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Abstract

The p-dispersion-sum problem is the problem of locating p facilities at some of n prede-
fined locations, such that the distance sum between the p facilities is maximized. The prob-
lem has applications in telecommunication (where it is desirable to disperse the transceivers
in order to minimize interference problems), and in location of shops and service-stations
(where the mutual competition should be minimized).

Simple upper bounds for the problem are presented, and it is shown how these bounds
can be tightened through a reformulation scheme which runs in O(n?) time. A branch-
and-bound algorithm is then derived, which at each branching node is able to derive the
upper bounds in O(n) time. Computational experiments show that the algorithm may
solve geometric problems of size up to n = 80, and weighted geometric problems of size
n = 200.

The related p-dispersion problem is the problem of locating p facilities such that the
minimum distance between two facilities is as large as possible. Formulations and simple
upper bounds are presented, and it is discussed whether a similar framework as for the
p-dispersion sum problem can be used to tighten the upper bounds. A solution algorithm
based on transformation of the p-dispersion problem to the p-dispersion-sum problem is
finally presented, and its performance is evaluated through several computational experi-
ments.

1 Introduction

We consider the problem of establishing p facilities at some of n predefined locations. The
distance between two facilities ¢ and j is given by a square matrix d;;, 4,7 = 1,...,n. In
the p-dispersion-sum problem the objective is to maximize the distance sum between the p
established facilities. Since the number of selected facilities is constant maximizing the distance
sum is equivalent to maximizing the average distance between facilities. A different variant
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of the problem called the p-dispersion problem appears when the objective is to maximize the
minimum distance between two established facilities.

Both variants of the problem have several applications in telecommunication, and in lo-
cating branches of a large chain. In telecommunication one may e.g. wish to disperse radio
transceivers to service cellular phones in order to minimize interference problems. In the case of
locating branches of a chain, one wishes to minimize mutual competition between similar shops
or service-stations. Moreover, the problems have several applications in military defence, since
it is common practice to scatter ones installations in order to make it more difficult to the enemy
to disarm them. The p-dispersion-sum problem is thus also known as the p-defence-sum prob-
lem. In graph theory, the heaviest subgraph problem considers a weighted graph (V) E,d). The
problems is to select a node subset K C V of cardinality | K| = p such that the weight of the sub-
graph induced by K is maximized. This problem is obviously equivalent to the p-dispersion-sum
problem.

Both of the problems are A/P-hard which easily can be proved by reduction from the clique
problem [4, 3]. Even if the distance matrix satisfies the triangle inequality, the problems remain
NP-hard [4, 3]. Ravi, Rosenkrantz and Tayi [9] showed that the p-dispersion problem cannot
be approximated by a fixed ratio p unless NP = P. If the triangle inequality is satisfied, an
approximation ratio of p = 2 can be obtained, and (assuming NP # P) this is also a lower
bound [9]. For the p-dispersion-sum problem it is open whether an approximation algorithm
with fixed ratio p exists, but if the triangle inequality is satisfied, an approximation algorithm
with ratio p = 4 has been presented by [9]. It is unknown whether this is a lower bound.

Although no approximation algorithm with fixed ratio-bound p have been found for the p-
dispersion-sum problem, Kortsarz and Peleg [7] gave an approximation algorithm with variable
approximation ratio of O(n%3%%) — which e.g. is p,—10 = 2.446 and p,—190 = 5.984. A different
approach is to consider the case where p = c¢n for a constant ¢ < 1. In this case, Srivastav and
Wolf [10] presented an approximation algorithm with ratio-bound p.—1/o = 2.073, pe=1/3 = 2.982
and p—1/4 = 4.189. Ravi, Rosenkrantz, Tayi [9] considered other special cases, e.g. where the
facilities are located in one or two dimensions of the plane and euclidean distances are used for
dij-

In contrast to the large number of theoretical results for the two problems, not very much
experimental work has been done: An exact algorithm for the p-dispersion problem based on
branch-and-bound was presented by Erkut [3], while Kincaid [6] presented metaheuristics based
on simulated annealing and tabu-search for the solution of the p-dispersion-sum and p-dispersion
problem.

