Technical Report DIKU-TR-99/6
Department of Computer Science
University of Copenhagen
Universitetsparken 1

DK-2100 Copenhagen @

DENMARK

Termination Analysis
for
Offline Partial Evaluation
of a
Higher Order Functional Language

Peter Holst Andersen
Department of Computer Science,

University of Copenhagen,
txix@diku.dk

August 29, 1996

Abstract

One of the remaining problems on the path towards fully automatic partial evalu-
ation is ensuring termination of the specialization phase. In [Holst, 1991] we gave
a termination analysis which could be applied to partial evaluation of first-order
strict languages, using a new result about inductive arguments (loosely: if when-
ever something grows, something gets smaller then the program will only enter
finitely many different states). In this thesis we extend this work to cover higher-
order functional languages. We take an operational approach to the problem and
consider the closure representation of higher-order functions to perform a com-
bined data- and control-dependency analysis. The result of this analysis is then
used, as in the first-order case, to decide which arguments need to be dynamic to
guarantee termination of partial evaluation of the analysed program. The new
methods have been tested on a variety of programs, and will be incorporated in
a future release of the Similix partial evaluator for Scheme.

Preface

This report is my master thesis (“speciale”) and accounts for 10 written credits
(“skriftige punkter”) in the partial fulfillment of the requirements for a Danish
cand. scient. degree (“kandidatgrad”).

The work presented here is joint with Carsten Kehler Holst and has partly
been published in [Andersen and Holst, 1996]. Neil D. Jones has been the super-
visor of the project.

Prerequisites

This thesis requires knowledge of a functional language, closures as an imple-
mentation technique, of abstract interpretation corresponding to, for example,
[Jones and Nielson, 1994], and of partial evaluation corresponding to, for exam-
ple, [Jones et al., 1993, Part II],

Acknowledgments

Thanks to Neil D. Jones and Arne Glenstrup for much needed sparring and helpful
comments.

Thanks to Mark P. Jones for providing Gofer, without which it would have
been impossible to conduct quite as many experiments as we did.

Contents

1 Introduction
1.1 Partial Evaluation
1.2 This Thesis o o,

2 Preliminary Definitions
2.1 Language e
2.2 Well-annotatedness L oL

3 Quasi-termination

4 Overview of the Analysis
5 Development History

6 Experiments

7 Technical Details
7.1 The Basis of the Analyses
7.2 The Simple Higher-Order Analysis
7.3 The Grammar-Based Analysis
T4 SUMMAary oo e e e e

8 Conclusion
8.1 Related Work e
8.2 Conclusion e
83 Future Work

A Notational Conventions

B Programs

13

17

20

26

29
29
32
38
46

47
47
48
48

52

53

Chapter 1

Introduction

Over the last thirty years software systems have become increasing bigger and
more complex. However, the tools and techniques for software development have
not been able to keep up with the demand, thus resulting in the so-called software
crists. Fundamentally, software engineering is still a handcraft, where almost
every line of code is written by hand, and where tremendous manpower is spent
debugging and maintaining code.

Partial evaluation or automatic program specialization is a tool that can help
to automate part of the software engineering process, thereby reducing the time-
to-market and the overall cost.

For partial evaluation to be successful as an automatic tool for non-specialist
users, the user must be able to use it as a “black box” similar to the way opti-
mizing compilers are used today. However, this is complicated by the fact that
almost all of today’s partial evaluators have unsafe termination properties (i.e.,
they are not guaranteed to terminate).

In this thesis we show how termination can be achieved even for partial eval-
uation of higher-order languages. First, we give a brief introduction to partial
evaluation.

1.1 Partial Evaluation

Efficiency Versus Generality. In software development it is often the case
that one has to solve several similar problems. One way to do it is to imple-
ment one specialized program for each problem, but this has the disadvantage of
developing, debugging, and maintaining several programs.

Alternatively, one can write one general highly parameterized program, that
solves all the problems. This saves a lot of time, since there is only one program
to develop, debug and maintain. However, a general program is rarely as efficient
as a program written only to solve one task.

This is where partial evaluation comes in. Partial evaluation provides the best

of both worlds: it allows the programmer to work at a higher level of abstraction
without having to worry about efficiency. The programmer can develop a general
program and use the partial evaluator to automatically generate efficient versions
of it, each specialized to a given subproblem.

Modularity. When developing software systems it is convenient and sometimes
necessary to divide it into separate modules. This make maintenance easier, en-
ables reuse of the code, and allows several people to work on the same system.
However, loss of efficiency cannot be entirely avoided. Some modules are perhaps
overly general for a specific application, or they may contain interface code check-
ing for various conditions. Partial evaluation can help by removing superfluous
interface code, and by specializing overly general modules.

How Is Partial Evaluation Done? A partial evaluator is a program, that
given another program p and some of its input s (the static input), produces a
restdual program ps, which is a version of p specialized with respect to the input
s. When the residual program is executed on the rest of the input d (the dynamic
input) it will produce the same result as the original program would if executed
on the entire input (s,d).

The time when the residual program is generated is called specialization time
or mix time, and the time when the program is executed is called run time as
usual.

Example 1.1 Consider the following function for appending two lists:
append(zs, ys) = if null? zs then ys else cons(hd xs, append(tl xs, ys))

Suppose we know the value of zs to be the list (1 2 3), then we can generate a
specialized version of append, which is much faster than the original:

appendia3(ys) = cons(1, cons(2, cons(3, ys)))
(]

A partial evaluator will execute those parts of the program that solely depends
on the static input and generate code for the rest. Since it does a mizrture of
interpretation and compilation it is often called miz.

A partial evaluator uses standard optimization techniques: it pre-computes
expressions, that solely depend on the static input (constant folding), it reduces
expressions that depend on the dynamic input, unfolds function calls, and gen-
erates specialized versions of functions (procedure cloning). It also does constant
propagation to make the known values available throughout the program.

In the example above the test on zs in the conditional was evaluated to decide
which branch to choose, and the recursive calls were unfolded.

4

Online and Offline. Basically, there are two flavours of partial evaluation,
online and offtine. The differences between the two lies in when the decision
to evaluate or to generate code for an expression is taken. In online partial
evaluation the decision is taken during specialization, whereas in offline partial
evaluation it is taken in a prephase (the binding-time analysis or BTA for short).
We shall briefly describe how offline partial evaluation works.

The traditional pipeline for an offline partial evaluator is shown in Figure 1.
The binding-time analysis takes the subject program, the name of the function
to specialize (the goal function)!, and the initial binding-time pattern as input.
The binding-time pattern specifies which of the goal function’s parameters are
static and which are dynamic, but the actual values of the static data are not
given at this point.

e N
Subject Program BT Pattern
. %

Preprocess Phase 7
Binding-Time Analysis
Flow Analysis

[Annotated Program)

Specializer ‘

[Residual Program]

Figure 1: Offline Partial Evaluation

The job of the binding-time analysis is figure out which parts of the program
the specializer shall evaluate and which it shall generate code for. Basically, the
binding-time analysis is a dependency analysis that detects which parts of the

!The goal function is not shown in Figure 1.

program depend on the dynamic input and marks these as residual (= parts
to generate code for). Usually it is necessary to perform other analyses to aid
the binding-time analysis; for example, a flow analysis to trace the flow of data
structures or higher-order values, or an evaluation-order analysis to ensure that
side effects are executed in the right order.

The output of the binding-time analysis is an annotated program. The anno-
tations indicate which parts shall be evaluated and which shall be residualized.
Given the values of the static input, the specializer follows the annotations and
produces a residual program, which can be run on the dynamic part of the input.

Example 1.2 Below is an annotated version of the append function where zs is
static and ys is dynamic:

append(zs, ys) = if null? zs then ys else cons(lift(hd xs), append(tl xs,ys))

The dynamic parts are marked by underlining. The cons operation is dynamic
since it depends on ys. O

1.2 This Thesis

The reason that all of today’s offline partial evaluators have unsafe termination
properties, is an apparently unavoidable conflict between two desirable properties:
A partial evaluator should terminate on every program p and static data s, and
it should be computationally complete, meaning that it should compute all of p’s
actions that depend only on s.

Many successful partial evaluators have prioritized computational complete-
ness over termination (e.g., Similix [Sim, 1995, Bondorf and Jgrgensen, 1993],
Schism [Consel, 1993], and C-Mix [Andersen, 1993, Andersen, 1994]). In this
thesis we show that termination can be achieved even for higher-order languages
with an acceptable loss of computational completeness.

The sources of nontermination are infinite specialization (an attempt to cre-
ate an infinitely large specialized program) and completely static loops (loops in p
that depend only on the static input s). We develop an analysis?, which changes
some of the binding times in the program from static to dynamic, in such a way
that partial evaluation of the program only enters finitely many different con-
figurations. This, together with memoization, guarantees termination of partial
evaluation.

The analysis is based on the same foundation as Holst’s analysis for a first-
order language [Holst, 1991], which works as follows: First an approximation
of the program’s control- and data-flow during partial evaluation is computed.
The approximation gives information about which variables depend on which,

Zfor a higher-order untyped strict functional language (e.g., Scheme)

and whether they grow or get smaller along the possible evaluation paths. The
gathered information is then used to generalize® variables for which upper bounds
cannot be guaranteed. To adopt the approach from [Holst, 1991] to a higher-order
language (or any other language for that matter), “all” we have to do is to devise
an analysis that collects an approximation of the program’s control- and data-
flow, and then apply the main result from [Holst, 1991]. The problem is to collect
an interesting approximation.

Termination of computationally complete partial evaluation in general is un-
decidable (an easy consequence of Rice’s Theorem [Rice, 1953]). Therefore the
analysis will make a safe approrimation, that is guaranteed to detect all infi-
nite loops, but may classify some loops as infinite even though they will always
terminate. This corresponds to the safety condition found in other abstract inter-
pretations, e.g., strictness analysis. However, in strictness analysis even a little
information can be useful, whereas our analysis is uninteresting unless it solves
the problem for a large class of programs. Therefore, the development of the anal-
ysis has mainly been driven by experimentation with small programs containing
non-trivial recursion and usages of higher-order functions. This approach was
motivated by the belief that, if the analysis can handle these small, but complex
programs satisfactory, then it can handle real programs as well. Experiments
show that the analysis is strong enough to detect that partial evaluation of non-
trivial interpreters using higher-order features will terminate, and at the same
time all interpretive overhead will be specialized away.

A related problem, which we do not address in this thesis, is abnormal termi-
nation of partial evaluation (errors occurring while executing static code). The
problem has been fixed in Similix [Sim, 1995], which generates code to produce
the error at run time when encountering an erroneous static expression.

Outline of this Thesis. Chapter 2 presents the subject language and defines
what it means for a program to be well-annotated. Chapter 3 defines quasi-
termination and gives some intuition behind the principles on which the termi-
nation analysis is based. Chapter 4 gives a brief overview of the components
which the analysis consists of. Chapter 5 describes how the analysis has been
developed step by step. Chapter 6 reports the results of practical experiments
with the analysis. Chapter 7 presents the technical details of two versions of the
analysis — a simple one, which was our first attempt, and a more complex one,
which is the final version. Chapter 8 concludes and describes related and future
work.

The thesis has two appendices: Appendix A, which is mainly included for the
author’s own reference, describes (some of) the notational conventions used in
this thesis. Appendix B lists the subject programs used in the experiments in
Chapter 6.

3To generalize a variable means “to change its binding time from static to dynamic.”

Contributions of this Work. The work presented here is an extension of
[Holst, 1991], its main contributions are handling of the higher order case, and
we hope, a more intuitive presentation of the ideas. The work also includes an
evaluation of the analysis based on empirical results. Finally, we expect that the
analysis can serve as a template for other similar analyses.

Chapter 2

Preliminary Definitions

In this chapter we define the subject language and define what it means for a
program to be well-annotated [Jones et al., 1993].

2.1 Language

We are essentially dealing with the untyped lambda-calculus augmented with
named functions. To get an explicit handle on all lambda expressions and their
free variables prior to the analysis, we lambda lift the program and tuple the
arguments, such that all functions have two argument tuples; one with the free
variables and one with the lambda bound.

