some magic number and
the middle bits of the product are used as the hash value. Knuth suggested also how the magic
multiplier should be selected to get the most uniform distribution of the hash values.

In practical experiments it was observed that most odd multipliers work well for a given set of
integers. This leads to a randomized hashing strategy where the multiplier is selected randomly
from among the odd numbers in the key universe. More precisely, the class Hye o1 of multiplicative
hash functions is defined as follows:

{ha | ha {01, .., 2=13={0, 1, ..., 25—1} ho(z) = {%J acf{1,3,5,..,2~1}},
where £ and k are positive integers, £ > k, and x5 denotes the multiplication modulo 2¢. Dietzfel-
binger et al. [7] verified that the class Hye or is 2-universal.

Only two arithmetical operations are needed to evaluate the value of a hash function h, € Hye or:
the multiplication modulo 2¢ and the right shift by £—& bit positions. Assuming that £ equals to the
number of bits in a word, the modulo 2¢ multiplication is done by the hardware in most computers.
Also the shift operation is available in most computers. Moreover, to specify the particular function
in use only the multiplier ¢ and the shift value £ — k have to be stored. The C++ class given in



#define inclusive-or |
#define right-shift >>
#define w 32 /*the number of bits in a word*/

class How ok {
friend class hashtable;

int a; /*the multiplier in a function#*/
int s; /*the shift in a function*/
public:

7'[2W,2k 03

select (int) ;

int evaluate(const int) const;};

How o & zselect (int 2534
a = random(0,2"~1) inclusive-or 1;

s=w-k;};

int How o : :evaluate(const int &) const{
return (a *s» ) right-shift s; };

Figure 1: A C++ implementation of the class Hyw o of the multiplicative hash functions.

Figure 1 implements the operations for selecting a hash function and evaluating the value of a given
function.

2.2 Random-table hash functions

Consider now multi-word keys or variable-length keys which are stored in a computer by using
a consecutive sequence of bytes. We interpret these keys as character strings having some finite
maximum length. A class of hash functions suitable for handling string keys has been described,
among the others, by Fox et al. [9] and Majewski et al. [14].

Let the length of a string s be £, and let s[i] denote the 7th character of s. Furthermore, let 3
be the alphabet in which the characters are encoded. If each character of ¥ is encoded by using b
bits, the cardinality of X is 2°. The class Fo or of random-table hash functions is as follows:

£
{fo ] fr:25{0,1,...,251) fo(s) = @r[z][s[z]], r is a mapping table of size £ x 2°},
=1

where £ is a positive integer, £b > k, and @ denotes the bitwise exclusive-or operation. Instead of
@, any group operator on the set {0,1,...,2°~1} may be used. A member of the class Foew or 18
selected by generating a table r of size £ x 2° such that each location in r contains a random integer
drawn independently and uniformly from the range {0,1,...,2°~1}. The C++ implementation of
this hashing mechanism is shown in Figure 2.

It was pointed out by Majewski et al. [14] that this class of hash functions is 1-universal (cf. [4,
Proposition 8]). That is, only a fraction 1/2]‘C of the functions leads to a collision for any distinct
pair of keys. A function can be selected from this class in O(£2°) time, since we assume the ability
to generate random numbers in constant time. To store the table, O(£2°) words are required. The
evaluation of a hash value takes O(f) time. The evaluation is fast also in practice, since basically
only a table lookup is needed for each character of the given string. It was observed by Pearson



#define exclusive-or *
#tdefine b 8 /*the number of bits in a bytex/

class Fyun ok {
friend class hashtable;
int size; /*the number of rows in the table*/
int* table;
public:
fztbﬂk () ’
select (int, int) ;
int evaluate(const string) const;};

Foew ot 1select (ant £, int 28y {
size = £
table = new int [#1[2%];
for (int i =031 < £;i++)
for (int j = 0;j < 2°;j++)
table [i1[j] = random (0,2%-1);};

Fom ox : revaluate(const string &s) const{
int value = int j = 0;
for (int i = 0;i < s.length () ;i++, j++){
if (j = size) j=0;
value = value exclusive-or table[j1[(int) s[i11;};
return value; };

Figure 2: A C++ implementation of the class Fye 1 of random-table hash functions.