The p-dispersion-sum problem can be seen as a generalization of the dense subgraph problem.
In this problem one considers a graph (V, E) and the objective is to select a node subset K C V'
of cardinality |K| = p such that the subgraph of G induced by K contains as many edges as
possible. This problem can be modelled as a p-dispersion-sum problem by settting d;; = 1 iff
the edge (i,7) € E.

In the more general quadratic knapsack problem (QKP) each facility has an associated weight
w; and the problem is to maximize the overall distance sum between established facilities subject
to an upper limit ¢ on the applied weights. Caprara, Pisinger, Toth [2] prsented an exact



algorithm for this problem based on branch-and-bound where tight bounds are found through
a reformulation. The present paper relies in a large extent on the techniques developed for the
QKP. In the present paper, we are however able to derive a reformulation scheme which runs in
polynomial time O(n?®) as opposed to the subgradient optimization algorithm presented in [2].
Also, the time bounds for deriving upper bounds are tighter for the p-dispersion-sum problem
than for the QKP.

In the sequel we consider the most general case of p-dispersion problems, where the distances
d;; do not need to satisfy the triangle inequality and in particular they may take on positive
as well as negative values. Hence any kind of push and pull constraints between the individual
facilities may be modelled as described in Krarup et. al. [8]. The organization of the paper is
as follows: We start by considering the p-dispersion-sum problem in Section 2. Simple upper
bounds are presented, and it is shown how these bounds may be tightened through a reformula-
tion of the problem. The main branch-and-bound algorithm is presented in 2.1, and it is shown
how upper bounds can be derived in O(n) time inside this algorithm. Section 2.2 concludes the
treatment of the p-dispersion-sum problem by showing some computational results. Section 3
considers the p-dispersion problem. The bounds presented for the p-dispersion-sum problem are
generalized to the p-dispersion problem, and it is discussed whether a reformulation algorithm
may be applied for this problem. Finally, an exact algorithm is presented based on a transfor-
mation of the problem to a number of p-dispersion-sum problems. Some computational results
with this algorithm are presented in Section 3.1. The paper is concluded by summing up some
of the obtained results in Section 4.

2 The p-dispersion-sum problem

Given N = {1,2,...,n} locations, the p-dispersion-sum problem asks to establish p, (1 < p < n)
of these facilities such that the total distance sum is maximized. The distance between facility
v and j is given by an integer d;;, where we assume that d; = 0. If we use the boolean variable
x; to indicate whether a facility is opended, we may formulate the p-dispersion-sum problem
(PDSP) as the following integer optimization problem:

maximize Z Z dij:vixj

i€N jEN
subject to Y x; =p (1)
JEN

z; €{0,1}, jeN

Without loss of generality, we may assume that all distances d;; > 0, as otherwise a large
constant M may be added to all values of d;;, 7 # j. This transformation preserves the optimal
solution, although the solution value gets increased by Mp(p — 1).

An upper bound to PDSP can be found in O(n?) time by splitting the objective function



i 7 1 2 3 4 5 6 7 2012 3 4 5 6007
1 0o 3 v 4 10 5 7 1 0o 3 5 3 13 5 11
2 3 0 9 5 5 10 6 2 3 0 12 3 3 10 5
3 T 9 0 1 3 2 4 3 9 6 0 1 2 2 4
4 4 5 1 0 1 9 1 4 5 7 1 0 1 5 1
5110 5 3 1 0 3 2 ) T 7 4 1 0 3 2
6 5 10 2 9 3 0 3 6 5 10 2 13 3 0 3
7 7T 6 4 1 2 3 0 T3 v 4 1 2 3 0

Figure 1: Left: An instance with n = 7 facilities and p = 3. We find that d} = 17, di, = 19,

L =16, dy = 14, di = 15, df = 19 and d}, = 13. Hence the final upper bound is u; = 55.
Right: A reformulation of the instance. Now we find that d{ = 16, d) = 17, d§ = 17, df = 16,
d? =16, dg = 15 and dj = 16. Hence the final upper bound is us = 50. The optimal solution is
T9 = x4 = x¢ = 1 with objective value 48.