Following common practice in offline partial evaluation we use underlining to
annotate an expression as dynamic. The language also contains a [ift expression,
which is used for static expressions appearing in dynamic contexts. The syntax
of the language after lambda-lifting and annotation is given in Figure 2.

x € Var, e € Exp, f € Fname, o € Operator, c € Constant

PI"Og = fl(xl,la e ,xl,m)(meH, e 7$1,n1) = €1, ...
Exp = ¢ | i | oler,...,en)
| Clo(f,{e1,...,en)) | if ereaes | e(er,...,en)
‘ l’Lft e | Z;; | Q(ela ceey en)
‘ @(f,«ala“'aen)) | i616263 | 6@(61,...,€n)
Figure 2: Syntax
Evaluation of an expression of the form Clo(f, (e1, ..., e,)) causes the creation
of an f-closure where the free variables are bound to the values of eq, ..., e,.

Example 2.1 This example illustrates the lambda-lifting. Suppose we have the
following program:

f(.%‘) = g(l‘, x)

g(z,y) = (Az.+ zy2) (42)

The abstraction is lifted out and replaced by the function A.

fO)(z) = Clo(yg,()) (z,2)
)(x,y) = Clo(h,{z,y)) (42)
Mz, y)(z) = +zyz

|

After the lambda lifting all calls in the program are of the form e (eq,...,e,).
Since the named functions in the original program do not have any free variables,
calls to them now have the form Clo(f, ()) (e1,-..,é€n)-

For simplicity, we assume that the functions are named f; to f,, and that the
variables in function f; are named z;; to x;,,. For readability, we use ordinary
names in examples when the subscripts are not needed. Furthermore, we assume
that f; is the goal function, that the initial arguments to f; are first order, and
that there are no calls to f; in the program.

2.2 Well-annotatedness

Annotated programs. The job of the binding-time analysis is to annotate
the source program in such a way, that the subsequent specialization cannot
commit a binding-time error (i.e., attempt to generate code for something static,
or attempt to evaluate something dynamic).

Binding-Time Checking Rules. A binding-time type ¢t € BindingTime is ei-
ther first-order static (S), dynamic (D), or a function: ¢t ::= S | D | (t1,...,t,) —
t. We shall use the term static to cover both first-order and function binding
times.

A binding-time environment 7 maps variables to their binding times and func-
tion names to the binding time of the closure they return (i.e., either dynamic or
a function): 7 : (Var + Fname) — BindingTime.

Rules for checking the annotations of expressions are given in Figure 3. The
rules are the usual ones for a monovariant binding-time analysis, although Clo
and DynClo may look unfamiliar. If the closure is to be created at specialization
time, then the Clo rule is used. If it is to be created at runtime, then the DynClo
rules is used, and the expression is marked as residual. Note that the free variables
in a residual closure need not be dynamic. This allows the specializer to evaluate
under dynamic lambdas thereby specializing the abstraction.

10

In a judgement 7 e : ¢, 7 is a binding-time environment, e is an annotated
expression, and ¢ is the binding time of e in the environment 7.

(Const)

(Lift)

(Var)

(DynVar)

(Op)

(DynOp)

(Clo)

(DynClo)

(If)

(Dynlf)

(Apply)

(DynApply)

)

The:S
THUfte: D

T[mi’j — t] F Tij: t,

t#D

T[l‘iyj —> D] [il,j : D

ThHe:S ... 7ke,: S
THo(ey,...,e,) S
THe : D . Tke,: D
Tk o(er,...,ey) : D
T l—>t1, cey mi,m*_)tma
T xi,m+1Htm+la ---;xi,kHtka Fei:tg R T .
fil—)(tm+1,...,tk)—)t
OlO(fi, <€1, .. .,€m>) . (tm—|—17 ceey tk) — 1
i1 F—)tl, ceey .’L‘i,ml—>tm,
T| Tim—= D, ..., zip—= D, | Feriti ... epiln
fi— D
@(fla <61a' . 'aeM>) : D

THe :S They:t ThHez:t

T}_ifelegeglt

Ther: D They:D The3: D

T}_ﬁ6162632D

The:(t1,...,t,) >t The 1l The,: t,
The(er,...,en): t
TFe:D thFe:D ... TFe,: D
THeQ (e,...,e,): D

Figure 3: Binding-Time Checking Rules for Annotated Expressions

11

We shall briefly explain the rest of the rules. A constant is always first-order
static. The lift rules allow us to lift first-order expressions; but not expressions of
function type. The Op and DynOp rules say that arguments to built-in operators
must either be first-order static or dynamic, and if one of them is dynamic, they
must all be dynamic. The binding time of the condition in an if expression
determines whether or not the expression is residual. Similarly, the lefthand
expression in an application determines whether or not the application is residual.

Definition 2.1 Given a binding-time environment 7 and an annotated program.
The program is said to be well-annotated, if for every function f;(...)(...) = e;
we have T[f; = t;] b e; : t; according to the rules in Figure 8. [Jones et al., 1993].

Similar to showing that evaluation of a well-typed program cannot lead to

a type error [Milner, 1978], it is possible to show that partial evaluation of a
well-annotated program cannot lead to a binding-time error.

12

Chapter 3

Quasi-termination

In this chapter we define quasi-termination, state a central theorem giving a
sufficient condition for a program to be quasi-terminating, give some intuition
behind the principles on which the termination analysis is based, and introduce
key terminology used in this thesis. The material presented in this chapter can
also be found in [Holst, 1991], which contains a proof of Theorem 3.1.

Configurations. A configuration is composed of a program point identifying a
position in a program, and the values of the variables at that point.

We can think of evaluation of a flowchart program as going through a sequence
of configurations, where each configuration C; is composed by a label and a
mapping of variables to values.

Ci—=>Cy—---—=C,

It should be clear that each configuration uniquely determines the rest of the
sequence. A program is terminating if the sequence of configurations is finite for
all inputs. A program is quasi-terminating if it for any input only enters finitely
many different configurations.

In pure functional programs a program point could be identified by an ex-
pression in the program, and a configuration would then be an (expression, en-
vironment) pair. Instead of considering a sequence of configurations it would
be more natural to consider evaluation trees (finite or infinite) with (expression,
environment) pairs as nodes, and with a subtree for each subevaluation. Each
node uniquely determines the subtree of which it is the root. If the tree is finite
for all input, then the program is terminating. This does not necessarily mean
that the result is well defined, e.g., it might terminate with an error (typically
something along the lines of “can’t take hd of nil”). If the tree only contains
finitely many different nodes for any input, then the program is quasi-terminating.
Clearly this does not imply that the tree is finite.

Applying Konig’s lemma “In a finitely branching infinite tree some paths will
be infinite” makes it possible to consider paths in a tree instead of the whole tree.

13

If all paths are finite the tree will be finite, and if all paths contain only finitely
many different nodes, the tree as a whole will contain only finitely many different
nodes.

In the following example f is an obviously non-terminating, but quasi-ter-
minating program, whereas ¢ is neither a terminating nor a quasi-terminating

program.
flx) = f(z)
g(z) = glz+1)

Transitions. If for some input a program goes through configurations C;, Cs,
and Cj3 in that order, we say that there is a transition from configuration C; to
Cy, one from C5 to ('3, and one from C; to C3. We call the “smallest” transitions
1-step or simple transitions and the others composite transitions. Since the proof
for Theorem 3.1 argues that if the program goes through only finitely many 1-
step transitions then it is terminating, it is important that the 1-step transitions
are primitive, meaning they only take finite time.

In our lambda-lifted language we shall use function calls as 1-step transitions.
They are primitive, since a function cannot loop without calling itself. In our
language a transition is a mapping between environments, or argument tuples.
The set of all 1-step transitions defined by a program is the collection of all the
function calls that can occur during any run. It is important to notice that the
set of all transitions in a program is not the set of 1-step transitions but the
transitive closure of these.

An endotransition is a transition from a program point back to itself. This
need not be a 1-step transition.

Example 3.1 Consider the following programs operating on natural numbers:

flz,y) = if y=1thenyelse flx +1,y—1)
g(xz,y) = if y=1 then g(2,z) else g(x + 1,y — 1)

When f is called with (2,5) the evaluation goes through the following sequence
of configurations, where each arrow denotes a 1-step transition equivalent to a
call in the program:

f(2,5) = f(3,4) = f(4,3) = f(5,2) = f(6,1)

If we, for example, compose the first two 1-step transitions we get a composite
transition from f(2,5) to f(4, 3). O

Inductive Arguments. We focus our interest on inductive arguments (i.e.,
arguments or argument positions, that depend on themselves). Consider the
endotransition, which comes from a direct call from A to itself somewhere in its
body:

h(a,b) = ... h(A, B) ...

14

If A < a we say that a (in the sense “the first argument position”) is in situ
decreasing. A < a should be read as “for all possible values of a this transition
gives rise to a value of A that is strictly less than that of a.” If the same holds for
B (i.e., if B < a) then b is said to be decreasing. If we only can guarantee A < a
we say the argument is in situ weakly decreasing, or in situ equal. Similarly, if
B < a then b is said to be weakly decreasing or equal. If we cannot guarantee that
the argument is at most equal we consider it an increasing argument (this is safe
if imprecise). If an increasing argument depends on itself it is in situ increasing.

In the example above the call f(z + 1,y — 1) has an in situ increasing first
argument and an in situ decreasing second argument. Since all the transitions in
f has this form Theorem 3.1 tells us that f is quasi-terminating.

Theorem 3.1 requires the in situ decreasing parameters controlling the loops
to be bounded® for the program to be quasi-terminating. The reason behind this
requirement is illustrated by the function g in the example above. We have an
endotransition from g to itself, where y is in situ decreasing and z is in situ
increasing, but the program is not quasi-terminating. Consider for example the
following infinite evaluation path:

9(2,2) = g(3,1) = 9(2,3) = 9(3,2) = g(4,1) = g(2,4) — ...
The problem is that y is reset every once in a while (at the underlined configura-
tions) to a value on which there is no bound.
The rest of this thesis attempts to bring us in position to use the main result of
[Holst, 1991] stated below. The problem is to collect an interesting approximation
of the set of transitions.

Theorem 3.1 Consider all transitions defined by a given program (composite
as well as simple). Assume the domains are finitely downwards closed® with
respect to some size ordering. Then the program is quasi-terminating if every
endotransition with an in situ increasing arqument, also has a bounded in situ
decreasing argument.

The Connection to Partial Evaluation. Let trans, be the set of all tran-
sitions during partial evaluation of a well-annotated program p. The dynamic
variables do not occur in transy, as they do not take on any values during partial
evaluation. If every endotransition in trans, with an in situ increasing argument,
also has a bounded in situ decreasing argument, then the program will only enter
finitely many different configurations during partial evaluation.

Termination of partial evaluation of the program can now be ensured by
memoizing the configurations. Note that completely static configurations must

L An argument is said to be bounded, if it has an upper bound for every run.
2A domain is finitely downwards closed if for any value the set of values smaller than it is
finite. This is strictly stronger than the descending chain condition [Davey and Priestley, 1990].

15

be memoized as well, otherwise a static loop could cause non-termination. This
differs from what is normally done in partial evaluation, where only configurations
that lead to specialized program points are memoized.

The objective of the termination analysis is to change some of the binding
times to dynamic, such that the “offending” or “dangerous” arguments do not
appear in trans,.

16

Chapter 4

Overview of the Analysis

In this section we give an overview of the termination analysis including brief
descriptions of the analyses on which it is based. Figure 4 illustrates the depen-
dencies between the various analyses.

Closure
Analysis

Size and Single
Dependency Threaded
Analysis Analysis

Transition
Collection

Binding-Time

Analysis

Termination
Analysis

Figure 4: Overview of the Analysis

Closure Analysis. The net result of the closure analysis [Sestoft, 1988] is a safe
approximation of which closures a given expression can evaluate to. In addition

17

to tracing the flow of closures, we also trace the flow of first-order values (i.e.,
the analysis detects if a given expression can evaluate to a first-order value).

Binding-Time Analysis. The binding-time analysis produces a well-annotated
version of the program. See Chapter 2.

Single-Threaded Analysis. This analysis identifies single-threaded closures
(i.e., closures that are applied at most once). The information is be used to get
higher precision when tracing flow in the program.

The analysis of [Turner et al., 1995] can be used to detect single-threaded
closures.

Size and Dependency Analysis. The size analysis is a data-dependency
analysis; which part of the arguments is the value build from, and how. The
dependency analysis is a control-dependency analysis, which collects information
about which part of the arguments the value depends on.

Transition Collection. Once the size information and dependency informa-
tion have been obtained, an approximate 1-step transition is collected for each
reachable call in the program!. Then the entire approximate set of transitions is
generated by taking the transitive closures of all compositions of these.