[19] that this hashing scheme works satisfactorily even if the same table is used for each character
position. Even though this is consistent with our observations, we recommend a bit larger table
which is then used cyclically. Our experiments indicate that these randomized hash functions are as
fast and reliable as the best deterministic hash functions used in real-world program applications,
e.g., those mentioned in [3].

3 Chain hashing

The basic idea in chain hashing is simple. The colliding items are linked together in a linked list.
For example, in the book by Gonnet and Baeza-Yates [11] two different implementations of this
method were presented. In hashing with direct chaining each location in the hash table contains
a pointer to the beginning of the list of colliding items, whereas in hashing with separate chaining
each location consists of a node containing a pointer to an item and a pointer to another node.
In practical experiments the observed performance of hashing with separate chaining has turned
out to be a bit better than that with direct chaining (see, [11, Table 3.20] or [13, Figure 44]). Yet
another alternative, called here hashing with circular chaining, is otherwise as one of the above
methods but the linked list is maintained as a circular list.

Our actual implementation is a combination of separate chaining and circular chaining. We let
initially each location in the hash table contain a single node which has an item pointer pointing
to a sentinel and a node pointer pointing to itself. The use of a sentinel gives a tight inner loop
for traversing the list; only one test is required to control when the traversal should be stopped.



#define null 0
#define w 32 /*the number of bits in a word*/
#define b 8 /*the number of bits in a bytex/

class item{
public:
keytype key;

infotype info;};

class node{
friend class hashtable;
item* pir;
node* succ;};

class hashtable{

int n; /*the number of items*/

mt £ =16; /*the size of keys in bytes*/

int 2%, /*the size of the tablex/

int minsize; /*the minimum size of the tablex/
node* table;

Howox h();

72%,2': f() H

static item sentinel;

public:

hashtable (int) ; /*construct*/

item* lookup (keytype) const;
item* insert (keytype , infotype) ;
item* delete (keytype) ; };

hashtable : :hashtable (int 27){

minsize = 25 = 27,

table = new node[27] ;

if (int_type(keytype)) h.select(27);

else f.select(£,27);

for (int i =031 < 2j;z'++){
table[i] . ptr = &sentinel ;
table[i] . succ = &table[il; }; };

item* hashtable: :lookup (keytype z) const{
node* p;
sentinel .key = x;
if (int_type(keytype)) p = &table[h.evaluate(z)];
else p = &table[f.evaluate(z)];
do p = p—suce;
while (p—ptr—key F2);
if (p—ptr = &sentinel)
return null;
return p—pir; };

Figure 3: Part of a C++ class implementing a dictionary with chain hashing.



In other chaining methods two tests are required: the first testing whether the end of the list is
reached and the other testing whether the searched key equals to the stored key (cf. the programs
given in [11]). A C++ function for the lookup operation is shown in Figure 3.

The insert operation starts by checking whether the key already exists in the data structure. If
this is the case, only the information associated with this key is updated. Otherwise a new node
is added to the corresponding circular list and the pointer values are updated as required. In both
cases the just inserted item is returned. The delete operation works similarly. If the key exists,
the corresponding node is removed from the circular list and the deleted item is returned as the
outcome of the operation; otherwise a null item is returned.

In the static case when the number of items, n, is known beforehand the size of the hash table,
m, is fixed to the smallest power of 2 larger than or equal to n. With a c-universal class of hash
functions the expected length of a chain is O(c) (see, e.g., [16, Section 111.2.4]). Hence, the cost of
a construct operation is proportional to ¢fn, in which ¢ denotes the size of the keys in bytes.