into two parts. As the objective function can be written

maximize Y (Z dijxi> T (2)

JEN \ieN

we first derive an upper bound on the term inside the paranthesis for each value of j. Since the
term ;¢ v dijz; only will contribute to the sum in (2) when z; = 1 we get the following bound:

d;-=max{djj+ S diyls Y yl=p-1; yze{o,l},ieN\{j}} (3)

ieN\{7} i€EN\{j}

Having derived the values d;- for each j € N, an upper bound on (1) is then derived as

ulzmaX{Zd;-a:j:ij:p; ij{O,l},jEN} (4)

JEN JEN

The problems (3) and (4) basically ask to choose the p — 1 or p largest values among a set
of values di,...,d,. These problems can obviously be solved in linear time through a median
search algorithm. To derive the bound u;, we solve n + 1 subproblems each demanding O(n)
time, getting an overall time bound of O(n?). Since the input size is O(n?) we derive u; in linear
time. An example of deriving the bound is found in Figure 1.

A tighter upper bound can however be obtained by noting that if facility < and j are estab-
lished, then we get the contribution d;; + d;; in the objective function. As long as d;; + dj; are
unchanged, we may divide the “distances” between d;; and d;; as we will. Hence let (A) be an
n x n matrix satisfying that A;; +\;; = 0 for all values of 4, j € N. Problem (1) is now equivalent



with
maximize Y Y (dij + \ij)zi;
i€N jEN
subject to Y z; =p (5)
jeN
Zj € {0, 1}, .7 eEN

Using the same bounding technique as in (4) we first derive

d;-'=max{djj+ S i+ Nyl Y yi=p-1 yﬁ'e{o,l},ieN\{j}} (6)

ieN\{s} iEN\{j}

for each 7 € N, which leads to the upper bound

u(A) = max{z djz;: Y x;=p; z;€{0,1},j € N} (7)

jeN jEN

We wish to choose the matrix A = {\;;} such that the tightest possible bound wu;(A) is derived
for (5), thus we have the dual problem

minimize  u;(A)

(8)

subject to )\z’j + )\ji =0 4,5€N.

The optimal choice of A can be found through linear programming. A suboptimal but consid-
erably faster choice of A can however be derived through the following reformulation algorithm.
We consider a sequence A', A%, ..., A" of matrices which in each iteration attempts to tighten
the bound u; (A¥). Initially we set \}; = 0 in A'. Each subsequent value of A**! is derived from

A* as follows. Assume that 3 are the solution vectors to (6) for each value of j € N, and that
z; is the solution vector to (7) for the present value of A*. Then we set

Pij + Pji

e
5% i,j € 9)

M= N+ (] — yjy)
The motivation for this recursion is, that if y/z; = 1 and yiz; = 0 then the value of (d;; + A¥)

contributed to the bound uy(A*) while (d;; + A%;) did not contribute to the bound. In order to
decrease the bound, we thus attempt to decrease )\ffl and increase )\ff 1'in the next iteration.
By having k in the divisior, we achieve smaller adjustments as k increases.
The bound u, is obtained by choosing the best value of u;(A) thus
uy = min ui(A) (10)
k=1,...,n

Since each value of u; (A¥) can be derived in O(n?) time and each new value of A* can be derived
from A*!in O(n?) in (9), the bound us is derived in O(n?) time. As the input size is m = n?
this time bound can also be written O(m+/m).



Proposition 1 The bound us is tighter than the bound uy given by (4).

Proof 1 Since A' has \;jj = 0, we immediately observe that us < ui(A') = ui. The ezample in
Figure 1 shows that situations occur where us < u7.

In the remaining algorithm, we choose the matrix A for which the smallest value of u, was
obtained, and consider (d;; + A;;) as being the new distances in the reformulated problem.

2.1 The main branch-and-bound algorithms

Our branch-and-bound algorithm is based on the upper bounding procedure described in the
previous section. At the root node of the branching tree, we apply the reformulation algorithm
(9) with an embedded heuristic procedure so as to define tight upper and lower bounds, as well
as a convenient problem reformulation. The reformulation algorithm is followed by a reduction
procedure in which we try to fix some variables at their optimal value.

