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Abstract

In this paper we consider solutions to the static dictionary problem on AC® RAMs,
i.e. random access machines where the only restriction on the finite instruction set is
that all computational instructions are in AC?. Qur main result is a tight upper and
lower bound of ©(y/logn/loglogn) on the time for answering membership queries in
a set of size n when reasonable space is used for the data structure storing the set; the
upper bound can be obtained using O(n) space, and the lower bound holds even if we
allow space 2Polylogn,

Several variations of this bound is also obtained, including tight upper and lower
bounds on the storage space if the query time must be constant and bounds valid
for non-ACY RAMs if the execution time of an instruction computing a function is
measured as the minimal depth of a polynomially sized unbounded fan-in circuit com-
puting the function. We refer to this model as the Circuit RAM. As an example of the
latter, we show that any RAM instruction set which permits a linear space, constant
query time solution to the static dictionary problem must have an instruction of depth
Q(log w/loglog w), where w is the word size of the machine (and log the size of the
universe). This matches the depth of multiplication and integer division, used in the
two level perfect hashing scheme by Fredman, Komlés and Szemerédi.

One of the non-dictionary related consequences of our techniques is a randomized
AC"? sorting algorithm using O(n(loglogn)?) time and linear space.

*Technical Report DIKU-TR-96/5, Department of Computer Science, University of Copenhagen.
TThis work was initiated while the author visited Copenhagen, supported by the Danish Science Research
Council.



1 Introduction

The most fundamental data structure problem is the static dictionary problem: Given a set
A containing n keys, each being a bit vector of length w, store it as a data structure in the
memory of a random access machine, using few memory registers, each containing w bits (a
word), so that membership queries “Is € A?” can be answered efficiently for any value of
z. In addition, if x € A, we might want to retrieve some information associated with . We
are interested in tradeoffs between the storage space (measured by the number of registers
used) and the query time.

The set A can be stored as a sorted table using n memory registers allowing queries to be
answered using binary search in O(logn) time. Yao [Yao81] first considered the possibility
of improving this solution and provided an improvement for certain cases. Fredman, Komlés
and Szemerédi [FKS84] showed that for all values of w and n, there is a storage scheme
using O(n) memory registers, so that queries can be answered in constant time. Their
technique is two level hashing based on the family of hash functions hi(z) = (kz mod
p) mod s. Thus, multiplication and integer division are used by the query program. Since
these instructions are usually considered expensive, it is natural to ask whether their use can
be avoided. The family may be replaced by a family due to Knuth [Knu73, p.509] using only
multiplication, bitwise Boolean operations, and shifts (see [DHKP93] for details), so integer
division is not essential. But so far, the existence of optimal schemes for static dictionaries
with multiplication replaced by cheaper instructions has remained an open problem.

One natural, robust, and generally accepted formalization of what it means for a function
to be “cheap” is membership in AC?, i.e. the function should be implementable by a constant
depth, unbounded fan-in (AND,OR,NOT)-circuit of size w®("). This is the approach taken
in this paper; we consider solving the static dictionary problem on AC® RAMs. This model
of computation has not been studied in depth previously. Informally, an AC° RAM is a
RAM with an instruction set consisting of direct and indirect addressing, conditional jump,
and a finite number of computational instructions each mapping a constant number of words
to one word. All computational instructions belong to AC?. All instructions are charged
unit cost.

Our main results are the following.

Theorem A There is a solution to the static dictionary problem on an AC° RAM using

O(n) space and with a worst case query time of O(\/log n/loglogn). On the other hand,

query time 0(\/log n/loglogn) is not possible on any AC® RAM even if space 2P°¥los™ s
allowed.

Theorem B For any ¢ > 0, there is a solution to the static dictionary problem on an AC®
RAM with constant query time using space O(2"") for storing sets of size n = 20" On the
other hand, on no AC® RAM there is a constant query time solution using space gu°t!) for



storing sets of size n = llogw)*

The lower bounds above actually holds in a more general model than the AC® RAM,
the Circuit RAM. By a Circuit RAM with word size w we mean a RAM with direct and
indirect addressing, conditional jump, and a number of computational instructions each
mapping a constant number of words to one word. The computational instructions can
be chosen arbitrarily, i.e. they do not have to be in AC°. However, each instruction has
an assoclated cost. The cost of direct and indirect addressing and conditional jump is 1.
The cost of a computational instruction is d, where d is minimum depth of a circuit of size
O implementing the instruction. The time of an execution is the sum of the costs of
all the instructions executed. Note the similarity between this definition and the log cost

w

RAM, the difference being that the log cost RAM captures hardware operating sequentially
on the bits in the words, while the Circuit RAM captures hardware exploiting unbounded
fan-in parallelism (but only inside the CPU). We immediately see that if a problem can
be solved by an AC° RAM using time ¢, it can also be solved by a Circuit RAM using
time O(t). We believe the Circuit RAM is quite a natural model of computation, deserving
further study. From a lower bound point of view it is worthwhile noticing that we do not
disallow expensive instructions such as multiplication. Disallowing them would make our
lower bounds less interesting, since such instructions are present on real computers. Instead
we do allow them, but charge them more, using the well-studied depth measure from circuit
complexity. Note that in the Circuit RAM model, the two level hashing scheme of [FKS84]
has query time O(log w/loglogw), since multiplication and integer division [BCH86] are
in NC' and any function in NC"' has polynomial size circuits of depth O(log w/ log log w)
[CSV84]. We provide a matching lower bound that also generalizes the lower bound of
Theorem A.

Theorem C  There is no Circuit RAM solution to the static dictionary problem using space
2polvloen gnd with query time o(logw/loglogw). In fact, for any word length w, there is a
fized set X C {0,1}" of size n = 90(log w/loglogw) g4 ¢4 any Circuit RAM dictionary for
X using space 2P°Y1°8™ has worst case query time Q(\/Iog n/loglogn) = Q(logw/ log log w).
The result holds even for Monte Carlo schemes and with worst case time replaced with average

case time (where the average is over the set X)

Techniques used

Our upper bounds are shown using a novel data structure, the clustering structure. The clus-
tering structure is based on two kinds of “hash-like” functions, clustering functions clustering
the input into Hamming balls of small radius and cluster busters hashing each individual
Hamming ball. The ACY instruction set required to implement this data structure is non-
standard, but not unrealistic. We hope that the clustering structure (and structures like it)
might inspire future hardware design by pointing out potentially useful instructions. The
data structure can be dynamized. One of the non-dictionary related applications of the
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clustering technique is a randomized, linear space AC® RAM sorting algorithm using time
O(n(loglogn)?).

Our lower bound relies on a recursive construction of a difficult set. At each level of the
recursion we use probabilistic methods including Hastad’s switching lemma [Has87].

Related research

Apart from the sorted table/binary search solution, previous linear space solutions to the
static dictionary problem implementable on AC® RAMs were constructed by Tarjan and Yao
[TY79], achieving constant query time if w = clogn for some constant ¢, and by Willard
[Wil84] and Karlsson [Kar84], achieving query time O(y/w).