There are no problems when carrying out insertions and deletions in this structure as far as
the load factor n/m is within some bounds, e.g., 1/2 < n/m < 2. To adapt the data structure for
dramatic changes in the cardinality of the items, the standard doubling technique is used. Each
time the load factor reaches the value 2, the size of the hash table is doubled, all the items are
rehashed into this new table, and the space allocated by the old table is freed. On the other
hand, when the load factor reaches the value 1/2, the size of the hash table is halved after which
a reconstruction is done as above. The size of the hash table should, however, always be at least,
say 1024. This is just the way chain hashing is dynamized in LEDA (version R 3.4).

In the reconstructions it is known that all the items in the old table have distinct keys. Therefore,
every item can be appended to the corresponding chain without checking whether the item appears
in the structure or not. That is, a reconstruction requires O(¢n) time in the worst case. When
the reconstruction time is amortized over the insert and delete operations carried out after the
previous reconstruction, the amortized expected cost of a lookup, insert or delete operation is still
proportional to ¢ times the size of the keys.

This data structure uses 2m+2n storage locations for pointers, that is the extra space required is
never more than 6n+O(1) words. An advantage with this structure is that it supports fast lookup,
but one should observe that it is more space-consuming than both direct chaining and separate
chaining. One could also save some space by storing the items inside the list nodes. However,
the present solution makes the moves of the items unnecessary, which again may save some time
especially if the items are big. This means also that the item references are persistent, i.e., the
value returned by any operation remains valid throughout the lifetime of the item.

4 Double hashing

In the double-hashing scheme introduced by Fredman et al. [10] the colliding items are not chained
but hashed again by using another hash function. We say that the colliding items form a bin. The
size of the primary hash table is fixed to the smallest power of 2 larger than 7n, in which 7 is some
positive constant and n the number of items to be stored in the structure. Each bin stores a pointer
to a hash function and the start address of a secondary hash table. Each location in the secondary
table contains a pointer to an item. If a bin is empty, it has a pointer to the dummy table built
above the sentinel.

In a lookup operation the values of the two hash functions are calculated and the pointers
followed to an item. If this particular item is the sentinel or if the key of the item is not equal to
the given key, a null item is returned; otherwise the found item is returned. Figure 4 describes



#define null 0
#tdefine w 32 /*the number of bits in a word*/

class item{
public:
int key;

infotype info;};

class bin{
friend class hashtable;
%zwyzk h();
item* 2-table;

bin(); };

bin::bin(){
h.select (0) ;
2-table = &sentinel ; };

class hashtable{

friend class bin;

int m; /*the number of memory locations used*/
int n; /*the number of items*/

int 2%; /*the size of the primary table*/

H2w72k h () 5

bin* 1-table;

static item sentinel;

static bin dummy;

public:

hashtable (int) ; /*construct*/
item* lookup (int) const;

item* insert (int , infotype) ;

item* delete(int) ; };

item* hashtable: :1ookup (int z) const{
binx p = &l-table[h.evaluate(z)];
item* q = p—2-table[p — h.evaluate(z)];
if (¢ = &sentinel)
return null;
if (g—key = )
return q;
return null; };

Figure 4: Part of a C++ class implementing a dictionary with double hashing.



the implementation of the lookup operation for integer keys in detail. Of course, in the actual
implementation the function evaluate() is declared inline.

Let n; denote the size of the ith bin and 2* the number of bins, where 28~ < rn < 2k,
To construct the tables efficiently, randomization is used. Assume that the class of hash functions
employed is c-universal. At the first level the expected number of collisions between all possible pairs

k .
of items is at most (g) 7~ Another way of expressing this is that the expected value of Z?:o_l (”2’)

is less than (;)2% From Markov’s inequality it follows that, for any a > 1, Z?io_l (%) < a(g)Q%
with probability larger than 1 — 1/a. By using this fact, we can repeatly select a random hash
function from the universal class until one is found which gives less than oz(g)z% collisions. The
average number of rounds needed here is at most ﬁ At the second level a similar method is
applied. If a non-empty bin contains n; items, we reserve a secondary hash table of size 2% for
this bin, 2% being the smallest power of 2 larger than or equal to max(1, ﬁc(T;)), for some 3 > 1.
Hence, the probability that a random secondary function is injective is larger than 1 —1/3. On an
average, at most # rounds are needed before an injective secondary function is found for a bin.
The expected time used for the construction of the hash tables is thus proportional to the size of
the input.