The nodes of the branching tree other than the root are processed as fast as possible, thus
no heuristic, reduction, or updating of the A matrix are performed. We simply derive the us
bound (associated with the best A matrix found at the root node), in linear time, possibly
update the incumbent solution and then branch on the first free variable z;. The detailes of the
branch-and-bound algorithm are outlined in the following sections.

Heuristics

In order to derive a good initial solution, we implemented the heuristic algorithm for QKP
devised by Billionnet and Calmels [1], and Caprara, Pisinger, Toth [2]. This algorithm is based
on the greedy principle, where first an initial solution is obtained by setting z; = 1 for all j € N,
and then iteratively choosing the varible ¢ which can be changed from z; = 1 to x; = 0 with
minimal loss in the objective function. This sequence is repeated until 3°;cy x; = p.

The second part of the algorithm is an ordinary 2-opt algorithm which repeatedly selects
two variables with z; = 1 and x; = 0 such that if their values are exchanged, the largest increase
in the objective function is achieved.

We apply the heuristic in its full form at the first step of our algorithm. Additionally, at each
step of the reformulation algorithm (9) we apply the 2-opt algorithm for the present solution
vector = to (7). As will be shown in the computational experiments, this approach gives very
good initial solutions.

Reduction

In order to reduce the size of an instance, we apply a simple reduction algorithm immediately
after the reformulation algorithm: Assume that we have an incumbent solution x with objective
value z. Let u5=° be an upper bound on (1) with the additional constraint that z; = 0. If

u%=% < z we may conclude that ; = 1 in every improved solution, and thus fix z; to 1 during



the remaining algorithm. In a similar way we let u3=" be an upper bound on (1) with additional
constraint that z; = 1. If u5~' < z we may fix z; to 0.

The time complexity of the reduction algorithm is O(n?) since for each variable z; we derive
the bound uy in O(n?) time. Notice that we use the same value of A for all reductions even
though a better reformulation may exist when imposing an additional constraint on z;. Having
fixed a variable x; to 0, we remove the corresponding row 7 and column ¢ from the distance
matrix and decrease n. This also happens if the variable x; is fixed to 1, but in this case we
also decrease p and set dj; := d;; + d;; + dj; for each j # 4. In addition, a constant term of d;:
should be added to the objective function.

Branching Scheme

The branching scheme is based on a simple depth-first approach, where we at each node derive an
upper bound for the free variables based on the u, bound (10). Since it is very time consuming
to adjust the multipliers A at every node, we chose to use the multipliers derived at the root
node throughout the whole search tree. This obviously means that we do not obtain the tightest
possible bounds, but on the other hand we can derive the bounds in O(n) as will be shown in
the next section.

The order of the branching variables is fixed in advance. For each variable ¢ we derive the
value

jENVE} jENVE}

The values D; are a kind of estimate on the expected contribution of facility 7 to the objective
value, and thus we order the variables such that those variables having the largest value of D;
are considered first. The values D; are similar to the dj values given by (6) but it turned out
that the D; values are more appropriate as a guideline for the branching process. As seen from
Figure 1 (right) the reformulations attempts to smooth out the values of dj and thus leave no
information for choosing the branching order.

The branch-and-bound algorithm is a recursive algorithm which in each step fixes the first
free variable x; to 1 and then 0. Having fixed the variable to x; = 1 we decrease p, add the term
d;i to the objective value, set d;; := dj; + dij + dj; for j =i+ 1,...,n, and finally remove the
row ¢ and column ¢ from the problem. If the variable is fixed to z; = 0 we only need to remove
the row and column 7 from the problem.

Fast upper bounds

The inner loop of the branch-and-bound algorithm can be performed in O(n) time, while a direct
evaluation of the bound u, according to (6) and (7) demands O(n?). By using the information
from one branching node to the next, we may however decrease the time for deriving bounds to
O(n) as follows:
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Figure 2: Left: The table from Fig. 1 (reformulated problem) with each column ordered accord-
ing to nonincreasing distances. The bold numbers indicate the (p — 1)’th value in each column,
and the buttom line shows the current values of d;. Right: Having set z; = 0 the first column
disappears as well as several entries in the other rows. This affects the position of the (p —1)’th
value in each column as well as all values of d.