Termination Analysis. We notice that an argument that does not depend
on an in situ increasing argument must be bounded (this implies that it is not
in situ increasing itself). Reasoning for this: Suppose we have a variable x that
does not depend on any in situ increasing variables. Then z’s value can only be
increased a finite number of times, namely the number of increasing operators
in the program. Assume that the value of z is increased more times than there
are increasing operators in the program, then the same operator must have been
used more than once, which means that r must depend on a variable that is in
situ increasing.

If a variable is in situ increasing then its value is potentially built recursively,
thus an upper bound can not be guaranteed without additional information.

Given a well-annotated program and an approximation of the set of transi-
tions, we ensure termination of partial evaluation by repeating the following three
steps until the annotations stabilize:

1. Generalize in situ increasing arguments occurring in endotransitions with-
out a static bounded in situ decreasing argument.

2. Update the annotations to ensure that the program is well-annotated.

! Assuming, as usual, that every conditional branch can go either way.

18

3. Redo the transition collection.

This ensures that partial evaluation of the program will only enter finitely
many different configurations.

In step 2 some binding times that depend on the ones changed in step 1 must
also be changed to ensure well-annotatedness. However it is not necessary to
restart the binding-time analysis from scratch, since step 1 only changes binding
times from static to dynamic and not vice versa.

The complexity of the termination analysis can be significantly reduced by
skipping step 3 and using the initial collections of transitions instead. The price
is a slighty more conservative result.

19

Chapter 5

Development History

In this chapter we give an account of how we developed the analysis. We focus
on the size and dependency analysis and the transition collection, since they are
solving the core problems. First, we give a description of the first-order analysis,
which served as a basis for the development. Second, we describe how a simple
extension tames the control-flow problem in higher-order programs. Third, we
describe a plausible but, as it turned out, unsuccessful attempt to deal with
higher-order data flow using bounded trees. Fourth, we show how grammars
solve most of the problems. Finally, we show how the remaining problems can
be solved by taking binding times and single-threaded closures into account.

The technical details of the simple and the grammar-based analysis are given
in Chapter 7.

The First-Order Analysis. The result of the size and dependency analysis
in the first order case is, for each function, a (size, dep) pair describing how the
return value relates to the parameters. Informally, the dep value is a set of
argument positions identifying which of the parameters the return value depends
on (including control dependency). Again informally, the size is a set of “basic”
size values, which come in three guises: D(i), F(i), and I, where 7 is an argument
position; the ith parameter. D(i) means that the return value is guaranteed to
be less that the ith parameter, E(i) means “less than or equal”, and I means
that we cannot ensure anything. The meaning of a set of basic size values is the
disjunction of the size values. The size value only describes data dependency and
not control dependency. Consider the following functions:

fl@y) = glz,z,y)
g9(x,y,z) = if z then hd x else hd y

The function g gets the size description {D(1), D(2)} and the dependency de-
scription {1,2,3}, which together denote that the return value is either smaller
than = or smaller than y and that it depends on x, y, and z. Why the either-or

20

case is interesting should be clear when considering f’s size description, which
becomes {D(1)}.

Once the size and dependency information have been collected, an approxi-
mate 1-step transition is collected for each reachable call in the program. The
size and dependency information are needed in case of calls that pass the return
value of some function as a parameter to another (e.g., f(g(z,y),2)). A transi-
tion consists of two function names (the caller and the callee), a size tuple, and
a dependency tuple. The two tuples describe how the callee’s parameters relate
to the caller’s parameters. For example, the call f(z,y) = g(z,z,y) would give
rise to the following transition: ({f,¢), (E(1), E(1), E(2)), ({1},{1},{2})).

If the program contains calls between two functions with different size-dep
characteristics, a 1-step transition is collected for each call. This is crucial for the
precision of the analysis. Consider the following two transitions: (D(1), E(2)),
and (E(1),D(2)). If we only collected one transition for each function pair it
would have to be (E(1), F(2)), and we would not detect that the arguments are
decreasing.

Once we have collected the 1-step transitions, we take the transitive closure
of all compositions of these to get an approximation of the program’s control and
data flow.

Example 5.1 The functions

flz) = g(z,cons x x)
g9(z,y) = h(hd y,hd z,)

give rise to the following 1-step transitions (the dependency information has been
left out for readability):

tr=((f,9),(EQ), 1)), t2=((g,h),(D(2),D(1), E(1)))

When t; and t, are composed we get the following transition:

troty = ((f,h),(D(2), D(1), E(1)) o (E(1),]))
= ((£;1),(D(2) e (E(1),I), D(1) o (E(1), 1), E(1) o (E(1),)))
= ((f;h),(I,D(1), E(1)))

The transition describes a transfer of control from f to h, and shows how hA’s
parameters relate to f’s parameters. We can verify that we have composed the
transitions correctly by unfolding the call to g: f(z) = h(hd (cons x), hd x,x).
Note that we are unable to detect that the first argument to A is actually equal to
x. However, it turns out that the techniques developed in this thesis for handling
higher-order values also apply to data structures, so the example does not prove
to be a problem.

Transitions represent functions from argument tuples to argument tuples, and
size descriptions represent functions from argument tuples to values, thus the

21

composition of (D(2),D(1), E(1)) with (E(1),I) is found by composing each
element of the former tuple with the latter. For example, the composition D(2)o
(E(1),I) denotes a value that is increased first and then decreased. Since the size
description does not tell how much the value is increased respectively decreased
the result of the composition has to be I. The other compositions are computed
using similar reasoning. O

The Higher-Order Case. A major difference between first-order and higher-
order programs is the complexities involved in determining the control flow. In
the first-order case control flow is deterministic except for conditionals where
both branches must be considered. In the higher-order case the flow at every
application is undetermined, since the function can be any of a number of different
abstractions in the program.

Another problem is that the data flow is obscured when calls and returns
cause data to flow in and out of closures. As we saw above this also occurs when
dealing with data structures (i.e., hd (cons x x)): When a (potentially complex)
structure is taken apart it is difficult to tell where the different parts originate
from.

The Simple Higher-Order Analysis. We started out trying to solve the
control-flow problem without addressing the data-flow problem (data flowing in
and out of closures). We had the hope that most flow would be determined by
first-order values (e.g., the decomposition of an expression in an interpreter) so
that it would not matter that the analysis was conservative in the handling of
higher-order values.

Experiments with the analysis showed that it is able to detect control flow
with acceptable precision, whereas more precision is needed in the handling of
data flow. The following example illustrates the kind of data flow the analysis is

unable to detect:

f(@,y) = g(Az.hd z,y)

g(cy) = cy
The return value of f becomes I, when in fact it is smaller than z. The reason
is that at the application of the closure we know absolutely nothing about the
free variable x (a variable in another environment), so we have to make the
conservative assumption that the result is increasing.

The simple higher-order analysis uses the same domains as the first-order
analysis, so we just need to extend the analysis to handle the two new language
constructs: abstraction and application. The size description of an abstraction
is simply I (which makes sense, since an abstraction builds something) and the
dependency description consists of a list of the free variables. The size and depen-
dency description of an application is found by taking the least upper bound of all
possible calls (the closure analysis is used to determined which abstractions can

22

flow to the application). The free variables in the calls are described by I, since
the abstract domains are inadequate for obtaining more detailed information.

Similarly, at each application we collect a 1-step transition for each of the
abstractions that can flow to the application, and again the free variables are
described by I. Since partial evaluation evaluates under dynamic abstractions
we also collect a 1-step transition at each abstraction. Notice that the simple
higher-order analysis does not use the binding-time information, so it must take
into account that a given abstraction might become dynamic.

Improving the Representation of Higher-Order Values. A closure is rep-
resented as a label and a tuple with the value of the free variables; in general a
tree. An obvious abstraction of this gives rise to an infinite tree augmented with
a size and a dependency value at each node.

We present two different finite representations of the infinite trees, namely
(1) cutting off the trees at depth k£ and (2) approximation using grammars
[Jones and Muchnick, 1981]. The depth bound was tried first, in the hope that it
would be sufficiently precise and simpler to implement than grammars, however,
neither turned out to be the case.

The k-Bounded Analysis. The infinite tree is made finite by cutting it off
at depth k, and attributing each remaining node with an extra size-dep value,
which approximates the subtree (of the infinite tree) of which it is root.

Experiments showed that that there s a need to handle recursively built struc-
tures (and the values they contain). Furthermore, the k-bounded analysis turned
out to be more complicated to implement than the grammar-based analysis.

The Grammar-Based Analysis. The infinite tree is approximated by a gram-
mar that contains one rule for each label in the tree. Thus, a label that appears
in two different contexts in the tree will be approximated by one rule in the gram-
mar. We have chosen this representation for simplicity. The domains in more
detail:

SizeDep~ = IP(Label x Size x Dep)
Gram = Label — (SizeDep)*
SizeDep = SizeDep~ x Gram

A SizeDep value consists of a grammar and a set of triples (label, size, dep) — one
for each label the described function can return (IP is the Hoare power domain).
Note that a label also can denote a first-order value. We use a power domain
to be able to get a more precise description of functions that can return more
than one kind of value (e.g., a first-order value and a closure). For example, the
abstract value (the size-dep information has been omitted for readability)

{£}, U= {FOY S f2}), far= ()

23

denotes a fi-closure, where the first free variable of the closure is a first-order
value, and the second is either an fi- or an fy-closure. f; has no free variables.

Recall that dependency (both data- and control-dependency) in the first-order
analysis was represented using argument positions. To use the extra precision the
grammars give us, we need a more refined way to express dependency. Therefore,
we extend the size domain with the forms D(i f j) and E(i f j), where i refers
to the ith parameter, f is a label identifying an abstraction, and j refers to the
jth free variable in the abstraction. For example, D(1 f; 2) denotes a function
whose return value is always less than the second free variable of an f;-closure
found somewhere in the function’s first argument. Notice the close correspon-
dence between the meaning of size values and the meaning of grammars. This
correspondence makes it easy to compose SizeDep values.

Using Binding-Time Information. Below is the extract of a lambda inter-
preter (in its unannotated form and before lambda lifting):

int(e,p) = if hd e = *Var then p(tl)
else if hd e = ’Lam then Ax.int(hd(tl(tl e)), update(hd(tl e), z, p))
else int(hd(tl €), p) int(hd(ti(tl e)), p)

Specialization of int with respect to some expression e will terminate, because
something gets smaller in every transition during partial evaluation. However,
the analysis, as it has been developed so far, is unable to detect this. The reason
is that int is not quasi-terminating under normal evaluation (consider the call
sequence spawned by interpretation of the term (Az.z z) (Az.z z)).

The problem can be fixed by taking the binding-times into account when col-
lecting transitions: Since the application in the last else-branch in int is dynamic
(see the annotated version of the program below), it does not give rise to any
transitions during partial evaluation, so they can safely be ignored. Using this
extra information the analysis is able to detect that partial evaluation of the
interpreter indeed terminates.

int(e,p) = if hd e = "Var then p(tl e)
else if hd e = ’Lam then Ax.int(hd(tl(tl e)), update(hd(tl e), z, p))
else int(hd(tl e), p) Q int(hd(tl(tl €)), p)

Note that taking the binding times into account introduces a cyclic depen-
dency between the binding-time analysis, the transition collection, and the ter-
mination analysis (See the overview diagram in Chapter 4).

Using Single-Threaded Information. In order to get a more precise descrip-
tion of the free variables in an abstraction, it is sometimes beneficial to pretend
that the calls inside a given abstraction are performed directly instead of via an

24

application later during evaluation. At the abstraction the analysis can collect a
more accurate description of the free variables, whereas little is known about the
lambda-bound variables. At the application the situation is the reverse.

Since we are not interested in the size-dep relationship of the dynamic vari-
ables the result of the analysis can be improved by collecting transitions inside
abstractions whose lambda-bound variables are dynamic. However, it is only safe
to do so if the closure can at most be applied once (i.e., if it is single threaded),
otherwise an infinite loop may be overlooked if the closure is copied an unbounded
number of times (consider the situation above where the interpreter is executed
on the term (Az.z z) (Ax.z z): The closure is inserted into the environment and
copied an unbounded number of times).

25

Chapter 6

Experiments

In this chapter we shall report the result of applying three versions of the analysis
to a number of different programs, that contain non-trivial recursion and usages
of higher-order features. The analysed programs and the relevant binding times
of each program are given in appendix B. The analysis is implemented in Gofer
and is fully automatic except for the binding-time and single-threaded analyses.

The PE column indicates whether or not partial evaluation of the program
is guaranteed to terminate; T indicates termination for all static input and N
indicates non-termination for some static input.