In our implementation we fixed the parameters 7, o, and 3 as follows: 7 = 1, a = 3/2, and
B = 4/3. Let us now analyse the storage requirements of this particular implementation. The
primary table uses 2 - 2* storage locations. Since at most n of the 2% secondary tables can be in

use and since Zfzo_l (712’) < %(g) %, the number of pointers used by the secondary hash tables is at

2¢°” |f we let s(n) denote an upper bound for the space requirements of the hash tables,

ok
then s(n) = 2en +n + 20:”, where 1 < ¢ < 2. The maximum value of the function t(¢) = 2¢ + %
is reached at e = 1, e = ¢, or € = 2. Thus, the space usage of the hash tables is at most 6n and 11n
for ¢ = 1 and ¢ = 2, respectively. Furthermore, some space is needed for storing the hash functions
but a lot of space can be saved here by using the same hash functions for several secondary tables
as proposed by Schnieder [21]. For further tricks of saving space, we refer to [10] and [21].

This hashing scheme can be dynamized by using the standard doubling technique as shown by
Dietzfelbinger et al. [8]. Basically, we have followed their guidelines in our implementation, but we

permit insertions and deletions as far as no local or global reconstructions are necessary. The idea

most n+

is to reserve so much storage for the hash tables that vng update operations, 0 < v < 1, can be
accomplished without much difficulty if the structure contained ny items just prior to the previous
global reconstruction.

In a global reconstruction a structure is created as described above with the parameters 7, a,
and 0, to be specified later. To carry out a local reconstruction, a bin should also store the size of
the secondary hash table. However, when multiplicative hash functions are employed, the multiplier
and and the shift value are stored within a bin, not the size of the secondary table since it can be
deduced from the shift value (cf. Figure 4). When the size of the secondary table is known, the
items in the corresponding bin can be gathered together and rehashed as required. The update
operations can trigger a local or global reconstruction as follows:

1. A delete operation is carried out weakly by letting the item pointer in the secondary table
to point to the sentinel. If the space limit is exceeded just after a delete operation, then a
global reconstruction is carried out.

2. An insert operation is performed by adding a pointer into the secondary hash table pointing
to the new item, provided that the item does not collide with another item. If the item
to be inserted causes a collision in the secondary table, three cases are possible: a) if the



corresponding secondary table is large enough, then a new injective function is searched for
that; b) if the current table is too small and a larger table does not cause the structure to
exceed the space limit, a larger table is allocated and a new injective function is searched for
that; c) otherwise a global reconstruction is necessary.

We set the space limit to ﬁ—v(l +v+afc?(147)%/7+67). In our implementation we fixed the
parameters a, (3, and v as follows: @ =3/2, 3 =4/3, v = 1/2. For ¢ = 1, the space limit is 24n at
T =1 and, for ¢ = 2, 45n at 7 = 2. These bounds can be improved only marginally by other values
of 7.

The choice of # guarantees that, if a secondary hash table for a bin reaches the size 2%, the
expected time used in the construction of all the tables for this bin up to the size 2% is proportional
to 2%. Especially, observe that on an average O(1) tables of size 2° have to be built, for all
i € {0,...,k;}. Since on an average O(1) rounds are necessary before a primary hash table is
found, for which Efial 2% € O(ng), the overall cost for handling the yng updates is proportional
to ng times the size of the keys. Sometimes more than vyny updates can be handled before the next
global reconstruction is necessary; these updates can be considered to be free of cost.

5 Experimental results

We programmed both the chain-hashing and double-hashing schemes described in the previous
sections. In order to compare their performance to that of the methods available in LEDA (version
R 3.4), we programmed them so that they could be used as LEDAs “user defined data structures”
[18, Chapter 13.2].