At the root node, we sort each column of the distance matrix {d;;} according to nonincreasing
values (see Fig. 2), and use a double-linked list to store the values. Additional information is
saved, so that one can find from an entry in the original distance matrix to the corresponding
entry in the sorted distance matrix. A pointer to the (p — 1)’th element in each column is
maintained together with the current sum of the first p elements.

If we consider a single column j of the sorted distance matrix during the branch-and-bound
algorithm, then two changes can happen to the list. If a varable z; is fixed to 0, then the
corresponding distance d;; in the sorted matrix will be removed from the column (which can be
done in constant time since we have double-linked lists), and we may need to move our pointer
to the (p—1)’th element one step forward. If the variable z; on the other hand is fixed to 1, then
the distance d;; is removed from the column and we decrease (p — 1) by one, which may imply
that the pointer to the (p — 1)’th element is moved one step backward. Knowing the old value
of dj it is easy to derive the new value by only adding or subtracting the performed changes.
Since both of the operations can be done in constant time, we can determine dj for all j € N in
O(n) time. The final bound us is thus also derived in O(n) time.

2.2 Computational Experiments

To evaluate the practical performance of the algorithm, we ran a number of computational
experiments on instances with specific properties. For this purpose, we considered the following
classes of randomly generated instances:

GEO The geometrical problems reflects a typical location problem in the euclideam space, as
presented in Erkut [3]. The n facilities are randomly located in a 100 x 100 rectangle, and
d;; is the euclidean distance between facilities 7 and j.

WGEO The weighted geometrical problems are constructed to illustrate the case where the facilities
have different weights (e.g. the radio transmitters located at some positions have different
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Figure 3: An example of the geometrical problem, where the n possible facilities (in this case:
radio transmitters) are randomly placed in a rectangle of size 100 x 100, and euclidean distances
are used for d;;.

effect). As previously, the n facilities are randomly located in a 100 x 100 rectangle, and
each facility is assigned a weight w; in the interval [5...10]. The distance d;; is then found
as w;w; times the euclidean distance between facility 7 and j.

EXP Instances with ezponential distribution of the distances were presented in Kincaid [6] (class
2). These instances should investigate how the algorithms perform when the triangle
inequality was not satisfied. Each d;; with ¢ < j is randomly drawn from an exponential
distribution with mean value 50. We set d;; = d;; to ensure symmetry.

AEXP An assymetric exponential distribution is also considered in Kincaid [6] (class 3). These
instances should reflect the case when neither triangle inequality or symmetry is satisfied.

Each d;; with ¢ # j is randomly drawn from an exponential distribution with mean value
50.

RAN Instances with random distances are generated with d;; randomly distributed in [1...100].

DSUB Finally dense subgraph instances reflect the unweighted case. Hence d;; is set to 100 or 0
with 50% probability each.

In all the instances, we set d; = 0 for « = 1,...,n. The number of facilities p is in each
instance randomly chosen in the interval [2...n —2]. The following results are average values of
10 instances, and solution times are reported for a Digital workstation 500au with a 500 MHz
21164 CPU (SPECint95 value of 15.7).

First, Table 1 presents the quality of the upper bound u; given by (4). The deviation in
percent is derived as 100(u; — 2*)/2z*, where z* is the optimal solution value. A dash in the
table indicates that the optimal solution value z* was not found within the time limit, and thus



n GEO WGEO EXP AEXP RAN DSUB
10 | 13.06 11.72  19.47 41.96 11.51 15.15
20 | 15.29 10.50 23.91 35.60 17.83 23.51
30 | 16.10 11.09 2531 34.48 17.77 22.52
40 | 15.41 7.03 23.56 29.41 11.23 13.43
50 | 14.75 10.10 24.20 23.88 26.54 34.68
60 | 28.85 8.68 32.43 36.84 18.77
70 | 18.32 9.90 —
80 | 12.03 9.30 —
90 — 9.48 — — — —
100 — 17.45 —
150 — 8.01 —
200 — 9.14 — — — —