The S, G, and G+ columns contain the results of running three different
versions of the analysis, namely the simple higher-order analysis (S), the gram-
mar based analysis (G), and finally the grammar-based analysis that also takes
binding-time and single-threaded information into account (G+).

A |/ indicates that the analysis detects that specialization of the program
always will terminate (when that is the case), or that the analysis safely detects
that it may loop (in case of the ho.letrec program). A =+ indicates that the
analysis performs one or more unnecessary generalizations — not that the analysis
produces a wrong result.

26

Program PE S G G+ Description

1 myflatten T <+ / 4/ fatten a list of lists — written in cps
2 kmp T ' ' /' naive pattern matcher?
3 closure T + extraction of static data from a closure
4 fo T v / int. for a first-order language with let
5 fo.func T v v “fo extended with named functions
6 goto T + + int. for a goto-language
7 goto.while T + + <+ int. for a goto-language with while
8 ho T + + / lambda interpreter
9 ho.cbn T + =+ / call-by-name lambda interpreter
10 ho.cps T + =+ / lambda interpreter written in cps
11 ho.et T =+ =+ / “ho” extended with let
12 ho.func T + + / “holet” extended with named functions
13 holetrec N / +/ / “ho” extended with letrec

The Simple Higher-Order Analysis. The programs kmp, fo.func and goto
are all first order, but contain non-trivial recursion. For example, in the fo.func
interpreter: The environment is represented as a namelist ns and a valuelist wvs,
and to evaluate a let expression (Let z e; ey) the following call is made:

int(eq,cons(z,ns),cons(v,vs),p),

where v is the value of e;, and p is the entire program. To interpret a function
call (Call f (ey ... e,)) the body and the namelist of the function is looked up,
and the arguments are evaluated:

int(lookupbody(f,p),lookupnames(f,p),(vi .. vn),p)-

The first call gives rise to the 1-step tramsition (D(1),I,_ E(4)), and the
second call gives rise to the 1-step transition (D(4), D(4),_, E(4)). The third ar-
gument, the valuelist, is dynamic. This example shows the necessity of collecting
more than one 1-step transition between two program points. If the descriptions
of the two calls were joined, too much information would be lost.

A similar situation occurs for the interpreter of the goto language. The inter-
preter takes a list of statements as argument (s;...s,), evaluates the first and
proceeds to evaluate the rest unless s; is a jump statement. In the former case
the list of statements are in situ decreasing and in the latter case the list is reset
to a new value (when looking up the target of the jump). So, in this case we also
need to keep the descriptions of the two calls apart.

! Assuming we are working with natural numbers.
2The result of specializing the naive pattern matcher is a Knuth-Morris-Pratt matcher (orig-
inally achieved by Consel and Danvy [Consel and Danvy, 1989]).

27

It is encouraging that the simple anlysis is able to detect that partial eval-
uation of fo terminates, because fo uses higher-order features to represent the
environment (a function from names to values). However, the simple analysis
quickly falls short when the data flow becomes a bit more complex; like in the
closure and flatten examples. (The closure example is constructed to make the
simple analysis fail).

The Grammar-Based Analysis. Although the grammar-based analysis is
able to handle the closure and flatten examples, it is is obvious that use of binding-
time and single-threaded information is crucial for getting accurate results (see
the entries in the table for programs 8 to 12).

General Comments. Note that the analyses safely detect that ho.letrec may
loop (i.e., if specialized with respect to the expression (letrec z z)).

None of analyses are unable to detect that partial evaluation of goto.while
terminates. The reason is that the interpretation of the while-construct is imple-
mented by adding the body of the loop to the while statement and interpreting
the result. In order to handle this example we would need a richer size measure.

In conclusion: The analysis is strong enough to detect that partial evaluation
of non-trivial interpreters using higher-order features will terminate.

28

Chapter 7

Technical Details

In this chapter we shall present the technical details of the simple higher-order
analysis and of the grammar-based analysis including the use of binding-time and
single-threaded information. First, we define a partial evaluation semantics and
a partial evaluation transition semantics, then we give the analyses as abstract
versions of these.

Since this thesis focus on the practical application of the analysis, we do not
give a formal proofs for the safety of analyses. We only state the safety condition.

Before reading this chapter, we recommend that you read Chapter 5, which
gives the necessary background.

7.1 The Basis of the Analyses

Domains. We define the following domains:

\Y = BaseValue + Fname x V*
Func = V¥V

Fenv. = Fname — Func

Trans = Fname X Fname — IP(Func*)

An element in the value domain V can either be a base value or a closure (rep-
resented by a function name and a tuple of values). We use FO and Clo (short
for “first order” and “closure”) to denote a left hand respectively a right hand
member of the sum.

The function domain Func consist of functions from tuples of values into
values. The function environment Fenv maps function names to functions in
Func.

Trans is the domain of transitions. A transition consists of two function
names; the caller f and the callee g, and a tuple of functions: {(p1,..., @)
The transition denotes a transfer of control from f to g, where ¢; expresses
the value of the ith argument to g as a function of f’s variables. The tuple

29

describes both the free and the lambda bound variables in g. The free variables
are described by ¢1,...,9p) and the lambda bound variables are described
by ©fu(g)+1s - - - » Po(g)+arity(g), Where fu(g) and arity(g) are the number of free
respectively lambda-bound variables in g. We use the Hoare powerdomain so
that we can collect more than one transition between the same two functions.

For notational convenience we define function composition o on Func and
Func* in the obvious way:

o: Func x Func* — Func

Qo (Y1, sUn) = Ap.o (h1p, ..., Ynp)

o: Func* x Func* — Func*
<<P17---a80n>°¢:<€01°¢,---aﬁpn0¢>

The Size of Data Objects. We assume that (V,C) is a flat domain and the
size relation (V,<) is finitely downwards closed, and that it obeys the domain
ordering (i.e., Vz € V: L < z.).

Structured values (i.e., S-expressions) are ordered by inclusion; that is, Vz €
V iz < cons(z,...), < cons(...,x) and the transitive extension hereof.

The size relation on closures is defined pointwise; that is, Vf € Fname, V1,

ey Ty Y1y -y Yn € Vi Clo(f,{z1,...,24)) < Clo(f, (y1, ---, yn)) iff Vj €

{1,...,n} 1 z; <y,

Since we treat closures like data structures, we also define the following rela-
tion: Vf € Fname,Vz € V: 2z < Clo(f,(...,x,...)) and the transitive extension
hereof.

The Partial Evaluation Semantics. Figure 5 defines evaluation of annotated
expressions. | denotes that the function is undefined, which means that it either
loops, terminates abnormally with an error, or that the return value is dynamic.
We do not distinguish between the three.

A more detailed partial evaluation semantics would generate code for residual
expressions; either as a side effect or as the return value; for example, A-mix
[Jones et al.,; 1993, Chapter 8].

For static expressions the function PE defines evaluation in the usual way.
To emphasize that we are interested in the function (from environment to value)
an expression represents, we have moved p to the righthand side of the equality
sign.

The meaning of a variable z; ; is the selector function 7;, which returns the
jth element of a tuple. Base operators are given meaning by the oracle O, and
the use of a base operator o is the composition of O(0) with the tuple of functions
describing the operands. The remaining expressions are handled in the usual way.

30

PE : Exp — Fenv — Func

PE[c|¢ = Mp.FO(c)

’PS[[:UZJ]]qb Uy

PElo(e, ... en)]d O(o) o (PE[e1]d, ..., PEen] o)

PE[Clo(fi,{e1,-.-,en))]o = Ap.Clo(f;, (PE[eildp, ..., PElen]dp))

PE[if e1 ez e3]¢ Ap.if PElei]op then PEex]dp else PE[es]pp

PE[[@ (61,.. .,en)]](b =)\pﬁb(fz) <U17-- -vvm7pg[[el]]¢p7"' 7P5[[€n]]¢p>7
where Clo(f;, (v1,...,vm)) = PE[e]op

PE[lift e]d =

735[[£i,j]]¢

PElo(er, ... eq)]o
PE[Clo(fi, (€1, - - -, en))]d
Pg[[i €1 €2 63]]¢

PEle Q (e1,...,en)]d =

I

I

FEEEEE

pe, = fir Ap.[fi = PE[ei]d | fi(-..)(--.) = e € p]

Figure 5: Partial Evaluation Semantics

The Partial Evaluation Transition Semantics. The function CPE, (Col-
lecting Partial Evaluation) in Figure 6 will, given the (annotated) body of f;, the
function environment and the variable environment, collect the 1-step transitions
that originate from f;.

The interesting entries are the rules for the creation of closures, conditionals,
and applications.

e During partial evaluation of a residual creation of a closure Clo(f;,...),
a transition to f; occurs, because the specializer evaluates the body of f;
(yielding a reduced expression). To model this behavior we collect a tran-
sition from the calling function to f; in which the lambda-bound variables
are described by L (because they are dynamic; confer with the DynClo rule
in Figure 3 in Chapter 2).

e Partial evaluation of a static creation of a closure does not immediately
lead to a transition, because the body of the closure is not evaluated until
the closure is applied.

e When a static conditional is specialized, only one of the branches will be
executed, whereas both branches of a residual conditional are executed.

e Specialization of a static application involves a transfer of control, whereas
the specialization of a residual application does not.

31

CPE, : Exp — Fenv — V* — Trans

CPE g[cl¢p = {}

CPE 1, [lift e]op = CPEyle]op
CPE[zilop = {}

CPE [z ;1o = {}

C'Pgﬂ [[0(61’ SRR en)]]¢ﬂ = I—lj C'Pgﬂ [[6j]]¢p
CPE pfoler, ... en)]dp = L CPE[e;lop

CPEL[Clo(fj,{e1;---,en))]dp = Ui CPEy[ex]dp
CPE [Clo(fj, (e1s-- - en))ldp =

Uk CPE lexlén U [(fi £) = (PElerld, .., PElenld, L., L)]
CPE [lif e1 es es]dp =

CPEsler]dp U if PEler]pp then CPE s ex]pp else CPE s es]op
CPE LI er ez es]¢p = U CPE[e;lop
C’Pé'fi[[e (61, ey en)]]qbp =

CPEs[elép U U;CPE s [ejl¢p

U[{fi, [;) = (Apv1, ..., Ap.o, PE[ea]d, . . ., PE[en] d)]

where Clo(f;, (v1,...,vm)) = PE[e]opp
C'P(‘:fi [[6 Q (61, SRR en)]]d)p = Cpgfi [[6]](;5p L I—Ij C'P(‘:fi IIej]]¢p

where T = CPEy [ei]ép and f;(...)(...) =e;

tT'O,’I'LSp’p = ﬁ.Z')‘T(Tﬁ (pepa P) U [(fla fk> — E o @ ‘ .
[(fzaf]) — tl]a [<f]afk> = t2] S Ta@ € tlaw € tQ])
transy, = LUyev\{Lyn transy,,

Figure 6: Transition Semantics for Partial Evaluation

The function 7Ty, will, given the function environment and the variable environ-
ment, collect the 1-step transitions from f; and its descendents. Thus T, (pey, p)
is the set of 1-step transitions for the input p, and trans, , is the transitive closure
of these. The set of all transitions defined by the program (trans,) is found by
taking the union of trans, , for all input.

7.2 The Simple Higher-Order Analysis

In this section we define the simple higher-order analysis. We start by defining
the abstract domains, then the concretization functions, and finally an abstract
version of the partial evaluation semantics and of the transition semantics.

32

Dependency. The domain Dep, which will be used to describe general de-
pendency (both data dependency and control dependency) is built of on top of
De,:

De, ={Ll} U {1,...,n}

De, is a flat domain. For a given program, that uses the arities 7y,...,%,, the
domain Dep is defined as the sum of the Hoare powerdomains of the relevant
De,’s:

Dep = P(De;,) + ...+ IP(De;,),

Size. Similarly to the Dep domain, Size is defined on top of Si,, which in turn
is built on top of De,:

Sip = {1} U {Dn(i) [7 € Den \ {L}} U {En(i) |2 € Dey \{L}} U {I.}

Si, has the following ordering: Vi € De, \ {L} : L C D,(:i) C E,(i) C IL,. For
a given program, that uses the arities iq,...,%,, we define the domain Size as
follows:

In the following we leave out the subscripts on E, D, and I where the meaning
is clear from the context.

AbsTrans. Like the name suggest AbsTrans abstract the Trans domain. Recall
that a transition is a tuple of functions (¢1,...,%,). An abstract transition
consists of a two tuples, a size and a dependency tuple, which abstracts the
functions ¢ to ¢,.