All the experiments reported in this section were carried out on a personal computer which has
an Intel Pentium 120 MHz processor and runs under LINUX 2.0.0. The size of its main memory
is 32 MB and it has a virtual address space of size 48 MB. The programs were written in C++
and compiled with GNU’s gce compiler (version 2.7.2) by using the optimization flag “-O”. In the
generation of random data and the measurements of time we relied on the tools available in LEDA.
In all the running times reported the overhead caused by the driver program is excluded.

In our first set of experiments the data structures available in LEDA were tested. Our obser-
vations were the following:

1. The sorting and binary-search routines were extremely slow compared to the corresponding
running times obtained by using balanced search trees. The main reason for this was that an
item class defining a linear order had to be defined which was not the case for tree structures
when the key was known to be an integer.

2. In general, AVL-trees [1] turned out to be superior to red-black trees [12].
3. As to randomized search trees, skip lists [20] seemed to perform better than treaps [22].

Therefore, only AVI.-trees and skip lists were included in the later experiments.

A dynamic chain-hashing scheme is also available in LEDA. The current implementation is
deterministic. If the hash table is of size 2%, the integer consisting of the k last bits of a key is used
as the hash value. This is obtained simply by anding the key with 2¥ — 1. The colliding items are
kept in a linked list where the last node contains a pointer to a sentinel. This gives as well a tight
inner loop when traversing the list. The dynamic double-hashing scheme available in LEDA has
been programmed by Wenzel (as cited in [8]). This implementation uses divisional hash functions
as proposed both in [8] and [10].
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Successful lookup time (microseconds). Random integer keys.
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G—=o©  hash table (multiplication method, chaining)
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Figure 5: Average time for a successful lookup when the size of the dictionary was n. Four hashing
schemes and two search-tree schemes were included in this test.

Unsuccessful lookup time (microseconds). Random integer keys.
10 T T T T

+—Ft skip lists
e AVL-tree
QF | X=X hash table (division method, double hashing)
G—=o©  hash table (multiplication method, chaining)
¥—K  hash table (multiplication method, double hashing)
- - hash table (deterministic, chaining)

7 8 9 10 11 12 13 14 15 16 17
log n

Figure 6: Average time for an unsuccessful lookup when the size of the dictionary was n. Four
hashing schemes and two search-tree schemes were included in this test.
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Insert time (microseconds). Random integer keys.
20 ;

T T T T T T T
+—t skip lists

hash table (division method, double hashing)
—_— AVL-tree

hash table (multiplication method, double hashing) B
hash table (multiplication method, chaining) |
hash table (deterministic, chaining)
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16 17
log n

Figure 7: Average insertion time for various methods

when constructing a dictionary of size n.

Delete time (microseconds). Random integer keys.

20 T T T T T T T T
>——Xhash table (division method, double hashing)
+—Ft skip lists
—_— AVL-tree
18 X¥—K  hash table (multiplication method, double hashing)
G—=©  hash table (multiplication method, chaining)
- hash table (deterministic, chaining)

7 8 9 10 11 12 13 14 15 16
log n

Figure 8: Average deletion time for various methods when a dictionary of size n was emptied.
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In our second set of experiments we wanted to compare the average performance of the methods
mentioned. Therefore, the input for the programs were generated randomly. The size of the inputs
was varied from 27 to 2'7 and for each input size 10 different data collections were used. When
testing the lookup time for successful searches, each key was accessed at least 5 times. Figure 5
reports the average times for a successful lookup. Figure 6 gives the corresponding times for an
unsuccessful lookup. Random data collections were also used to calculate the average insertion and
deletion times. Figure 7 reports the average cost of an insert operation during the construction of
the data structures. Figure 8 reports the corresponding cost of a delete operation when the data
structures were again emptied.