Table 1: Relative deviation of initial upper bound u; in pct. Average of 10 instances.

n GEO WGEO EXP AEXP RAN DSUB
10 7.66 6.76 7.90 7.57 7.68 8.30
20 9.04 4.03 11.11 11.60 11.94 16.37
30 9.15 3.25 14.84 13.40 12.88 16.58
40 8.59 1.47 1497 13.45 8.64 11.24
50 9.06 3.39 16.17 9.77 20.88 27.86
60 | 19.68 2.68 2232 15.69 15.52
70 | 10.79 3.20 —
80 6.93 2.76 — — — —
90 — 2.92

100 — 7.10 — — — —

150 — 2.38

200 — 2.78

Table 2: Relative deviation of upper bound us in pct. Average of 10 instances.

no relative deviation can be given. It is seen that the upper bound is not very tight since the
deviation is about 10-20% for the two geometrical problems and becomes even worse for the

other problems.

The tighter upper bound us is considered in Table 2. For the geometrical problems, the
deviation drops to about half the value, and becomes as low as 2-7% for the weighted geometrical
problems. There is also a reasonable improvement for the other types of instances, in particular
for the asymetric exponential problems.

n GEO WGEO EXP AEXP RAN DSUB
10 0.0 0.2 2.0 1.2 0.5 0.0
20 0.0 0.0 0.8 0.8 0.4 0.7
30 0.0 0.0 0.8 0.3 0.4 0.4
40 0.0 0.0 0.6 0.3 0.2 0.3
50 0.0 0.0 0.4 0.5 0.3 0.2
60 0.0 0.0 0.4 0.9 0.3 —
70 0.0 0.0 — —
80 0.0 0.0 — — — —
90 — 0.0 — —
100 — 0.0 — —
150 — 0.0 — —
200 — 0.0 — — — —

Table 3: Relative deviation of initial heuristic solution in pct. Average of 10 instances.
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Table 4: Number of variables fixed at their

n GEO WGEO EXP AEXP RAN DSUB

10 3 5 5 5 5 8

20 2 8 1 2 1 5

30 3 9 2 3 2 4

40 4 25 5 0 0 2

50 0 6 0 2 13 20

60 0 6 9 6 2 —

70 0 S —

80 0 20 - @ 9— @ — —

9 | — 3 - - = =

100 | — 3 - - = =

150 | — - - =

200 | — 8 - = = =

optimal values. Average of 10 instances.

n GEO WGEO EXP AEXP RAN DSUB
10| 000 000 000  0.00 0.00 _ 0.00
20 | 000 000 000 0.0 0.00  0.00
30 | 002 001 002 003 0.04  0.04
40 | 011 002 030 083 155  4.42
50 | 187 007 815  L.72 36.90  80.32
60 | 873 0.1 259.92 184.40 13010.40 —
70 | 117.84  0.20 — — - =
80 | 485.87  0.43 — — S —
90 — 087 — — — —
100 — 110 — — — —
150 — 1093 — — — —
200 — 70552 — — — —

Table 5: Solution times in seconds as average of 10 instances.

Table 3 gives the absolute deviation of the heuristic solution performed at the root node
before the reformulation algorithm was run. It is seen, that the heuristic is able to find very
good initial solutions. Even better heuristic solutions were found by the improvement algorithm
performed as part of the reformulation scheme (i.e. the solution of (7) followed by a 2-opt
algorithm), as the optimal solution was found in all the instances considered!

Table 4 gives the number of variables fixed at their optimal value by the reduction algorithm.
It is seen, that on average only a few variables can be fixed, which may be explained by the
relatively large gap between the bound us and the optimal solution value.

n GEO WGEO EXP AEXP RAN DSUB
10 12 7 8 7 9 6
20 140 18 81 227 328 425
30 1654 45 2082 2660 5731 7342
40 11911 26 42842 141149 276825 942041
50 220792 858 1106713 218220 5562368 15368039
60 816402 553 28491542 19646836 1732630354 —
70 9667008 1233 — — — —
80 | 28885593 7328 — — — —
90 — 16558 — — — —
100 — 13660 — — — —
150 — 123241 — — — —
200 — 7329829 — — — —

Table 6: Number of branch-and-bound nodes.