AbsTrans = Fname x Fname — IP(Size* x Dep*)

Concretization Functions. First, we define the selection function sel, which
takes a dependency descriptor (i € De,,) and a value tuple T and returns the set
of values in T which ¢ refers to.

sel : De, x V" — P (V)
sel(L,7) = {}
sel(i,7) = {m(T)}

33

Concretization of a Size value is the least upper bound of the concretization of
the maximal elements:

ConSize : Size — P(V* = V)
ConSize(s) = Uyes ConS(o)

ConS : Si, = P(V" = V)

ConS(L) = {}

ConS(D,(7)) = {pe V"=V |V e (V\{L})":Vy € sel(i,T) : p(T) < y}
ConS(En(i)) = {pe V=V Ve (V\{L})":Vy € sel(i,T) : ¢(T) < y}
ConS (I, = V'V

Similarly for the concretization of Dep values:

ConDep : Dep — P(V" = V)
ConDep(d) = Useq ConD(9)

ConD : De, — P(V* = V)

ConD(Ll) = {}

ConD(i) = {6 V"=V |Vze (V\{L}": &é(T) does not depend
on any value in T except those in sel(i,7)}

Concretization of an abstract transition is defined as follows:

ConAbsT : AbsTrans — Trans

ConAbsT(0) = UKf, g) = (@1, n) | [(f,9) = 7] €0,
({(S1y---y8n), {d1,...,dy)) €T,
©; € ConSize(s;) N ConDep(d;)]

Simple Size Analysis. The simple size analysis, which is an abstract version of
the partial evaluation semantics, is given in Figure 7. Since the analysis does not
take the binding times of the program into account, it is defined on unannotated
expressions. When comparing the abstract version with the original one, you
just have to keep in mind that every entry (except constant) abstracts two cases.
This is safe, if imprecise (recall that residual expressions evaluate to).

A constant’s relation to the variables is in general unknown, thus it is given
the size description I. The variable z; ; is equal to the jth element in the environ-
ment, and is therefore described by E(j). The size behavior of a base operator is
looked up in OS and composed with the operand tuple. The definition of OS is
straightforward: OS(cons) = I, OS(hd) = D(1), etc. The creation of a closure
is described by I, which is natural since it builds something. For conditionals the
least upper bound of the two branches are taken as usual.

For applications: Given the set of possible closures the lefthand expression
can evaluate to, the least upper bound of the closure bodies composed with a
tuple describing the variables in the body are taken. The first elements of the

34

S : Exp — (Fname — Size) — Size

S[c]é =1

Slzi;]é = E()

Slo(e, ..., e,)]d = 0S8(0) o* (S[e1], . .., S[en]o)
S[Clo(f,{e1,...,ex))]o = 1

S[if e1 es €3] = Sles]o U S[es]s

Sle (en,renls = L{O() & (L., LS[ex] -, Sleal) |

f € labels(e), f # FO, arity(f) = n}

sizep, = fitAg.[fi — Sleilo | fi(..)(...) = e € p]

Figure 7: Simple Size Analysis

tuple describe the free variables in the closure. The rest of the tuple describes the
lambda-bound variables. The free variable’s relation to the current environment is
in general unknown, so they are described by I. We ignore the possible application
of closures of the wrong arity (and the application of first-order values) since this
error situation can be caught at specialization time. The function labels returns
the labels a given expression may evaluate to. It is defined by the closure analysis.

Composition (of) of Size values is defined as follows:

_of : Size* x Size* — Size*
($1,...,8,) 0" S = (5108 S,... 8,0"S)

_of :Size x Size* — Size
508 S = ||, 00" S

_of :Si, x Size™ — Size

1, ifo=_1Lor3di:m(S)=1L
of g — LI{ decrease(o’) | o' € m;i(S)}, if o = D(q)
7= m(s), if o = E(4)
I, ifo=1

decrease : Si,, — Si,
decrease(o) = { D(§), if o = E(9)

o, otherwise

35

Simple Dependency Analysis. The simple dependency analysis is given in
Figure 8. Constants do not depend on any variables, a variable depends on
itself, base operators are treated like in the size analysis, the creation of a closure
Clo(f,{e1,--.,en)) depends on the variables found in the expressions e; to e,
conditionals depend on all the variable found in the expression, and applications
are treated like in the size analysis, except that the free variables are described
by the dependency of the lefthand expression.

D : Exp — (Fname — Dep) — Dep

Dfc]y = {}

Dl ;] = {j}

Dlo(er, ..., ex)]v = OD(o) o (D[er]t), . .., D]en]t)
D[Clo(f,{e1,---en))]¥ = Ui Dlei]v

D[if e e es]v = Dle]v U Dlex]yy U Dles]v

Dle (e1,---,en)]0 =
U{¢(f) Oﬂ (D[[e]]w’ s ’D[[e]]w’ Dﬂel]]w’ Tt D[[&n]]lﬁ> |
f € labels(e), f # FO, arity(f) = n}

dep, = fir p.[fi = Dles] | fi(-.)(...) = e; € p]

Figure 8: Simple Dependency Analysis

Composition of Dep values is straightforward:

_of _: Dep* x Dep* — Dep*
(dy,...,dy)o* D={(d, o*D,...,d,o" D)

of:Dep x Depx — Dep
dof D = |]seq6 0" D

of:De, x Dep™ — Dep
1, fé=Llordi:d;=1
f = ’ Z
6o*(d,...,dy) { ds, otherwise

Simple Transition Collection. The simple transition collection is shown in
Figure 9. The creation of a closure gives rise to a transition because the spe-
cializer evaluates the body of dynamic abstractions. An application gives rise
to a transition for each closure that can flow to the expression (again we ignore

36

CS, : Exp — (Fname — Size) — (Fname — Dep) — AbsTrans

CSylcloy = {}
CSfi [[0(61, SRR en)]](W = L CSfi [[ek]]¢w
CSf—;[[ClO(fj’ (61,) 6n>)]]¢¢ =

U CSy.[ex]ov

U[{fi, fi) — ((Seilld, - .., S[enlo, L, ..., L),
(Dlel], ..., Dleq]v, L, ..., L))]
CSyllif e1 ez es]d = U CSplex]oy
CSyle (e1,...,en)]o0 =
CSpleloy U U CSylex]ow L
L[{fi, fi) — ({,...,L,S[ei], - - ., S[en]d),
<D[[€]]¢, ce ’D[[e]]w: Dﬂel]]wa te ’Dﬂen]]’(p)) |
[€ labels(e), f; # FO, arity(f;) = n]

I-atrans, = |1;CSy,[es] size, depy,
where f;(...)(...) = e; € p, and f; is reachable

atrans, = fig\0.([{fi, fx) — SDo o SD1 | [{fi, ;) — 7], [{[j, f&) — T2] € 6,
SD, € 11,5Dy € 1] Ul 1-atrans,)

Figure 9: Simple Transition Collection

closures of the wrong arity). The transition’s size and dependency tuples are
defined precisely as in the size and the dependency analysis.

1-atrans, is an approximation of the 1l-step transitions in the program (for
any input), and atrans, is the transitive closure of these. Composition of two
size-dep value is defined as follows:

_of _: (Size* x Dep*) x (Size* x Dep*) — (Size* x Dep*)
(Sl, Dl) Ou (52, DQ) = (Sl OIj SQ, Dl OIj Dg)

Simple Termination Analysis. We use the result of the simple transition
collection to determine which variables may be in situ increasing and which are
guaranteed to be in situ decreasing: Given the endotransitions 7 € atrans,(f;, fi)
we classify the variable z; ; as

e in situ increasing, if 3(S, D) € 7, 3I € 1;(S), and 3j € 7;(D)
e in situ decreasing, if V(S, D) € 7,Vo € 71;(S) : ¢ C D(j).

Based on this approximation we can apply the three step algorithm described
in Chapter 4 to generalize “offending” variables.

37

Safety. The condition for checking that the simple transition collection is safe
with respect to the transition semantics is given below:

trans, C ConAbsT (atrans,)

Verifying the condition amounts to checking each entry in the simple transition
collection against the transition semantics for partial evaluation, and to check that
size, and dep, safely abstracts pe,; that is, for each function f in the program:

pe,(f) € ConSize(sizey(f))
pe,(f) € ConDep(depy(f))

This, in turn, amounts to checking each entry in the simple size and simple
dependency analyses against the partial evaluation semantics, and to check that
of is a safe abstraction of o.

7.3 The Grammar-Based Analysis

In this section we define the grammar-based analysis. We do this by redefining
the abstract domains and some of the semantic functions given in the previous
section.

Dependency. The De, domains are extended with selectors of the form (i f j),
where ¢ is an argument position, f is a lambda label, and j refers to the jth free
variable in f.

De,={Ll} U {i,....,.n} U{(E fj)|1<i<n, f€Fname, 1<j<fu(f)}

De,, is ordered as follows: Vi € {1,...,n},Vf € Fname,Vj € {1,...,fv(f)} :
1L C (¢ fj) Ci. Dep is still defined as the sum of the Hoare powerdomains of
the relevant De,’s:

Dep = IP(De;,) + ...+ IP(De;,),

Size. The definition of Si, is unchanged, but the domain is different:

Sip = {L} U {Dn(9) | d € De, \ {L1}} U {En(9) [d € Den \ {L}} U {1}

38

Si, has the following ordering: Vi € {1,...,n},Vf € Fname,Vj € {1,..., fu(f)} :

L,

En (1)

RN

Dn (i) En(i f j)

/

Dn(i fj

L

The definition of Size is unchanged:

Size = IP(Si;,) + ... + IP(Si;,),

Grammars. The domains used in the grammar-based analysis are defined as
follows (the domains are described in Chapter 5):

Label = Fname U {FO}
SizeDep~ = IP(Label x Size x Dep)
Gram = Label — (SizeDep™)*
SizeDep = SizeDep x Gram

AbsTrans = Fname X Fname — IP(SizeDep)

Concretization Functions. We redefine sel to match the new definition of
the De, domain:

sel : De, x V* — P(V)

sel(L,7) = {}

sel(i,T) = {m(T)}

sel(i f 3,7) = {y; | for all Clo(f, (y1,...,yn)) in m(T)}

That one value x is “in” another value y, means that x is either equal to y or a
substructure hereof.!

[13999))

!The relation “in” is the same as the “less than or equal” (<) relation. However, we define

[3P9})

sel based on “in”, so that we can change the < relation without affecting sel.

39

The concretization function Con from SizeDep to P (Func) is defined as follows
(a denotes a SizeDep~ value):

Con : SizeDep — P(V* = V)

Con(a,G) = Con/(e, fix ConG(Q))
Con'(a, ®) = Uygsayea(ConSize(s) N ConDep(d) N @(1))

Con@G : Gram — (Label — P(V"® — V)) — (Label — P(V" — V))
ConG([lh— (.., -, bLn—=> ()] =1; ConG'(l; — {(...))P

ConG'(FO — ())®=[FO—~{p e V"=V VT e (V\{L}H":¢(T) =FO()}]
ConG'(f = {aq,...,an))® =
[f = {pe V"=V | I e Con'(a;, @) : VT € (V\ {L})":
¢(@) = Clo(f, (¢1(2), - - -, ¥m()))}]

Concretization of a SizeDep value is defined as taking the union of the concretiza-
tions of the (Label, Size, Dep) triples found in the value. Concretization of a given
triple is the intersection of the functions produced by the size information, the
dependency information, and the grammar.

The definition of ConSize and ConDep are the same as in the previous section.
Recall that they are based on the sel function.

For a given grammar G we define the set of functions it represents as a fixpoint
of the sequence ®g, @1, ..., where ®;(/) for some label [is the set of functions that
return an [-value whose maximum closure-nesting depth is :.

ConG processes each production in the grammar in turn and joins the results.
ConG' takes one production [+ ... and returns a mapping from [to the set of
functions it may produce. In the case of a FO label, ConG' returns a mapping
from FO to the set of functions that return a first order value. In the case a map-
ping from a closure label to a description of its free variables (f — (a1, ..., am)),
ConG' returns those functions that return an f-closure Clo(f, {(y1,- - ., Ym)), where
y; is the return value of some function in Con(q;, ®).