Previous lower bounds for the static dictionary problem have been obtained by Fich
and Miltersen [FM95,Mil96]. The former paper gives lower bounds for the case where the
computational instructions allowed are addition, subtraction and multiplication (the Classi-
cal RAM), the latter for the case where the instructions allowed are addition, subtraction,
bitwise Boolean operations and arbitrary shifts (the Practical RAM). It is interesting to
compare the previous bounds with the new ones. If constant query time is desired, the
following space bounds are necessary and sufficient (for sets of size w < n < 2"): On the
(Classical RAM €2¥, on the Practical RAM 2°%, and on the AC® RAM 2%, If linear space is
desired, logarithmic query time is optimal for the Classical RAM, but not for the AC° RAM.
It is open if logarithmic query time is optimal for the Practical RAM, the best current lower

bound being the Q(\/log n/loglog n) one implied by this paper, improving the (loglogn)
one of [Mil96].

From circuit complexity there is a result of Mansour, Nisan, and Tiwari [MNT93] (build-
ing on [LMN93]) that no AC? circuit implements a family of universal hash functions { Hy},
where “implements” means that the circuit on input (k, 2) computes Hy(x). This result is an
immediate corollary of our lower bounds as the following argument shows: Suppose, to the
contrary, that an AC? circuit computing a universal family exists. This family could replace
the family of hash functions used by Fredman, Komlés and Szemerédi, and thus yielding an
O(n) space, O(1) query time AC® RAM solution to the static dictionary problem, contra-
dicting Theorem A, B and C. However, our result is more general: In the context of static
dictionaries, their result shows that we cannot find a single AC? instruction to replace mul-
tiplication in universal hashing schemes, such as the FKS-technique, but it does not tell us
anything about what can be achieved by programs which are not based on universal hashing.
As our upper bound shows, there are alternatives to universal hashing for solving the static
dictionary problem, and our lower bounds cover all possible programs.

Notation

In the rest of the paper, the symbol n will always denote the size of the set we want to
store in a dictionary. The symbol w is the length of the keys to be stored and the word size



of the machine. In our recursive constructions, we might want to store sets smaller than n
containing keys shorter than w. Usually, the size of such a set will be denoted m and the
length of the keys b.

In several places in the paper, we shall assume that various fractions and logarithms are
integers to avoid looking at tedious special cases.

We let & denote exclusive-or. Letters z,y, z, z; etc normally represents bit vectors. The
Jth bit of vector x is denoted z[j]. Often an [-bit vector x is identified with the set {i|z[¢] =
1}. If a boolean operation is applied to two bit-vectors of the same length, the application
is understood to be bit-wise. For example, given two [-bit vectors x,y, we have xt Vy = z Uy
and © Ay = x Ny. The symbol \ denotes set difference (of sets or words). By |z| we mean
the Hamming weight of z, i.e. the number of 1-bits in z. Note that |z & y| is thus the
Hamming distance between x and y. The Hamming ball with center ¢ and radius r is the
set of bit vectors {x € {0,1}" : |# & ¢| < r}. The Hamming ball with center 0% and radius
r is denoted H,. In some cases, we use H’ to mark that the keys are of length b.

Let K C {1,2,...,w}. The projection function 7 : {0,1}* — {0, 1}/El selects the bits
marked by K from its input.

2 Upper bounds

Lemma 1 Let A C {0,1}" be a set of at most n elements, and let r < w/20. Let K be a
random subset of of {1,...,w} of size 10(log n)w/r. with probability at least 1 — 1/n®, for
all z,y € A, |z @ y| > r implies mx(x) # T (y).

Proof: Let z,y be a particular pair in A with |z @ y| > r. Let 7 be a random index
in {1,...,w}. The probability that z[{] = y[i] is at most 1 — r/w. Thus, if K is a
randomly chosen set of size 10(log n)w/r, the probability that mx(z) = 7x(y) is at most
(1 — r/w)toleemw/r - The probability that mx(z) = mx(y) for any such pair z,y is therefore
at most (g)(l — 7 fw)tOlesn)w/r <1 /3, |

We use 7 as a clustering function. For the cluster buster we need:

Lemma 2 Let A C H, with |A| = m. Let I1,1,,..., 1, be randomly chosen subsets of
{1,...,10rlogm}, each of size 5logm. Let p :{0,1}* — {0,1}1071°8™ pbe the map defined
by p(z) = Ugjag=11 ;. Then p ts 1-1 on A with probability > 1 — 1/m?®.

Proof: Consider any pair z,y in A with  # y. There is an index 1, so that z[i] # yli].
Assume without loss of generality that z[i] = 1 and y[:] = 0. We see that u(z) = u(y)
implies I; C u(y) but |u(y)| < 5rlogm, so Pr(l; C u(z)) < 27°lem = # The number of
pairs in A is < m?, so u is 1-1 on A with probability 1 — 1/m?. ]

Lemma 3 There is an AC® function h, : {0,1}" — {0,1}19718% which is 1-1 on H,.



Proof: Apply Lemma 2 with A = H,. [ ]

We now show how to use Lemmas 1 and 3 for constructing AC® RAM solutions to the
static dictionary problem. The basic idea for storing a set A is this. First, A is hashed using
the function mx with K chosen as in Lemma 1. This partitions (clusters) the set into a
number of buckets, each being a subset of some Hamming ball of radius r. Fach such subset
A’ can be stored by storing the center ¢ of the Hamming ball in a single word, and then using
the injective function of Lemma 3 to store the set {x G ¢z € A’} C H, in a collision free hash
table using space 219718 Each bucket is indexed by a signature of 10(log n)w/r bits (i.e.
the value of mx for the elements in the bucket), so if we store pointers to the buckets naively
using an array, indexed by the possible values of mx, we would use space 2'°0°8™)“/" which
is too much for our purpose. In order to avoid this, we recursively store the signatures using
our scheme, with pointers to the buckets as associated information. We call the resulting
data structure a clustering structure.

A query program for the clustering structure needs some non standard instructions in
addition to the usual bit manipulation instruction: We need an instruction Select(K), z)
which computes the function 7x on input x. Here the word K is interpreted as the con-
catenation of a list of log w-bit segments, i.e. numbers between 1 and w. Let these numbers
be ki, ka, ..., kwjtogw, The output is x[ki]z[ks] ... 2[ky/10gw]. This function can be seen to
be in AC°. Note that in order to store the index K of the clustering function in constant
space and compute the hash function in constant time using this instruction, we must have
K <w/logw or equivalently, r > 10(log n)(log w).

We also need an instruction BustHammingBall(r, x), where r is a number between 1 and
w. The instruction applies the function A, of Lemma 3 to z, and is easily seen to be in AC?,
given this lemma.

We will now be a bit more specific about the above construction. We represent a set of
m b-bit keys in a data structure 7" and the function Find(7, z,b) returns a reference to z,
this reference is simply a number in the interval [0..m — 1]. Let K and r be as in Lemma 1.
Let Y = {nx(z)|x € X}. The set Y is represented recursively in the data structure 7.Y.
T also contains an array 7.C : [0..m — 1] — {0,1}® such that if s = Find(7.Y, 7x(x),b) for
some z, then there is such an z for which 7.C[i] = z. Thus, according to Lemma 1, for any
r€ X, |z T.Clrg(z)]] < r.

As the recursion proceeds, the key length b will decrease. When b < by, for some specified
value by we switch to some other data structure. In the recursive implementation below, we
mark this switch by the function Find' (7, z). Our implementation of Find is of the following
recursive form:

Algorithm A: Find(7,z,b)
A.l. if b < by, return Find/(T, z).
A.2. 1+ Find(7.Y,Select(K,z),|K]).



A.3. return T.B[i,BustHammingBall(r,z & T.C[i])].