11

Average of 10 instances.



Finally the solution times for solving the problems to optimality are given in Table 5. The
geometric problems tend to be easier to solve, since we solve euclidean geometric problems up to
n = 80 and weighted geometric problems up to n = 200. The remaining problems are somehow
more difficult to solve, but still instances up to n = 50 are easily solved. For comparison it should
be mentioned that Kincaid [6], using metaheuristics, obtained heuristic solution for instances
with n = 25 and n = 33 for the classes EXP and AEXP.

The corresponding number of branching nodes are listed in Table 6. For solving the large
instances, several millions of branching nodes are investigated, which shows the importance of
deriving tight bounds in O(n) time.

3 The p-dispersion problem

The p-dispersion-sum problem wishes to maximize the average distance between any pair of
facilities. There are however situations where the average measure is not appropriate. For
instance, a shop owner would not be happy to have a competing shop located next door, although
this would lead to the overall best distribution of the p shops. In this case it may be appropriate
to consider the p-dispersion problem (PDP) where the objective is to maximize the minimum
distance between any two established facilities.

To be more formal, assume that N = {1,2,...,n} facilities are given and p, (1 < p < n)
of these should be opened. The distance between facility ¢« and j is given by an integer d;,
where we in this case assume that d; = oo. Without loss of generality, we may assume that all
distances d;; > 0, as otherwise a large constant M may be added to all values of d;;. This will
affect the optimal solution value by M but not the optimal solution vector.

If we use the boolean variable x; to indicate when a facility is opended the p-dispersion
problem may be formulated as follows:

maximize 7

subject to TX;T S dij Z,] eN

J;Vl‘j =p (12)

z; € {0,1}, jeN

r>0
The first constraint in (12) has the effect that if z;2; = 1 then d;; > r. If on the other hand
z;x; = 0 the constraint says d;; > 0 which is satisfied by assumption.

An upper bound for the PDP can be found by using the same techniques as for the PDSP.
For each j € N derive

r'-:max{r:ryfgdij,iEN; Zyg:p; y{E {0,1},4 € N; TEO} (13)

J
1EN

12
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414 5 1 oo 1 9 1 410 0 00 0 1 0

5/10 5 3 1 oo 3 2 5/1 00 0 0 0 0 . A
6| 5 10 2 9 3 oo 3 610 10 1 0 0 0

717 6 4 1 2 3 o 711 0 0 0 0 0 0

Figure 4: Left: An instance with n = 7 facilities and p = 3. We find that r} =7, r, =9, 7, =7,
ry =5, 75 =5, r5g =9 and 7, = 6. Hence an upper bound is us = 7. Right: For r = 7 we get the
clique problem represented by the given matrix. Since a clique of size 3 does not exists, r =7
is not a feasible solution value. The optimal solution is obtained with zo = x4 = ¢ = 1 having
objective value 5.

Then an upper bound u3 on PDP is found as the solution value to

u;:,zmax{r:m:jgr},jEN; ij:p; z; € {0,1},7 € N; 7"20} (14)
JEN

The problems (13) and (14) ask to find the p-median of a set, which obviously can be done in
linear time. Since we solve n + 1 such problems, the bound u3 can be derived in O(n?) time.

Proposition 2 The value ug gives an upper bound on (12).

Proof 2 We prove the statement by showing that any feasible solution to (12) is also a feasible
solution to (14). Hence assume that the pair (z,r) is a feasible solution to (12). We construct
a solution to (18) and (14) for the same value of r. By setting y] = x; and r}; = r for j € N we
notice that (y?,r}) is a feasible solution to (13). Hence the pair (z,7) is a solution to (14).

Since the values 1 and r in (18) and (14) are found as a mazimum over larger set than the
original solution space we will not obtain smaller values than the optimal solution.