Example 7.1 Consider again the abstract value from Chapter 5 (stripped of size
and dependency information):

{h}, = {FOY AL LY, Lo ()]

The first few iterations of the fixpoint are shown below (without size and depen-

40

dency information):

(I)O = [FO — ¢faa 12 —> ¢2]
D, = [FO = ¢p, la ¢,
Iy — {¢ evt >V | E|¢1 S (D()(FO), awg € q)o(lg) :
vz € (VA{L}H": ¢(z) = Clo(l, (¢1(Z), ¥2(7)))}]
Dy = [FO = ¢po, lp = o,

s {6 € VP =V | Fhy € 1(FO), Ty € B1(ls) U Dy (1) -
vz € (VA {L})": ¢(Z) = Clo(l, (v1(Z), ¥2(T)))}]

¢ro = {o €V >V [V e (V\{L})":¢(x)=FO()}
¢y = {0V =V |Vze (V\{L}H)": =

3
ASS
—

3]
N—r
|
Q
—
o
—
]
v
N
<
N—r
——

Concretization of an AbsTrans value is defined as follows:

ConAbsT : AbsTrans — Trans

CO’rLAbST(e) = |_|[<f7 g> = <Q017 ER ,Q0n> | [<f, g> = <$17 ER ,$n>] € 07
i € Con(z;)]

Size and Dependency Analysis. First we define an abstract analogue to the
selection function sel given above:

sel’ : De,, x SizeDep™ — SizeDep

sel*(L, X) = 1
sel*(i, X) = m(X)
selt(i f j, X) = normalize(oigj), Gi)
where ((a1,G1),..., (0, Gp)) =X

[. . .,f — <C¥(Z’f1), .. -,a(z’fm)>a e] = GZ

normalize : SizeDep — SizeDep
normalize(a, G) = (o, G|L)
where L= {l|(l,_,) € a} U
{'|leL{,...,an)=G(),{l'_,) € oy}

sel*(i f j,X) selects the SizeDep~ value, which is the jth element of the tuple
Gi(f), where G; is the grammar of the ith element of X. The SizeDep~ value is
paired with a normalized version of GG;. The function normalize selects the labels
from the grammar that are reachable, directly or indirectly. The notation G|
means the grammar restricted to the labels in L.

Figure 10 defines the grammar-based size and dependency analysis. The size
and the dependency analyses are performed simultaneously, because it is easier

41

SD : Exp — (Fnames — SizeDep) — SizeDep

SD[c|¢ = (FO,L{}),[FO ~ ()]
SD[zi;l¢ id(zi ;)
SD[o(er, en)]6 OSD(0) & ((SD[er]d)lro, - - - (SD[en]d) o)
SDHCZO(fZa <617"'€n>)]]¢ giala I-I(l,s,d)Ea d>a
L

[fi = (SD[e1]¢dlsisenep-» - - - SP[en]|#l sizenep-)];
where (o, G) = L|; SD[e;]¢

SDHZf el €s 63]]¢ = (|_|{<l, S, dy U d2> | <l,8,d1> € al}),Gl
where
(Oél,Gl =SD|I€2]]¢ L SD[[eg]]QS

)
(a2, G2) = SD[e1]¢ U SD[ex]¢ U SDles]¢
do = L¢, dycar d

SDJe (e1,...,e,)]0 = { o) of (@11, s Ty Y1, - - > Yn) |
(I,,) € a, l #£ FO,arity(l) = n}
where («, Q) = SDJe]¢
<O,/l1,...,0qm> = G(l)
Tui = normalize(ay;, G)
SD[e]¢ = 1

sizedep, = fir A.[fi = SDlei]d | fi(...)(...) = e € p]

Figure 10: Combined Size and Dependency Analysis

to maintain one grammar augmented with size and dependency information than
two grammars with size respectively dependency information.

Like in the simple analysis constants are marked as increasing and depending
on no variables.

In the partial evaluation semantics a variable is interpreted as a selector pick-
ing a value from the environment tuple. In this analysis a variable is interpreted
as an abstraction of this projection as well as a description of the structure of
the value; basically it is a grammar where each part describes that it is equal to
itself. For the jth variable in the ith function, id builds this SizeDep value as
follows:

id(z;j) = normalize(o, Gan)
where o = {(,E(j),j) | | € labels(x;;)}
Gur = Ullg — {1, -- -, arm) | for all labels [;]

Orp = {(l,E(] lk h), (_7 lk h,)> ‘ = labels(xk,h)}

42

In the rule for base operators the notation |rg is used to restrict SizeDep values
to first-order values; that is, (o, G)|ro = ({{I,s,d) | {I,s,d) € a,1 = FO},[FO —
()]). OSD maps operators to their SizeDep descriptions.

The creation of a f;-closure is described by a SizeDep value whose grammar
maps f; to a tuple of SizeDep~ values describing the free variables. Since the free
variables may contain closures as well, their grammars are collected.

For conditionals size information are collected from the branches and depen-
dency information are collected from all three subexpressions.

For an application e(ey, ..., e,) we apply each possible closure e can evaluate
to to the value of the argument tuple (ey, ..., e,) and take the least upper bound
of the results. Each closure consist of a label and a description of its free variables.
The label is looked up in the function environment and composed with a tuple
describing both the free and the bound variables.

Since the grammar-based analysis take the binding-times into account, all
residual expressions (including lift) evaluates to L.

Composition of SizeDep values is defined as follows:

ot : SizeDep* x SizeDep* — SizeDep*
(1,0, @) Y = (210 Y, 1y OFY)

of : SizeDep x SizeDep* — SizeDep
oY — 1, ifz=_lordi:ml)=1
| (compSD(lsizenep-,Y), compG(z,Y)), otherwise

compSD : SizeDep~ x SizeDep* — SizeDep~
compSD(a, X) = LI{{L, Use,compS(, X), UseacompD(8, X)) | (I,5,d) € a}

compsS : Siy, x SizeDep™ — IP(Si,,)

compS (L, X) = 1

compS(D(8),X) = U{decrease(o) | (_,s,.) € sel* (6, X)!simepep->0 € s}
compS(E((S),X) = U{S | <—a Sa_> € Selﬁ(aX)~LSizeDep—}

compS(I, X) = {I}

compD : De,, — SizeDep"™ — IP(De,)
compD((S, X) = I_l{d | <—a) d> € Seln (55 X)J/SizeDep—}

compG : SizeDep x SizeDep* — Gram
compG((a, G), X) = [..., 1= {yns-- s Yum),---] U
compG' (o, X) U compG'(ay;, X)
where y; = compSD(ay;, X)
L. 0=, .;oqm),...] =G
compG' (o, X) = {sel’(6, X)lgram | (L _,d) € a, 8 € d}

43

Composition is split up into composition of size (compS), dependency (compD)
and grammars (compQG).

Composition of the Si, value E(d) with a SizeDep tuple, as defined by compS,
is the least upper bound of the size elements that d select from the tuple. D(d)
is treated similarly except that weakly decreasing functions in the SizeDep tuple
becomes decreasing instead of remaining weakly decreasing.

The function compD simply takes the least upper bound of the dependency
values that the De, value selects.

The compG function builds a grammar that describes the result of the compo-
sition. The grammar has the same shape as the grammar describing the result of
the function, but where the grammar of the function described the result relative
to the arguments of the function the grammar for the result of the application
must describe the result relative to the environment at the call site, so all the
sizes and the dependencies are adjusted by composing them with the argument
tuple. To this we add the grammars from the parts of the arguments that the
result is build from.

Transition Collection. Figure 11 defines the transition collection used in the
grammar-based analysis.

The interesting entries in the abstract semantics are those for the generation
of closures and applications. The rest are straightforward.

Notice how static closure creation match static application, and residual clo-
sure creation match residual application. A static closure creation gives rise to
transitions at application time and not at creation time, where as residual closure
creation contribute at creation time but not when applied.

Residual closure creation yields a transition where the free variables are de-
scribed by §DJe;]#, and the lambda-bound, since they are dynamic, are described
by L.

A static application gives rise to a transition for each closure of the right
arity. The description of the free variables are taken from the grammar describing
the closure and the description of the lambda-bound variables from the actual
arguments.

Single-Threaded Lambdas. Extending the analysis to use information about
single-threaded lambdas is easy. Given the set of single-threaded lambdas whose
lambda-bound variables are dynamic st, we can improve the result of the analysis
as follows: First, we annotate the lambdas in st as being single threaded, then we
update the transition collection to use the residual closure rule for these lambdas
as well (incidentally the residual closure rule does the job — it collects the calls
under the lambda). Finally, we update the static application rule to ignore the

44

CS, : Exp — (Fname — SizeDep) — AbsTrans

CSy[c]é = {}

CSpllift elo = CSylelo
CSy i lo = {}

CSy, [[L',j]](/ﬁ = {}

CSfi [[0(61’ R 6n)]]¢ = I—Ij Csz [[ej]]¢
CSyloler, ... en)]o = U;CSyle;lo
CSfi[[Clo(fja <€17 RN en))]]¢ = Lk CSfi [[ek]]qs

CSfi [[@(fja <€17 SR en>)]]¢ = L C‘S.fi[[elc]]q5 L
[({fi, f;) — (SD[ei]o,...,SD[ey]o, L, ..., 1)]

CSyllif e1 ez es]o = U;CSyleilo
CSpluf er ez es]d = U;CSgleile
CSfi [[6 (61’ SRR en)]]d) = CSfl [[6]]¢ L |_|j CSfl [[6j]]¢ U

Ll[<fzal> — <xl1a"'axlmayla"'ayn> |
(I, ,)€a l#FO,arity(l) = n]

where (a, G) = SD[e]¢
(a”, ceey a’lm> = G(l)
Tii = normalize(ay, G)
Yi = SD[ei]¢
CSyle Q (e,...,e,)]0 = CSylele U U;CSy el

1-atrans, = |l;CSy,[e]sizedep,, where f;(...)(...) =e € p, and f; is reachable
atrans, = fix \0.([{fi, fr) = SDoo* SDy | [{fi, f;) = 7], [{[fs> fx) — T2] €6,
SDy € 1, SDy € 7] U 1-atrans,)

Figure 11: Transition Collection

lambdas in st:

CSyle (e1,...,en)]¢ = CSyle]o U L;CSyle;]o L
|_|[<flal> — <$l17"':xlm,y1a"'7yn> |
(I, ,)€ea, l#FO, | &st, arity(l) = n]

where ...

Termination Analysis. The abstract transitions collected above is used to
classify variables as in situ decreasing respectively in situ increasing. Given the
endotransition 7 € atrans,(f;, fi) we classify the variable z; ; as

e in situ increasing, if 35D € 7 A 3(_, s,d) € mj(SD), whereI € sAj € d.

e as in situ decreasing, if VSD € 1, V(_, s,) € m;(SD),Vo € s :
o CD(j) V 3f € Fname, k € {1,...,fu(f)} : 0 CTE(f k).

45

It is obvious that z;; is in situ decreasing if it is described by D(j). It is less
obvious that the abstract value E(j f k) also guarantees this. Recall that E(j f k)
means that value is weakly decreasing of the kth free variable in an f-closure taken
from z; ;. Since the size ordering (<) treats closure as data structures, E(j f k)
describes a substructure of z; ;, which implies that z; ; is in situ decreasing.

Based on this approximation we can apply the three step algorithm described
in Chapter 4 to generalize “offending” variables.

Safety. The condition for checking the safety of the grammar-based transition
collection with respect to the transition semantics is given below:

trans, T ConAbsT (atrans,)

7.4 Summary

We have defined a partial evaluation semantics, which defines the evaluation
of static expressions, and a transition semantics for partial evaluation, which
describes the data flow during partial evaluation of an annotated program given
the values of static input.

We have given the details of the simple analysis and of the grammar-based
analysis. The former includes a size analysis, a dependency analysis, a transition
collection, and a termination analysis. The latter includes a combined size and
dependency analysis, a transition collection, and a termination analysis.

We have showed how information about binding times and single threadedness
can be used to improve the result of the analysis.

46

Chapter 8

Conclusion

8.1 Related Work

Offline Approaches. Jones, Gomard and Sestoft [Jones et al., 1993] present

a termination analysis for a flowchart language, and [Glenstrup and Jones, 1996]

give efficient algorithms for implementing a termination analysis for a tail-recursive
first-order language. Both analyses use techniques similar to ours to reason about

increasing and decreasing variables. However, where we classify variables that

may be unbounded as dynamic until no changes occur, they start by a division of
dubious and dynamic variables, and classify dubious variables as static when they

can be guaranteed to be bounded, and in the end classify the remaining dubious

variables as dynamic. Loosely, one can say that they approach the fixpoint from
the bottom, where we approach it from the top. It is unclear whether we end up

with the same fixpoint.