Above, T.B is a 2-dimensional array with entries from [0..m — 1] x {0,1}107*log  Sipce all
elements from X are mapped to different entries in B, we just need to fill these entries with
different values in order to make our function Find 1-1 on X. The space of the data structure
T is the space of the recursive data structure T.Y for the at most m (10(log n)w/r)-bit keys
inY plus 1 4+m+m- glor?logw _ O(m - lor? logw) words for storing K and the arrays T.C
and T.B.

The data structure described above immediately implies the following upper bounds, the
first of which gives the upper bound of Theorem B of the introduction.

Corollary 4 For any € > 0, there is an AC® RAM solution to the static dictionary problem
for sets of size n < 2V/* with query time O(1) using space 2*°.

Proof: Let r = 10(logn)w”'%. Apply the construction above. After one iteration, we
reduce the size of the keys to be stored to 10(log n)w/r = w'=*/1%, By iterating 100/¢ times
we thus have reduced the domain of the keys to be stored to constant size, i.e. a trivial
problem. At each recursive level we use O(n - 910r? logw) space. There are 100/¢ recursive
levels, so the total space used is (100/¢)n210r*losw < gu*, u

Corollary 5 There is an AC® RAM solution to the static dictionary problems for sets of
size n with query time O(logw/ log logw) using space 2P°os™,

Proof: Tet r = 10(logn)(logw)*. After one iteration of the general construction the
size of the keys is reduced by a factor O(logw), so after O(logw/loglog w) iterations, the
problem is trivial. The space used is O((logw/loglog w)n2'7°(ogw))  This is 2Polvlesn jf
logn > logw/loglogw. But if logn < logw/loglogw, the sorted table/binary search
solution yields the desired bound. [ ]

Finally, we show how to get a query time which is a function of n, rather than w.

Lemma 6 A set of n keys, each containing k bits, can be stored using linear space and with

logn

log &

query time O <

Proof: We store the set as a Packed B-tree [And95], i.e. a B-tree of degree w/k, where
each B-tree node is represented inside a word. In order to search the packed B-tree, we need
an instruction Rank(P, X, k) that views the words P and X as divided in k-bit fields. If the
fields in P are left-right sorted, the instruction returns the rank of the leftmost field in X
among the fields in P. This instruction is clearly in AC®. ]

Corollary 7 There is an AC® RAM solution to the static dictionary problems for sets of
size n with query time O(\/log n/loglogn) and space 2(PeWlosn)(polyloguw)




Proof: TLet r = 10(logn)?(logw). FEach iteration of the general construction reduces

the number of bits in the keys by at least a factor logn, so after \/log n/loglogn it-

erations, the number of bits in the keys is reduced by at least a factor 2V!esnloglogn
Thus, we can apply lemma 6 with k = w/2V'°8"1°8l°8" 4nq search in the set of signa-
tures using time O(\/log n/loglogn). The space used is O((\/log n/loglog n)n2'0r*(egw)) =
9(polylogn)( polyloguw)_ -

3 Improved upper bounds

In this section we refine our data structure, so that the space used becomes linear in n and
independent of w, rather than 2Pe¥een op 2(polylogn)(polylogw) 55 in Section 2.

Clustering structures

Our clustering functions are used to generate a clustering structure. The general idea is to use
a cluster function to split the search problem into two simpler problems, defined recursively.
After a number of recursive steps, the search problems will be simple enough to be handled
directly in linear space. The next subsection on look-up tables handles this base-case of the
recursion. The aim of this subsection is to describe how to implement a recursive step so as
to preserve linear space.

Generally, a clustering structure is used to store pairs (x,p) where z is a key and p is
a pointer. When searching for a pair, we use z as a parameter to find p. At the topmost
recursive level, p wil be a pointer to a record containing x. At a lower recursive level, z
may be a signature associated with some cluster. Then, p will be the pointer to the data
structure storing that cluster.

Definition 8 Let X be a set of pairs represented in a data structure T. The function
Find(z,T) returns p for each (x,p) € X.

Definition 9 Let H(b,r) be the mazimum cost of evaluating the function Find on a data
structure storing at most n pairs in linear space, where x € H® for each pair (z,p). Also, let

T(b) = H(b,b).

Note that we do not include the size of the stored (sub-)set in this notation. This turns out
to be convenient, for in most of our calculations we only need the fact that the total number
of keys is n. The total search cost in our global data structure is T'(w) (= H(w,w)).

Lemma 10 Assume that for each set A C H?, of at most n keys, there is a function f
which, when applied on A, produces values in HY such that for any x;, r; €A, |z Da;| >r"
implies f(x;) # f(x;). Then

H(b,r)=0(1)+ HY ,v")+ H(b,r")



In the remainder of this subsection, we give a constructive proof of Lemma 10. First note
that if we did not need to worry about space, we could just use the clustering function f as
follows. Let X be the set of pairs to be stored, and let A C H? be the set of keys X. Let
B = {f(z)|x € A} C HY%. We could then store:

e For each y € B, a pair (z,,p,) € X with f(z,) =y.
e For each y € B, the set X, = {(z ® z,,p)|(z,p) € X, f(z) =y, # x,}.
e The set Y = {(y,pos(X,))|ly € Y}.

The set B of keys in Y is then contained in H?, and for each y € B, the set X, is contained
in H". Space-wise the above recursion gives rise to problems. Suppose, for example, that we
wanted to store a single element. The above would then lead to a recursion within Y taking
space w(1). More generally, we have problems bounding the space in cases were X, = {J.

We will now describe a space-efficient recursion avoiding the above redundancies. First,
we give its basic components. Next, we describe how keys are searched for. Then, we describe
how to insert a new key into a clustering structure. Finally, we analyze the time and space
costs. The purpose for describing an insertion procedure here is that it helps us in showing
the space bounds.

Since our clustering structure is recursive, a substructure relies on the fact that the clus-
tering function applied on higher recursive levels are correct. If they are not, the Hamming
distance between the stored keys may be too large. In this section, we ignore this problem;
to construct a static data structure we can just try several times until all clustering functions
work as desired. In the dynamic case some more care has to be taken, this is done in Section
4.

We now give a recursive implementation of a claustering structure 7' based on the function
f in Lemma 10. T stores a set X of pairs.

Description B: Recursive clustering structure 7" for X based on clustering function f
B.1. T contains an identifier T.1d.

B.2. T contains a description T'.f of its clustering function f.

B.3. A pair (T.z,T.p) € X is stored directly. Let X' = X \ {(T.z,T.p)}.

B.4. Let B = {f(z)|(z,p) € X'}.

B.5. For each y € B, choose a pair (z,,p,) € X' with f(z,) = v.

B.6. Let X" = X'\ {(z,,p,)|y € B}.

B.7. For each y € B, let X, = {(z & z,p)|(z,p) € X", f(z) = y}.

B.8. For each y € B with X, # ),

B.8.1. T contains a cluster structure 7.X,, for X,.

B.8.2. T contains a quadrouple T.N, = (z,, py,pos(T.X,), T.id).

9



B.9. T contains a cluster structure 7T.Y for the set
{(y7py)|y E Y -Xy = ®} U {(y,pOS(Tqy))Ll/ E Y7 Xy ?é ®}

Note that if X, = ), then y corresponds to a single pair (z,,p,), T.f(z,) = y. Assume that
we replaced the key x, by a “twin” key z; such that T'f(z;) = y. Then, the clustering
structure would look ezactly the same! Hence, we cannot tell the difference between a
clustering structure storing (z,,p,) and one storing (z;,p,). After searching for a key, we
have to make an additional test to verify the correctness of the search,

We can now derive a function Find. The function is recursive and after a recursive call
has been made, a correctness test mentioned above is made on line C.2.2.1. However, at the
topmost recursive level, no such test can be made inside the function. This can be resolved
by an additional test afterwards.