According to Figure 5 the observed lookup times are about the same for deterministic chain
hashing, multiplicative chain hashing, and multiplicative double hashing; tree based methods are
clearly slower. The behaviour of the hashing methods does not change even if the key searched is
not in the structure. However, the tree methods can carry out an unsuccessful lookup about twice
as fast as a successful one. As to insertions and deletions, it can be seen from Figure 7 and 8 that
the average performance of the chain-hashing methods is very good, whereas the performance of
the double-hashing methods is comparable to that of the tree methods. However, multiplicative
double hashing seems to perform better than divisional double hashing, especially in deletions.

In our third set of experiments we tried to evaluate the reliability of chain hashing. First, we
generated input data which forced the deterministic method to produce lists of length 8. However,
the lookup times for successful searches were still about the same as for the random data. Second,
we generated data where the length of every non-empty list was equal to 2'°. After this the average
cost of an unsuccessful search increased from 1 microsecond to 92 microseconds. If n = 2'7, the
corresponding AVL-tree used 4 microseconds to handle the same search. Randomized chain hashing
worked still very well. This makes us to conclude that catastrophic lookup times are rare when
multiplicative chain hashing is used.

In the fourth set of experiments the performance of a chained hash table was compared to that
of an AVL-tree when the keys of the input items were strings. For this purpose we used the testbed
problems available from DIMACS [5]. The observed execution times are reported in Tables 2, 3,
and 4. The reported times are average values when the same testbed problems were solved 10
times. In chain hashing the size of the random table needed by the hash function had a fixed size
of 16. The current AVL-tree implementation in LEDA does not utilize the fingerprints but uses the
string compare function when traversing the tree. As seen a chained hash table is clearly superior
to an AVL-tree.

6 Discussion

Already Carter and Wegman [4] pointed out in their seminal paper that there is no time penalty
associated with using universal hashing. The present study meets this view. As to the collision
handling, our study shows that it is difficult to beat dynamic chain hashing. In double hashing
lookup operations are fast but this is achieved at the expense of more costly update operations and
larger memory requirements. It is also in place to correct the old myth about the size of the hash
tables (see, e.g., [3]): the table size should not be a prime number but a power of 2 to make the
dynamization easy.

In chain hashing the expected length of the longest chain is at most v/2en + 1, assuming that
the load factor is less than 2 and a c-universal class of hash functions is employed. If the hash
function is selected as carefully as the primary hash function in double hashing, (with & = 2) the
upper bound 2/cn 4 1 is guaranteed in the worst case. The most problematic chains are those
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Random numeric key tests (milliseconds). String keys of length 16.
Input | Hashtable | AVL-tree | Input | Hashtable | AVL-tree | Input Hash table | AVL-tree
id.al 15 32 id.a2 15 38 id.a3 35 35
id.bl 243 476 | id.b2 243 464 | id.b3 258 470
id.cl 2410 8020 | id.c2 2044 7435 | id.c3 2335 7805
iid.al 27 63 iid.a2 26 63 iid.a3 27 60
iid.b1 447 794 | iid.b2 462 816 | iid.b3 467 809
iid.cl 6550 21320 | iid.c2 - - | iid.c3 - -
iisd.al 37 81 iisd.a2 34 75 iisd.a3 34 73
iisd.bl 521 1071 iisd.b2 533 1059 | iisd.b3 527 1059
iisd.cl 6550 21320 | iisd.c2 5800 19820 | iisd.c3 4900 20490
ilud.al 33 77 iiud.a2 33 79 iiud.a3 33 82
iiud.bl 552 1043 | iiud.b2 538 1044 | iiud.b3 541 1063
iiud.cl 5100 20320 | iiud.c2 6260 21670 | iiud.c3 5520 20410
is.al 15 31 is.a2 11 37 is.a3 18 34
is.bl 243 502 | 1s.b2 238 501 is.b3 247 507
is.cl 2390 8040 | is.c2 2500 7985 | is.c3 2400 8355
in.al 14 33 iu.a2 16 36 iu.a3 16 46
iu.bl 254 543 | iu.b2 258 481 iu.b3 259 493
iu.cl 2390 7845 | iu.c2 2540 8060 | iu.c3 3065 8140

Table 2: Execution times for a chained hash table and an AVIL-tree when the input was generated
by the DIMACS test generator: dc_random. The problems with ”=” could not be solved due to the
lack of memory space.