Online Approaches. Most online strategies work by comparing the static data
at recursive calls (or the equivalent in other languages) with the values previously
seen at the same program point. If the analysis cannot guarantee that specializa-
tion with respect to the static data will terminate then one or more generalizations
are made on the fly.

Online termination strategies are used in supercompilation [Turchin, 1986,
Sgrensen and Gliick, 1995], partial evaluation of higher-order functional languages
[Katz and Weise, 92], and partial deduction [Leuschel and Martens, 1996,
[Gallagher and Lafave, 1996] — to mention a few.

The advantage of using an online approach instead of an offline, is that you
can take the actual values of the static data into account, and that you do not
have to consider both branches of static conditionals. However, the disadvantage
is that global flow-information is much harder to obtain.

It might be worthwhile to combine an offline and an online approach; that is,
the offline analysis points out “dangerous” variables, which the online analysis

47

monitors and generalizes if they seem to grow unboundedly.

8.2 Conclusion

We have extended the first-order analysis of [Holst, 1991] to the higher order case,
thereby taking an step towards fully automatic partial evaluation of higher-order
functional languages. Our analysis is strong enough to handle values flowing
in and out of closures, however the analysis sometimes fail to recognize in situ
decreasing parameters due to the inevitable aliasing, which is necessary to obtain
a finite description.

The analysis has been developed hand in hand with our experimental imple-
mentation of the analysis. This has made it possible for us to focus on practical
usefulness, in the sense that the analysis should be strong enough to handle a
large class of interesting programs. The focus has not been on speed, elegance, or
an extensive correctness proof. In our opinion this has been an essential choice.
We had to go through four major revisions of the analysis before our implemen-
tation was capable of handling a sufficiently large class of interesting programs
to be of interest in a real partial evaluator. Our experiments with the implemen-
tation of the analysis on interpreters written in different styles indicates, that
the analysis is precise enough. The current implementation is too slow to be of
use on programs of realistic size, but in our opinion we are not up against any
inherent complexity problem; just a slow implementation.

8.3 Future Work

The techniques presented in this thesis rely heavily on the use of finitely down-
wards closed domains in the subject program, and it is not clear how they can
be extended to domains, that do not have a natural well-founded size ordering.

The extension to structured data-types is straightforward, e.g., for pairs sim-
ply add a label for each cons in the program and collect the size information
using the same techniques as for closures.

Before the analysis can be integrated into Similix efficient algorithms must
be developed. We expect that the algorithms of Jones and Glenstrup can be
extended to serve this purpose.

48

Bibliography

[Andersen, 1993] Lars Ole Andersen. Binding-time analysis and the taming of C
pointers. In David Schmidt, editor, Proc. of ACM Symposium on Par-
tial Fvaluation and Semantics-Based Program Manipulation, PEPM’93,
pages 47-58, 1993.

[Andersen, 1994] Lars Ole Andersen. Program Analysis and Specialization for the
C Programming Language. PhD thesis, DIKU, University of Copenhagen,
May 1994. (DIKU report 94/19).

[Andersen and Holst, 1996] Peter Holst Andersen and Carsten Kehler Holst. Ter-
mination analysis for offline partial evaluation of a higher order functional

language. In Proceedings of the Third International Static Analysis Sym-
posium (SAS), 1996.

[Bondorf, 1991] Anders Bondorf. Automatic autoprojection of higher order re-
cursive equations. Science of Computer Programming, 17(1-3):3-34, De-
cember 1991. Selected papers of ESOP 90, the 3rd European Symposium
on Programming.

[Bondorf and Jgrgensen, 1993] Anders Bondorf and Jesper Jgrgensen. Efficient
analyses for realistic off-line partial evaluation: extended version. Tech-
nical Report 93/4, DIKU, University of Copenhagen, Denmark, 1993.

[Consel, 1993] Charles Consel. A tour of Schism: A partial evaluation system for
higher-order applicative languages. In David Schmidt, editor, ACM SIG-
PLAN Symposium on Partial Evaluation and Semantics Based Program
Manipulation, pages 145-154, June 1993.

[Consel and Danvy, 1989] Charles Consel and Olivier Danvy. Partial evaluation
of pattern matching in strings. Information Processing Letters, 30:79-86,
January 1989.

[Davey and Priestley, 1990] B. A. Davey and H. A. Priestley. Introduction to Lat-
tices and Order. Cambridge Mathematical Textbooks. Cambridge Uni-
versity Press, 1990.

49

[Gallagher and Lafave, 1996] John Gallagher and Laura Lafave. Regular approx-
imation of computation paths in logic and functional languages. In Partial
Evaluation, International Seminar, Dagsthul Castle, Germany, volume
1110, pages 263-283. Lecture Notes in Computer Science, February 1996.

[Glenstrup and Jones, 1996] Arne J. Glenstrup and Neil D. Jones. BTA algo-
rithms to ensure termination of off-line partial evaluation. In Andre:
Ershov Second International Conference “Perspectives of System Infor-
matics”. Lecture Notes in Computer Science, 1996. Upcoming.

[Holst, 1991] Carsten Kehler Holst. Finiteness analysis. In John Hughes, editor,
Functional Programming Languages and Computer Architectures, volume
523 of Lecture Notes in Computer Science, pages 473-495, Cambridge,
Massachusetts, USA, August 1991. ACM, Springer-Verlag.

[Jones and Muchnick, 1981] Neil D. Jones and Steven S. Muchnick. Flow anal-
ysis and optimization of Lisp-like structures. In Steven S. Muchnick and

Neil D. Jones, editors, Program Flow Analysis: Theory and Applications,
chapter 4, pages 102-131. Prentice-Hall, 1981.

[Jones and Nielson, 1994] Neil D. Jones and Flemming Nielson. Abstract inter-
pretation: a semantics-based tool for program analysis. In Handbook of
Logic in Computer Science. Oxford University Press, 1994. 527—629.

[Jones et al., 1993] Neil D. Jones, Carsten Gomard, and Peter Sestoft. Partial
FEvaluation and Automatic Program Generation. C.A.R. Hoare, Series
Editor. Prentice Hall International, International Series in Computer Sci-

ence, June 1993. ISBN number 0-13-020249-5 (pbk).

[Katz and Weise, 92] Morry Katz and Daniel Weise. Towards a new perspective
on partial evaluation. In Proceedings of the ACM SIGPLAN Workshop on
Partial FEvaluation and Semantics-Directed Program Manipulation, San
Francisco, June 92. ACM Press.

[Leuschel and Martens, 1996] Michael Leuschel and Bern Martens. Global con-
trol for partial deduction through characteristic atoms and global trees.
In Partial Evaluation, International Seminar, Dagsthul Castle, Germany,
volume 1110, pages 263-283. Lecture Notes in Computer Science, Febru-
ary 1996.

[Milner, 1978] R. Milner. A theory of type polymorphism in programming. Jour-
nal of Computer and System Sciences, 17:348-375, 1978.

[Rice, 1953] H.G. Rice. Classes of recursively enumerable sets and their decision
problems. Transaction of the AMS, 89:25-59, 1953.

50

[Sestoft, 1988] Peter Sestoft. Replacing function parameters by global variables.
Master’s thesis, DIKU, University of Copenhagen, Denmark, October
1988. 107 pages.

[Sim, 1995] Similix, 1995. Version 5.1. ftp://ftp.diku.dk/diku/users/
anders/Similix.tar.Z.

[Sgrensen and Gliick, 1995] Morten Heine Sgrensen and Robert Gliick. An al-
gorithm of generalization in positive supercompilation. In J.W. Lloyd,
editor, Logic Programming: Proceedings of the 1995 International Sym-
posium, pages 465-479. MIT Press, 1995.

[Turchin, 1986] V. F. Turchin. The concept of a supercompiler. ACM Transac-
tions on Programming Languages and Systems, 8(3):292-325, July 1986.

[Turner et al., 1995] David N. Turner, Philip Wadler, and Christian Mossin.
Once upon a type. In 7’th International Conference on Functional Pro-
gramming and Computer Architecture, pages 1-11, La Jolla, California,
June 1995. ACM Press.

51

Appendix A

Notational Conventions

This appendix describes (some of) the notational conventions used in this thesis.
They are mainly included for the author’s own reference. Note that some symbols
have more than one use.

Program texts are written in stalic. Residual expressions are underlined.

x denotes a variable. z;; denotes the jth argument to the ith function in a
program. e denotes an expression. f denotes a function name, which at the same
time serves as a lambda label. [denotes a label, which can either be FO or a
function name. o denotes a base operator. ¢ denotes a constant. p denotes a
program.

7 denotes a binding-time environment and ¢ denotes a binding-time type. C
denotes a configuration.

z,y € V ¢, € Func
T € V* ®,v € Func*
t € IP(Func*) T € Trans
€ Si, 1) € De,
S € Size d € Dep
S € Size* D € Dep*
« € SizeDep™ G € Gram
z,y € SizeDep X,Y € SizeDep*

T € IP(Size* x Dep*) T € IP(SizeDep*)
AbsTrans

s
m

52

Appendix B

Programs

This appendix lists the programs used in the experiments. Each program is ac-
companied by a brief description, the binding-time division of the goal function’s
parameters (the goal function is the first function), and information about the
binding times and single threadedness of the abstractions and applications. The
programs are shown in their unannotated form and before lambda lifting has
been performed.

Program 1. Myflatten. Flatten a list of lists — written in continuation
passing style.
Initial binding-time division: e: S. Both lambdas are single threaded.

flatten(e) = f(e,\c.c)
fle,c) = if eq(e,’nil) then c 'nil

else f(hd e,\c2.c (append(hd e,c2)))
append(zs,ys) = if eq(xs,’nil) then ys

else cons(hd xs,append(tl zs,ys))

Program 2. Kmp. A naive pattern matcher, which will produce a Knuth-
Morris-Pratt matcher when specialized.
Initial binding-time division: p: S, d: D. The program is first order.

kmp(p,d) = loop(p,d,p)
loop(p,d,pp) = if eq(p, ’nil) then ’yes

else if eq(d, nil) then ’no

else if eq(hd p,hd d) then loop(tl p,tl d,pp)

else if eq(p,pp) then kmp(p,tl d)

else loop1(p,d,pp,

statickmp (pp,tl pp,length(tl pp) + length(p)))

loop1(p,d,pp,np) = if eq(np,pp) then kmp(pp,tl d)

else loop(np,d,pp)

93

statickmp(p,d,n) = staticloop(p,d,n,p,d,n)
staticloop(p,d,n,pp,dd,nn) = if eq(n,0) then
if and(eq(nn,0),eq(hd p,tl d)) then
statickmp (pp,tl dd,subl nn)
else

y4
else

if eq(hd p,hd d) then
staticloop (hd p,hd d,subl n,pp,dd,nn)
else
statickmp(pp,tl dd,subl nn)
length(zs) = if eq(xs,’nil) then 0
else 1 + length(tl xs)

Program 3. Closure. Extracting a static value from a closure.
Initial binding-time division: z: S, y: D. None of the applications are dynamic,
the abstraction is static and single threaded.

f(z,y) = g(Az.hd z,y)
gley)=cy
h(z) = h(f(z,42))

Program 4. Fo. Interpreter for a first-order strict language with constants,
variables, conditionals, and let expressions. The environment is represented as a
function.