Algorithm C: Find(x,7) where T is a recursive cluster structure. If a pair (z, p) is stored
in T, p is returned. Otherwise, there are three cases: Let y = T.f(x) and take B, X,, and
py as in Description B.

(a) y ¢ B: failure is returned.

(b) y € B, X, = (}: p, is returned.

(c)y € B,X, # (: failure is returned.
If T.f is 1-1, case (b) or (c) will not occur.

C.l. If e =T.x return T.p.

C.2. Set y « T.f(z), p « Find(y,T.Y), and let (zo, po, q,td) = points-to(p’). We have
two cases:

C.2.1. 1d # T.1d: Return p.
C.2.2. id = T.d:

C.2.2.1. If T.f(xo) # T.f(z), return failure.
C.2.2.2. If x = xg, return pyg.
C.2.2.3. If # # zg, return Find(x @ o, points-to(q)).

In order to argue about space, we derive an insertion procedure.

Algorithm D: Insert(7,z,p) where T is a recursive cluster structure. If a pair (z,¢) is
stored in T', ¢ is returned. Otherwise, there are three cases: Let y = T.f(z) and take B, X,
and p, as in Description B.

(a) y € B: (x,p) is added in T" and done is returned.

(b) y € B, X, = (}: p, is returned.

(c)y € B, X, # 0: we store (z,p) in T and done is returned.
If T.f is 1-1, case (b) or (c) will not occur.

D.l. If T.z = z, return (T'.z,T.p).
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D.2. Let y < T.f(x) and p’ < Insert(T.Y,y,p).

D.3. If p’ = done, Return p'.

D.4. Let (x9,po,q,id) = points-to(p').

D.5. If id # T.ud, return p'.

D.6. If id =T.ud,

D.6.1. If z = z¢, return pg.

D.6.2. If T.f(x) =T.f(z0) and @ # xg, return Insert(z & xo, points-to(q)).
D.6.3. IfT.f(x)#T.f(xo),

D.6.3.1. Set @’ ¢ x, x) ¢ xg, and T" - T.

D.6.3.2. While T". f(2') # T". f(x(), set ' « T'.f(2'), xf < T'. f(x}), T < T'.Y.

D.6.3.3. Set y = T".f(a').

D.6.3.4. Create a new cluster structure 7°.X,, with 7°.X,.2 = 2’ and T".X,.p = p.

D.6.3.5. Create a new quadrouple T'".N, = (z{, p’, pos(T".X,), T".id).

D.6.3.6. In 7".Y, replace the pair (y,p’) by (y,pos(7’.N,)). Assuming that we have a
pointer to p’, we can replace p’ with pos(7".N,) directly.

D.6.3.7. Return done.

Note that, unless T.f is 1-1, an insertion will not always be made even if the key = was
not present. At lower recursive levels, this will be taken care of by the test on line D.6.3.
However, at the topmost recursive level, no such test is made. Instead, we add the following
requirenment:

On the topmost recursive level, the clustering function T.f is the identity function.

Then, Insert (and Find) always work as desired.

It should be clear from the description above that the time bound H(b,r) = O(1)+H (¥, ")+
H(b,r") holds for both Find and Insert. Regarding the space bounds, it follows from
the description of Insert that each insertion only generates O(1) new space: either we
successfully store a new key x, or we only add constant new space.

Lookup tables

We need some simple data structures as lookup tables. First, we note that H(b,0) = O(1)
since a Hamming ball of radius 0 only contains one key. Next, Lemma 6 gives

Corollary 11 T'(b) = O <l°g”).

log %

Finally, we show how to simulate traditional hash coding by a multiplication table.
Lemma 12 T'(clogn) = O(c).

11



Proof: We store the keys in a hash-coded path-compressed trie. We use logn bits for
branching, hence the height of the trie is ¢. At each node, the outgoing edges are stored in
a hash table. For this purpose, we simulate the classical two level hashing of [FKS84]. As
observed by [DHKP93], the only non-AC? instruction needed for implementing this scheme
is multiplication. We therefore only have to observe that we can perform a multiplication
of two (logn)-bit keys in constant time, using O(n) extra space, namely a precomputed
multiplication table for (log n)/2-bit keys. Note that this extra table is independent of the
set to be stored, so we can apply the lemma several times using the same O(n) extra space.
Since our final space bound (i.e. the bound in Theorem 24) is linear in n, we can ignore this
extra space. [ |

Clustering the input into Hamming balls

We first describe a clustering function that improves over Lemma 1. We simply replace the
selected bits by the parity of a small ( polylog w) number of bits. This makes it possible to
reduce the number of bits of the output by a further factor of polylog w. Since the parity of
polylog w bits is in AC®, the hash function can be implemented in AC®.

We first need a technical lemma.

Lemma 13 Suppose that x,x,, ...,z are 0-1 variables which take value 1 with probabilities
PLyP2s -y Pr. LThen Pr(EB’le z;=0) = %(1 + (1 = 2p1)(1 = 2pg) ... (1 —2pg)).
In particular Pr(Bl-, x; =0) = 3(1 + (1 — 2p)*) < max{l — pk/2,1/2} if the probabilities
are tdentical and k is odd.
Proof: Induction in k. If k = 1, Pr(z; = 0) = (1 —p;) = (1 + (1 — 2py)). Suppose the
lemma have been shown for k — 1. Consider Pr(@%_, z; =0). Pr(®f_, z; =0) = Pr(z; =
OA@Z) 20 =0)+Pr(zy =LA@ 2i=1) = (1 —pe)(5(1 + (1 = 2p1)(1 = 2p2) ... (1 =
2pr-1))) + el = (1 = 2p1)(1 = 2p2) ... (1 = 2per) = (1 + (1 = 2p1)(1 = 2p2) ... (1 = 2px)).

For 2pk < 1, (1 —2p)* < 1—2pk+ (5) (2p)* < 1—pk,so 3(1+(1—2p)¥) < 1—pk/2. Note
that & odd implies that (1 + (1 — 2p)*) is monotonely decreasing in p. Thus for 2pk > 1,
T+ (1=-2p)") <21+ (1—1/k)F) <1/2. ]
Lemma 14 Let [ be a random k x | (k odd) matriz of independently chosen bit-positions in
{1,2,...,w}. Define the function C : {0,1}* — {0,1} by C(x)[j] = ®F, 2[I[i,]]]. Then,
for any w-bit strings x,y with |z @ y| = r, Pr(C(z) = C(y)) < max(e "*/(w) e=l/4),
Proof: Observe that C'(z) = C(y) & C(2) 2 C(y) =0* & Vj=1,....: @, («[I[i,j]]®
y[1[7, j]]) = 0), Moreover, for any i, j, z,y, with |z & y| = r, Pr(z[I[1, j]] # y[I[,7]]) = r/w.
Hence, by Lemma 13,

k

Pr(ED([ITi, 5] & yl11i, j]]) = 0)'

=1
max(1 — kr/2w,1/2)!

nlax(e—lrlc/(?w)7 6—1/4)7

)—U
—
N
Q
N
S
S—
Il
Q
N
NS
S—
S—
Il

12



as desired. ]

Lemma 15 Let A C {0,1}° be a set of at most n elements, and let r < b. Let k = (logb)?
and let [ = 100blog n/(rlog?b). Let C be the random function defined in Lemma 14. Then,
with probability at least 1 — 1/n®, for any pair x,y in A with |v & y| =r, C(x) # C(y).