Generic English key tests (milliseconds). String keys of length at most 20.
Input Hash table | AVL-tree | Input Hash table | AVL-tree
ed.id.tr 12 31 Tyid.tr 14 32
ed.iid.tr 22 59 Jy.did.tr 19 64
ed.iisd.tr 29 74 Jy.disd.tr 26 76
ed.iiud.tr 29 74 Jy.aiud.tr 28 74
ed.is.tr 11 35 Jy.s.tr 12 36
ed.iu.tr 14 35 jy.u.tr 10 35

Table 3: Execution times for a chained hash table and an AVIL.-tree when the input was generated
by the DIMACS test generator: dc_generic.

Library call numbers (milliseconds). String keys of length 36.
n 1000 10000 100000
Input | Hashtable | AVL-tree | Hashtable | AVL-tree | Hash table | AVIL-tree
circl 17 17 320 533 3415 8810
circ2 19 36 334 534 3285 8540
circ3 19 40 320 547 3365 8475
circ4 21 37 341 543 3175 8400
circh 19 38 324 541 3430 8345

Table 4: Chained hash table vs. AVL-tree when solving the circ testbed problems available from
DIMACS.
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that are longer than say, 27. Universal hashing makes these chains rare but they can still appear.
If the reliability is an absolute requirement in the application in question, the dictionary should be
implemented by other means.

The best practical solution is apparently a hybrid of the methods studied. One possibility is to
combine chain hashing with double hashing, e.g., by implementing all small bins as linked lists and
all large bins as in double hashing. Only one extra if-test has to be added to the lookup function
but this hybrid is more space-efficient than pure double hashing. A variant of this idea was already
used in Schnieder’s and Wenzel’s double-hashing implementations. In static double hashing the
tradeoff between the speed of the lookup operation and the usage of space was analysed carefully
by Schnieder [21]. It is natural to ask whether there exists other methods that could be used to
reduce the space requirements of the dynamic structure without sacrifying much of its speed.

Another possibility is to maintain each large bin as a tree. With this structure the lookup
operations can be performed in constant average-case time and logarithmic worst-case time. If
the bins are implemented as AVL.-trees, for a bin of size n; the height of the corresponding tree is
at most 1.4404 log,(n; + 2) [13, Section 6.2.3]. A careful implementation of the lookup operation
guarantees that the number of key comparisons carried out is never more than the height of the
tree plus one [2]. Hence, the tree implementation is always superior to the chain implementation as
far as key comparisons are concerned. However, during a tree traversal at every tree level it must
also be tested, whether an external node is reached or not, and some extra pointer assignments are
necessary compared to a chain traversal. Therefore, n; has to be quite large before the use of a tree
pays off. By using standard techniques this structure can be dynamized but the practical value of
this dynamic structure is unclear.

Still another possibility is to use hashing in the connection with balanced search trees. That
is, the tree structure could be organized according to the hash values of the keys and only in the
case of collisions the whole keys are applied as normally. For instance, when an AVL-tree stores n
items with string keys of length ¢, hashing reduces the worst-case complexity of a lookup operation
from O(llog, n) to O(£+ (log, k + log, n), where k denotes the number of keys whose hash value
is equal to that of the searched key.

Finally, it should be pointed out that the dynamic double-hashing method can lead to memory
fragmentation since it might not be possible to reuse the space reserved earlier by the secondary
hash tables that have become too small. A similar memory-allocation problem is encountered
in the implementation of skip lists. When we carried out our experiments, the test runs were
interrupted several times because of problems in memory allocation. We got two types of error
messages: “LEDA memory allocation: out of memory” and “Segmentation fault (core dumped)”.
This memory-allocation problem should be taken seriously by application programmers when se-
lecting their dictionary structure.
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