It is however not obvious how we should tighten the bound us. Using the same approach as for
the PDSP, we may add a matrix A to the given distance matrix. The values \;; must however
satisfy that A;; = 0 or A;; = 0 for all values of 7,5 € N. But any choice of A with this property
does not improve the bound us.

A Different approach is to decompose the p-dispersion problem (12) into a number of clique
problems. Hence for a predefined value of r, define a graph G = (V, E) where V is the set N of
locations, and (7, j) € E if and only if d;; > . The problem is now to find a clique of size p. If
such a clique exists, we know that the current value of r is a feasible solution to (12). Since r
can only attain one of the O(n?) different values in {d;,d1s,...,d,,}, we may preorder these
values and use binary search to identify the maximum value of r.
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Each clique problem ca be further reformulated to a p-dispersion-sum problem. Let e;; =1
if and only if (i, j) € E. Then we may consider the problem

maximize Z Z € TiT;
iEN jEN

subject to Y z; =p (15)
jJEN
z; €{0,1}, jeN

If a solution of value z* = p(p — 1) is found to (15) we know that a clique of size p exists in the
graph (V, F), and thus the current value of r is feasible for (12). Figure 4 illustrates the bound
ug and the reduction to a clique problem.

3.1 Computational Experiments

We conclude this section by showing some computational experiments with the presented algo-
rithm for PDP. The instances are generated as in Section 2.2 with the only exception that d;
always is set to co. The generated problems are solved through a transformation of PDSP to
PDP as described in Section 3.

n GEO WGEO EXP AEXP RAN DSUB
10 0.02 0.01 0.01 0.01 0.01 0.00
20 0.03 0.03 0.03 0.03 0.03 0.00
30 0.15 0.19 0.11 0.11 0.11 0.01
40 1.63 1.24 0.35 0.51 0.27 0.03
50 16.97 19.67 1.57 0.46 4.48 0.07
60 | 123.77 116.47 11.29 4.82 48.31 0.13

70 — — 154.74 90.72  238.60 0.28
80 — — — — — 0.43
90 — — — — — 0.69
100 — — — — — 1.05
150 — — — — — 9.21
200 — — — — — 16.79

Table 7: Solution times in seconds for solving the p-dispersion problem. Average values of 10
instances.

Table 7 gives the overall solution time as average of 10 randomly generated instances. It is
interesting to note, that the two geometrical problems are slightly more difficult to solve in the
PDP version than in the PDSP version. On the other hand, the non-geometric problems tend
to be easier to solve in the PDP version.

For comparison, Erkut [3] reports that his branch-and-bound algorithm uses about 14 seconds
on average for instances of size n = 30, while instances with n = 40 take half an hour to
solve. The instances considered by Erkut are of the GEO type. Although Erkut performed his
experiments on a PC-AT, it should be obvious that the transformation of PDP to PDSP leads
to significantly better solution times.
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4 Conclusion

The p-dispersion-sum problem has several applications in theory and practice, but currently no
approximation algorithm with fixed ratio bound is known for its solution. For small instances,
or when the number of facilities p is a large fraction of n, one may obtain an approximation
factor of about two, which however may be unsufficient in practical applications.

The study of exact algorithms gives an interesting contrast to the results on approximation
algorithms. In particular it is intersting to see that several problems can be solved to optimality
for n up to 60-80. Moreover, knowing the exact solutions makes it possible to evalute the
quality of heuristic solutions. In particular the computational experiments showed that the here
presented heuristic is able to find optimal solutions in all the considered instances.

The promising solution times have been obtained by deriving tight upper bounds based on
a reformulation of the problem. During the branch-and-bound algorithm these bounds can be
derived in O(n) time by using appropriate data structures. A new algorithm for finding a near-
optimal reformulation of the problem in O(n?) time was presented. This technique may be used
for other problems like the quadratic knapsack problem.

We have finally made some preliminary experiments with exact solution of the p-dispersion
problem, based on reduction to a number of clique problems. The computational results show
that this may be a promising way of solving the problem, although better solution times can be
obtained by using more sophisticated algorithms [5] for solving the clique problems.
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