Proof: There are n? pairs z,y € A so the bound in Lemma 14 is sufficient to prove the
lemma. ]

We can use the function of lemma 15 as a clustering function. For this, in addition to
the Select instruction we need an instruction BlockParity(z, k) that views the word z as
divided in k-bit fields, computes the parity of each field, and concatenates the results. If we
restrict the parameter k to be less than polylog w, the instruction is in AC°. Note that we
need to select k x [ bits where k& = (log b)? and [ = 100blog n/(rlog” b). To do this using the
Select instruction, we must have r > 100blog n log w /w.

Corollary 16 Ifr > 100blog nlogw/w then

blogn

T(b):l-l—T( )-I—H(b,r).

rlog? b

Cluster Busters

In Lemma 2 and 3, we hashed the Hamming ball or Hamming ball subset using a single
hash function. In this section, we present an alternative technique, reducing the radius of
the Hamming ball in a number of iterations.

Lemma 17 For any a, there is an AC° circuit C' : {0,1}* — {0,1}81°8" such that for any
2,y € Hiogn/(alogw), |2 @ y| > logn/(a*logw) implies C(z) # C(y).

Proof: For i = 1,...,w, choose randomly I, C W, |B;| = 4alogw, and define C(z) =
Uiex L.

Consider z,y € Hyogn/(alogw) With |z] > |y|. Set d = |z @ y|. Then |z \ y| > d/2. Also
|IC(y)| < 4alogwlogn/(alogw) = 4logn, so

Pr(C(x) = C(y)) < Pr(Clz\ y) € C(y)) < 27/ 4elosw,

Note that the number of pairs in A is dominated by |1"1T10gn/(l10gw|2 < q?logn/alogw — p2/a

Hence the probability C'(x) = C(y) for some z,y € Hiogp/a10gw With |2 @ y| > logn/a®logw
is < n?2/*2-d/24alogw which is < 1 iff 2/a-logn < d/2 -4alogw iff d > log n/a?logw. Hence
there exists a circuit separating all the pairs. [ ]

The circuit in lemma 17 can be implemented by a single instruction ReduceHammingBall(a, n,
x) with parameters @ and n. Hence, we have

13



Corollary 18
H((b,logn/(alogw)) = O(1) + T'(8logn) + H(b,logn/(a*logw)) + O(1).
Lemma 19 H(w,logn/(logw)* = O(logloglog n — log log log w).
Proof: Combining Corrolary 18 and Lemma 12 gives
H((b,logn/(alogw)) = H (b, |logn/(a*logw)|) + O(1).
Applying reqursively ¢ times gives
H(b,logn/(log wlogw)) = H (b, |logn/(log* wlog w)|) + O(1).

Since H(w,0) = O(1), we are done when logn/(logw)*+! < 1 i.e. when loglogn <
(2¢ 4+ 1)loglog w. This holds when logloglogn < t + logloglogw i.e when logloglogn —
log log log w < t. ]

Clustering with range reduction

In order to use Lemma 15 effectively, we need the following Lemma, which is proven in this
subsection.

Lemma 20 There is a clustering function for the reduction
T(w)=0 (T('w/log3 w) + (log log m)8/9) :
The function requires O(n) additional space.

Lemma 21 Let A C {0,1}" be a set of at most w elements. There is a random AC®
clustering function f : {0,1}* — {0,1}*/1°€* which is 1-1 on A ith probability at least
1 —1/w?.

Proof: We start by proving two facts.

Fact 1: Assume that there is a AC® circuit C' : {0,1}V* — {0,1}V*/* u > 1, which,
for some parameter of a, is 1-1 on a set Y of y/w-bit keys. Then, there is a AC® circuit
C :{0,1}* — {0,1}*/* which, for the same parameter a, is 1-1 for any set of w-bit keys
formed by concatenating keys from Y.

Proof: Duplicate the circuit y/w times.

Fact 2: Let A C {0,1}V" be a set of at most w? keys. There is a random AC® function
C 0,1}V — {0,1}°Ww/log’ v) which is 1-1 on A ith probability at least 1 — 1/w?.

Proof: Let b = \/w. We just alter the proof of Lemma 15 slightly. We use b in-
stead of w (at proper places), n = w? r = 1, and d = 4. This gives C(a) : {0,1}* —

14



{0, 1}0Clogw/(r log?t)) — {0, 1}0(\/6/ log w) In order to use a fixed AC® instruction, the param-
eter a should represent a k x [ matrix inside a constant number of words, where k = (log b)?
and [ = O(blogw/(rlog®b)). Such a representation requires (at most) kllogw bits. With
our parameters, this number of bits is O(w), and the proof fof Fact 2 is completed.

Now, perceive each word in A as divided into y/w-bit pieces. This gives us a set ¥ of
wy/w keys. Hence, Fact 2 gives us a circuit C'(a) : {0, 1}V* — {0,1}°/®/log’w) which is 1-1
on Y. Since A can be constructed by concatenating keys in Y, we can apply Fact 1 with
u = O(log”® w), which gives us the desired function. ]

Lemma 22 T'(b) < 2H(b,+/blogn) + O(1).

Proof: If we apply Lemma 1 with r = \/blog n, it follows that we can pick a b-bit word
with r 1s such that for any z,y € X, if [t © y| > r, then x A a # y A a. Hence, if we use
x A a as a clustering function, the set of signatures is contained in H\/@ and each cluster

have Hamming radius /blog n. ]

Lemma 23 There is a clustering function performing the following reduction:

H(b,r) =0 (H (Vor,r) +T (10;11)) + 1\(}%) .

When applied on a set of size m the function requires O(m) extra space.

Proof: Let X be the set to be stored and let ¢ = \/b/T Perceive each word z as divided
into ¢-bit pieces. Let z(i) = [(i — 1)g + 1..1¢] denote the ith piece. Now define a clustering
function f{ : {0,1}* — {0,1}"/7 so that fj(z)[i] = 1 iff there is a 1 in z(:). Clearly all f}
is implementable by one AC? circuit with a logw input parameter g. When using f{ as a
clustering function, the signatures are (b/q)-bit keys containing at most r ls; they can be
stored with query time H(b/q,r).

Next, we address the problem of storing the clusters. Consider a cluster of size m and let
y be the signature corresponding to this cluster. Each bit in y corresponds to a ¢-bit field.
The cluster have one important property: For each bit which is 0 in y the corresponding field
in all keys in the cluster contains only 0s. The main idea is to shorten the keys by removing
these "empty” fields.

Case 1: m < w. Applying Lemma 21 gives query cost T'(w/ log® w).

Case 2: m > w. Associated with X (y),we store F(y) = ay - -- apy, where ; is a (log w)-
bit integer telling the position of the ith 1 in y. The maximum number of 1s in y is b/q; if
there are less than b/q 1s, then the last ;s are set to 0. F'(y) contains b/q (log w)-bit integers.
Hence, F(y) occupies o(m) space. (Furthermore, each «; can be generated in constant time,
and hence F(y) can be constructed in O(b/q) = o(m) time.) We can easily build an AC?
circuit C§ : {0,1}* — {0, 1}*/1°8% 50 that

C3(z, 01+ - awjiogw) = @{an) - 20w/ 1ogu)

15



Hence, the function
U, o1 onyg) = x(oa) - x{apqg)
can be computed by applying C3 1 + blogw/(qw) times < 1 + log w/q times.