Initial binding-time division: e: S, v: D. All the abstractions and applications
are static. None of the lambdas are single threaded.

run(e,v) = int(e,Am.v)
int(e,r) = if eq(hd e,’Const) then hd(tl e)
else if eq(hd e,’Var) then r (hd(tl e))
else if eq(hd e,’Cons) then
cons(int(hd(tl e),r),int(hd(ti(tl e)),r))
else if eq(hd e,’If) then
if int(hd(tl e),r) then int(hd(ti(tl e)),r) else int(hd(tl(tl(tl €))),r)
else if eq(hd e,’Let) then — Let x el e2
int(hd(tl(tl(tl e))),upd(hd(tl e),int(hd(ti(tl e)),r),r))
else
"Error
upd(n,v,r) = Am.if eq(n,m) then v else r m

Program 5. Fo.func. Interpreter for a first-order strict language with con-
stants, variables, conditionals, let expressions, and functions. The environment

54

is represented as a name list and a value list. The program is a list of functions:

pgm = ((f1 (11 .- T1) €1) - (fn @Tm1 -+ Tonn) €m))
Initial binding-time division: e: S, p: S, v: D. The program is first order.

run(e,p,v) = int(e,cons(’z, nil),cons(v, nil),p)
int(e,ns,vs,p) = if eq(hd e,’Const) then hd(tl e)
else if eq(hd e,’Var) then lookupvar(hd(tl e),ns,vs)
else if eq(hd e,’Cons) then
cons(int(hd(tl e),ns,vs,p),int(hd(tl(tl €)),ns,vs,p))
else if eq(hd e,’If) then
if int(hd(tl e),ns,vs,p) then
int(hd(tl(tl e)),ns,vs,p)
else
int(hd(tl(tl(tl e))),ns,vs,p)
else if eq(hd e,’Let) then — (Let x el e2)
int(hd(tl(tl(tl e))),
cons(hd(tl e),ns),
cons(int(hd(tl(tl e)),ns,vs,p),vs),
p)
else if eq(hd e,’Call) then — (Call f (el €2 ... en))
int(lookupbody(hd(tl e),p),
lookupnames(hd(tl e),p),
intlist(hd(tl(tl e)),ns,vs,p),
p)
else
"Error
lookupvar(n,ns,vs)= if eq(n,hd ns) then hd vs
else lookupvar(n,tl ns,tl vs)
lookupbody(f,p) = if eq(f,hd(hd p)) then hd(ti(tl(hd p)))
else lookupbody(f,tl p)
lookupnames(f,p) = if eq(f,hd(hd p)) then hd(ti(hd p))
else lookupnames(f,tl p)
intlist(es,ns,vs,p) = if eq(es,’nil) then ’nil
else cons(int(hd es,ns,vs,p),intlist(tl es,ns,vs,p))

Program 6. Goto. An interpreter for a small goto-language consisting of the
following expressions: y, r=x+1, y=y+1, goto N, goto z, if t=0 then goto N,
if y=0 then goto N. The second argument to int is a list of expressions to be
evaluated.

Initial binding-time division: pgm: S, z: D, y: D. The program is first order.

run(pgm,z,y) = int(pgm,pgm,z,y)
int(pgm,e,z,y) = if eq(hd(hd e),’y) then y

95

else if eq(hd(hd ¢), ‘x=x+1) then int(pgm,tl e,cons(z,1),y)
else if eq(hd(hd ¢), 'y=y+1) then int(pgm,tl e,x,cons(y,1))
else if eq(hd(hd e), ’goto) then int(pgm,nth(pgm,hd(tl(hd €)),z,y)
else if eq(hd(hd e), ’gotox) then gotoz(pgm,z,y)
else if eq(hd(hd e), ’ift=0then) then
if eq(x,0) then int(pgm,nth(pgm,hd(tl(hd e)),z,y)
else int(pgm,tl e,z,y)
else if eq(hd(hd ¢), ’ify=0then) then
if eq(y,0) then int(pgm,nth(pgm,hd(tl(hd €)),z,y)
else int(pgm,tl e,z,y)

else
"Error
nth(zs,n) = if eq(xs, 'nil) then
zs
else
if eq(n,0) then
zs
else
nth(tl zs,n-1)
gotox(pgm,z,y) = gotozrl(pgm,pgm,z,y,1)
gotoxl(pgm,ptail,z,y,n) = if eq(ptail, 'nil) then
"Error
else
if eq(z,n) then
int(pgm,ptail,z,y)
else

gotox1(pgm,tl ptail,z,y,n+1)

Program 7. Goto.while An interpreter for the goto-language extended with
a loop construct: while z=0 do e.
Initial binding-time division: pgm: S, z: D, y: D. The program is first order.

run(pgm,z,y) = int(pgm,pgm,z,y)
int(pgm,e,x,y) = if eq(hd(hd e),’y) then y
else if eq(hd(hd e),’zt=x+1) then int(pgm,tl e,cons(x,1),y)
else if eq(hd(hd €),’y=y+1) then int(pgm,tl e,x,cons(y,1))
else if eq(hd(hd €),’goto) then int(pgm,tl e,nth(pgm,tl e),z,y)
else if eq(hd(hd e),’gotozx) then gotox(pgm,z,y)
else if eq(hd(hd e),’ift=0then) then
if eq(x,0) then int(pgm,nth(pgm,tl e),z,y)
else int(pgm,tl e,z,y)
else if eq(hd(hd e),’ify=0then) then

o6

if eq(y,0) then int(pgm,nth(pgm,tl e),z,y)
else int(pgm,tl e,z,y)
else if eq(hd(hd e), whilex=0do) then — ((whilex=0do el) ...)
if eq(,0) then int(pgm,cons(hd(tl(hd €)),e),z,y)
else int(pgm,tl e,z,y)

else
"Error
nth(zs,n) = if eq(xs, nil) then
zs
else
if eq(n,0) then
zs
else
nth(tl zs,n-1)
gotox(pgm,z,y) = gotozl(pgm,pgm,z,y,1)
gotoxl(pgm,ptail,x,y,n) = if eq(ptail, nil) then
"Error
else
if eq(x,n) then
int(pgm,ptail,z,y)
else

gotox1(pgm,tl ptail,z,y,n+1)

Program 8. Ho. An interpreter for a language with constants, variables, cons,
conditionals, abstraction, and application.

Initial binding-time division: e: §, v: D. The application and abstraction used
to implement the environment are static. The abstraction and application in the
last two cases in int are dynamic. None of the lambdas are single threaded.

run(e,v) = int(e,Am.v)
int(e,r) = if eq(hd e,’Const) then hd(tl e)
else if eq(hd e,’Var) then r (hd(tl e))
else if eq(hd e,’Cons) then cons(int(hd(tl e),r),int(hd(ti(tl e)),r))
else if eq(hd e,’If) then
if int(hd(tl e),r) then int(hd(tl(tl e)),r) else int(hd(tl(tl(tl €))),r)
else if eq(hd e,’Abs) then \z.int(hd(tl(tl e),upd(hd(tl e),z,r))
else (int(hd e,r)) (int(hd e,r))
upd(n,v,r) = Am.if eq(n,m) then v else r m

Program 9. Ho.cbn. An interpreter implementing call-by-name evaluation.
Initial binding-time division: e: §, v: D. The application and abstraction used

to implement the environment are static. The rest of the abstractions and appli-

cations in the program are dynamic. None of the lambdas are single threaded.

o7

run(e,v) = int(e,Am.v)
int(e,r) = if eq(hd e,’Const) then hd(tl e)
else if eq(hd e,’Var) then (r (hd(tl e))) ’foo
else if eq(hd e,’Cons) then cons(int(hd(tl e),r),int(hd(tl(tl e)),r))
else if eq(hd e,’If) then
if int(hd(tl e),r) then int(hd(ti(tl e)),r) else int(hd(tl(tl(tl €))),r)
else if eq(hd e,’Abs) then \z.int(hd(tl(tl e)),upd(hd(tl e),z,1))
else (int(hd(tl e),r)) Afoo.(int(hd(tl(tl e)),r))

upd(n,v,r) = Am.if eq(n,m) then v else r m

Program 10. Ho.cps. An interpreter for the same language used in “ho” —
written in continuation passing style.

Initial binding-time division: e: S, v: D. The application and abstraction
used to implement the environment are static. The continuations are static and
single threaded (the lambda-bound variables in the continuations are dynamic).
The rest of the abstractions and applications in the program are dynamic.

In order to get a good binding-time separation two eta-conversions must be
inserted (one in the branch for abstractions and one in the branch for applications)
[Bondorf, 1991]. These are not shown in the program below.

run(e,v) = int(e,Am.v,\z.x)
int(e,r,c) = if eq(hd e,’Const) then ¢ (hd e)
else if eq(hd e,’Var) then ¢ (r (hd(tl ¢)))
else if eq(hd e,’Cons) then
int(hd(tl e),r, \wl.int(hd(ti(tl €)),r, w2.cons(wl,w2)))
else if eq(hd e,’If) then
int(hd(tl e),
T}
Awl.if wl then int(hd(tl(tl €)),r,c)
else int(hd(tl(ti(tl e))),r,c))
else if eq(hd e,’Abs) then
¢ (Awl.Xel.int(hd(tl(tl e)),upd(hd(tl e),wi,r),c))
else
int(hd(tl e),r,\wl.int(hd(tl(tl e)),r,\w2.(wl w2) c))
upd(n,v,r) = Am.if eq(n,m) then v else r m

Program 11. Ho.let. Interpreter for the language in “ho” extended with
“let”.

The binding times for the abstractions and applications in this program are
the same as in “ho”.

run(e,v) = int(e,Am.v)
int(e,r) = if eq(hd e,’Const) then hd(tl e)

o8

else if eq(hd e,’Var) then r (hd(tl e))
else if eq(hd e,’Cons) then cons(int(hd(tl e),r),int(hd(ti(tl e)),r))
else if eq(hd e,’If) then

if int(hd(tl e),r) then int(hd(ti(tl e)),r) else int(hd(tl(tl(tl €))),r)
else if eq(hd e,’Abs) then \z.int(hd(tl(tl e),upd(hd(tl e),z,r))
else if eq(hd e,’Let) then

int(hd(tl(tl(tl e))),upd(hd(tl e),int(hd(tl(tl e)),r),r))
else (int(hd e,r)) (int(hd e,r))

upd(n,v,r) = Am.if eq(n,m) then v else r m

Program 12. Ho.func. Interpreter for a higher-order strict language with
constants, variables, conditionals, let expressions, named functions, abstraction
and application. The environment is represented as a name list and a value list.

Initial binding-time division: e: S, p: S, v: D. The abstraction and application
at the end of the function int are dynamic.

run(e,p,v) = int(e,cons(’z, nil),cons(v, nil),p)
int(e,ns,vs,p) = if eq(hd e,’Const) then hd(tl e)
else if eq(hd e,’Var) then lookupvar(hd(tl e),ns,vs)
else if eq(hd e,’Cons) then
cons(int(hd(tl e),ns,vs,p),int(hd(tl(tl e)),ns,vs,p))
else if eq(hd e,’If) then
if int(hd(tl €),ns,vs,p) then
int(hd(tl(tl e)),ns,vs,p)
else
int(hd(tl(tl(tl e))),ns,vs,p)
else if eq(hd e,’Let) then
int(hd(ti(tl(tl e))),
cons(hd(tl e),ns),
cons(int(hd(tl(tl e)),ns,vs,p),vs),
p)
else if eq(hd e,’Call) then
int(lookupbody(hd(tl e),p),
lookupnames(hd(tl e),p),
intlist(hd(tl(tl e)),ns,vs,p),

p

else if eq(hd e,’Lam) then

Az.int(hd(tl(tl e)),cons(hd(tl e),ns),cons(x,vs),p)
else if eq(hd e,’App) then

(int(hd(tl e),ns,vs,p)) (int(hd(tl(tl e)),ns,vs,p))
else

"Error;

lookupvar(n,ns,vs)= if eq(n,hd ns) then hd vs

99

else lookupvar(n,tl ns,tl vs)

lookupbody(f,p) = if eq(f,hd(hd p)) then hd(ti(ti(hd p)))
else lookupbody(f,tl p)
lookupnames(f,p) = if eq(f,hd(hd p)) then hd(tl(hd p))
else lookupnames(f,tl p)
intlist(es,ns,vs,p) = if null es then ’nil
else cons(int(hd es,ns,vs,p),intlist(tl es,ns,vs,p))

Program 13. Ho.letrec. Interpreter for the language in “ho” extended with
“letrec”.

Initial binding-time division: e: S, v: D. The abstractions and applications
used to implement the environment are static. The abstraction and application
used to interpret abstraction and application are dynamic. The abstractions and
applications used to interpret letrec expressions are static. None of the lambdas
are single threaded.

run(e,v) = int(e,Am.v)
int(e,r) = if eq(hd e,’Const) then hd(tl e)
else if eq(hd e,’Var) then r (hd(tl e))
else if eq(hd e,’Cons) then cons(int(hd(tl e),r),int(hd(ti(tl e)),r))
else if eq(hd e,’If) then
if int(hd(tl e),r) then int(hd(ti(tl e)),r) else int(hd(tl(tl(tl €))),r)
else if eq(hd e,’Abs) then \z.int(hd(tl(tl e),upd(hd(tl e),z,r))
else if eq(hd e,’Letrec) then
int(hd(tl(tl(tl e))),fix (Arl.upd(hd(tl e),int(hd(tl(tl €)),r1),r)))
else (int(hd e,r)) (int(hd e,r))
upd(n,v,r) = Am.if eq(n,m) then v else r m
fislf) = rnf (fa f) @

60