Now given z1,22 € X(y), if 1 # 2, then %1, F(y)) # f%(x2, F(y)). Since each key
contains at most r 1s, the keys produced by f? are of length gr. They can be stored at a
cost of H(gr,r)+ O(1 4 logw/q).

In order to get an upper bound on the total query time, we can add the costs of the two

cases.

H(b,r) < H(b/q,r)+ H(qr,r)+ O(1 +logw/q) + T(w/log® w)
2H(Vbr,r) + T(w/log’ w) + O <1 + log w/\/b/T)

N

Proof: (of Lemma 20) Two cases.
Case 1: b < logn(loglogn)*°. Applying Lemma 12 with ¢ = b/ log n gives

T(b) < O ((loglogn)*°).

4/9 < b < n. Lemma 22 gives

T(b) < 2H(b,\/blogn) + O(1)
Apply Lemma 23 with r = \/blog n:

T(b) < 2H (6 log"*n, \/blog n) + T(w/ log® w) + O (1 + log b/ (b/ log n)"/4)

Case 2: logn(loglog n)

The fact that log n(log logn)*? < b implies that logn = O(b/log"? b) and log b/(b/ log n)*/4
< (loglog n)®/°. This, in turn, gives

T(b) 2H(b/log"?b,\/blog n) 4+ T(w/ log® w) + O(log log n)/°

<
< 2T(b/log"?b) + T'(w/log® w) + O(log log n)*/°

Now, we get an upper bound on the cost by just taking the maximum of the costs in the

two cases. This gives
T(b) < 2T(b/log"? b) 4+ T'(w/log® w) + O(log log n)®/°

The proof is completed by applying this inequality 18 times. Each time, we get O(n) additive
space. Hence, the total space overhead is O(n). ]
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Final upper bound

Theorem 24 There is an AC® RAM solution to the static dictionary problem with query
lime

o) (min (log w(log log log n — log log log w)/ log log w, 101;5) ’g‘ n))
~0 <min <log w, \flogn/loglog n>>
and space O(n).
Proof: Starting with n w-bit keys, we use Lemma 20:
T(w) = O (T(w/log’ w) + (loglog n)*?) (1)

We noe study the problem of storing keys of length b = w/log®w. We use Lemma 15
with d = 3 and r = logn/(logw)?. Since b < w/log®w, we have that r > blognlogw/w
and we can use a uniform instruction set. This gives us signatures of length b/log b, each
signature represents a Hamming ball of diameter logn/(log w)?.

T(b) =T (b/logb) + H(b,logn/(logb)?)
Applying Lemma 19 gives

T(b) =T(b/logb) + (logloglog n — log log log b). (2)

We now distinguish two cases. First, if log b(log log log n — log log log b)/ log log b < ‘/1olg01go§n7
we just apply Equation 2 recursively O(logb/loglogb) times. Since b < w and since the
additonal cost of O((loglogn)®?) in Equation 1 is neglible, the proof follows for this case.

In the second case logb(logloglogn — logloglogb)/loglogh > Flgo]gog—n. In this case,
log b = Q( polylog n) which implies that log log log n —logloglog b = O(1). Thus, Equation 2
gives

T(b) =T (n,b/logb)+ O(1) =T (n,b/ polylog n) + O(1)

1og%
= Tb)=T(n,k)+0 (loglogn)

Lemma 6 gives

log n log 2
T(b) = &
(6)=0 (log% + log logn

We now set log% = /lognloglogn. Again, the proof follows since b < w and since the
additonal csot of O8(loglogn)®?) in Equation 1 is neglible. ]
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4 Dynamization

The main idea to maintain a clustering structure is to reconstruct an appropriate part of it
a soon as there is a failing clustering function.

Theorem 25 On an AC® RAM with randomization, we can maintain a dynamic clustering
structure supporting insertion, deletion, and search. The space is O(n). The worst case
query time and the expected amortized insertion and deletion times are

|
@) (min (log w(log log log n — log log log w)/ log log w, ﬂ))
\ log log n

Proof: We only need to consider insertions. During deletion, we do not remove keys, we
just mark them as deleted. After ©(n) deletions, we reconstruct the entire data structure.
(A reconstruction is done incrementally, by inserting the present keys one by one.)

As long as the clustering function works as desired, our functions Find and Insert will
work smoothly. But, what happens when an insertion fails? We recall that the clustering
structure relies on the fact that each function f has the desired property: only keys within
a small hamming radius get the same signature. If, however, f fails in this aspect, keys
with large Hamming distance will be clustered together. This, in turn, will imply that at
the bottom of the recursion, when we expected to have a Hamming ball of radius 0, we will
end up having more than one key. When this occurs, we can conclude that some clustering
function on the way down the recursion has failed. There is no direct way to check which
function failed. Instead, we have the following facts:

e For all clustering functions, except the one used in Lemma 21, the probability of a
failure is less than 1/n®.

e The clustering function of Lemma 21 is assumed to be 1-1 on a small set of m < w
keys; the probability of a failure is O(1/w®). This property can easily be verified in
O(m?) time by examining all m keys and their signatures.

Whenever an insertion fails, we traverse the clustering structure bottom-up. If there is
any clustering function based on Lemma 21, we check if it is 1-1; if needed, we choose a
new function until it is 1-1. If this did not help, the failing clustering function is somewhere
else. Then, we rebuild the entire global clustering structure from scratch. In both cases, the
probability of failure is small enough to guarantee a low expected insertion cost.

Some care has to be taken when storing the clusters in Lemma 23, namely when we an
insertion causes a switch between Cases 1 and 2. Consider one such structure. During the
first w insertions, the clustering function of Lemma 21 guarantees a low expected insertion
cost. At the w+ 1st insertion, we change from Case 1 to Case 2 and the entire structure must
be reconstructed as the data structure is changed. Fortunately, this reconstruction occurs
only once so the amortized cost can be neglected.
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When the value of n has changed dramatically, after Q(n) updates, we throw away our
global data structure and construct a new one, the (expected) amortized cost of doing this
is also low. ]

Corollary 26 On an AC° RAM with randomization we can maintain a structure supporting
insertion, deletion, and predecessor queries. The space is O(n). The worst case query time
and the expected amortized insertion and deletion times are

O(min((logw)?, (log n)**/(log log n)'/4)).

Proof: (sketch) If we make range reduction a la van Emde Boas log d times, we can pack
d keys in a word and use a packed B-tree, cf. Lemma 6. The packed B-tree requires only
linear space. If each node in the van Emde Boas tree is stored in a cluistering structure with
search cost H the cost of searching in the van Emde Boas tree is H logd. So we get a total
search cost of Hlogd + logn/logd

Now, we just have to balance things. Choose d as (lognloglogn)'/* and we get a search
cost of (logn)®/*/(loglogn)'/*. If we set d = 1 and use the fact the H = O(log w) we get a
cost of O(log® w). |

Previous sub-log n solutions to the dynamic predecessor problem have used either multi-
plication or super-linear space (see [And95] for a discussion).

Grouping and sorting

In this section, we address the problem of sorting n words on an AC® RAM using O(n)
space and o(nlogn) time. Previous sub-nlogn solutions either used multiplication [FW93]
or super-linear space [AHNR95]. As a subroutine in our solution, we consider the problem of
grouping duplicates in a sequence of n words, i.e. producing a permutation of the sequence
where identical words are consecutive. Note that a sorting algorithm is also a grouping
algorithm, but that the converse does not necessarily hold. However, from [AHNR95], we
do have:

Lemma 27 On an AC® RAM, if we can identify duplicates among n keys in time D(n) and
space S(n), we can sort n keys in time O(D(n)loglogn) and space S(n).

The simplest way of grouping duplicates is to insert the keys one by one using a dynamic
dictionary. Thus Theorem 25 implies that on an AC® RAM, we can group duplicates in

time O(n min{log w, \/log n/loglogn}). However, below we present an alternative method,
grouping duplicates in time O(nloglogn) and linear space. As a consequence, we will get
linear space AC? sorting in expected time O(n(loglogn)?).

As pointed out in [AHNRO95], the results from [AH92| imply

Lemma 28 On an AC° RAM, we can sort n keys of length w/(log nloglogn) in time O(n)
and space O(n).
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Theorem 29 We can find and group duplicates in a set of size n in O(nloglogn) expected
time by a randomized AC® RAM algorithm using linear space.

Proof: Ifn > 2%, we just use the above mentioned dynamic dictionary based solution
working in time O(nlog w) = O(nloglogn). Thus, we may assume that n < 2V*

We wish to reduce our grouping problem into two simpler grouping problems. First we
apply Lemma 1 with a random K, mapping our keys into signatures of length 10(log n)w/r,
where r > 10(log n)(logw). Our first grouping problem is that of grouping the signatures.
Thereby the original keys get grouped into Hamming balls of radius r. To each such Hamming
ball, we apply Lemma 3, mapping the keys into keys of size 10r?(log w). Grouping these keys
finalize the grouping of the original keys. Trivially, the grouping problem from each Hamming
ball can be reduced to one grouping problem of n keys. Thus, the above construction
shows that the grouping problem of n w-bit keys can be reduced one grouping problem of n
(10(log n)w/r)-bit keys, and one grouping problem of n (4r? log w)-bit keys.

Setting r = \e’/'w(log n)/(2logw), we get two grouping problems for keys of the same
length. Note that » > 10(log n)(log w) since we have assumed n < 2V

The key length of our two grouping problems is ©(w?3(logn)?/?(logw)'/?). Since n <
2% (log n)?3(log nlog log n) = o(w'/?/(log w)'/?), so

O(w*?(log n)*?(log w)'/?) = O(w/(log nloglog n)).

Hence each can be solved in linear time by Lemma 28. That is, for n < 2V the duplicate
grouping problem of n w-bit keys, is solved in linear time and linear space. [ ]

Combining with Lemma 27, we get

Corollary 30 We can sort in linear space and expected time O(n(loglogn)?) on an AC°
RAM with randomization.

A monotone priority queue is a priority queue with non-decreasing minimum, as is the case
for applications within greedy algorithms. Modifying a reduction from [Tho96], we derive

Corollary 31 There is a monotone AC® priority queue supporting find-min in constant
time and insert and delete in expected amortized time O((loglogn)?).

On a Circuit RAM we can actually do slightly better. Universal hashing [CW79] has expected
query time O(log w/ log log w) on a Circuit RAM, as opposed to the O(log w) expected AC®
query time from Theorem 25. This improves the n > 2¥% case in the proof of Theorem 29

by a factor logloglogn. Hence on a Circuit RAM, we save a factor O(logloglogn) in the
bounds of Theorem 29 and Corollaries 30 and 31.
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5 Lower bounds

In this section, we present our lower bounds. In order to present our lower bounds more
smoothly, we introduce a new model of computation, the circuit computation tree. What
makes this model especially convenient is that it does not have a notion of a random access
memory - the static data structure is built into the tree.

A circuit computation tree 7 is a rooted tree, taking as input a word x of length w.
Each internal node v contains exactly B gates, B > w being a parameter called the breadth
of the tree. Each gate v is a A- or V-gate taking as input an arbitrary subset of the gates
in the parent node, the input variables z[i], and their negations —z[i]. A given subset of the
gates in v of size S are called selection gates. Here S < B is another parameter, we call S the
selection length of T. All internal nodes have exactly 25 children corresponding to each of
the possible instantiations of the selection gates. Thus any instantiation x of the input word
defines a unique path from the root to some leaf, called the leaf of x. Each leaf is labeled
either 0 or 1. The label on the leaf of z is the value 7T (x) of the computation by 7 on z.

Proposition 32 Let ¢ be a data structure of size s and P be a circuit RAM program P
with worst case running time t, returning 0 or 1 on each input x € {0,1}". There is a
circuit computation tree T of breadth w®™), depth O(t) and selection length logs so that
T(z) = P(z,¢) for all x € {0,1}>.

Proof: (sketch) Straightforward simulation, we simply “fold out” all possible computations
of the program. The branching is used to simulate conditional jumps and indirect addressing.
An interesting point is that the simulation holds even if the query program is allowed to use
any amount of space additional to the data structure. In that case, we simulate indirect
read in a constant number of steps, first checking (with an AC? circuit) if we read a memory
location where we already wrote something, and if not, then simulating reading in the data
structure. [ |

Proposition 32 shows that in order to show the deterministic version of the desired lower
bounds for the Circuit RAM, it is sufficient to construct a set which cannot be decided by
any circuit computation tree with certain parameters. In order to get the randomized lower
bound, we shall do something stronger. We shall construct a set consisting of pairs, such
that no circuit computation tree with certain parameters can separate more than a small
fraction of the pairs. By a simple averaging argument, this will give the desired randomized
lower bounds for the problem of storing the set consisting of first components of the pairs.
Our lower bound proof uses Hastad’s switching Lemma [Has87]. Rather than the original
version, we use the following slight variation, which appears as Lemma 1 in [Bea94]. This
version has the advantages of leaving a predetermined number of variables unset and yielding
a decision tree rather than a DNF formula. Recall that a restriction on m variables is a map
p:Al,....m} = {0,1,*}. If p(¢) = *, we say that the ¢’th variable is unset. We can apply
the restriction to a function f with domain {0,1}™. This yields a function f* on a smaller
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domain, namely the subdomain of {0,1}™ matching the restriction. Two restrictions are
said to be disjoint if they set some bit differently, implying that the restricted domains they
specify are disjoint. We call a function semi-k-simple if it is expressible as a DNF or a CNF
with term size k. A function is said to be k-simple if it is decidable by a decision tree of
depth k. Note that if f is a conjunction or disjunction of k-simple functions, then f is semi-
k-simple. The other direction does not hold but the switching lemma gives us something
almost as good:

Lemma 33 (Hastad’s Switching Lemma) Let f : {0,1}™ — {0,1} be semi-k-simple.
For s >0, p < 1/7, we have that with probability at least 1 — (7pk)®, for a random restriction
p leaving exactly pm variables unset, f* is s-simple.

We shall also need the following lemma.

Lemma 34 Let fi,...,fs : {0,1}™ — {0,1} be k-simple. Let p be a random restriction
which leaves r free variables. Then,

Pr[3i: ff is not constant] < rks/m

2

Proof: First, randomly fix all the w input bits, thereby fixing fixing all the f;. Since each
fi 1s k-simple, there is a set X; of the input bits of size < k, whose current instantiation
fixes f;. As a result, all f; are determined by the current instantiation of the input bits in
X = U; X; where | X| < sk.

Now, randomly unfix a set Y of r variables. If Y does not intersect X, the output is still
determined by the instantiation of the bits in X. Since Y is random the probability that Y
intersects X is bounded by rks/w. ]

In the following discussion we fix B > w > s > 10 and let K = log B.

Lemma 35 Let each of fi,..., [ : {0,1}* — {0,1} be expressed as an A-gate or an V-
gate taking a number of K-simple functions as input. Let p be a random restriction leaving
w/(120sK?*) input bits free. Then with probability > 1 — 1/K?, f{,..., f§ are constant and

f&415- -+ [ are K-simple.

Proof: First, we apply a random restriction p’ from Lemma 33 with s = & = K and
p = 1/(30K). This leaves w/(30K) input variables free. For any specific j, ff/ is K-simple with
probability at least 1 —1/B. Thus with probability at least 1 —1/B > 1 —1/2K?, all the f/’s
are K-simple. Now, apply Lemma 34 with m = w/(30K) and r = w/(120Sk*) to get a random
restriction on the remaining free variables. With probability at least 1 —rks/m = 1—1/4K?
the composition p of the two restrictions has f7,..., f§ constant. [ ]

At first sight, knowing that a random restriction simplifies a node in a computation tree
does not seem particularly helpful. In order to get the lower bounds we want, we have to
consider computation trees deciding quite a small set, and a random restriction is likely to
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wipe out such a set completely. We now show how we can use the probabilistic method to
replace the random restriction by one from a small, fixed, family, and thereby circumvent
this problem.

We shall use a Chernoff bound argument. The following version of the Chernoff bound
can be found in [Pap94].

Lemma 36 Let Xy, X,,...,X,, be independent Bernoulli trials with Pr[X; = 1] = p. Let
X =Y X; and let u = E[X] = mp. Then Pr(X > 2u) < e #/3.

Lemma 37 There is a fired family of pairwise disjoint restrictions py,. .., pgs on w variables
leaving free w/(120SK*) bits such that for any choice of functions fi,...,fB, each being
expressed as an N\-gate or an V-gate with at most 2B inputs, each input being some K-simple
function, there is at least a fraction 1 — 2/K?* of the possible values of i € {1,...,B*} such
that f{*,..., f§ are constant and f§' , ..., f§ are K-simple.

Proof: The restrictions py,...,pp+ will be chosen randomly and independently, and then
we will show that they have the desired properties with non-zero probability.

By Lemma 35, for a fixed choice of the f;’s each p; does not work with probability at
most 1/K?. Assume without loss of generality (a smaller probability is clearly in our favor)
that the probability is exactly 1/k?. The expected number of p; that do not works is thus
B*/K?% By Lemma 36 the probability that more than a 2B*/K? = 2u do not work is less
than e#/3 = ¢~B'/(3log’ B), However, there are at most wB < 2B1ogB ({ifferent choices for
each input to each f (each choice corresponds to a decision tree of depth K = log B), so there
are at most 2B1osB(ZB)B — 92B’10gB _ 0(€_B4/(3K2)) different possible families of f;’s. Hence,
with probability 1 — o(1), p1,...,pg+ have the desired property, that for every family there
is a sufficient number of the p;’s that work.

Next, note that for two random restrictions leaving less than a fraction 1/120 of the
variables free, at least a fraction 118/120 of the variables are fixed on both of them. On each
such variable, they disagree with probability 1/2. Thus, two restrictions are not disjoint with

probability at most 2~ (118/120)w

. Therefore, all the restrictions fail to be pairwise disjoint with
probability at most (B*)22-(118/120)v Lyt since we can assume w > 120s(log B)? (otherwise
the statement of the lemma is vacuous), the latter value is negligible. We conclude than the
random family of restrictions has the right properties with positive probability, and that a

good family of restrictions therefore exists. ]
We say that a tree T separates (z,y) € {0,1}* x {0,1}"if z and y do not have the same leaf
in T.

Theorem 38 For values w,B,d,s with B > w > s > 100, w > (120sk*)?, and d < K/2,
there is a set P(w,B,d,s) C {0,1}* x {0,1}* of size n = B with the following property. No
circuit computation tree T of breadth B and degree 25 separates more than a fraction 2d/K?
of the pairs in P(w,B,d,s).
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Proof: The set P(w,B,d,s) is defined recursively in d:
o P(w,B,0,s) = {(0",1")}.

e P(w,B,d,s) for d > 0 is defined as follows. Pick the sequence of B* restrictions as
in Lemma 37. For each restriction p;, there are w/(120sk?) unset variables. Choose
fixings for these variables by going through all the elements of P(w/(120sk*),B,d—1,s)
(which by induction is already defined). This yields a set P;. Let P(w,B,d,S) be the
union of all the P’s.

We now show, by induction in d, that P(w,B,d,s) has the right property. To make
the induction roll, we show the statement for a slightly larger class of objects than circuit
computation trees, namely augmented circuit computation trees. An augmented circuit
computation tree of breadth B, height d, and degree 25 is defined as a circuit computation
tree, except that each gate in the root may get inputs from at most B precomputed K-simple
values (K = log B) in addition to input variables and their negations.

For d = 0, the theorem clearly holds. A circuit computation tree of depth 0 (a leaf)
separate no pairs.

Now assume d > 0, and assume the theorem holds for smaller d. Let 7 be a circuit
computation tree of depth d. By Lemma 37, at least a 1 —2/K? fraction of the p; restrictions
make the selection gates in the root constant and all other gates in the root K-simple. Take
one of those restrictions, p;. Apply it to 7. The selection gates of the root now defines a
constant vector, say ¢. Follow the c-branch out of the root and consider the subtree found
there. It is an augmented circuit computation tree of breadth B, depth d — 1, and selection
length s, so it separates at most a 2(d — 1)/K? fraction of the pairs of P; = p;(P(w,B,d,s)).
But if the restricted subtree does not separate the restriction of a particular pair, the original
subtree does not separate the original pair. Thus, for each of the sets P; for which p; has the
desired property, 7 separates at most a (d — 1)/K?* fraction of P;. Thus, the total fraction
of pairs in P(w,B,d,s) separated by 7 is at most 2/K* 4+ 2(d — 1)/K?* = 2d/K*. [ ]

Theorem 38 and Proposition 32 now gives us all the lower bounds we want. For instance, to
show a lower bound on deterministic worst case time, we consider storing the set Py of first
components of P = P(w, B, d,s) for appropriately chosen values of the parameters. If a tree
does not separate the first and second components, it cannot decide P;, since the first and
second components should give different outputs. If we want to show a lower bound on the
average query time, we again consider storing the set P;. Assume that the average query
time (over P;) is ¢t and chop off the computation after 2¢ steps. At least half the inputs in
P; must have produced an output by then. But this means that the tree has separated the
corresponding pairs, if it is correct. This gives a circuit computation tree separating half the
pairs in P, a contradiction. If we want to show a lower bound on the query time of Monte
Carlo schemes, we again consider storing the set P; itself. In a solution, freeze the random
choices made, so that we get a deterministic solution, giving the correct answer on 2/3 of
the pairs of P. Such a solution must separate at least 1/3 of the pairs of P, a contradiction.
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To get the lower bounds in the Introduction, we only have to set the parameters right.
To get Theorem B, we fix some ¢ > 0,¢ > 1 and let n = w*/*, B = w®, d = 1/2¢, and
s = w. The set P, of first components of P(w,B,d,s) has size n = w*/¢, and Theorem 38
and Proposition 32 now gives Theorem B.

To get the lower bound parts of Theorem A and C, let B = w®, s = (logw)®, and
d= 8% _ The set P of first components of P(w,B,d,s) has size n = w'oew/loglosw and

4cloglogw
Theorem 38 and Proposition 32 now gives us the lower bound parts of Theorem A and C.
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